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1. CONNESSIONI

Esercizio 1.1. Si consideri lo schema di figura, in cui i sistemi Σ1 e Σ2 sono sistemi discreti
connessi in serie e i segnali di retroazione dallo stato di Σ1 e dallo stato di Σ2 vengono iniettati
all’ingresso della connessione serie.
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Si suppone

Σ1 = (

 0 1 0
0 0 1
2 1 −2

 ,
 0

0
1

 , [ 0 2 1 ]) (1.1)

e che Σ2 sia realizzazione minima della funzione di trasferimento

w2(z) =
z − 1

2

z3 + 2z2
(1.2)

2i) Quando K1 e K2 sono entrambe nulle, il sistema serie è raggiungibile? è osservabile?

2ii) Esistono matrici di retroazione K1 e K2 in corrispondenza alle quali il sistema di figura è
internamente asintoticamente stabile? In caso affermativo, si fornisca almeno un esempio di
coppia (K1,K2) stabilizzante.

2iii) Il sistema reazionato ammette, per qualche scelta di K1 e di K2, uno stimatore asintotico?

(i) La funzione di trasferimento di Σ1 è

H1adj(zI − F1)g1

det(zI − F1)
=

2z + z2

z3 + 2z2 − z − 2
=

z(z + 2)
(z + 2)(z2 − 1)

Poiché Σ1 ha dimensione 3 ed è raggiungibile, mentre la f.d.t. in forma irriducibile ha denominatore
del secondo ordine, Σ1 non è osservabile e −2 è l’autovalore del sottosistema non osservabile di
Σ1.
Il sistema serie non è osservabile, perché tale è uno dei sistemi che costituiscono la serie.
Il fattore z+ 2 è comune al polinomio H1adj(zI −F1)g1 e al polinomio det(zI −F2), caratteristico
della realizzazione minima Σ2 di w2(z). Quindi il sistema serie di Σ1 e di Σ2 non è nemmeno
raggiungibile, e −2 è autovalore del suo sottosistema non raggiungibile.
(ii) Σ1 è raggiungibile, quindi al variare di K1 il polinomio det(zI−F1−g1K1) è un arbitrario poli-
nomio di grado 3. Se esso non ha come fattori né z, né z+2, il sistema Σ(K1)

1 = (F1+g1K1,g1, H1)
è raggiungibile e osservabile, e può essere reso anche asintoticamente stabile allocandone gli auto-
valori entro il disco unitario, origine esclusa.
Tuttavia il polinomio H1adj(zI−F1−g1K1)g1 non dipende da K1 e vale sempre z(z+2). Quindi la
serie di Σ(K1)

1 e di Σ2 è non raggiungibile, qualunque sia K1, e non è stabile, essendo −2 autovalore
del suo sottosistema non raggiungibile.
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Qualunque sia K2 6= 0, l’instabilità del sistema globale permane. Infatti K2 dà luogo ad una
retroazione dallo stato all’ingresso del sistema serie (e non all’ingresso di Σ2!), e tale retroazione
lascia invariato l’autovalore (instabile) del sottosistema non raggiungibile. Quindi la risposta al
quesito è negativa.
(iii) S̀ı: ad esempio, basta scegliere K2 = 0 e K1 in modo che det(zI − F1 − g1K1) non abbia zeri
nell’origine e in −2 (ciò rende osservabile Σ(K1)

1 ) e nemmeno zeri in − 1
2 . Allora il sistema serie

di Σ(K1)
1 e di Σ2 è osservabile, quindi ammette stimatore asintotico.

Esercizio 1.2 Si considerino le funzioni di trasferimento

w1(z) =
z − 2

z3 − 3z2 + 3z − 1
, w2(z) =

z2 + z + 1
z3

. (1.3)

2i Si costruiscano una realizzazione minima Σ1 = (F1,g1, H1) di w1(z) ed una minima Σ2 =
(F2,g2, H2) di w2(z) e si determini se il sistema serie di Σ1 seguito da Σ2 è semplicemente
stabile e/o osservabile.

2ii Si costruisca per il sistema Σ1 una retroazione K1 dallo stato in modo che ogni evoluzione
libera dello stato di Σ1 sia periodica di periodo 3. Si determini se il sistema serie cos̀ı ottenuto
(cfr figura) è semplicemente stabile e/o osservabile.
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2iii Si determinino tutti gli stati iniziali del sistema serie, reazionato come al punto 2ii, che danno
luogo a uscite libere y(t) di durata finita.

1i) Ricorrendo, p.es., a realizzazioni in forma canonica di controllo, si ha

Σ1 =

 0 1 0
0 0 1
1 −3 3

 ,
 0

0
1

 , [−2 1 0 ]

 , Σ2 =

 0 1 0
0 0 1
0 0 0

 ,
 0

0
1

 , [ 1 1 1 ]


Il primo sistema, e quindi la serie, risultano instabili (l’autovalore λ = 1 nella matrice F1 ha
molteplicità 3 nel polinomio minimo). La serie risulta osservabile, dato che i polinomi det(zI −
F1) = (z − 1)3 e H2adj(zI − F2)g2 = z2 + z + 1 sono coprimi.

2ii) Per ogni stato x1 deve risultare (F1+g1K1)3x1 = x1, quindi si deve avere (F1+g1K1)3−I3 = 0.
Allora il polinomio caratteristico di (F1 + g1K1) sarà z3 − 1 e per ottenerlo dovremo assumere
K1 = [ 0 3 −3 ]. Il nuovo sistema serie è semplicemente stabile (ha come autovalori semplici
1, ej2π/3, ej4π/3 e 0 come autovalore a molteplicità 3) e non osservabile, essendo non coprimi i
polinomi det(zI − F1 − g1K1) = z3 − 1 = (z − 1)(z2 + z + 1) e H2adj(zI − F2)g2 = z2 + z + 1.

2iii) Il sistema Σ2 ha memoria finita ed è osservabile e raggiungibile, quindi

- le sue uscite libere hanno tutte durata finita e sono nulle solo se x2(0) = 0
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- le sue uscite forzate hanno durata finita solo nel caso in cui l’ingresso forzante u2(·) [che è
l’uscita libera di Σ1 reazionato da K1] può essere espresso come

U2(z) = Y libera
1 (z) =

h(z)
z2 + z + 1

, h(z) ∈ R[z] (1.4)

L’uscita libera è data da

Y libera
1 (z) = H1(zI − F1 − g1K1)−1zx1(0) = z [−2 1 0 ]

 z −1 0
0 z −1
−1 0 z

−1 x11

x12

x13



= z [−2 1 0 ]

 z2 z 1
1 z2 z
z 1 z2


z3 − 1

x11

x12

x13


=

(−2x11 + x12)z3 + (−2x12 + x13)z2 + (−2x13 + x11)z
z3 − 1

=
p(z)
z3 − 1

che assume la forma
h(z)

z2 + z + 1
se z− 1 divide p(z), cioè se p(1) = 0. Tale condizione è verificata

se e solo se x11 + x12 + x13 = 0, cioè sse è nulla la somma delle componenti di x1(0).
Gli stati che danno luogo a uscita y2(·) di durata finita sono allora gli stati[

x1

x2

]
in cui è nulla la somma delle componenti di x1(0).

Esercizio 1.3 (i) Si costruiscano due realizzazioni minime Σ1 e Σ2 rispettivamente di

w1(z) =
z + 1

z2 + z + 1
=
n1(z)
d1(z)

, w2(z) =
z − 1

z2 − z + 1
=
n2(z)
d2(z)

. (1.5)

Si stabilisca quali fra i seguenti sistemi sono raggiungibili e quali sono osservabili:

(ii) - Σ1
- Σ2

- Σ1
- Σ2

-

(iii)

Σ1
-

- Σ2

?

6

m Σ1
-

- Σ2

?

6

m -
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(iv)

Σ1
-

- Σ2

Σ2
-

- Σ1

?

6

m -

(v) - Σ1

Σ1
-

- Σ2

-

-

(vi)

- Σ1

Σ1
-

- Σ2

-

-

- Σ2

Σ1
-

- Σ2

-

-

(i) I sistemi

F1 =
[

0 1
−1 −1

]
,g1 =

[
0
1

]
, H1 = [ 1 1 ]

F2 =
[

0 1
−1 1

]
, g2 =

[
0
1

]
, H2 = [−1 1 ] (1.6)

realizzano in dimensione 2 le funzioni di trasferimento date. La dimensione di realizzazione è mi-
nima, perché coincide con il grado del denominatore delle f.d.t. in una rappresentazione irriducibile.

(ii) Il sistema Σs , serie di Σ1 e Σ2, è minimo, non essendovi cancellazioni fra det(zI − F1) e
H2Adj(zI − F2)g2, né fra det(zI − F2) e H1Adj(zI − F1)g1. Basta ora notare che il sistema (ii)
è la serie di due sistemi identici al sistema minimo Σs, quindi è raggiungibile e osservabile.

(iii) Σp, parallelo di Σ1 e di Σ2, è raggiungibile e osservabile perchè gli spettri dei due sistemi
minimi costituenti i rami di Σp sono disgiunti. Il sistema (iii) è la serie dei due sistemi eguali a
Σp, quindi è raggiungibile e osservabile.

(iv) Il sistema (iv) consta del parallelo di due sistemi Σs. I rami del parallelo, essendo eguali,
hanno quindi autovalori comuni. Il sistema (iv) non è quindi né raggiungibile, né osservabile.

