1. CONNESSIONI

Esercizio 1.1. Si consideri lo schema di figura, in cui i sistemi ¥; e Y5 sono sistemi discreti
connessi in serie e i segnali di retroazione dallo stato di ¥; e dallo stato di ¥, vengono iniettati
all’ingresso della connessione serie.
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e che Y5 sia realizzazione minima della funzione di trasferimento
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2;) Quando K; e K5 sono entrambe nulle, il sistema serie & raggiungibile? & osservabile?
2;;) Esistono matrici di retroazione K; e Kj in corrispondenza alle quali il sistema di figura &
internamente asintoticamente stabile? In caso affermativo, si fornisca almeno un esempio di
coppia (K7, K») stabilizzante.

2;i;) 1l sistema reazionato ammette, per qualche scelta di K; e di K9, uno stimatore asintotico?
(i) La funzione di trasferimento di ¥, ¢

Hyadj(zI — Fy)g 2z + 22 z(z 4 2)

det(2I — F1) 234222 —2-2 (2+2)(22-1)

Poiché 1 ha dimensione 3 ed é raggiungibile, mentre la f.d.t. in forma irriducibile ha denominatore

del secondo ordine, Y1 non é osservabile e —2 ¢ ’autovalore del sottosistema non osservabile di
1.

1l sistema serie non & osservabile, perché tale ¢ uno dei sistemi che costituiscono la serie.

1l fattore z+2 ¢ comune al polinomio Hiadj(zI — F1)g1 e al polinomio det(zI — Fy), caratteristico
della realizzazione minima Yo di wo(2). Quindi il sistema serie di X1 e di Yo non é nemmeno
raggiungibile, e —2 ¢ autovalore del suo sottosistema non raggiungibile.

(i1) 31 € raggiungibile, quindi ol variare di K il polinomio det(zI — F) —g1 K1) € un arbitrario poli-
nomio di grado 3. Se esso non ha come fattori né z, né z+2, il sistema ZgKl) = (Fi+g1K1,81, Hy)
e raggiungibile e osservabile, e puo essere reso anche asintoticamente stabile allocandone gli auto-
valori entro il disco unitario, origine esclusa.

Tuttavia il polinomio Hiadj(zI — Fy —g1 K1)g1 non dipende da K1 e vale sempre z(z+2). Quindi la
serie di EgKl) e di Xo € non raggiungibile, qualunque sia K1, e non é stabile, essendo —2 autovalore
del suo sottosistema non raggiungibile.



Qualunque sia Ko # 0, linstabilita del sistema globale permane. Infatti Ko da luogo ad una
retroazione dallo stato all’ingresso del sistema serie (e non all’ingresso di ¥2!), e tale retroazione
lascia invariato 'autovalore (instabile) del sottosistema non raggiungibile. Quindi la risposta al
quesito € negativa.

(iii) Si: ad esempio, basta scegliere Ko =0 e Ky in modo che det(zI — Fy — g1 K1) non abbia zeri
nell’origine e in —2 (cio rende osservabile 2(1K1)) e nemmeno zeri in —3. Allora il sistema serie
di EgKl) e di Yo ¢ osservabile, quindi ammette stimatore asintotico.

Esercizio 1.2 Si considerino le funzioni di trasferimento
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2; Si costruiscano una realizzazione minima ¥ = (Fy,g1, H1) di wi(z) ed una minima 39 =
(Fy, 82, Hs) di wa(z) e si determini se il sistema serie di ¥; seguito da Xy ¢ semplicemente
stabile e/o osservabile.

2;; Si costruisca per il sistema ¥; una retroazione K; dallo stato in modo che ogni evoluzione
libera dello stato di 3 sia periodica di periodo 3. Si determini se il sistema serie cosi ottenuto
(cfr figura) & semplicemente stabile e/o osservabile.
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2;:; Si determinino tutti gli stati iniziali del sistema serie, reazionato come al punto 2;;, che danno
luogo a uscite libere y(¢) di durata finita.

1;) Ricorrendo, p.es., a realizzazioni in forma canonica di controllo, si ha

0 1 0 0 0 10 0
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Il primo sistema, e quindi la serie, risultano instabili (I’autovalore A = 1 nella matrice Fy ha

molteplicita 3 nel polinomio minimo). La serie risulta osservabile, dato che i polinomi det(zI —
Fy) = (2 —1)® e Hyadj(zI — Fy)ga = 2°> + 2 + 1 sono coprimi.

2;i) Per ogni stato x; deve risultare (Fy1+g1K1)3x1 = x1, quindi si deve avere (F1+g1K1)3—1I3 = 0.
Allora il polinomio caratteristico di (Fy + g1K1) sara 23 — 1 e per ottenerlo dovremo assumere
Ky =[0 3 =3]. Il nuovo sistema serie é semplicemente stabile (ha come autovalori semplici
1,e727/3 e347/3 ¢ (0 come autovalore a molteplicita 3) e non osservabile, essendo non coprimi i
polinomi det(zI — F} —g1 K1) =23 —1=(2—1)(22 + 2+ 1) e Headj(z] — Fy)ga = 22 + 2 + 1.

2::) Il sistema Yo ha memoria finita ed é osservabile e raggiungibile, quindi

- le sue uscite libere hanno tutte durata finita e sono nulle solo se x2(0) =0



- le sue uscite forzate hanno durata finita solo nel caso in cui lingresso forzante us(-) [che &
Vuscita libera di X1 reazionato da K1] pud essere espresso come
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se e solo se w11 + x12 + 213 = 0, cioé sse é nulla la somma delle componenti di x1(0).

che assume la forma se z—1 divide p(z), cioé se p(1) = 0. Tale condizione ¢ verificata

Gli stati che danno luogo a uscita y(+) di durata finita sono allora gli stati
X1
X9

in cui é nulla la somma delle componenti di x1(0).

Esercizio 1.3 (i) Si costruiscano due realizzazioni minime ¥, e X5 rispettivamente di

z4+1  n(2) (2) = z—1  no(z)
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Si stabilisca quali fra i seguenti sistemi sono raggiungibili e quali sono osservabili:
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realizzano in dimensione 2 le funzioni di trasferimento date. La dimensione di realizzazione é mi-
nima, perché coincide con il grado del denominatore delle f.d.t. in una rappresentazione irriducibile.

(i) 1l sistema X , serie di X1 e Yo, € minimo, non essendovi cancellazioni fra det(zI — Fy) e
HyAdj(zI — Fy)ga, né fra det(zI — Fy) e HiAdj(zI — F1)g1. Basta ora notare che il sistema (ii)
e la serie di due sistemi identici al sistema minimo X, quindi ¢ raggiungibile e osservabile.

(i11) 3, parallelo di 1 e di Xo, é raggiungibile e osservabile perché gli spettri dei due sistemi
minimi costituenti i rami di ¥, sono disgiunti. Il sistema (%) é la serie dei due sistemi eguali a
Yp, quindi é raggiungibile e osservabile.

(iv) Il sistema (iv) consta del parallelo di due sistemi Xs. I rami del parallelo, essendo eguali,
hanno quindi autovalori comuni. Il sistema (iv) non & quindi né raggiungibile, né osservabile.

(v) 1l sistema ha un ingresso e due uscite. Sia la serie di 31 sequito da X1 che la serie di $1 seguito
da Yo sono osservabili. Quindi dalle due uscite & osservabile lo stato del sistema complessivo.



Per la raggiungibilita, nulla cambia se le due uscite vengono sommate e il sistema diventa quindi la
serie di ¥ e del parallelo ¥, (che é raggiungibile e osservabile). Il sistema complessivo ha funzione
di trasferimento

w(z) = n1(z) na1(z)dz(2) + na(2)di(2)

di(2) d1(2)d2(2)
Tale funzione razionale é in forma irriducibile: nq non ha cancellazioni con di né con do e negli zeri
di dy e di dy il polinomio nids 4+ nady non si puo annullare. Il sistema interconnesso realizza w(z)
in dimensione 6, equale appunto al grado del denominatore di una rappresentazione irriducibile di
w(z). Quindi il sistema (v) & minimo.

(vi) Il sistema ha un ingresso e 4 uscite. Dalle quattro uscite é osservabile lo stato di ciascuno dei
4 “rama” dell’albero e quindi lo stato complessivo.
Il sistema (vi) non é raggiungibile: ”chiudendo” i paralleli di X1 e Xo si vede che ai fini della
raggiungibilita il sistema (vi) equivale al parallelo di due sottosistemi:

Y1 in serie al parallelo ¥, di 31 e Yo,

Yo in serie al parallelo ¥, di 31 e Yo.
I due sottosistemi hanno autovalori comuni (quelli dei due paralleli ¥, ), quindi non é raggiungibile
il loro parallelo (e con esso il sistema (vi)).

Esercizio 1.4 Siano X e Y5 due realizzazioni minime rispettivamente di
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Si studino la raggiungibilita e ’osservabilita delle seguenti connessioni:
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Soluzione Nel primo caso, la serie ¢ di due sistemi minimi ¥; € a sua volta realizzazione
minima di
52
YT a1t
La connessione Xy ottenuta dalla retroazione di ¥, e di ¥y & ancora raggiungibile e osservabile,
essendo realizzazione in dimensione 6 della f.d.t. irriducibile con denominatore del sesto grado:

2222+ 1)?
W)= -



Infine la serie dei due sistemi minimi 3y e X5 ¢ osservabile ma non raggiungibile. Infatti si cancella il
fattore z2 fra il denominatore della f.d.t. irriducibile di ¥4 e il numeratore della f.d.t. irriducibile di

X ¢, mentre non ci sono cancellazioni fra denominatore della f.d.t. irriducibile di ¥ e il numeratore
della f.d.t. irriducibile di Xs.