(v) Il sistema ha un ingresso e due uscite. Sia la serie di Σ1 seguito da Σ1 che la serie di Σ1 seguito
da Σ2 sono osservabili. Quindi dalle due uscite è osservabile lo stato del sistema complessivo.
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Per la raggiungibilità, nulla cambia se le due uscite vengono sommate e il sistema diventa quindi la
serie di Σ1 e del parallelo Σp (che è raggiungibile e osservabile). Il sistema complessivo ha funzione
di trasferimento

w(z) =
n1(z)
d1(z)

n1(z)d2(z) + n2(z)d1(z)
d1(z)d2(z)

Tale funzione razionale è in forma irriducibile: n1 non ha cancellazioni con d1 né con d2 e negli zeri
di d1 e di d2 il polinomio n1d2 +n2d1 non si può annullare. Il sistema interconnesso realizza w(z)
in dimensione 6, eguale appunto al grado del denominatore di una rappresentazione irriducibile di
w(z). Quindi il sistema (v) è minimo.

(vi) Il sistema ha un ingresso e 4 uscite. Dalle quattro uscite è osservabile lo stato di ciascuno dei
4 “rami” dell’albero e quindi lo stato complessivo.
Il sistema (vi) non è raggiungibile: ”chiudendo” i paralleli di Σ1 e Σ2 si vede che ai fini della
raggiungibilità il sistema (vi) equivale al parallelo di due sottosistemi:

Σ1 in serie al parallelo Σp di Σ1 e Σ2,
Σ2 in serie al parallelo Σp di Σ1 e Σ2.

I due sottosistemi hanno autovalori comuni (quelli dei due paralleli Σp), quindi non è raggiungibile
il loro parallelo (e con esso il sistema (vi)).

Esercizio 1.4 Siano Σ1 e Σ2 due realizzazioni minime rispettivamente di

w1(z) =
z

4z2 + 4z + 1
, w2(z) =

2z + 1
3z2

. (1.7)

Si studino la raggiungibilità e l’osservabilità delle seguenti connessioni:

(i)

j- - Σ1
- Σ1

- Σ2
-

Σ1
�

6

(ii)

Σ1
-

- Σ2

?

6

m - Σ1
-

Soluzione Nel primo caso, la serie Σs di due sistemi minimi Σ1 è a sua volta realizzazione
minima di

ws =
z2

(2z + 1)4
.

La connessione Σf ottenuta dalla retroazione di Σs e di Σ2 è ancora raggiungibile e osservabile,
essendo realizzazione in dimensione 6 della f.d.t. irriducibile con denominatore del sesto grado:

wf (z) =
z2(2z + 1)2

(2z + 1)6 − z3
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Infine la serie dei due sistemi minimi Σf e Σ2 è osservabile ma non raggiungibile. Infatti si cancella il
fattore z2 fra il denominatore della f.d.t. irriducibile di Σ2 e il numeratore della f.d.t. irriducibile di
Σf , mentre non ci sono cancellazioni fra denominatore della f.d.t. irriducibile di Σf e il numeratore
della f.d.t. irriducibile di Σ2.

Nel secondo caso, il parallelo Σp di Σ1 e di Σ2 è raggiungibile e osservabile (spettri disgiunti!) ed
ha f.d.t.irriducibile

wp(z) =
3z3 + (2z + 1)3

3z2(2z + 1)2

La serie di Σp con Σ1 è allora non osservabile (cancellazione del fattore z fra il denominatore di
wp(z) e il numeratore di w1(z)), ma raggiungibile.

Esercizio 1.5 Siano dati i sistemi discreti Σ1 = (F1,g1, H1), con

F1 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , g1 =


0
0
0
1

 , H1 = [−1 0 1 0 ] ,

e Σ2 = (F2,g2, H2), realizzazione minima della funzione di trasferimento

w2(z) =
z − 1

2

z2 − 1
.

Si considerino i seguenti schemi di connessione:

-�
��+ -
u(t) y(t)

x1(t)

Σ1
- Σ2

-

�K1

6

Schema S

-�
��+ -

x1(t)

Σ1

�K1

6

- Σ2

-�
��

Schema P

u(t) y(t)

Per ciascuno degli schemi, si determini, quando possibile, la matrice di retroazione K1 in modo
che il sistema risultante dalla connessione sia

2.i) osservabile;
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2.ii) raggiungibile;

2.iii) non osservabile e non raggiungibile;

2.iv) BIBO stabile;

2.v) internamente (asintoticamente) stabile.

Nei casi di impossibilità, si fornisca una concisa spiegazione.

Soluzione
Il sistema Σ1 è in forma canonica di controllo, quindi è raggiungibile. D’altra parte la sua funzione
di trasferimento è

w1(z) =
z2 − 1
z4 − 1

=
z2 − 1

(z2 − 1)(z2 + 1)
=

1
z2 + 1

Poiché Σ1 non è realizzazione minima, non è osservabile e gli autovalori del suo sottosistema non
osservabile sono gli zeri di z2 − 1.
La retroazione dallo stato alloca arbitrariamente gli autovalori di F1 + g1K1 e consente quindi di
ottenere, per il sistema Σ1 retroazionato da K1, che denoteremo con Σ1,K1 , tutte e sole le f.d.t.

z2 − 1
p(z)

,

con p(z) polinomio monico arbitrario di quarto grado. Si noti che Σ1,K1 è comunque raggiungibile,
ed è osservabile se p(z) e z2 − 1 sono coprimi.
Schema S

2.i) Occorre e basta scegliere K1 in modo che

• p(z) = det(zI4 − F1 − g1K1) sia coprimo con z2 − 1 (⇔ Σ1,K1 osservabile)

• p(z) sia coprimo con z− 1
2 (⇔ mancanza di cancellazioni fra det(zI4−F1−g1K1) e H2adj(zI−

F2)g2

Ad esempio, si può scegliere K1 = [−1 0 0 0 ], in modo da avere p(z) = z4

2.ii) Qualunque retroazione K1 si adotti, il polinomio H1adj(zI−F1−g1K1)g1 rimane invariato e
vale z2−1 Quindi in ogni caso si ha una cancellazione fra tale polinomio e il polinomio caratteristico
di Σ2. Lo schema S non è mai raggiungibile.

2.iii) Basta lasciare le cose come stanno, i.e. scegliere K1 = 0. Il sistema Σ1 è non osservabile e
si ha una cancellazione fra H1adj(zI−F1)g1 e det(zI−F2). Quindi lo schema S è non osservabile
e non raggiungibile.

2.iv) La funzione di trasferimento dello schema S vale

(z2 − 1)(z − 1
2 )

p(z)(z2 − 1)
=
z − 1

2

p(z)

Basta scegliere p(z) con zeri a modulo minore di 1 (ad esempio, p(z) = z4, e quindi K1 =
[−1 0 0 0 ]) per ottenere un sistema BIBO stabile.

2.v) Fra gli autovalori dello schema S sono comunque presenti gli autovalori ±1 del sistema Σ2:
quindi lo schema non può mai essere asintoticamente stabile.
Schema P

2.i) Occorre che Σ1,K1 sia osservabile e che i suoi autovalori (ovvero, quando si sia ottenuta
l’osservabilità, i suoi poli) non siano autovalori di Σ2. Occorre e basta scegliere K1 in modo che
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p(z) = det(zI −F1 − g1K1) sia coprimo con z2 − 1, numeratore della f.d.t. di Σ1 (osservabilità di
Σ1,K1) ma anche polinomio caratteristico del sistema Σ2 (assenza di autovalori comuni fra Σ1,K1

e Σ2)
La scelta p(z) = z4 e quindi K1 = [−1 0 0 0 ] va bene anche in questo caso.

2.ii) I sistemi Σ1,K1 e Σ2 sono entrambi raggiungibili; per la raggiungibilità dello schema P basta
quindi che i loro polinomi caratteristici siano coprimi, ovvero che non ci siano zeri comuni fra
z2 − 1 e p(z) = det(zI − F1 − g1K1).
Basta scegliere p(z) = z4, ovvero K1 = [−1 0 0 0 ].

2.iii) Scegliendo K1 = 0, i due sistemi in parallelo hanno in comune gli autovalori 1 e −1, ovvero
gli zeri di z2 − 1. Allora lo schema P non è né raggiungibile, né osservabile.

2.iv) La funzione di trasferimento dello schema P vale

wP (z) =
z2 − 1
p(z)

+
z − 1

2

z2 − 1
=

(z2 − 1)2 + p(z)(z − 1
2 )

p(z)(z2 − 1)
=

(z − 1)2(z + 1)2 + p(z)(z − 1
2 )

p(z)(z − 1)(z + 1)

Qualunque sia p(z), la molteplicità del fattore z − 1 a denominatore eccede la molteplicità a nu-
meratore, quindi in wP (z) il polo in z = 1 è presente qualunque scelta si faccia per il polinomio
monico di quarto grado p(z). Pertanto lo schema P non è BIBO stabile, qualunque scelta si faccia
per K1.

2.v) Poichè lo schema P non è BIBO stabile per nessuna scelta di K1, non può nemmeno essere
asintoticamente stabile. (In alternativa, poichè Σ2 ha autovalori a modulo unitario, l’intero schema
parallelo ha autovalori a modulo unitario,etc.)

Esercizio 1.6 Se il sistema Σ è realizzazione minima della funzione di trasferimento

w(z) =
z

z3 + z2 + 1
=
b(z)
a(z)

2.i) si determini, al variare di k, la funzione di trasferimento del sistema interconnesso di figura
2.1, in cui sono presenti k ≥ 1 sistemi Σ nella catena di retroazione.

- h+ - Σ -

�Σ�Σ�· · ·�Σ

6

Figura 2.1

2.ii) si stabilisca se il sistema interconnesso di figura 2.2 è raggiungibile e/o osservabile

2.iii) si determini, al variare di k, la funzione di trasferimento del sistema interconnesso di figura
2.2, in cui sono presenti k ≥ 1 sistemi Σ in retroazione.

-- - hh h ++ + - Σ -y(t)

6
Σ �

6

Σ �

6

Σ �

. . .. . .

v(t)

Figura 2.2
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2.iv) si studi la raggiungibilità e l’osservabiltà della connessione di figura 2.2.

SOLUZIONE
2.i) Posto b(z) = z e a(z) = z3 + z2 + 1, se le copie di Σ nella catena di retroazione sono k,

la f.d.t. della catena di retroazione è b(z)k/a(z)k e quella del sistema di figura 2.1. è

b(z)a(z)k

a(z)k+1 − b(z)k+1
(1.8)

2.ii) La frazione (1.8) è irriducibile. Infatti sia negli zeri di a(z) che in quelli di b(z) (ossia negli
zeri del numeratore) il denominatore è diverso da zero. Inoltre il denominatore ha grado 3(k+ 1),
eguale alla dimensione del sistema interconnesso di figura 2.1 che realizza (1.8). Poichè una f.d.t.
in forma irriducibile ha realizzazione minima di dimensione eguale al grado del denominatore, il
sistema di fig.2.2 è realizzazione minima di (1.8), quindi è raggiungibile e osservabile.

2.iii) È chiaro che lo schema di figura 2.2 prevede in retroazione il parallelo di k sistemi eguali.
Tale parallelo ha funzione di trasferimento kb(z)

a(z) e di conseguenza la f.d.t. del sistema interconnesso
di figura 2.2. è

b(z)a(z)
a(z)2 − kb(z)2

,

espressa in forma irriducibile.
2.iv) Se k = 1, il sistema complessivo ha dimensione 6, eguale al grado del denominatore della

sua f.d.t. in forma irriducibile. Quindi è minimo, ovvero raggiungibile e osservabile.
Se k > 1, il sistema interconnesso di figura 2.2. ha dimensione 3(k+1) maggiore di 6, che è il grado
del denominatore della sua f.d.t. Quindi il sistema non è minimo. Possiamo anche affermare che
non è né raggiungibile, né osservabile, dato che non è né raggiungibile, né osservabile il sistema in
retroazione (parallelo di più sistemi eguali).

Esercizio 1.7 Si consideri una funzione di trasferimento espressa in forma irriducibile

w(z) =
n(z)
d(z)

, deg d(z) = 4, deg n(z) = 2

e siano Σ e Σ̃ realizzazioni minime rispettivamente di w(z) e di −w(z)

2.i) si determinino, in forma irriducibile, le funzioni di trasferimeno dei sistemi interconnessi Σ1

e Σ2 di figura 2.1;

- h+ - Σ̃ -

�Σ�Σ

6

Σ1

Figura 2.1

- h+ - Σ - Σ -

�Σ

6

Σ2

2.ii) si stabilisca (giustificandolo) se ciascuno dei sistemi interconnessi Σ1 e Σ2 è raggiungibile
e/o osservabile;

2.iii) si stabilisca (giustificandolo) se il parallelo di Σ1 e di Σ2 è raggiungibile e/o osservabile.
In caso negativo, si determini qual è la dimensione minima di realizzazione della funzione di
trasferimento del parallelo di Σ1 e Σ2.



10

Soluzione]
2.i.) Le funzioni di trasferimento di Σ1 e di Σ2 sono rispettivamente

w1(z) =
−n(z)d2(z)
d3(z) + n3(z)

, w2(z) =
n2(z)d(z)

d3(z)− n3(z)
(1.9)

È immediato che entrambe le rappresentazioni (1.9) di w1(z) e w2(z) sono irriducibili: dove n(z)
si annulla, non si annulla d(z) e, viceversa, dove d(z) si annulla, non si annulla d(z). Quindi i
denominatori d3(z) ± n3(z) non possono annullarsi nei punti in cui si annullano i numeratori di
(1.9).

2.ii.) Il denominatore di entrambe le rappresentazioni irriducibili (1.9) ha grado 12. Poiché
la dimensione dello spazio di stato dei sistemi Σ1 e Σ2, che realizzano w1(z) e w2(z), è 12, cias-
cuno dei sistemi Σ1 e Σ2 è una realizzazione minima della propria f.d.t., quindi è raggiungibile e
osservabile.

2.iii.) Gli autovalori di Σ1 e di Σ2 sono, rispettivamente, gli zeri di d3(z) + n3(z) e di d3(z)−
n3(z). I due polinomi non hanno zeri comuni: infatti, se fosse

d3(α) + n3(α) = 0
d3(α)− n3(α) = 0 (1.10)

sommando le equazioni si otterrebbe d3(α) = 0 e sottraendole n3(α) = 0. Ma allora α sarebbe zero
comune di d(z) e n(z), impossibile perché d(z) e n(z) sono coprimi.

Poiché i sistemi Σ1 e Σ2 non hanno autovalori comuni e sono entrambi raggiungibili e osserv-
abili, tale è anche il loro parallelo.
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2. CONTROLLO OTTIMO

Esercizio 2.1. Si considerino il sistema

x(t+ 1) =

 0 1 0
0 0 1
0 0 0

x(t) +

 0
0
1

u(t) = Fx(t) + gu(t) (1.11)

e l’indice quadratico

J(u,x0) =
∞∑
t=0

(
u2(t) + xT (t)Qx(t)

)
, Q = C̄T C̄, C̄ = [ 0 1 α ] , α ∈ R (1.12)

Evidenziando, eventualmente, i valori di α per cui la risposta è affermativa, si stabilisca se

3i esiste, per ogni scelta dello stato iniziale x0, il controllo ottimo che minimizza l’indice
quadratico;

3ii esistono stati iniziali non nulli in corrispondenza ai quali è nullo il valore minimo dell’indice
e, in caso affermativo, si determinino tutti gli stati iniziali per cui risulta minu J(u,x0) = 0;

3iii la matrice di retroazione K∞ che induce il controllo ottimo uot = K∞x stabilizza il sistema
(si giustifichi la risposta).

3 ∗iv Per ogni valore di α ∈ R si determinino la soluzione “ottimizzante” M∞ dell’equazione
algebrica di Riccati e la matrice di retroazione K∞. Per quali valori di α la matrice F+GK∞
è nilpotente?

(i) Il sistema è raggiungibile, indipendentemente da α, quindi è stabilizzabile, quindi il minimo
dell’indice esiste finito per ogni stato iniziale.
(ii) Qualunque sia α, la coppia (F, C̄) non è osservabile, quindi M∞ non è definita, ma soltanto
semidefinita positiva. La matrice di osservabilità delle coppia è 0 1 α

0 0 1
0 0 0,

 (1.13)

il cui nucleo (ovvero il sottospazio non osservabile della coppia (F, C̄)) ha come generatore il vettore
canonico e1. La forma quadratica xT0 M∞x0, che fornisce il valore minimo dell’indice quando lo
stato iniziale è x0, si annulla se e solo se x0 appartiene al sottospazio non osservabile, quindi sse
x0 = βe1.
(iii) K∞ stabilizza il sistema, qualunque sia α. Infatti , indipendentemente da α, la coppia (F, C̄)
è rivelabile (F è nilpotente, quindi l’unico autovalore del sottosistema non osservabile è lo zero!)
(iv) Ponendo M(0) = 0 nell’equazione alle differenze di Riccati, si ottiene

M(−1) = Q = C̄T C̄ =

 0 0 0
0 1 α
0 α α2

 , M(−2) =

 0 0 0
0 1 α
0 α ∗

 , M(−3) =

 0 0 0
0 1 α
0 α ∗


Si verifica allora facilmente, per induzione, che per ogni k ≤ −1

M(−k) =

 0 0 0
0 1 α
0 α ∗

 . (1.14)
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Quindi la soluzione M∞ = limk→∞M(−k) dell’equazione algebrica di Riccati (EAR), sarà una
matrice semidefinita positiva con struttura

M∞ =

 0 0 0
0 1 α
0 α y

 . (1.15)

Il valore di y si ottiene sostituendo (1.15) in (EAR). Imponendo l’eguaglianza fra gli elementi in
posizione (3, 3) a primo e secondo membro di

M∞ = Q+ FTM∞F − FTM∞g(R+ gTM∞g)−1gTM∞F

si ha

y = α2 + 1− α2

1 + y
(1.16)

o, equivalentemente, y2 − α2y − 1 = 0. Scartando la soluzione negativa (altrimenti M∞ non
risulterebbe s.d.p.) , si ricava

y =
α2

2
+

√
α4

4
+ 1 (1.17)

e infine

K∞ = −(R+ gTM∞g)−1gTM∞F = [ k0 k1 k2 ] =
[

0 0 −α
(

1 + α2

2 +
√

α4

4 + 1
)−1 ]

(1.18)
Si conclude che

F + gK∞ =

 0 1 0
0 0 1
0 0 k2

 (1.19)

è nilpotente se e solo se k2 = 0, ossia se e solo se α = 0.