Nel secondo caso, il parallelo ¥, di ¥; e di X & raggiungibile e osservabile (spettri disgiunti!) ed

ha f.d.t.irriducibile
3224 (224 1)3

w(2) = 550, 1)

La serie di ¥, con ¥, ¢ allora non osservabile (cancellazione del fattore z fra il denominatore di
wp(z) e il numeratore di w1 (z)), ma raggiungibile.

Esercizio 1.5 Siano dati i sistemi discreti ¥ = (Fy, g1, H1), con
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e Yo = (F3, 82, Ha), realizzazione minima della funzione di trasferimento
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Si considerino i seguenti schemi di connessione:

0 D w 5,
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Schema S

— | 21

u(t) . J x1(t) 6 y(t)

2o

Schema P

Per ciascuno degli schemi, si determini, quando possibile, la matrice di retroazione K; in modo
che il sistema risultante dalla connessione sia

2.i) osservabile;



2.ii) raggiungibile;

i)

2.ili) non osservabile e non raggiungibile;
)
)

2.iv) BIBO stabile;

2.v) internamente (asintoticamente) stabile.
Nei casi di impossibilita, si fornisca una concisa spiegazione.

Soluzione
1l sistema 31 € in forma canonica di controllo, quindi é raggiungibile. D’altra parte la sua funzione

di trasferimento ¢
22 -1 22 -1 1

A1 (2 -1)(22+1) T 221

Poiché 31 non é realizzazione minima, non € osservabile e gli autovalori del suo sottosistema non
osservabile sono gli zeri di 2% — 1.

La retroazione dallo stato alloca arbitrariamente gli autovalori di Fy + g1 K1 e consente quindi di
ottenere, per il sistema X1 retroazionato da Ki, che denoteremo con ¥4 i, , tutte e sole le f.d.t.

wy(z) =

22 -1

p(z)

con p(z) polinomio monico arbitrario di quarto grado. St noti che £1 g, é comunque raggiungibile,
ed ¢ osservabile se p(z) e 22 — 1 sono coprimi.

Schema S

2.i) Occorre e basta scegliere Ky in modo che
o p(z) =det(zly — Fy — g1 K1) sia coprimo con 2% — 1 (& ¥ g, osservabile)

e p(z) sia coprimo con z—3 (< mancanza di cancellazioni fra det(zIy—Fy—g1 K1) e Haadj(zI—
Fh)go

Ad esempio, si puo scegliere K1 =[—1 0 0 0], in modo da avere p(z) = z*

2.ii) Qualunque retroazione K si adotti, il polinomio Hiadj(zI — Fy —g1K1)g1 rimane invariato e
vale 22—1 Quindi in ogni caso si ha una cancellazione fra tale polinomio e il polinomio caratteristico
di 5. Lo schema S non e mai raggiungibile.

2.iii) Basta lasciare le cose come stanno, i.e. scegliere K1 = 0. Il sistema X1 & non osservabile e
si ha una cancellazione fra Hyadj(zI — Fy)gy e det(z] — Fy). Quindi lo schema S é non osservabile
e non raggiungibile.

2.iv) La funzione di trasferimento dello schema S vale

p(2)(z2=1)  p(2)

Basta scegliere p(z) con zeri a modulo minore di 1 (ad esempio, p(z) = z*, e quindi K1 =
[-1 0 0 0]) per ottenere un sistema BIBO stabile.

2.v) Fra gli autovalori dello schema S sono comunque presenti gli autovalori +1 del sistema X
quindi lo schema non puo mai essere asintoticamente stabile.
Schema P

2.1) Occorre che ¥ i, sia osservabile e che i suoi autovalori (ovvero, quando si sia ottenuta
Uosservabilita, i suoi poli) non siano autovalori di ¥o. Occorre e basta scegliere K1 in modo che



p(z) = det(z] — Fy — g1 K1) sia coprimo con z? — 1, numeratore della f.d.t. di X1 (osservabilita di
Y1 K, ) ma anche polinomio caratteristico del sistema Xo (assenza di autovalori comuni fra ¥q g,
eXs)

La scelta p(z) = 2* e quindi K1 =[—1 0 0 0] va bene anche in questo caso.

2.ii) I sistemi 31 i, e Xo sono entrambi raggiungibili; per la raggiungibilita dello schema P basta
quindi che i loro polinomi caratteristici siano coprimi, ovvero che non ci siano zeri comuni fra
22 —1 ep(z) =det(z] — F} —g1K1).

Basta scegliere p(z) = 2%, ovvero K1 =[—-1 0 0 0].

2.iii) Scegliendo K1 = 0, i due sistemi in parallelo hanno in comune gli autovalori 1 e —1, ovvero
gli zeri di 22 — 1. Allora lo schema P non é né raggiungibile, né osservabile.

2.iv) La funzione di trasferimento dello schema P vale

21 2o EoDP4p@E-) G- 1Per1PpE)E-D)

+ = =
p(z)  2*-1 p(2)(* — 1) p(z)(z = 1)(z+1)
Qualunque sia p(2), la molteplicita del fattore z — 1 a denominatore eccede la molteplicitd a nu-
meratore, quindi in wp(z) il polo in z = 1 & presente qualunque scelta si faccia per il polinomio
monico di quarto grado p(z). Pertanto lo schema P non é BIBO stabile, qualunque scelta si faccia
per K.

wp(z) =

2.v) Poiché lo schema P non ¢ BIBO stabile per nessuna scelta di K1, non puo nemmeno essere
asintoticamente stabile. (In alternativa, poiché Xo ha autovalori a modulo unitario, l'intero schema
parallelo ha autovalori a modulo unitario,etc.)

Esercizio 1.6 Se il sistema X ¢ realizzazione minima della funzione di trasferimento
z b(z
w(z) = (2)

B+224+1  a(z)
2.1) si determini, al variare di k, la funzione di trasferimento del sistema interconnesso di figura
2.1, in cui sono presenti k > 1 sistemi X nella catena di retroazione.

—o—{1] :

Figura 2.1

{5 b3 s

2.ii) si stabilisca se il sistema interconnesso di figura 2.2 & raggiungibile e/o osservabile

2.iii) si determini, al variare di &, la funzione di trasferimento del sistema interconnesso di figura
2.2, in cui sono presenti k > 1 sistemi X in retroazione.

4 t
U(){p {) g y(t)

Figura 2.2




2.iv) si studi la raggiungibilita e 'osservabilta della connessione di figura 2.2.

SOLUZIONE
2.i) Posto b(z) = z e a(z) = 2% + 22 + 1, se le copie di ¥ nella catena di retroazione sono k,
la f.d.t. della catena di retroazione ¢ b(2)*/a(2)* e quella del sistema di figura 2.1. ¢

b(z)a(2)"
(T =B

(1.8)

2.11) La frazione (1.8) é irriducibile. Infatti sia negli zeri di a(z) che in quelli dib(z) (ossia negli
zeri del numeratore) il denominatore é diverso da zero. Inoltre il denominatore ha grado 3(k + 1),
equale alla dimensione del sistema interconnesso di figura 2.1 che realizza (1.8). Poiché una f.d.t.
in forma irriducibile ha realizzazione minima di dimensione eguale al grado del denominatore, il
sistema di fig.2.2 & realizzazione minima di (1.8), quindi é raggiungibile e osservabile.

2.113) E chiaro che lo schema di figura 2.2 prevede in retroazione il parallelo di k sistemi equali.
Tale parallelo ha funzione di trasferimento %(5)) e di consequenza la f.d.t. del sistema interconnesso
di figura 2.2. ¢

espressa in forma irriducibile.

2.iv) Se k =1, il sistema complessivo ha dimensione 6, equale al grado del denominatore della
sua f.d.t. in forma irriducibile. Quindi é minimo, ovvero raggiungibile e osservabile.
Se k > 1, il sistema interconnesso di figura 2.2. ha dimensione 3(k+1) maggiore di 6, che é il grado
del denominatore della sua f.d.t. Quindi il sistema non é minimo. Possiamo anche affermare che
non € né raggiungibile, né osservabile, dato che non é né raggiungibile, né osservabile il sistema in
retroazione (parallelo di pit sistemi equali).

Esercizio 1.7 Si consideri una funzione di trasferimento espressa in forma irriducibile

w(z) = Zéz)), degd(z) =4, degn(z) =2

e siano ¥ e X realizzazioni minime rispettivamente di w(z) e di —w(z)

2.i) si determinino, in forma irriducibile, le funzioni di trasferimeno dei sistemi interconnessi ¥
e Yo di figura 2.1;

Yot
—o{= =+
Figura 2.1
D)
L= 7

2.ii) si stabilisca (giustificandolo) se ciascuno dei sistemi interconnessi ¥ e ¥g & raggiungibile
e/o osservabile;

2.ii) si stabilisca (giustificandolo) se il parallelo di ¥; e di X & raggiungibile e/o osservabile.
In caso negativo, si determini qual & la dimensione minima di realizzazione della funzione di
trasferimento del parallelo di 37 e Y.
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Soluzione]
2.i.) Le funzioni di trasferimento di ¥1 e di 3o sono rispettivamente
—n(2)d?(z) n?(z)d(z)
= 7 = W 1.9
wi(2) d3(z) +n3(z) s (2) d3(z) — n3(2) (1.9)

E immediato che entrambe le rappresentazioni (1.9) di wi(z) e wa(z) sono irriducibili: dove n(z)
st annulla, non si annulla d(z) e, viceversa, dove d(z) si annulla, non si annulla d(z). Quindi i
denominatori d*(z) £ n3(2) non possono annullarsi nei punti in cui si annullano i numeratori di
(1.9).