Esercizio 2.2. Si considerino il sistema

x(t+ 1) =
[

0 1
3 −2

]
x(t) +

[
0
1

]
u(t) = Fx(t) + gu(t) (1.20)

e l’indice quadratico

J(u,x0) =
+∞∑
t=0

(
u2(t) + xT (t)Qx(t)

)
, Q = CTC, C = [ c1 c2 ] (1.21)

3i Si determini la matrice C in modo che la matrice di retroazione K∞ che risolve il problema
di minimizzare J(u,x0) non stabilizzi il sistema.

3ii Esistono matrici C tali che l’equazione algebrica di Riccati non ammetta soluzioni Ms stabi-
lizzanti? In caso affermativo, si determini la struttura di siffatte C.

3iii Scelta C in modo che F + gK∞ sia asintoticamente stabile, si determini una matrice s.d.p.
P tale che, per ogni stato x0, si abbia

xT0 Px0 ≥ xT0 M∞x0.
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3i) La raggiungibilità della coppia F,g garantisce che il controllo ottimo esiste. La matrice K∞
non è stabilizzante se e solo se la coppia (F,C) non è rivelabile. La matrice PBH di osservabilità

[
zI − F
C

]
=

 z −1
−3 z + 2
c1 c2

 (1.22)

può avere rango minore di 2 soltanto in corrispondenza ai valori di z che sono autovalori di F ,
quindi in 1 e in -3. Affinché il rango sia effettivamente minore di 2 occorre inoltre che la matrice
C per z = −3 oppure per z = 1 sia, rispettivamente,

C = α [−3 −1 ] := C−3, α ∈ R
C = α [ 1 −1 ] := C1, α ∈ R (1.23)

In entrambi i casi il sottosistema non osservabile ha un autovalore in modulo maggiore o eguale a
1, e quindi la coppia (F,C) non è rivelabile.

3ii) L’equazione di Riccati non ammette soluzioni stabilizzanti se e solo se (1.36) ha rango non
pieno per qualche valore z ∈ C con |z| = 1. Ciò si verifica scegliendo C = C1.

3iii) Scegliamo, ad esempio, C = C̄ = [ 1 1 ]. Si ha Q = C̄T C̄ =
[

1 1
1 1

]
e F + gK∞ risulta

asintoticamente stabile perchè la coppia (F, C̄) è osservabile.
Consideriamo inoltre un’ arbitraria matrice di retroazione K che stabilizza il sistema dato, p.es.
la matrice K = [−3 2 ] per cui F + gK è nilpotente. Il valore dell’indice J(u,x0) corrispondente
all’ingresso di retroazione u(t) = Kx(t) è certamente non inferiore all’ottimo xT0 M∞x0, ed è dato
da xT0 Px0, dove P è la soluzione semidefinita positiva dell’equazione di Lyapunov

(F + gK)TX(F + gK)−X = −(KTRK +Q) (1.24)

Posto P =
[
α β
β γ

]
e sostituendo i valori per le altre matrici, (1.38) diventa

[
0 0
1 0

] [
α β
β γ

] [
0 1
0 0

]
−
[
α β
β γ

]
= −

[
−3
2

]
[−3 2 ]−

[
1 1
1 1

]
e la soluzione è

P =
[
α β
β γ

]
=
[

10 −5
−5 15

]

Esercizio 2.3. Si considerino il sistema

x(t+ 1) =
[

0 1
1 0

]
x(t) +

[
0
1

]
u(t) = Fx(t) + gu(t) (1.25)

e l’indice quadratico

J(u,x0) =
+∞∑
t=0

(
u2(t) + xT (t)Qx(t)

)
, Q = CTC, C = [ 1 1 ] (1.26)

(i) Esistono stati iniziali non nulli in corrispondenza ai quali il valore minimo dell’indice J è
nullo? In caso affermativo, si richiede di determinarli tutti.
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(ii) Si costruisca un dead-beat controller K per la coppia (F,g). Se per il sistema cos̀ı retroazio-
nato

x(t+ 1) = (F + gK)x(t) + gu(t) = F̃x(t) + gu(t) (1.27)

viene adottato l’indice quadratico (1.26), esistono stati iniziali non nulli in corrispondenza ai
quali il valore minimo dell’indice è nullo?

(iii) Per il sistema (F̃ ,g) dato in (1.27) e con indice (1.26), si determinino la soluzione M∞
dell’equazione algebrica di Riccati e la corrispondente matrice di retroazione K∞.

(iv) Per il sistema (1.27) si determini il valore di J(0,x0) in corrispondenza ad ogni stato iniziale
x0, e si verifichi che vale la diseguaglianza

J(0,x0) ≥ xT0 M∞x0. (1.28)

Per quali stati iniziali la diseguaglianza vale in senso stretto?

(i) La coppia (F,C) non è osservabile. Il valore minimo dell’indice è nullo in corrispondenza a
tutti gli stati non osservabili della coppia , ovvero a tutte le soluzioni dell’equazione

0 =
[
C
CF

]
x0 =

[
1 1
1 1

] [
x01

x02

]
.

Gli stati cercati sono del tipo

x0 =
[
α
−α

]
, α ∈ R.

(ii) Il controllore d.b. è K = [−1 0 ] : in corrispondenza si ha F̃ =
[

0 1
0 0

]
e la coppia (F̃ , C) è

osservabile. Quindi in corrispondenza ad ogni stato iniziale non nullo il valore minimo dell’indice
per il sistema (F̃ ,g) è strettamente positivo.

(iii) La matrice M∞ è la soluzione definita positiva dell’equazione algebrica di Riccati

X = Q+ FTXF − FTXg(R+ gTXg)−1gTXF.

Posto X =
[
p s
s q

]
, si perviene all’equazione

[
p s
s q

]
=

[
1 1
1 1

]
+
[

0 0
1 0

] [
p s
s q

] [
0 1
0 0

]
−

[
0 0
1 0

] [
p s
s q

] [
0
1

](
1 + [ 0 1 ]

[
p s
s q

] [
0
1

])−1

[ 0 1 ]
[
p s
s q

] [
0 1
0 0

]
=

[
1 1
1 1

]
+
[

0 0
0 p

]
−
[

0
s

]
(1 + q)−1 [ 0 s ]

=
[

1 1
1 1

]
+
[

0 0
0 p

]
− (1 + q)−1

[
0 0
0 s2

]
che equivale al sistema

p = 1
s = 1

q = 1 + p− s2

1 + q
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La componente q soddisfa l’equazione q2− q− 1 = 0, che ha per soluzioni q = 1
2 ±

√
1
4 + 1. Poiché

la matrice M∞ cercata deve essere d.p., delle due soluzioni va scelta la positiva:

q =
1
2

[1 +
√

5]

ottenendo cos̀ı

M∞ =

 1 1

1 1
2 (1 +

√
5)

 .
Il controllo ottimo è l’ingresso di retroazione prodotto dalla matrice

K∞ = −(R+ gTM∞g)−1gTM∞F = −
(

1 +
1
2

(1 +
√

5)
)−1

[ 0 1 ] =
[

0
−2

3 +
√

5

]

(iv) La matrice di aggiornamento di stato

F̃ + gK∞ =

 0 1

0
−2

3 +
√

5


è asintoticamente stabile. Il valore minimo dell’indice è

J(uot,x0) = [x01 x02 ]
[

1 1
1 1

2 (1 +
√

5)

] [
x01

x02

]
= x2

01+2x01x02+
1
2

(1+
√

5)x2
02 ∼ x2

01+2x01x02+1.62x2
02

mentre in evoluzione libera l’indice assume il valore

J(0,x0) = [x01 x02 ]
[

1 1
1 1

] [
x01

x02

]
+ [x02 0 ]

[
1 1
1 1

] [
x02

0

]
= x2

01 + 2x01x02 + 2x2
02

Evidentemente si ha sempre J(0,x0) ≥ J(uot,x0) e l’eguaglianza si ha per gli stati iniziali con
x02 = 0.

Esercizio 2.4. Si consideri il sistema discreto

x(t+ 1) =
[

1 0
1 3

]
x(t) +

[
1
1

]
u(t) = Fx(t) + gu(t)

y(t) = [ 1 0 ] x(t) (1.29)

e l’indice quadratico

J(u,x0) =
+∞∑
t=0

(
u2(t) + y2(t)

)
, (1.30)

(i) Il controllo ottimo uot(·) che minimizza l’indice quadratico è stabilizzante?

(ii) Si calcolino

– la soluzione ottimizzante M∞ dell’equazione algebrica di Riccati,

– la corrispondente matrice di reatroazione K∞,
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e si verifichi sullo spettro di F + gK∞ quanto affermato al punto precedente;

(iii) per quali stati iniziali x0 è nullo il valore minimo dell’indice minu J(u,x0)?

Soluzione Si noti che nel problema di controllo ottimo in considerazione l’indice ha matrici

R = 1 e Q = CTC =
[

1
0

]
[ 0 1 ] =

[
1 0
0 0

]
.

La coppia (F,g) è raggiungibile, quindi stabilizzabile, mentre la coppia (F,C) è in forma standard
di osservabilità (quindi non è osservabile) e poiché il sottosistema non osservabile ha autovalore 3,
la coppia (F,C) non è rivelabile.