2.i1.) Il denominatore di entrambe le rappresentazioni irriducibili (1.9) ha grado 12. Poiché
la dimensione dello spazio di stato dei sistemi X1 e Xa, che realizzano wy(z) e wa(z), € 12, cias-
cuno dei sistemi 31 e Yo € una realizzazione minima della propria f.d.t., quindi é raggiungibile e
osservabile.

2.iii.) Gli autovalori di ¥, e di X9 sono, rispettivamente, gli zeri di d®(z) +n3(2) e di d3(z) —
n3(2). I due polinomi non hanno zeri comuni: infatti, se fosse

@) +n*a) = 0
(@) —n*@) = 0 (1.10)

sommando le equazioni si otterrebbe d*(a) = 0 e sottraendole n®(a) = 0. Ma allora o sarebbe zero
comune di d(z) e n(z), impossibile perché d(z) e n(z) sono coprimi.

Poiché i sistemi 31 e Yo non hanno autovalori comuni e sono entrambi raggiungibili e osserv-
abili, tale é anche il loro parallelo.
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2. CONTROLLO OTTIMO

Esercizio 2.1. Si considerino il sistema

010 0
x(t+1) = [0 0 1| x(t)+ |0 ut)=Fx(t)+ gu(t) (1.11)
0 0 0 1
e 'indice quadratico
J(u,xo) :Z(u2(t)+xT(t)Qx(t)), Q=CTC, C=[0 1 «a], acR (1.12)

t=0

Evidenziando, eventualmente, i valori di a per cui la risposta ¢ affermativa, si stabilisca se

3; esiste, per ogni scelta dello stato iniziale xg, il controllo ottimo che minimizza l'indice
quadratico;

3;; esistono stati iniziali non nulli in corrispondenza ai quali & nullo il valore minimo dell’indice
e, in caso affermativo, si determinino tutti gli stati iniziali per cui risulta min,, J(u,x¢) = 0;

3 la matrice di retroazione K, che induce il controllo ottimo us; = KX stabilizza il sistema
(si giustifichi la risposta).

3, Per ogni valore di @ € R si determinino la soluzione “ottimizzante” M, dell’equazione
algebrica di Riccati e la matrice di retroazione K,. Per quali valori di « la matrice F+GK
¢ nilpotente?

(i) Il sistema é raggiungibile, indipendentemente da «, quindi é stabilizzabile, quindi il minimo
dell’indice esiste finito per ogni stato iniziale.

(ii) Qualunque sia a, la coppia (F,C) non & osservabile, quindi My, non ¢ definita, ma soltanto
semidefinita positiva. La matrice di osservabilita delle coppia é

Q

(1.13)

o O O

1
0
0

S =

)

il cui nucleo (ovvero il sottospazio non osservabile della coppia (F,C)) ha come generatore il vettore
canonico ey. La forma quadratica xt MXo, che fornisce il valore minimo dell’indice quando lo
stato iniziale € Xq, st annulla se e solo se xq appartiene al sottospazio non osservabile, quindi sse
Xg = fe;.

(iii) Ko stabilizza il sistema, qualunque sia o. Infatti , indipendentemente da «, la coppia (F,C)
¢ riwelabile (F ¢ nilpotente, quindi l'unico autovalore del sottosistema non osservabile é lo zero!)

(iv) Ponendo M(0) = 0 nell’equazione alle differenze di Riccati, si ottiene

- 0 0 O 0 0 O 0 0 O
M(-1)=Q=C"C={0 1 af, M-2=|0 1 af|, M=3)=|0 1 a
0 a o? 0 a = 0 o =*
Si verifica allora facilmente, per induzione, che per ogni k < —1
0 0 O
M(-kE)=10 1 « (1.14)
0 a =



12

Quindi la soluzione Mo = limy_,oo M(—k) dell’equazione algebrica di Riccati (EAR), sard una
matrice semidefinita positiva con struttura

0 0 O
Mo=10 1 af. (1.15)
0 a y

Il valore di y si ottiene sostituendo (1.15) in (EAR). Imponendo Uequaglianza fra gli elementi in
posizione (3,3) a primo e secondo membro di

My =Q+F'M, F -~ F'M,g(R+g"M.g) 'g" M F

st ha )
9 o
=a*+1- 1.16
y Ty (1.16)
o, equivalentemente, > — o’y — 1 = 0. Scartando la soluzione negativa (altrimenti M., non
risulterebbe s.d.p.) , si ricava
a? at
= — —+1 1.17
y=5 Tt (1.17)
e infine
T —1,T 2 4 -
Koo=—(R+g Mxg) 8 MocF =[ko ki ko= [0 0 —a(1+‘;+ o +1
(1.18)
Si conclude che
0 1 0
F+gKo=10 0 1 (1.19)
0 0 ko
e nilpotente se e solo se ko = 0, ossia se e solo se a = 0.
Esercizio 2.2. Si considerino il sistema
0 1 0
x(t+1)= 3 _9 x(t) + 1 u(t) = Fx(t) + gu(t) (1.20)
e 'indice quadratico
+oo
J(u,x0) = Y (W) +x"()Qx(t)), Q@=C"C, C=[e e] (1.21)
t=0

3; Si determini la matrice C' in modo che la matrice di retroazione K, che risolve il problema
di minimizzare J(u,Xo) non stabilizzi il sistema.

3;; Esistono matrici C tali che I’equazione algebrica di Riccati non ammetta soluzioni M, stabi-
lizzanti? In caso affermativo, si determini la struttura di siffatte C.

3;i; Scelta C' in modo che F 4+ gK, sia asintoticamente stabile, si determini una matrice s.d.p.
P tale che, per ogni stato xg, si abbia

X%Pxo > XngXO.
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3;) La raggiungibilita della coppia F,g garantisce che il controllo ottimo esiste. La matrice K
non é stabilizzante se e solo se la coppia (F,C) non é rivelabile. La matrice PBH di osservabilitd

o =13 =+2 (1.22)

[zI—F} =
C1 Co

puo avere rango minore di 2 soltanto in corrispondenza ai valori di z che sono autovalori di F,
quindi in 1 e in -8. Affinché il rango sia effettivamente minore di 2 occorre inoltre che la matrice

C per z = —3 oppure per z =1 sia, rispettivamente,
C=a[-3 —-1] == (O3 a€elR
C =all -1] == ¢, «a€elR (1.23)

In entrambi i casi il sottosistema non osservabile ha un autovalore in modulo maggiore o equale a
1, e quindi la coppia (F,C) non é rivelabile.

3ii) L’equazione di Riccati non ammette soluzioni stabilizzanti se e solo se (1.86) ha rango non
pieno per qualche valore z € C con |z| = 1. Cio si verifica scegliendo C' = C}.

1 ﬂ e F 4+ gK. risulta

3iii) Scegliamo, ad esempio, C = C = [1 1]. Siha Q = CTC = [
asintoticamente stabile perché la coppia (F,C) & osservabile.

Consideriamo inoltre un’ arbitraria matrice di retroazione K che stabilizza il sistema dato, p.es.
la matrice K = [—3 2] per cui F + gK é nilpotente. Il valore dell’indice J(u,xg) corrispondente
all’ingresso di retroazione u(t) = Kx(t) ¢ certamente non inferiore all’ottimo xi MsXo, ed ¢ dato

da xI Pxg, dove P ¢ la soluzione semidefinita positiva dell’equazione di Lyapunov
(F+gK)TX(F+gK)—- X =—(KTRK + Q) (1.24)

(07

Posto P =
E

g} e sostituendo i valori per le altre matrici, (1.38) diventa
0 Of|a B0 1| |a B|_ |-3 -3 2] 1 1
1 0|8 ~||0 O B8 vl 2 1 1

p=ls )=

e la soluzione é

Esercizio 2.3. Si considerino il sistema

x(t+1) = [? H x(t) + m u(t) = Fx(t) + gu(t) (1.25)
e 'indice quadratico
+oo
J(u,x0) =Y _ (W) +x"(0)Qx(t), @=c"C, C=[1 1] (1.26)
t=0

(i) Esistono stati iniziali non nulli in corrispondenza ai quali il valore minimo dell'indice J ¢
nullo? In caso affermativo, si richiede di determinarli tutti.
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(ii) Si costruisca un dead-beat controller K per la coppia (F,g). Se per il sistema cosi retroazio-
nato
x(t+ 1) = (F + gK)x(t) 4+ gu(t) = Fx(t) + gu(t) (1.27)

viene adottato I'indice quadratico (1.26), esistono stati iniziali non nulli in corrispondenza ai
quali il valore minimo dell’indice & nullo?

(iii) Per il sistema (F,g) dato in (1.27) e con indice (1.26), si determinino la soluzione M,
dell’equazione algebrica di Riccati e la corrispondente matrice di retroazione K.

(iv) Per il sistema (1.27) si determini il valore di J(0,x¢) in corrispondenza ad ogni stato iniziale
X, € si verifichi che vale la diseguaglianza

J(0,%0) > xE Maoxo. (1.28)

Per quali stati iniziali la diseguaglianza vale in senso stretto?

(i) La coppia (F,C) non é osservabile. Il valore minimo dell’indice é nullo in corrispondenza a
tutti gli stati non osservabili della coppia , ovvero a tutte le soluzioni dell’equazione

o=[& =t Y]],

Gli stati cercati sono del tipo

(ii) II controllore d.b. ¢ K =[—1 0] : in corrispondenza si ha F = 0 1} e la coppia (F,C) &

0 0
osservabile. Quindi in corrispondenza ad ogni stato iniziale non nullo il valore minimo dell’indice
per il sistema (F,g) ¢ strettamente positivo.

(iii) La matrice My, € la soluzione definita positiva dell’equazione algebrica di Riccati

X=Q+F'XF-FT'Xg(R+g"Xg) g XF.

Posto X = {5 ﬂ , si perviene all’equazione

KR I |
- |0 oJ 5 (3 Go s S R]) o 0z A o
= [1 3]+ [0 o] [S]ararto s
= [ a5 2]

che equivale al sistema

p = 1
s = 1

1+ il
7 = P=1y
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La componente q soddisfa 'equazione ¢> —q—1 =0, che ha per soluzioni ¢ = % + % + 1. Poiché
la matrice My, cercata deve essere d.p., delle due soluzioni va scelta la positiva:

q=%[1+\/5]

ottenendo cosi
1 1

M., =
1 11+5)

1l controllo ottimo € l'ingresso di retroazione prodotto dalla matrice

K““(R+gTM°og>lgTMooF——(1+;(1+¢5)>_l[o 1]_[0 —2 }

(iv) La matrice di aggiornamento di stato
0 1
0
3+V5

¢ asintoticamente stabile. Il valore minimo dell’indice ¢

1 1 1
J(uot,Xo) = [1‘01 xog] |:1 l(l + \/5):| [zg;} = x81+2x01x02+§(1+\/5)132 ~ x%1+2101x02+1.62x32
2

mentre in evoluzione libera l'indice assume il valore

1 1 x 1 1 x
J(0,%0) = [z01 $02][1 1][01}4-[3302 0]{1 1][82}29031—1—2%130024-2%2

Evidentemente si ha sempre J(0,%0) > J(uot,X0) € l'equaglianza si ha per gli stati iniziali con
Zo2 = 0.

Esercizio 2.4. Si consideri il sistema discreto

x(t+1) = [1 g}x(t)—i-E]u(t):Fx(t)+gu(t)
(&) = [1 0]x(t) (1.29)
¢ Vindice quadratico
J(u,x0) = :i: (u*(t) +4°(1)) , (1.30)

(i) 11 controllo ottimo wet(+) che minimizza 'indice quadratico e stabilizzante?

(ii) Si calcolino

— la soluzione ottimizzante M, dell’equazione algebrica di Riccati,

— la corrispondente matrice di reatroazione K,
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e si verifichi sullo spettro di F' 4+ gK, quanto affermato al punto precedente;

(iii) per quali stati iniziali x¢ & nullo il valore minimo dell’indice min,, J(u,Xq)?

Soluzione Si noti che nel problema di controllo ottimo in considerazione l’indice ha matrici

RzleQ:CTC’:[é][O 1] = B 8]

La coppia (F,g) ¢ raggiungibile, quindi stabilizzabile, mentre la coppia (F,C) é in forma standard
di osservabilita (quindi non é osservabile) e poiché il sottosistema non osservabile ha autovalore 3,
la coppia (F,C) non é rivelabile.

(i) La risposta ¢ negativa, dato che (F,C) non é rivelabile.

(i1) L’equazione alle differenze di Riccati

M(—t—1) = Q+FT'M(-t)F — FTM(-t)g(R+g"M(—t)g) ‘gM(—t)F
- o o]0 smen s 3]
o 3| Meotasn naen ) ueo|] g,

0 0

se inizializzata da M(0) = [0 0

], ha per ogni t > 0 una soluzione con struttura
_ o mll(—t) 0

quindi anche Mo = limy_,oo M(—t) ha diversa da zero solo la componente di posizione (1,1).
Essendo My, una soluzione semidefinita positiva dell’equazione algebrica di Riccati

M=Q+F'MF - F"Mg(R+g"Mg) 'gMF,

m
ponendo M = M., = {0 0

8 0] = Lol ] o al[h 3]
o R K AN CR R R TH R K THE

da cui si ricava

} si perviene all’equazione

2

m=1+m —
1+m

e infine m* —m —1 =0, che ha per soluzioni m = % + é La condizione che My, sia semidefinita
positiva impone di scegliere la soluzione positiva, pervenendo a

1 V5

3+t% 0] ,

My, =
[ 0 0

La matrice Ko ¢ allora

_ 1 V5 Ly Y5 g]f1 0
- _ T 1T - _ R Sl b 71t
Ko (R+g" Mwg) g8 MF (1+2+ 2) [1 1][ 0 0} L 3]
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- _3+2\/5[1+2\/5 0]:[1_\/5 0] (30

da cui

_|1 o Lirioys _[5=5 00
oo g e -7 1)

che ha un autovalore instabile.

(111) il valore minimo dell’indice é zero in corrispondenza agli stati iniziali xo che appartengono
allo spazio non osservabile della coppia (F,C), quindi a tutti gli stati proporzionali al vettore

o= ]
Canonico ey — 11

Esercizio 2.5. Si considerino il sistema

0 0 1 0
x(t+1) = |1 0 0|x()+ |0]u(t)=Fx(t)+gu(t) (1.32)
0 1 0 1

e 'indice quadratico

(W) +x"(H)Qx(1)), Q=Q" s.dp.

NE

J(u,xq) =
t

I
<)

i) Esiste, per ogni scelta dello stato iniziale xg e di @ s.d.p,. il controllo ottimo che minimizza
I'indice quadratico?
ii) Se S
Q=C"C, C=[1 1 1],
esistono stati iniziali non nulli cui corrisponde un controllo ottimo u.(-) identicamente nullo?

In caso affermativo, si determinino tutti gli stati iniziali cui corrisponde un controllo ottimo
identicamente nullo e qual ¢ il valore corrispondente dell’indice quadratico.

iii) Se @ = CTC, la matrice di retroazione K., che induce il controllo ottimo uet = KsoX
stabilizza il sistema? [si giustifichi la risposta]

iv) Si determini la matrice M, che risolve il problema di controllo ottimo quando @ = CTC.

Soluzione
i) Il sistema é raggiungibile, quindi stabilizzabile, quindi il controllo ottimo esiste.

ii) 11 sistema (F,C) non ¢ osservabile, quindi la matrice M., non ¢ definita positiva ed esistono
stati iniziali cui corrisponde controllo ottimo nullo. Si tratta di tutti e soli glv staty non osservabili
della coppia (F,C'), che ha matrice di osservabilita

C 11 1
O=|CF|=|1 1 1|=11"
CF? 1 1 1

11 sottospazio non osservabile é costituito allora da tutti i vettori per i quali é nulla la somma delle
componenti, ed ha come base, p.es., i vettori
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iii) Gli autovalori del sottosistema non osservabile di (F,C) hanno modulo unitario, perché hanno
modulo unitario tutti gli autovalori di F [si pud verificare che il sottosistema non osservabile ha
autovalori eij%ﬂ, ma tale verifica non é necessaria per trarre le conclusioni che ci servono: ci basta
sapere che gli autovalori hanno modulo unitario]. Quindi Ko non é stabilizzante, e in questo caso
lequazione algebrica di Riccati non ammette neppure una soluzione stabilizzante diversa da quella
ottima.

iv) Si noti che
FT11TF = FT117ggT11TF = 117
Allora, assumendo M(0) = 0, l’equazione alle differenze di Riccati ha soluzioni
117
117 + FT11TF — (1 + gT117g) ' FT11TggT117F

= 117 +117 - (1 +gM117g) 1117 = 211T

S
—~
LL
N—
(|

e, assumendo induttivamente M(—t) = a(—)117 si ricava

M(-t—1) = 117" 4+ a(-t)FT11"F — (1 + a(-t)g"117g) ' a?(—t) FT11 gg" 117 F
a’(=t)
= (1 —tn11? - ——— 117
(1+a(=t)) 1+ a(—t)
14 20(—t

Tutte le matrici M(—t) sono proporzionali alla matrice 117 e lo stesso vale allora per la matrice
limite My, che sappiamo esistere, ed essere s.d.p.

Si puo allora impostare 'equazione algebrica di Riccati, vincolando la soluzione cercata a essere
del tipo a117:

a11? = 117 + FTa11TF — (1 + gTa117g) ' FTa11Tggl 0117 F
2
o
= 11" +a11" - —117
ta 1+«

Si perviene all’equazione 1 + o — a? = 0, che ha un’unica soluzione positiva oy, e si trova

1 5
My =a,117 = %[nT
In alternativa, si pud osservare che in (1.33) la successione a(—t), t = 1,2,..., inizializzata da

a(—1) =1, é crescente e nessun suo elemento supera il valore 2. Quindi essa converge, al divergere
di t, ad un limite positivo as che risolve l'equazione

14+ 20
Qoo = ———
° 1+ o
OVVETO 4 Oloy = 1+2\/5' La soluzione dell’equazione di Riccati é data da

1
My = lim M(—t)= lim a(ft)uT:JrT\/guT

t——+o0 t——+o0

Esercizio 2.6. Si considerino il sistema

x(t+1) = {g _12} x(t) + m u(t) = Fx(t) + gu(t) (1.34)
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e 'indice quadratico

+oo

J(u,xq) = Z (@) +x"HQx(1), Q=CTC, C=[c1 c] (1.35)

t=0

i Si determini la matrice C' in modo che la matrice di retroazione K, che risolve il problema
di minimizzare J(u,Xo) non stabilizzi il sistema.

7 Esistono matrici C' tali che I’equazione algebrica di Riccati non ammetta soluzioni M, stabi-
lizzanti? In caso affermativo, si determini la struttura di siffatte C.

745 Scelta C' in modo che F' + gK, sia asintoticamente stabile, si determini una matrice s.d.p.
P tale che, per ogni stato xg, si abbia

ngxo > XOTMOOXO.