(i) La risposta è negativa, dato che (F,C) non è rivelabile.
(ii) L’equazione alle differenze di Riccati

M(−t− 1) = Q+ FTM(−t)F − FTM(−t)g(R+ gTM(−t)g)−1gM(−t)F

=
[

1 0
0 0

]
+
[

1 1
0 3

]
M(−t)

[
1 0
1 3

]
−

[
1 1
0 3

]
M(−t)

[
1
1

]
(1 + [ 1 1 ]M(−t)

[
1
1

]
)−1 [ 1 1 ]M(−t)

[
1 0
1 3

]
,

se inizializzata da M(0) =
[

0 0
0 0

]
, ha per ogni t > 0 una soluzione con struttura

M(−t) =
[
m11(−t) 0

0 0

]
,

quindi anche M∞ = limt→∞M(−t) ha diversa da zero solo la componente di posizione (1, 1).
Essendo M∞ una soluzione semidefinita positiva dell’equazione algebrica di Riccati

M = Q+ FTMF − FTMg(R+ gTMg)−1gMF,

ponendo M = M∞ =
[
m 0
0 0

]
si perviene all’equazione

[
m 0
0 0

]
=

[
1 0
0 0

]
+
[

1 1
0 3

] [
m 0
0 0

] [
1 0
1 3

]
−

[
1 1
0 3

] [
m 0
0 0

] [
1
1

]
(1 + [ 1 1 ]

[
m 0
0 0

] [
1
1

]
)−1 [ 1 1 ]

[
m 0
0 0

] [
1 0
1 3

]
,

da cui si ricava

m = 1 +m− m2

1 +m

e infine m2−m−1 = 0, che ha per soluzioni m = 1
2 ±

√
5

2 . La condizione che M∞ sia semidefinita
positiva impone di scegliere la soluzione positiva, pervenendo a

M∞ =
[

1
2 +

√
5

2 0
0 0

]
.

La matrice K∞ è allora

K∞ = −(R+ gTM∞g)−1gTM∞F = −(1 +
1
2

+
√

5
2

)−1 [ 1 1 ]
[

1
2 +

√
5

2 0
0 0

] [
1 0
1 3

]
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= − 2
3 +
√

5

[
1 +
√

5
2

0

]
=
[

1−
√

5
2

0

]
(1.31)

da cui

F + gK∞ =
[

1 0
1 3

]
+
[

1
1

] [
1−
√

5
2 0

]
=
[

3−
√

5
2 0
? 3

]
,

che ha un autovalore instabile.

(iii) il valore minimo dell’indice è zero in corrispondenza agli stati iniziali x0 che appartengono
allo spazio non osservabile della coppia (F,C), quindi a tutti gli stati proporzionali al vettore

canonico e2 =
[

0
1

]
.

Esercizio 2.5. Si considerino il sistema

x(t+ 1) =

 0 0 1
1 0 0
0 1 0

x(t) +

 0
0
1

u(t) = Fx(t) + gu(t) (1.32)

e l’indice quadratico

J(u,x0) =
∞∑
t=0

(
u2(t) + xT (t)Qx(t)

)
, Q = QT s.d.p.

i) Esiste, per ogni scelta dello stato iniziale x0 e di Q s.d.p,. il controllo ottimo che minimizza
l’indice quadratico?

ii) Se
Q = C̄T C̄, C̄ = [ 1 1 1 ] ,

esistono stati iniziali non nulli cui corrisponde un controllo ottimo uot(·) identicamente nullo?
In caso affermativo, si determinino tutti gli stati iniziali cui corrisponde un controllo ottimo
identicamente nullo e qual è il valore corrispondente dell’indice quadratico.

iii) Se Q = C̄T C̄, la matrice di retroazione K∞ che induce il controllo ottimo uot = K∞x
stabilizza il sistema? [si giustifichi la risposta]

iv) Si determini la matrice M∞ che risolve il problema di controllo ottimo quando Q = C̄T C̄.

Soluzione
i) Il sistema è raggiungibile, quindi stabilizzabile, quindi il controllo ottimo esiste.

ii) Il sistema (F, C̄) non è osservabile, quindi la matrice M∞ non è definita positiva ed esistono
stati iniziali cui corrisponde controllo ottimo nullo. Si tratta di tutti e soli gli stati non osservabili
della coppia (F, C̄), che ha matrice di osservabilità

O =

 C̄
C̄F
C̄F 2

 =

 1 1 1
1 1 1
1 1 1

 = 11T

Il sottospazio non osservabile è costituito allora da tutti i vettori per i quali è nulla la somma delle
componenti, ed ha come base, p.es., i vettori 1

−1
0

 ,
 0

1
−1

 .
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iii) Gli autovalori del sottosistema non osservabile di (F, C̄) hanno modulo unitario, perché hanno
modulo unitario tutti gli autovalori di F [si può verificare che il sottosistema non osservabile ha
autovalori e±j

2π
3 , ma tale verifica non è necessaria per trarre le conclusioni che ci servono: ci basta

sapere che gli autovalori hanno modulo unitario]. Quindi K∞ non è stabilizzante, e in questo caso
l’equazione algebrica di Riccati non ammette neppure una soluzione stabilizzante diversa da quella
ottima.

iv) Si noti che
FT11TF = FT11TggT11TF = 11T .

Allora, assumendo M(0) = 0, l’equazione alle differenze di Riccati ha soluzioni

M(−1) = 11T

M(−2) = 11T + FT11TF − (1 + gT11Tg)−1FT11TggT11TF

= 11T + 11T − (1 + gT11Tg)−111T =
3
2
11T

e, assumendo induttivamente M(−t) = α(−t)11T si ricava

M(−t− 1) = 11T + α(−t)FT11TF − (1 + α(−t)gT11Tg)−1α2(−t)FT11TggT11TF

= (1 + α(−t))11T − α2(−t)
1 + α(−t)

−1

11T

=
1 + 2α(−t)
1 + α(−t)

11T = α(−t− 1)11T (1.33)

Tutte le matrici M(−t) sono proporzionali alla matrice 11T e lo stesso vale allora per la matrice
limite M∞, che sappiamo esistere, ed essere s.d.p.
Si può allora impostare l’equazione algebrica di Riccati, vincolando la soluzione cercata a essere
del tipo α11T :

α11T = 11T + FTα11TF − (1 + gTα11Tg)−1FTα11TggTα11TF

= 11T + α11T − α2

1 + α
11T

Si perviene all’equazione 1 + α− α2 = 0, che ha un’unica soluzione positiva α+, e si trova

M∞ = α+11T =
1 +
√

5
2

11T

In alternativa, si può osservare che in (1.33) la successione α(−t), t = 1, 2, . . ., inizializzata da
α(−1) = 1, è crescente e nessun suo elemento supera il valore 2. Quindi essa converge, al divergere
di t, ad un limite positivo α∞ che risolve l’equazione

α∞ =
1 + 2α∞
1 + α∞

ovvero a α∞ = 1+
√

5
2 . La soluzione dell’equazione di Riccati è data da

M∞ = lim
t→+∞

M(−t) = lim
t→+∞

α(−t)11T =
1 +
√

5
2

11T

Esercizio 2.6. Si considerino il sistema

x(t+ 1) =
[

0 1
3 −2

]
x(t) +

[
0
1

]
u(t) = Fx(t) + gu(t) (1.34)
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e l’indice quadratico

J(u,x0) =
+∞∑
t=0

(
u2(t) + xT (t)Qx(t)

)
, Q = CTC, C = [ c1 c2 ] (1.35)

i Si determini la matrice C in modo che la matrice di retroazione K∞ che risolve il problema
di minimizzare J(u,x0) non stabilizzi il sistema.

ii Esistono matrici C tali che l’equazione algebrica di Riccati non ammetta soluzioni Ms stabi-
lizzanti? In caso affermativo, si determini la struttura di siffatte C.

iii Scelta C in modo che F + gK∞ sia asintoticamente stabile, si determini una matrice s.d.p.
P tale che, per ogni stato x0, si abbia

xT0 Px0 ≥ xT0 M∞x0.

i) La raggiungibilità della coppia F,g garantisce che il controllo ottimo esiste. La matrice K∞ non
è stabilizzante se e solo se la coppia (F,C) non è rivelabile. La matrice PBH di osservabilità

[
zI − F
C

]
=

 z −1
−3 z + 2
c1 c2

 (1.36)

può avere rango minore di 2 soltanto in corrispondenza ai valori di z che sono autovalori di F ,
quindi in 1 e in -3. Affinché il rango sia effettivamente minore di 2 occorre inoltre che la matrice
C per z = −3 oppure per z = 1 sia, rispettivamente,

C = α [−3 −1 ] := C−3, α ∈ R
C = α [ 1 −1 ] := C1, α ∈ R (1.37)

In entrambi i casi il sottosistema non osservabile ha un autovalore in modulo maggiore o eguale a
1, e quindi la coppia (F,C) non è rivelabile.

ii) L’equazione di Riccati non ammette soluzioni stabilizzanti se e solo se (1.36) ha rango non
pieno per qualche valore z ∈ C con |z| = 1. Ciò si verifica scegliendo C = C1.

iii) Scegliamo, ad esempio, C = C̄ = [ 1 1 ]. Si ha Q = C̄T C̄ =
[

1 1
1 1

]
e F + gK∞ risulta

asintoticamente stabile perchè la coppia (F, C̄) è osservabile.
Consideriamo inoltre un’ arbitraria matrice di retroazione K che stabilizza il sistema dato, p.es.
la matrice K = [−3 2 ] per cui F + gK è nilpotente. Il valore dell’indice J(u,x0) corrispondente
all’ingresso di retroazione u(t) = Kx(t) è certamente non inferiore all’ottimo xT0 M∞x0, ed è dato
da xT0 Px0, dove P è la soluzione semidefinita positiva dell’equazione di Lyapunov

(F + gK)TX(F + gK)−X = −(KTRK +Q) (1.38)

Posto P =
[
α β
β γ

]
e sostituendo i valori per le altre matrici, (1.38) diventa

[
0 0
1 0

] [
α β
β γ

] [
0 1
0 0

]
−
[
α β
β γ

]
= −

[
−3
2

]
[−3 2 ]−

[
1 1
1 1

]
e la soluzione è

P =
[
α β
β γ

]
=
[

10 −5
−5 15

]
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Esercizio 2.7. Si considerino il sistema

x(t+ 1) =
[

0 1
−3 −4

]
x(t) +

[
0
1

]
u(t) = Fx(t) + gu(t) (1.39)

e l’indice quadratico

J(u,x0) =
+∞∑
t=0

(
u2(t) + xT (t)Qx(t)

)
, Q = CTC, C = [ c1 c2 ] (1.40)

3.i) Si determini per quali valori di C la matrice di retroazione K∞ che risolve il problema di
minimizzare J(u,x0) non stabilizza il sistema.