1) La raggiungibilita della coppia F,g garantisce che il controllo ottimo esiste. La matrice K, non
¢ stabilizzante se e solo se la coppia (F,C) non é rivelabile. La matrice PBH di osservabilita

z -1
zI — F
[ c }— -3 z42 (1.36)

C1 C2

puo avere rango minore di 2 soltanto in corrispondenza ai valori di z che sono autovalori di F,
quindi in 1 e in -8. Affinché il rango sia effettivamente minore di 2 occorre inoltre che la matrice

C per z = —3 oppure per z =1 sia, rispettivamente,
C=a[-3 —-1] == C.3 «a€elR
C =a[l -1] = ¢, «a€elR (1.37)

In entrambi i casi il sottosistema non osservabile ha un autovalore in modulo maggiore o equale a
1, e quindi la coppia (F,C) non é rivelabile.

11) L’equazione di Riccati non ammette soluzioni stabilizzanti se e solo se (1.36) ha rango non
pieno per qualche valore z € C con |z| = 1. Cio si verifica scegliendo C = Cy.

1 1

iii) Scegliamo, ad esempio, C = C = [1 1]. Siha Q = CTC = [1 1

} e F' 4+ gK, risulta

asintoticamente stabile perché la coppia (F,C) & osservabile.

Consideriamo inoltre un’ arbitraria matrice di retroazione K che stabilizza il sistema dato, p.es.
la matrice K =[—3 2] per cui F + gK ¢é nilpotente. Il valore dell’indice J(u,xq) corrispondente
all’ingresso di retroazione u(t) = Kx(t) ¢ certamente non inferiore all’ottimo xi MwXo, ed ¢ dato
da x} Pxg, dove P ¢ la soluzione semidefinita positiva dell’equazione di Lyapunov

(F+gK)'X(F+gK)—-X=—(K"RK + Q) (1.38)

Posto P = {g 5} e sostituendo i valori per le altre matrici, (1.38) diventa

a3 S )= [5 7)== [P i ]

e la soluzione é
p_|@ Bl |10 =5
B v |-5 15
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Esercizio 2.7. Si considerino il sistema

x(t+1) = {_03 _14} x(¢) + m ut) = Fx(t) + gu(t) (1.39)
e indice quadratico
+oo
J(u,xq) = Z (@) +x"HQx(1), Q=CTC, C=[c1 e] (1.40)
t=0

3.i) Si determini per quali valori di C' la matrice di retroazione Ko, che risolve il problema di
minimizzare J(u, Xo) non stabilizza il sistema.

3.ii) Esistono matrici C tali che l'equazione algebrica di Riccati non ammetta soluzioni M stabi-
lizzanti? In caso affermativo, si determini la struttura di siffatte C.

3.ili) Scelta C' in modo che F + gK, sia asintoticamente stabile, si determini, senza valutare M,
una matrice s.d.p. P tale che
P— My
sia semidefinita positiva.

3.iv) Scelta C in modo che F' + gK , sia asintoticamente stabile, per quali stati iniziali x¢ € R?
la legge di controllo ottimo K, porta lo stato a zero in un numero finito di passi?

SOLUZIONE

3.i) Il sistema & in forma canonica di raggiungibilita e F ha autovalori \y = —1 e Ay = —3.
Perché il controllo ottimo non sia stabilizzante occorre e basta che la coppia (F, C) non sia rivelabile.
Poiché entrambi gli autovalori di F' hanno modulo maggiore o eguale a 1, occorre e basta rendere
non osservabile la coppia, i.e. scegliere C =[c1 ¢3] in modo da soddisfare la condizione

C1 C2

_ c|_ _ 2 2 _ (. _
Odet[CF]det[ch 01402]61 derco + 3¢5 = (1 — ca)(e1 — 3ea)

1l controllo ottimo non é stabilizzante se c; = ¢y oppure se ¢y = 3¢

3.11) Nessuna delle soluzioni s.d.p. dell’equazione algebrica di Riccati é stabilizzante se la

matrice
zI — F
C
ha rango minore di 2 per qualche z a modulo unitario; nel caso specifico, per z = A\y = —1. E
chiaro che
wi-r)_ 5
o =
C1 C2

non ha rango 2 se e solo se ¢c1 = co. Quindi per questa scelta di C nessuna soluzione dell’equazione
di Riccati e stabilizzante.

3.i1i.) Una C cui corrisponde un controllo ottimo stabilizzante é, ad esempio, C = [0 1], cui

0 O} Facciamo quindi questa scelta. Per rispondere al quesito, si prende ora

corrisponde QQ = [0 1
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una matrice arbitraria K che stabilizzi il sistema: ad esempio si prende K = [3 4], che é un
controllore dead-beat. Si ¢ dimostrato (cfr. Dispense) che, in corrispondenza alla matrice stabile

F—i—gK:[O 1

0 0} , la matrice limite My, , che risolve il problema di controllo ottimo, é confinata

superiormente dalla soluzione semidefinita positiva P = {]; 2} dell’equazione di Lyapunov :

(F+gK)'X(F+gK)-X = —(KTRK+Q)
1 1 e M I - B
{p ro ] _ [9 12}
r q—p: 12 17
P_[f ;_ - {192 ;é}

3.iv) Le matrici F e F = gK, sono legate dalla relazione
F+gK, =[I+gR 'g" M, 'F.

Quindi, se la matrice F' é non singolare, come nel caso in esame, tale rimane anche la matrice
F + gK.,. Pertanto nessuno stato iniziale diverso da 0 viene portato a zero dal controllo ottimo
in un tempo finito.

Esercizio 2.8. Si considerino il sistema

01 0 0
x(t+1) = [0 0 1|x(t)+ 1] u(t)=Fx(t)+gu(t) (1.41)
00 0 1
e 'indice quadratico
J(u,x9) = i (W) +x"(H)Qx(1), Q=C"C, C=[0 a 1], aeR (1.42)

t=0

Evidenziando, eventualmente, i valori di « per cui la risposta & positiva, si stabilisca se

3.1) esiste, per ogni scelta dello stato iniziale xg, il controllo ottimo che minimizza l'indice
quadratico;

3.i1) esistono stati iniziali non nulli in corrispondenza ai quali & nullo il valore minimo dell’indice
e, in caso affermativo, si determinino tutti gli stati iniziali per cui risulta min,, J(u,xo) = 0;

3.iii) la matrice di retroazione Ko, che induce il controllo ottimo uq = KooXx stabilizza il sistema
(si giustifichi la risposta).

3.iv) Per ogni valore di @ € R si determinino la soluzione “ottimizzante” M, dell’equazione
algebrica di Riccati e la matrice di retroazione K.

Soluzione
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3.1) Il sistema (F,g) é raggiungibile, quindi il controllo ottimo che minimizza l'indice esiste per
ogni Xg
3.ii.) Si consideri la coppia (F,C). La matrice di osservabilita é
C

0 «
O=|CF |=1]0 0
CF? 0 0

S Q

Se a # 0 il nucleo di O é generato da ey, con ey primo vettore della base canonica. Se o = 0 il
nucleo di O é generato da e1,ey. Nel primo caso il valore ottimo dell’indice e nullo se lo stato
iniziale & ey , nel secondo caso se lo stato iniziale & fey + yea, con (B e v numeri reali arbitrari.

3.ii1) Glo autovalori non osservabili della coppia (F,C) sono nulli (F é nilpotente) e quindi il
controllo ottimo ¢ stabilizzante, qualunque sia .

3.iv.) L’equazione alle differenze di Riccati associata al problema di ottimo é

M(~t=1)=Q+ F'M(-t)F — FTM(-t)g(r +g" M(~t)g)"'g" M(-t)F, M(0)=0

Si ha
0 0 O
M(-1)=Q=1]0 o® «
0 a 1

ed é immediato constatare che, se M (—t) ha nulle la prima riga e la prima colonna, lo stesso si
verifica per M(—t—1). Quindi M, soluzione dell’equazione algebrica di Riccati, ha nulle la prima
riga e la prima colonna e ha struttura

0 0 0
Mo=10 z y
0 vy =z
L’equazione algebrica & allora
0 0 0 0 0 O 0 0 00 O O 0 1 0
0z y| = |0 a®> al+ |1 0 0[]0 2 y| |0 0 1
0 vy =z 0 a 1 0 1 0 0 vy =z 0 0 0]
0 0 O 0 0 O 1|0 0 0 0]JJo 1 0
1 0 0[]0 2z yl|tl[o 1 1]l0o 2 y||0 0 1
0 1 0 0 v z| |1 0 y 2] [0 0 0
l1+z4+2y+=2
0
0 0 0
0 0 0 00 0 | z+yl
2 Tty
= 0 « +10 0 O 1 5
0 a 1 00 =z tetoytz

Si ottengono le equazioni scalari

r = a2

y = «
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2 2 2
z = 1+x—%:(l+az)—m
e quindi
0 = 224+2(01+a)? —2(14+0%) — (1 +a*)(1+a)® +a?(1 +a)?
= 2242az— (1+a)
che ha per soluzioni z = —a £+ /a2 + (1 + a)?.

Se a > 0, si deve scegliere z = —a—++/a? + (1 + a)2. Se a <0, si deve operare la stessa scelta,
per garantire che £z — y? sia non negativo.

St avra quindi

0 0 0]fo 1 0
Koo = —(r+g"Myg) 'g" Mo F=—(1+x+2y+2)71[0 1 1]|0 = y| |0 0 1
0 y =z 0 0 0
(I+z+2y+2)7"0 0 z+y] [0 @ +o
= — X z X = —
Y Y (1+a)?+ a2+ (14 a)?)