3.ii) Esistono matrici C tali che l’equazione algebrica di Riccati non ammetta soluzioni Ms stabi-
lizzanti? In caso affermativo, si determini la struttura di siffatte C.

3.iii) Scelta C in modo che F +gK∞ sia asintoticamente stabile, si determini, senza valutare M∞,
una matrice s.d.p. P tale che

P −M∞
sia semidefinita positiva.

3.iv) Scelta C in modo che F + gK∞ sia asintoticamente stabile, per quali stati iniziali x0 ∈ R2

la legge di controllo ottimo K∞ porta lo stato a zero in un numero finito di passi?

SOLUZIONE
3.i) Il sistema è in forma canonica di raggiungibilità e F ha autovalori λ1 = −1 e λ2 = −3.

Perchè il controllo ottimo non sia stabilizzante occorre e basta che la coppia (F,C) non sia rivelabile.
Poiché entrambi gli autovalori di F hanno modulo maggiore o eguale a 1, occorre e basta rendere
non osservabile la coppia, i.e. scegliere C = [ c1 c2 ] in modo da soddisfare la condizione

0 = det
[
C
CF

]
= det

[
c1 c2
−3c2 c1 − 4c2

]
= c21 − 4c1c2 + 3c22 = (c1 − c2)(c1 − 3c2)

Il controllo ottimo non è stabilizzante se c1 = c2 oppure se c1 = 3c2
3.ii) Nessuna delle soluzioni s.d.p. dell’equazione algebrica di Riccati è stabilizzante se la

matrice [
zI − F
C

]
ha rango minore di 2 per qualche z a modulo unitario; nel caso specifico, per z = λ1 = −1. È
chiaro che [

λ1I − F
C

]
=

−1 −1
3 3
c1 c2


non ha rango 2 se e solo se c1 = c2. Quindi per questa scelta di C nessuna soluzione dell’equazione
di Riccati è stabilizzante.

3.iii.) Una C cui corrisponde un controllo ottimo stabilizzante è, ad esempio, C = [ 0 1 ], cui

corrisponde Q =
[

0 0
0 1

]
. Facciamo quindi questa scelta. Per rispondere al quesito, si prende ora



21

una matrice arbitraria K che stabilizzi il sistema: ad esempio si prende K = [ 3 4 ], che è un
controllore dead-beat. Si è dimostrato (cfr. Dispense) che, in corrispondenza alla matrice stabile

F + gK =
[

0 1
0 0

]
, la matrice limite M∞ , che risolve il problema di controllo ottimo, è confinata

superiormente dalla soluzione semidefinita positiva P =
[
p r
r q

]
dell’equazione di Lyapunov :

(F + gK)TX(F + gK)−X = −(KTRK +Q)[
0 0
1 0

] [
p r
r q

] [
0 1
0 0

]
−
[
p r
r q

]
= −

[
9 12
12 16

]
−
[

0 0
0 1

]
[
p r
r q − p

]
=

[
9 12
12 17

]
P =

[
p r
r q

]
=

[
9 12
12 26

]
3.iv) Le matrici F e F = gK∞ sono legate dalla relazione

F + gK∞ = [I + gR−1gTM∞]−1F.

Quindi, se la matrice F è non singolare, come nel caso in esame, tale rimane anche la matrice
F + gK∞. Pertanto nessuno stato iniziale diverso da 0 viene portato a zero dal controllo ottimo
in un tempo finito.

Esercizio 2.8. Si considerino il sistema

x(t+ 1) =

 0 1 0
0 0 1
0 0 0

x(t) +

 0
1
1

u(t) = Fx(t) + gu(t) (1.41)

e l’indice quadratico

J(u,x0) =
∞∑
t=0

(
u2(t) + xT (t)Qx(t)

)
, Q = C̄T C̄, C̄ = [ 0 α 1 ] , α ∈ R (1.42)

Evidenziando, eventualmente, i valori di α per cui la risposta è positiva, si stabilisca se

3.i) esiste, per ogni scelta dello stato iniziale x0, il controllo ottimo che minimizza l’indice
quadratico;

3.ii) esistono stati iniziali non nulli in corrispondenza ai quali è nullo il valore minimo dell’indice
e, in caso affermativo, si determinino tutti gli stati iniziali per cui risulta minu J(u,x0) = 0;

3.iii) la matrice di retroazione K∞ che induce il controllo ottimo uot = K∞x stabilizza il sistema
(si giustifichi la risposta).

3.iv) Per ogni valore di α ∈ R si determinino la soluzione “ottimizzante” M∞ dell’equazione
algebrica di Riccati e la matrice di retroazione K∞.

Soluzione
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3.i) Il sistema (F,g) è raggiungibile, quindi il controllo ottimo che minimizza l’indice esiste per
ogni x0

3.ii.) Si consideri la coppia (F,C). La matrice di osservabilità è

O =

 C
CF
CF 2

 =

 0 α 1
0 0 α
0 0 0


Se α 6= 0 il nucleo di O è generato da e1, con e1 primo vettore della base canonica. Se α = 0 il
nucleo di O è generato da e1, e2. Nel primo caso il valore ottimo dell’indice è nullo se lo stato
iniziale è βe1 , nel secondo caso se lo stato iniziale è βe1 + γe2, con β e γ numeri reali arbitrari.

3.iii) Glo autovalori non osservabili della coppia (F,C) sono nulli (F è nilpotente) e quindi il
controllo ottimo è stabilizzante, qualunque sia α.

3.iv.) L’equazione alle differenze di Riccati associata al problema di ottimo è

M(−t− 1) = Q+ FTM(−t)F − FTM(−t)g(r + gTM(−t)g)−1gTM(−t)F, M(0) = 0

Si ha

M(−1) = Q =

 0 0 0
0 α2 α
0 α 1


ed è immediato constatare che, se M(−t) ha nulle la prima riga e la prima colonna, lo stesso si
verifica per M(−t−1). Quindi M∞, soluzione dell’equazione algebrica di Riccati, ha nulle la prima
riga e la prima colonna e ha struttura

M∞ =

 0 0 0
0 x y
0 y z


L’equazione algebrica è allora 0 0 0

0 x y
0 y z

 =

 0 0 0
0 α2 α
0 α 1

+

 0 0 0
1 0 0
0 1 0

 0 0 0
0 x y
0 y z

 0 1 0
0 0 1
0 0 0



−

 0 0 0
1 0 0
0 1 0

 0 0 0
0 x y
0 y z

 0
1
1

 [ 0 1 1 ]

 0 0 0
0 x y
0 y z

 0 1 0
0 0 1
0 0 0


1 + x+ 2y + z

=

 0 0 0
0 α2 α
0 α 1

+

 0 0 0
0 0 0
0 0 x

−
 0

0
x+ y

 [ 0 0 x+ y ]

1 + x+ 2y + z

Si ottengono le equazioni scalari

x = α2

y = α
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z = 1 + x− (x+ y)2

1 + x+ 2y + z
= (1 + α2)− α2(1 + α)2

(1 + α)2 + z

e quindi

0 = z2 + z((1 + α)2 − z(1 + α2)− (1 + α2)(1 + α)2 + α2(1 + α)2

= z2 + 2αz − (1 + α)2

che ha per soluzioni z = −α±
√
α2 + (1 + α)2.

Se α > 0, si deve scegliere z = −α+
√
α2 + (1 + α)2. Se α < 0, si deve operare la stessa scelta,

per garantire che xz − y2 sia non negativo.
Si avrà quindi

K∞ = −(r + gTM∞g)−1gTM∞F = −(1 + x+ 2y + z)−1 [ 0 1 1 ]

 0 0 0
0 x y
0 y z

 0 1 0
0 0 1
0 0 0


= −(1 + x+ 2y + z)−1 [ 0 0 x+ y ] = −

[
0 0

α2 + α

((1 + α)2 +
√
α2 + (1 + α)2)

]

Esercizio 2.9. Dati i sistemi a tempo discreto

Σ1 :

x1(t+ 1) =
[

0 1
0 −2

]
x1(t) +

[
0
1

]
u1(t) = F1x1(t) + g1u1(t)

y1(t) = [α 1 ] x1(t) = H1x1(t)

Σ2 :


x2(t+ 1) =

 0 1 0
0 0 1
0 0 0

x2(t) +

 0
0
1

u2(t) = F2x2(t) + g2u2(t)

y2(t) = [β 1 1 ] x2(t) = H2x2(t)

con α e β parametri reali, si considerino la connessione in parallelo di figura

u(t)
- Σ1

Σ
-

?

6
+h

Σ2

-
y(t)

e, con riferimento al sistema inteconnesso Σ, l’indice quadratico

J(u,x0) =
∞∑
t=0

(u2(t) + y2(t)).

3i Si provi che, per ogni scelta dello stato iniziale x(0) =
[

x1(0)
x2(0)

]
, esiste un ingresso u(·) al

quale corrisponde un valore finito dell’indice.
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3ii Per quali valori dei parametri α e β esistono stati iniziali non nulli del sistema parallelo in
corrispondenza ai quali il valore minimo dell’indice è nullo? Quali sono questi stati?

3iii Per quali valori dei parametri α e β esistono stati iniziali non nulli del sistema parallelo
in corrispondenza ai quali il valore minimo dell’indice è nullo e il controllo ottimo K∞ è
stabilizzante?

3iv Per quali valori dei parametri α e β esistono stati iniziali non nulli del sistema parallelo in
corrispondenza ai quali il valore minimo dell’indice è nullo e il controllo ottimo K∞ non è
stabilizzante?

(3i) Il sistema parallelo Σ = (F,g, H) = (
[
F1 0
0 F2

]
,

[
g1

g2

]
, [H1 H2 ]), non è né raggiungibile

né osservabile, dal momento che 0 è autovalore comune di F1 e F2. La matrice F ha spettro
{0,−2} e, applicando il criterio PBH di raggiungibilità , si verifica che l’autovalore −2 appartiene al
sottosistema raggiungibile. Quindi il sistema Σ è stabilizzabile (l’unico autovalore del sottosistema
non raggiungibile è 0) e per ogni stato iniziale esistono ingressi che inducono un indice di valore
finito.

(3ii) L’indice può essere riscritto nella forma

J(u,x0) =
∞∑
t=0

(
u2(t) + [ xT1 (t) xT2 (t) ]

[
HT

1

HT
2

]
[H1 H2 ]

[
x1(t)
x2(t)

])
,

e gli stati cui corrisponde controllo ottimo a costo nullo sono tutti e solo quelli non osservabili del

sistema (F,H) =
([

F1 0
0 F2

]
, [α 1 β 1 1 ]

)
. Poiché gli spetti di F1 e F2 hanno intersezione

non vuota, indipendentemente dai parametri α e β il sistema è non osservabile. Quindi esistono
stati osservabili non nulli per ogni scelta di α e β. Il loro insieme è il nucleo della matrice di
osservabilità:

O =


α | 1 β 1 1
−− | − −−− −− −− −−
0 | α− 2 0 β 1
0 | −2α+ 4 0 0 β
0 | 4α− 8 0 0 0
0 | −8α+ 16 0 0 0


• Se α = 0, la matrice

O =


0 | 1 β 1 1
−− | −− −− −− −−
0 | −2 0 β 1
0 | 4 0 0 β
0 | −8 0 0 0
0 | 16 0 0 0


ha rango 4 o rango 3 a seconda che sia β 6= 0 [caso a] o β = 0 [caso b].
• Se α = 2, la matrice

O =


2 | 1 β 1 1
−− | −− −− −− −−
0 | 0 0 β 1
0 | 0 0 0 β
0 | 0 0 0 0
0 | 0 0 0 0


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ha rango 3 o rango 2 a seconda che sia β 6= 0 [caso c] o β = 0 [caso d]
• Se α 6∈ {0, 2}, la matrice O ha rango 4 o rango 3 a seconda che sia β 6= 0 [caso e] o β = 0 [caso
f].

(a) α = 0 e β 6= 0 kerO = {


x1

0
0
0
0

 , x1 ∈ R}, autovalore 0 non osservabile

(b) α = 0 e β = 0 kerO = {


x1

0
x3

0
0

 , x1, x3 ∈ R} autovalore 0 non osservabile

(c) se α = 2 e β 6= 0 kerO = {


x1

x2

(−2x1 − x2)/β
0
0

 , x1, x2 ∈ R} autovalori 0 e -2 non

osservabili

(d) se α = 2 e β = 0, kerO = {


(−x2 − x4)/2

x2

x3

x4

0

 , x2, x3, x4 ∈ R} autovalori 0 e -2 non

osservabili

(e) se α 6∈ {0, 2} e β 6= 0 kerO = {


x1

0
−αx1/β

0
0

 , x1 ∈ R} autovalore 0 non osservabile

(f) se α 6∈ {0, 2} e β = 0 kerO = {


x1

0
x3

−αx1

0

 , x1, x3 ∈ R} autovalore 0 non osservabile.

(3iii) Nei casi (a) (b) (e) (f) il sottosistema non osservabile ha come unico autovalore λ = 0,
quindi la coppia (F,H) è rivelabile e il controllo ottimo è stabilizzante

(3iv) Nei casi (c) e (d) il sottosistema non osservabile ha un autovalore, λ = −2, a modulo
maggiore di 1,quindi la coppia (F,H) non è rivelabile e il controllo ottimo non è stabilizzante.
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3. SISTEMI POSITIVI

Esercizio 3.1. Si considerino le catene di Markov C1 e C2 caratterizzate dalle matrici di transizione

P1 =


1/2 1/2 0 0
1/2 1/2 0 0
1/2 0 1/4 1/4
0 1/3 0 2/3

 , P2 =

 1/4 1/4 1/2
2/3 0 1/3
1/2 1/2 0

 (1.43)

i) Per entrambe le catene si costruisca il grafo che ne rappresente l’evoluzione in un passo.

ii) Per la catena regolare, nell’ipotesi che lo stato iniziale sia S1, si determini la distribuzione
asintotica di probabilità sugli stati della catena

lim
t→+∞

eT1 P
t
2

iii) Per la catena con stati transitori, si determini il numero medio di “visite” allo stato S3,
nell’ipotesi che

– lo stato iniziale sia S3

– lo stato iniziale sia S4

Esercizio 3.2 Si consideri il sistema lineare positivo

x(t+ 1) =

 1/4 1/4 1/2
2/3 0 1/3
1/2 1/2 0

x(t) = Fx(t) (1.44)

i) qual è l’autovalore dominante della matrice F?

ii) se lo stato iniziale è x(0) =

 1
2
3

, qual è il limite

lim
t→+∞

x(t)
‖x(t)‖

?

Esercizio 3.3 . Si consideri il sistema lineare positivo

x(t+ 1) =

 1 0 2
2 1 0
0 1 2

x(t) +

 0
0
1

u(t) = Fx(t) + gu(t) (1.45)

i) Si determinino gli autovalori del sistema.

ii) Se x(0) =

 1
1
1

 e u(t) = 0 ∀t , si determini il vettore

lim
t→+∞

x(t)
‖x(t)‖
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iii) Il cono di raggiungibilità CR del sistema (1.45) è solido?

iv) Applicando al sistema (1.45) arbitrari ingressi non negativi, è possibile raggiungere
dallo stato 0 ogni stato di R3

+?

Esercizio 3.4 - Si consideri il sistema lineare positivo

x(t+ 1) =

 1 1 0
1 1 0
0 2 2

x(t) +

 1
0
0

u(t) = Fx(t) + gu(t) (1.46)

i Si determini un insieme di generatori per il cono di raggiungibilità CRk . Esiste un istante
k in cui risulta CRk = CRk+1? (si giustifichi la risposta)

ii Esiste un cambiamento di base nello spazio di stato che, preservando la positività del
sistema, lo porti in forma canonica di controllo o, più in generale, in una forma in cui
Fc è matrice compagna?

iii Esiste una matrice di retroazione K ≥ 0 che renda minore di 2 il raggio spettrale della
matrice F+gK? (si giustifichi la risposta negativa o, se la risposta è positiva, si fornisca
un esempio per K)

(i) CRk è generato dai vettori positivi g, Fg, . . . , F k−1g, quindi (riscalando i vettori) da 1
0
0

 ,
 1

1
0

 ,
 1

1
1

 ,
 1

1
2

 ,
 1

1
3

 , . . . ,
 1

1
k − 2

 (1.47)

Evidentemente (basta una figura) nessuno dei vettori dell’elenco appartiene al cono generato
dai vettori che lo precedono. Quindi per ogni k il cono CRk è contenuto propriamente in CRk+1.

(ii) Se F fosse simile ad una matrice compagna positiva, il polinomio caratteristico di F
avrebbe negativi o nulli tutti i coefficienti, eccetto quello (unitario) del monomio di grado
massimo. Ma il polinomio caratteristico di F è (z− 2)[(z− 1)2− 1] = z3− 4z2 + 4z e quindi
non soddisfa la condizione richiesta.

Senza calcolare il polinomio caratteristico di F , si perviene alla medesima conclusione os-
servando che la coppia (F,g) è raggiungibile e se il polinomio caratteristico fosse del tipo
anzidetto dovremmo avere CRn = CRn+1, in contrasto con quanto si è trovato al punto (i).

(iii) Qualunque sia K ≥ 0, vale la diseguaglianza F +gK ≥ F , quindi l’autovalore di Perron
di F + gK è maggiore o eguale all’autovalore di Perron di F . Ma quest’ultimo vale 2. La
risposta è quindi negativa.