Esercizio 2.9. Dati i sistemi a tempo discreto

B e e [T U R i ECEE NG Rt
vi(t) = [a 1]xi(?) = Hixi(t)
[0 1 0 0
Xg(t+1) = 0 0 1 X2(t)+ 0 Uz(t) = F2x2(t)+g2u2(t)
22 0 0 0 1
Yya(t) (B 1 1]x2(t) = Haxa(t)

t=0

X1 (O)

3; Si provi che, per ogni scelta dello stato iniziale x(0) = [x (O)]’ esiste un ingresso u(-) al
2

quale corrisponde un valore finito dell’indice.
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3:i Per quali valori dei parametri o e § esistono stati iniziali non nulli del sistema parallelo in
corrispondenza ai quali il valore minimo dell’indice & nullo? Quali sono questi stati?

3 Per quali valori dei parametri o e § esistono stati iniziali non nulli del sistema parallelo
in corrispondenza ai quali il valore minimo dell’indice € nullo e il controllo ottimo K., €
stabilizzante?

3;» Per quali valori dei parametri o e 8 esistono stati iniziali non nulli del sistema parallelo in
corrispondenza ai quali il valore minimo dell’indice ¢ nullo e il controllo ottimo K., non e
stabilizzante?

o0
0 F
né osservabile, dal momento che 0 & autovalore comune di Fy e Fy. La matrice F' ha spettro
{0, -2} e, applicando il criterio PBH di raggiungibilita , si verifica che lautovalore —2 appartiene al
sottosistema raggiungibile. Quindi il sistema X & stabilizzabile ('unico autovalore del sottosistema
non raggiungibile ¢ 0) e per ogni stato iniziale esistono ingressi che inducono un indice di valore
finito.

(3i;) L’indice pud essere riscritto nella forma

(3;) 1l sistema parallelo ¥ = (F,g,H) = ({ ] , {il} ,[H1 Hsz]), non é né raggiungibile
2

Tux0) = i (wo+ o <o ] im m1{30]).

e gli stati cui corrisponde controllo ottimo a costo nullo sono tutti e solo quelli non osservabili del

sistema (F, H) = <[ 01 }g } Jao 1 801 1]) Poiché gli spetti di Fy e Fy hanno intersezione
2

non vuota, indipendentemente dai parametri o e 3 il sistema & non osservabile. Quindi esistono

stati osservabili non nulli per ogni scelta di o e 5. Il loro insieme é il nucleo della matrice di

osservabilita:

a | 1 6] 1 1
S

o_| 0 | a-2 0 5 1
10 | —2a+4 0o o 38
0 | 4a-8 0 0 0

0 | —8x+16 0 0 0

e Se a =0, la matrice

o | 1 B 1 1

_ | .
o | =2 0o B 1
=10 | 4 o 0o 3
O | -8 0 0 0

0O | 16 0 0 0

ha rango 4 o rango 3 a seconda che sia 3 # 0 [caso a] o B =0 [caso b].
e Se o =2, la matrice

oo o™
oo~
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ha rango 3 o rango 2 a seconda che sia 3 # 0 [caso ¢] 0 =0 [caso d]
e Se a ¢ {0,2}, la matrice O ha rango 4 o rango 8 a seconda che sia 3 # 0 [caso e] o =0 [caso

e

0

(a) a=0efB#0 kerO={| 0 |, z1 € R}, autovalore 0 non osservabile
0
0

T
0
(b)) a=0ep=0 ker O = {|x3 |, 21,23 € R} autovalore 0 non osservabile
0
L 0
T
)
(c) sea=2ef #0 kerO = {|(=2x1 —x2)/B |, z1,22 € R} autovalori 0 e -2 non
0
0
osservabil
(-2 — 24)/2
T2
(d) sea =2e3=0, kerO = { T3 , Ta,13,74 € R} autovalori 0 e -2 non
Lq
0
osservabil
L1
0
(e) se a & {0,2} e 3#£0 ker O = {| —az1/8 |, =1 € R} autovalore 0 non osservabile
0
L 0
S
0
(f) sead{0,2} e =0 ker O ={| w3 |, 71,23 € R} autovalore 0 non osservabile.
—QT
L 0

(34is) Nei casi (a) (b) (e) (f) il sottosistema non osservabile ha come unico autovalore A = 0,
quindi la coppia (F, H) é rivelabile e il controllo ottimo é stabilizzante

(3iv) Nei casi (¢) e (d) il sottosistema non osservabile ha un autovalore, X = —2, a modulo
maggiore di 1,quindi la coppia (F, H) non ¢ rivelabile e il controllo ottimo non & stabilizzante.
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3. SISTEMI POSITIVI

Esercizio 3.1. Si considerino le catene di Markov C; e Ca caratterizzate dalle matrici di transizione

1/2 1/2 0 0

1/4 1/4 1/2
12 12 0 0 B
Pi=1Vn 0 14 1| = ?ég 122 163 (1.43)

0 1/3 0 2/3
i) Per entrambe le catene si costruisca il grafo che ne rappresente 1’evoluzione in un passo.

ii) Per la catena regolare, nell'ipotesi che lo stato iniziale sia Si, si determini la distribuzione
asintotica di probabilita sugli stati della catena

lim el P!
t——+oo

iii) Per la catena con stati transitori, si determini il numero medio di “visite” allo stato Ss,
nell’ipotesi che

— lo stato iniziale sia S3

— lo stato iniziale sia Sy

Esercizio 3.2 Si consideri il sistema lineare positivo

1/4 1/4 1/2
x(t+1)=12/3 0 1/3|x(t) = Fx(t) (1.44)
1/2 1/2 0

i) qual & Pautovalore dominante della matrice F'?
1

ii) se lo stato iniziale & x(0) = | 2 |, qual & il limite
3

x(t)

lim o ?
t=teo [[x(t)]

Esercizio 3.3 . Si consideri il sistema lineare positivo

1 0 2 0
x(t+1)=1[2 1 0|x(t)+ |0 u(t)=Fx(t)+gu(t) (1.45)
01 2 1

i) Si determinino gli autovalori del sistema.
1

ii) Sex(0)= | 1| eu(t)=0Vt, sidetermini il vettore
1

X
A =0
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iii) Il cono di raggiungibilita C® del sistema (1.45) & solido?

iv) Applicando al sistema (1.45) arbitrari ingressi non negativi, ¢ possibile raggiungere
dallo stato 0 ogni stato di Ri_?

Esercizio 3.4 - Si consideri il sistema lineare positivo

1 0 1
1 0| x()+ |0|u(t)=Fx(t)+gu(t) (1.46)
2 2 0

x(t+1) =

(e

i Si determini un insieme di generatori per il cono di raggiungibilita Cf*. Esiste un istante
k in cui risulta Cff = C{f, ;7 (si giustifichi la risposta)

71 Esiste un cambiamento di base nello spazio di stato che, preservando la positivita del
sistema, lo porti in forma canonica di controllo o, pill in generale, in una forma in cui
F, & matrice compagna?

117 Esiste una matrice di retroazione K > 0 che renda minore di 2 il raggio spettrale della
matrice F+gK? (si giustifichi la risposta negativa o, se la risposta ¢ positiva, si fornisca
un esempio per K)

(i) CE ¢ generato dai vettori positivi g, F'g, ..., FF¥=1g, quindi (riscalando i vettori) da
1 1 1 1 1 1
ol [l 11l 1], (1], ] 1 (1.47)
0 0 1 2 3 k—2

Evidentemente (basta una figura) nessuno dei vettori dell’elenco appartiene al cono generato
dai vettori che lo precedono. Quindi per ogni k il cono C’,fi e contenuto propriamente in CI§+1'

(ii) Se F fosse simile ad una matrice compagna positiva, il polinomio caratteristico di F
avrebbe negativi o nulli tutti i coefficienti, eccetto quello (unitario) del monomio di grado
massimo. Ma il polinomio caratteristico di F ¢ (z —2)[(z —1)% — 1] = 23 — 422 + 42 e quindi
non soddisfa la condizione richiesta.

Senza calcolare il polinomio caratteristico di F', si perviene alla medesima conclusione os-
servando che la coppia (F,g) é raggiungibile e se il polinomio caratteristico fosse del tipo
anzidetto dovremmo avere CF = C’fﬂ, in contrasto con quanto si ¢ trovato al punto (i).

(iii) Qualunque sia K > 0, vale la diseguaglianza F+gK > F, quindi l’autovalore di Perron
di F'+ gK ¢é maggiore o equale all’autovalore di Perron di F'. Ma quest’ultimo vale 2. La
risposta € quindi negativa.

Esercizio 3.5. Si consideri la catena di Markov C caratterizzata dalla matrice di transizione

1/4 0 1/2 1/4
0 1/3 0 2/3
1/4 1/4 1/4 1/4
0 1/2 0 1/2

p_ (1.48)
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i Costruito il grafo che ne rappresenta ’evoluzione in un passo, si individuino classi
ergodiche e classi transitorie (e si rinumerino, eventualmente, gli stati in modo che gli
stati delle classi ergodiche precedano quelli delle classi transitorie).

i1 Si determini la distribuzione asintotica di probabilita sugli stati della catena.
117 Per ogni stato S; stati delle classi transitorie, nell'ipotesi che lo stato iniziale della

catena sia S; si determini quante volte in media la catena si trova in S; (contando
listante iniziale) prima di entrare in una classe ergodica.

1) Il tracciamento del grafo ¢ immediato

Sy e Sy comunicano e da essi non si accede ad altri stati: quindi formano una classe ergodica, S1 e
S3 comunicano e da essi si accede alla classe ergodica Rinumerando gli stati come richiesto, grafo
e matrice di transizione diventano

1/3 2/3 | 0 0
|v2z 2 000 [E 0
P T 4 12 —[R Q} (1.49)

1/4 1/4 | 1/4 1/4

1i) Con riferimento alla (1.49), é nulla la probabilita asintotica che la catena si trovi in uno degli
stati transitori, quindi é unitaria la probabilita che asintoticamente la catena si trovi nella classe
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ergodica. La dinamica nella classe ergodica ¢ descritta dalla matrice stocastica strettamente positiva

[1/3 2/3}

1/2 1/2
che ha |2 %} come autovettore sinistro corrispondente all’autovalore 1.
La distribuzione asintotica di probabilita sugli stati S1,S2,S3,S4 € quindi
_ 3 4
T
=1z Z 0 0} 1.50
Py =2 - (1.50)

i1i) La matrice fondamentale delle classi transitorie é

LZ(IZ_Q)l:H/;Z 31/12}_1:176[53 :{)m:[f//?? 182//77]

Gli elementi diagonali della matrice L forniscono i valori cercati: se lo stato iniziale é S3, il numero

medio di volte che la catena é in Sz prima di entrare nella classe ergodica ¢ 12/7; lo stesso valore
si ottiene per il numero medio di passaggi per S4 partendo da Sg.

Esercizio 3.6. Si consideri il sistema discreto positivo di equazioni

0 0 0 1 1 0
xt+1)= [0 1o Sxm+ | o a0 = Fx() + Gult) = Fx(t) + [ g2 ]u(t) (151)
1 0 0 1 0 0

(i) Si stabilisca per quali valori del parametro o > 0 il sistema (a due ingressi) (F,G), il si-
stema (a ingresso scalare) (F, g;) e il sistema (a ingresso scalare) (F, gs) sono positivamente
completamente raggiungibili.

(ii) Per ciascuno dei tre sistemi, si determinino i coni di raggiungibilita in 5 passi in corrispon-
denza ai valori di « per i quali non c’e completa raggiungibilita positiva.

(iii) La matrice F' ¢ irriducibile? In caso negativo, si operi una trasformazione di cogredienza (i.e.
una permutazione delle coordinate) che riduca la matrice in forma triangolare a blocchi.

(iv) Per quali valori di 8 > 0 la matrice SF ¢ asintoticamente stabile?

(i) La matrice di raggiungibilita della coppia (F, Q)

100 0
R=[G FG F¢ F*Gl=|) o o |
0 0 1 0

include per ogni o > 0 una sottomatrice monomia. Quindi il sistema € positivamente completa-
mente raggiungibile per ogni a > 0.
Per la coppia (F,g1) si perviene alla matrice di raggiungibilita

1 0 1 1
0 0 a 14+«
— 2 3 —
R_[gl Fgl Fgl Fgl]_ 0 0 1 1+a
0 1 1 2
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che non é monomia, per qualsiasi o > 0.
Per la coppia (F,g2) si perviene alla matrice di raggiungibilita

R=[g Fgo F?’g, F3gy|=

oo = O
O = O O
o o= O
o= O o

che non é monomia, per qualsiasi o > 0.
Quindi i sistemi (F,g1) e (F,g2) non sono positivamente completamente raggiungibili, qualunque
sta o > 0.

(ii) Per il sistema (F,g2) é immediato che il cono di raggiungibilita in 2,3, ... passi € dato dalle
combinazioni non negative dei vettori es ed es.
Per il sistema (F,g1) il cono di raggiungibilita in 5 passi ¢ dato dalle combinazioni non negative

di
1 2

1

« 1+« 1+ 3
1|'"|a+1]"| 3+«
1 2 3

(iii) La matrice F' non ¢ irriducibile: basta notare che I + F + F? + F? non ¢ strettamente pos-
itiva, o verificare che il grafo orientato associato alla matrice non é fortemente connesso. Una
trasformazione di cogredienza che soddisfa quanto richiesto si ottiene, p.es., scambiando la se-
conda colonna con la quarta e la seconda riga con la quarta:

100 077000 1771 0 0 0 21}88
prpp_ |00 0 1100 1 ajfoo0o0 1|_|° ° 7
Tloo toffo o o 0 ol T
01 00llt oo 1Jlo1oo 0« | 1 0

(iv) Gli autovalori di F sono gli zeri di (22 —1)(2% — 2z — 1). L’autovalore di modulo massimo ¢

1 1 1
= 44/ +1 = Z(1 1.
o 5TVt 2(+\/S)>

Perche BF sia asintoticamente stabile, si deve scegliere 0 < 5 < )\51.

Esercizio 3.7. Si consideri il sistema discreto positivo di equazioni

0 a O 1
xt+1) =11 0 1|x(@)+ |0]|ult)=Fx(t)+gu(t), aclRy (1.52)
a 1 1 0

(i) Si determini il cono di raggiungibilita in 4 passi;

(ii) Si stabilisca per quali valori positivi del parametro o > 0 il cono di raggiungibilita in 3 passi
e quello in quattro passi coincidono?

(iii) Per quali valori di o > 0 la matrice F' & irriducibile?

(iv) Per quali valori di a > 0 il sistema & asintoticamente stabile?
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Soluzione
(i) 1l cono di raggiungibilta in tre passi, e quindi quello in quattro passi, é un cono solido. Si

1 0 @ a?
CF = Cono(g, Fg, F?g, F3g) = Cono 0o|,[1], o) , | 14+ 2a ,
0 « 1+a (1+ a)?

ovvero sono raggiungibili in 4 passi con ingressi non negativi tutte le combinazioni non negative
dei vettori sopra specificati.

(i) i coni di raggiungibilita in n = 3 passi e in n + 1 = 4 passi coincidono se e solo se il
polinomio caratteristico di F
Ap(2) =22 + a02® + a1z + o

ha tutti © coefficienti s, ap, g non positivi. Nel nostro caso si ha
z -« 0
Ap(z)=det | -1 =z —1 | =222~ (1+a)z—ala—1),
—a -1 z-1
quindi i coni coincidono se a = 0 oppure se o > 1.

(iii) La matrice F ¢ irriducibile sse a > 0, e anzi in questo caso essa risulta primitiva, essendo
F3 >>0. Per a =0 gli elementi in posizione (1,2) e (1,3) rimangono nulli in tutte le potenze di
F, quindi la matrice non é irriducibile.

(iv) Per ogni o > 0 tutte le somme degli elementi di colonna sono maggiori o equali a 1. Quindi
Uautovalore dominante non puo essere minore di 1. La matrice non ¢é asintoticamente stabile per
alcun valore non negativo di a.

Si puo verificare che non é nemmeno semplicemente stabile: per a > 1 le somme di colonna sono

tutte maggiori di 1, per o = 0 la matrice F' é triangolare a blocchi, con un blocco diagonale {(1) ”

che ha autovalore massimale maggiore di 1.

Esercizio 3.8. Per la catena di Markov con 8 stati Sq, S5, ..., Ss

(P11 P12 D13 P14 P15 DPie P17 P18 ]
1

1
xT(t+1) =x"(t) =x'(t)P (1.53)

si considerino i seguenti casi:

Caso A) P17 = Pi1s =

)

NI Nl

Caso B) pis = pis =
Caso C) p15 = p1s = p17 = %

i) Si stabilisca in quali casi la catena ¢ irriducibile e in quali & regolare.

ii) Nel caso in cui la catena & regolare
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— si determini la distribuzione asintotica di probabilita sugli 8 stati che compongono la
catena;

— se all’istante ¢ = 0 la catena si trova nello stato Sg, qual & il tempo medio richiesto
perché la catena visiti ancora lo stato Sg?

iii) Quando la catena ¢ irriducibile, si determini il valore dell’indice di imprimitivita della matrice

di transizione, quando & riducibile, si determinino le classi ergodiche e le eventuali classi
transitorie.

Soluzione Di seguito si riportano i grafi delle catene:

Ss 1 St 1 S 1 S 1 S 1 S5 1 S 1 S

Caso A

Ss 1 St

Ss 1 Sy 1 Se 1 Ss 1 Sy 1 S3 1 Sa 1 S1

o >~ -0 ® -®
P15 %
P16 = %
pi7 = %
Caso C

N

4.i) Nel caso C la catena non é irriducibile (la matrice ha una colonna nulla). Negli altri due
cast la catena & irriducibile (basta osservare che il suo grafo é fortemente connesso). Il polinomio
caratteristico € dato da

—Pin — ZP1,n—1 — ngl,n72 e Zn_lpl’l + 2"
Quindi esso vale
1 1 1 1
-5~ §z +28 = —§z"° — 52”1 + 2™ Caso A (1.54)
11 o la g
2 532 +28 = 752710 - §Zn1 + 2" Caso B (1.55)

Nel caso A la catena é regolare. Infatti la matrice di transizione & primitiva, ovvero irriducibile
con indice di imprimitivita 1. Lo si vede ricorrendo al criterio basato sulle potenze a coefficiente
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non nullo nel polinomio caratteristico:
MCD(n1 — Nop, Ny — nl) = MCD(L 7) =1
Nel caso B la matrice € irriducibile con indice di tmprimitivita 2: infatti

MCD(f; — fg, fig — 1) = MCD(2,6) = 2

4.ii) Nel caso A determiniamo autovettore dominante sinistro corrispondente all’autovalore 1,
risolvendo l'equazione pt P = pd .
Postopy =[& & & & & & & sl escelto & =1, siricava 1l =& =& =8 =& =
&6, quindi &g = % e infine & = 1.
Rinormalizzando p a un vettore stocastico si trova
=M 72 B’ u B x o =& 2 & = &2 & & i)
che rappresenta la distribuzione asintotica di probabilita della catena mel caso A.
1l tempo medio richiesto per rivisitare lo stato Sg partendo da Ss é dato da '%s = 15 passt.

4.iii) Per il caso B si ¢ gia risposto al punto 4.i). Per il caso C (catena non irriducibile), le classi
di comunicazione sono due (come ¢é evidente anche dal grafo):

{Ss} classe transitoria

{51,532, 53,54, 55, 56,57} classe ergodica.

Esercizio 3.9. Si considerino le catene di Markov C; e Cy caratterizzate dalle matrici di transizione

8 8 %; %3 14 1/4 1/2
P = . P=l2/3 0 13 (L.56)
3/4 14 0 0 2 12 b
1 0 0 0

4.i) Per entrambe le catene si costruisca il grafo che ne rappresenta I’evoluzione in un passo.

4.ii) Per la catena regolare, nell’ipotesi che lo stato iniziale sia Si, si determini la distribuzione
asintotica di probabilita sugli stati della catena

lim el P!
t——+oo

e il tempo medio richiesto perche la catena ritorni nello stato S;

4.iii) Per la catena non regolare, si dimostri che & irriducibile, si determini I'indice di irriducibilita
e si calcolino gli autovalori periferici.

4.iv) Ne caso della catena non regolare, se la distribuzione iniziale di probabilita & x7'(0), si verifichi
che al divergere di ¢ la distribuzione x” (¢) tende ad avere carattere periodico.

SOLUZIONE J.i)
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1
s, 2 S, 52
3
4
1 1 1
L |3 3| |12 1
/ ,
Sy 2 S, S
Figura 4.1

4.ii) E’ immediato che P§ > 0. Quindi la catena Cy ¢ regolare. Asintoticamente la dis-
tribuzione ¢ quella dell’autovettore di Perron sinistro, indipendentemente dalla distribuzione in-
1ziale.

Per ottenere la distribuzione asintotica si risolve ’equazione

1/4 1/4 1/2]
(1 2 ] [2/3 0 1/3] = [y 7 73]
/2 1/2 0 |
-3/4 1/4 1/2]
[ 72 ]| 2/3 -1 1/3) = [0 0 0]
/2 1/2 -1
) 10 6 7
= | = — — 1.57
(11 72 s 53 23 23 ( )
1l tempo medio richiesto per rivisitare lo stato Sy € dato da % = %

4.iii) La matrice Iy + Py + P2 + P3 ¢ strettamente positiva, quindi la catena & irriducibile.
Non ¢ regolare, dal momento che i i blocchi diagonali di P?t sono nulli per ogni t > 0. L’indice
di trriducibilita vale 2 (per t grandi in ogni posizione della matrice si alternano il valore 0 e un

valore positivo) Gli autovalori periferici sono \g =1 e \y = —1, cui corrisponde, rispettivamente,
un autovettore stocastico sinistro pt e un autovettore sinistro wi. Gli altri due autovalori Ay e

A3 hanno modulo minore di 1, con autovettori sinistri wi e wi.

4.iv) Rispetto alla base di Jordan si ha
xT(0) = pt + a1w! + apwi + azwi (1.58)
Al divergere di t la distribuzione di probabilita sui 4 stati
xT(t) = pd +ai(—1)'wl + apPiwl + azPiwl ~ pl +ai(—1)'w!
diventa periodica, di periodo 2:
- negli istanti pari si ha x* (2t) = pt + a;w?,
- negli istanti dispari si ha xT (2t +1) = pg — aywi.

Si noti che il vettore wi ha nulla la somma delle componenti, come si evince postmoltiplicando
per Uautovettore di Perron destro 14 entrambi i membri di (1.58).
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Esercizio 3.10 - Si consideri il sistema lineare positivo

0 1
0| x(t)+ [0 ult) = Fx(t) + gu(t) (1.59)
2 1

N = =

1
x(t+1)= |1
0

4.i) Si determini un insieme di generatori per il cono di raggiungibilita C,f. Esiste un istante k
R 9

in cui risulta Cf! = CfF 7 (si giustifichi la risposta)

4.ii) Esiste un cambiamento di base nello spazio di stato che, preservando la positivita del sistema,
lo porti in forma canonica di controllo o, pit in generale, in una forma in cui F, & matrice
compagna?

4.iii) Esiste una matrice di retroazione K > 0 che renda minore di 2 il raggio spettrale della matrice
F + gK? e che lo renda eguale a 27 (si giustifichino le risposte)

Soluzione
4. i) CP ¢ generato dai vettori positivi g, Fg, ..., F*"1g, quindi (riscalando i vettori) da
1 1 1 1
o, 1], [1],....] 1 (1.60)
1 2 3 k—1

Nessuno dei vettori dell’elenco appartiene al cono generato dai vettori che lo precedono. Una figura
rende evidente l’asserto.

Per una dimostrazione analitica, basta osservare che se ['ultimo vettore fosse combinazione a co-
efficienti non negativi dei vettori precedenti, avremmo

1 1 1 1 1
a1 |0 +ag |1 +as |1 | +...+ak_9 1 = 1 =F*lg cona; >0 (1.61)
1 2 3 k—2 k—1

Ma allora deve essere :
ay = 0, affinché le prime due componenti di F*~'g siano equali,

Y is a; =1 (combinazione convessa) affinché prime due componenti di FF=1lg valgano 1.
Per quanto riguarda Uultima componente di F*~'g, abbiamo infine

k—2 k—2
i <Y ik -2)=k-2<k-1
=2 =2

e si conclude che nessuna scelta delle o; consente di soddisfare la (1.61).

Quindi per ogni k il cono Cf & contenuto propriamente in C’,ﬁ_l.

4.i) Se F fosse simile ad una matrice compagna positiva, il polinomio caratteristico di F
avrebbe negativi o nulli tutti i coefficienti, eccetto quello (unitario) del monomio di grado massimo.
Ma il polinomio caratteristico di F' ¢ (z — 2)[(z —1)? — 1] = 23 — 422 + 4z e quindi non soddisfa la
condizione richiesta.

Senza calcolare il polinomio caratteristico di F, si perviene alla medesima conclusione osservando
che la coppia (F,g) ¢ raggiungibile e che se il polinomio caratteristico fosse del tipo anzidetto

dovremmo avere CE = C’,IE_H, in contrasto con quanto si é trovato al punto (i).

4. 1) Qualunque sia K > 0, vale la disequaglianza F+gK > F, quindi l'autovalore di Perron
di F'+ gK ¢ maggiore o equale all’autovalore di Perron di F. Si noti poi che

1+k 1+k ks

F+gK = 1 1 0
]{)1 2+k2 2+k3
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. 1 14, iy . . .
La matrice [1 1} e strettamente positiva e ha raggio spettrale 2. Ogni incremento di un suo ele-

mento ne aumenta il raggio spettrale e pertanto ogni scelta K1 = [k1 ko 0] > 0 rende maggiore
di 2 il raggio spettrale di F' + gK;.
Per ogni scelta Ko =[0 0 k3] >0, risulta

11 ks 11 0
F+gKo=1|1 1 0 > (1 1 0 ,
0 2 24ks 0 2 2+4ks
quindi il raggio spettrale di F' + gKy € almeno 2 + ks > 2.
Infine, nel caso K = K1 + Ko = [k1 ko 0]4+[0 0 k3] >0 con Ky e Ky entrambe positive,
basta porre F+gK = F+gKy+gKs per concludere che il raggio spettrale della matrice reazionata

e ancora una volta maggiore di 2.

Esercizio 3.11 Si consideri il sistema lineare positivo

1/3 1/3 0 1/4
/3 0 0 1/3
1/3 0 0 1/2
1/4 0 1/4 1/4

x(t+1) = x(t) + u(t) = Fx(t) + Gu(t)

SO = O
o= OO

6; Si stabilisca se ’origine e punto di equilibrio asintoticamente stabile per I'ingresso nullo.

_ 2 L . . T .
6; Se u(t) = u = E VYt > 0, esiste in Ri un corrispondente stato di equilibrio per il
sistema? Si tratta di un equilibrio stabile? Se ne determini il valore [eventuali inverse di

matrici possono essere lasciate indicate].

6,:;) Si stabilisca qual ¢ il cono di raggiungibilita del sistema.

Soluzione

(6;) Le somme di riga della matrice F' sono tutte strettamente minori di 1, quindi l'autovalore di
Perron e minore di 1 e il sistema autonomo ha l’origine che é punto di equilibrio asintoticamente
stabile.

(64,) Si deve risolvere in x. lequazione x, = Fx. + Gu ovwvero (Iy — F)x. = Gu. La matrice
(I4 — F) é invertibile, non avendo autovalori nulli, e grazie al fatto che lo spettro della matrice F
¢ interno alla circonferenza unitaria, linversa (I4 — F)™1 ¢ esprimibile come somma della serie
convergente di matrici positive I + F + F2 4+ F3 + ... Quindi la somma della serie & positiva ed é
positiva la soluzione

2/3 —1/3 0 —1/47"'r0

e ~1/3 1 0 -1/3 1

xe = (L —F)"'Gu=2 —1?3 0 1 —1?2 1
~1/4 0 —1/4 3/4 0

L’equilibrio in X, per lingresso costante U € asintoticamente stabile. Infatti, se lo stato iniziale é
x(0) = x¢ + Axe, e poniamo x(t) = x. + Ax(t), da

x(t+1)=x.+Ax(t+1) = Fx.+ FAx(t)+ Gu
Xx. = Fx.+Gu
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sottraendo membro a membro si ricava
Ax(t+ 1) = FAx(t)

che, attesa linfinitesimalita di F*, converge a zero qualunque sia Ax(0).

(6:i:) I generatori del cono di raggiungibilita sono le colonne di (G FG F*G ...]. Poiché i
vettori g1, F'g1, 8o, F'gs nel loro complesso formano una matrice monomia

0 1/3 0 0

1 0 0 0

0 0 1 0

0 0 0 1/4

il cono di raggiungibilita coincide con Ri.