Esercizio 3.5. Si consideri la catena di Markov C caratterizzata dalla matrice di transizione

P =


1/4 0 1/2 1/4
0 1/3 0 2/3

1/4 1/4 1/4 1/4
0 1/2 0 1/2

 (1.48)



28

i Costruito il grafo che ne rappresenta l’evoluzione in un passo, si individuino classi
ergodiche e classi transitorie (e si rinumerino, eventualmente, gli stati in modo che gli
stati delle classi ergodiche precedano quelli delle classi transitorie).

ii Si determini la distribuzione asintotica di probabilità sugli stati della catena.

iii Per ogni stato Si stati delle classi transitorie, nell’ipotesi che lo stato iniziale della
catena sia Si si determini quante volte in media la catena si trova in Si (contando
l’istante iniziale) prima di entrare in una classe ergodica.

1) Il tracciamento del grafo è immediato
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S4 e S2 comunicano e da essi non si accede ad altri stati: quindi formano una classe ergodica, S1 e
S3 comunicano e da essi si accede alla classe ergodica Rinumerando gli stati come richiesto, grafo
e matrice di transizione diventano
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P =


1/3 2/3 |
1/2 1/2 |

0 0
0 0

−−−−−− −−−−−
0 1/4 |

1/4 1/4 |
1/4 1/2
1/4 1/4

 =
[
E 0
R Q

]
(1.49)

ii) Con riferimento alla (1.49), è nulla la probabilità asintotica che la catena si trovi in uno degli
stati transitori, quindi è unitaria la probabilità che asintoticamente la catena si trovi nella classe
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ergodica. La dinamica nella classe ergodica è descritta dalla matrice stocastica strettamente positiva[
1/3 2/3
1/2 1/2

]
che ha [ 3

7
4
7 ] come autovettore sinistro corrispondente all’autovalore 1.

La distribuzione asintotica di probabilità sugli stati S̄1, S̄2, S̄3, S̄4 è quindi

p̄T0 =
[ 3

7
4
7

0 0
]

(1.50)

iii) La matrice fondamentale delle classi transitorie è

L = (I2 −Q)−1 =
[

3/4 −1/2
−1/4 3/4

]−1

=
16
7

[
3/4 1/2
1/4 3/4

]
=
[

12/7 8/7
4/7 12/7

]
Gli elementi diagonali della matrice L forniscono i valori cercati: se lo stato iniziale è S̄3, il numero
medio di volte che la catena è in S̄3 prima di entrare nella classe ergodica è 12/7; lo stesso valore
si ottiene per il numero medio di passaggi per S̄4 partendo da S̄4.

Esercizio 3.6. Si consideri il sistema discreto positivo di equazioni

x(t+ 1) =


0 0 0 1
0 0 1 α
0 1 0 1
1 0 0 1

x(t) +


1 0
0 1
0 0
0 0

u(t) = Fx(t) +Gu(t) = Fx(t) + [ g1 g2 ] u(t) (1.51)

(i) Si stabilisca per quali valori del parametro α ≥ 0 il sistema (a due ingressi) (F,G), il si-
stema (a ingresso scalare) (F,g1) e il sistema (a ingresso scalare) (F,g2) sono positivamente
completamente raggiungibili.

(ii) Per ciascuno dei tre sistemi, si determinino i coni di raggiungibilità in 5 passi in corrispon-
denza ai valori di α per i quali non c’è completa raggiungibilità positiva.

(iii) La matrice F è irriducibile? In caso negativo, si operi una trasformazione di cogredienza (i.e.
una permutazione delle coordinate) che riduca la matrice in forma triangolare a blocchi.

(iv) Per quali valori di β > 0 la matrice βF è asintoticamente stabile?

(i) La matrice di raggiungibilità della coppia (F,G)

R = [G FG F 2G F 3G ] =


1 0 0 0 . . .
0 1 0 0 . . .
0 0 0 1 . . .
0 0 1 0 . . .


include per ogni α ≥ 0 una sottomatrice monomia. Quindi il sistema è positivamente completa-
mente raggiungibile per ogni α ≥ 0.
Per la coppia (F,g1) si perviene alla matrice di raggiungibilità

R = [ g1 Fg1 F 2g1 F 3g1 ] =


1 0 1 1
0 0 α 1 + α
0 0 1 1 + α
0 1 1 2


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che non è monomia, per qualsiasi α ≥ 0.
Per la coppia (F,g2) si perviene alla matrice di raggiungibilità

R = [ g2 Fg2 F 2g2 F 3g2 ] =


0 0 0 0
1 0 1 0
0 1 0 1
0 0 0 0


che non è monomia, per qualsiasi α ≥ 0.
Quindi i sistemi (F,g1) e (F,g2) non sono positivamente completamente raggiungibili, qualunque
sia α ≥ 0.

(ii) Per il sistema (F,g2) è immediato che il cono di raggiungibilità in 2,3, . . . passi è dato dalle
combinazioni non negative dei vettori e2 ed e3.
Per il sistema (F,g1) il cono di raggiungibilità in 5 passi è dato dalle combinazioni non negative
di 

1
0
0
0

 ,


0
0
0
1

 ,


1
α
1
1

 ,


1
1 + α
α+ 1

2

 ,


2
1 + 3α
3 + α

3


(iii) La matrice F non è irriducibile: basta notare che I + F + F 2 + F 3 non è strettamente pos-
itiva, o verificare che il grafo orientato associato alla matrice non è fortemente connesso. Una
trasformazione di cogredienza che soddisfa quanto richiesto si ottiene, p.es., scambiando la se-
conda colonna con la quarta e la seconda riga con la quarta:

PTFP =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




0 0 0 1
0 0 1 α
0 1 0 1
1 0 0 1




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 =


0 1 | 0 0
1 1 | 0 0
− − − − −
0 1 | 0 1
0 α | 1 0


(iv) Gli autovalori di F sono gli zeri di (z2 − 1)(z2 − z − 1). L’autovalore di modulo massimo è

λ0 =
1
2

+

√
1
4

+ 1 =
1
2

(1 +
√

5) > 1.

Perchè βF sia asintoticamente stabile, si deve scegliere 0 ≤ β < λ−1
0 .

Esercizio 3.7. Si consideri il sistema discreto positivo di equazioni

x(t+ 1) =

 0 α 0
1 0 1
α 1 1

x(t) +

 1
0
0

u(t) = Fx(t) + gu(t), α ∈ R+ (1.52)

(i) Si determini il cono di raggiungibilità in 4 passi;

(ii) Si stabilisca per quali valori positivi del parametro α ≥ 0 il cono di raggiungibilità in 3 passi
e quello in quattro passi coincidono?

(iii) Per quali valori di α ≥ 0 la matrice F è irriducibile?

(iv) Per quali valori di α ≥ 0 il sistema è asintoticamente stabile?
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Soluzione
(i) Il cono di raggiungibiltà in tre passi, e quindi quello in quattro passi, è un cono solido. Si

ha

CR4 = Cono(g, Fg, F 2g, F 3g) = Cono

 1
0
0

 ,
 0

1
α

 ,
 α

α
1 + α

 ,
 α2

1 + 2α
(1 + α)2

 ,

ovvero sono raggiungibili in 4 passi con ingressi non negativi tutte le combinazioni non negative
dei vettori sopra specificati.

(ii) i coni di raggiungibilità in n = 3 passi e in n + 1 = 4 passi coincidono se e solo se il
polinomio caratteristico di F

∆F (z) = z3 + α2z
2 + α1z + α0

ha tutti i coefficienti α2, α1, α0 non positivi. Nel nostro caso si ha

∆F (z) = det

 z −α 0
−1 z −1
−α −1 z − 1

 = z3 − z2 − (1 + α)z − α(α− 1),

quindi i coni coincidono se α = 0 oppure se α ≥ 1.

(iii) La matrice F è irriducibile sse α > 0, e anzi in questo caso essa risulta primitiva, essendo
F 3 >> 0. Per α = 0 gli elementi in posizione (1,2) e (1,3) rimangono nulli in tutte le potenze di
F , quindi la matrice non è irriducibile.

(iv) Per ogni α ≥ 0 tutte le somme degli elementi di colonna sono maggiori o eguali a 1. Quindi
l’autovalore dominante non può essere minore di 1. La matrice non è asintoticamente stabile per
alcun valore non negativo di α.
Si può verificare che non è nemmeno semplicemente stabile: per α > 1 le somme di colonna sono

tutte maggiori di 1, per α = 0 la matrice F è triangolare a blocchi, con un blocco diagonale
[

0 1
1 1

]
che ha autovalore massimale maggiore di 1.

Esercizio 3.8. Per la catena di Markov con 8 stati S1, S2, . . . , S8

xT (t+ 1) = xT (t)



p11 p12 p13 p14 p15 p16 p17 p18

1
1

1
1

1
1

1 0


= xT (t)P (1.53)

si considerino i seguenti casi:
Caso A) p17 = p18 = 1

2 ,

Caso B) p16 = p18 = 1
2

Caso C) p15 = p16 = p17 = 1
3

i) Si stabilisca in quali casi la catena è irriducibile e in quali è regolare.

ii) Nel caso in cui la catena è regolare
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– si determini la distribuzione asintotica di probabilità sugli 8 stati che compongono la
catena;

– se all’istante t = 0 la catena si trova nello stato S8, qual è il tempo medio richiesto
perché la catena visiti ancora lo stato S8?

iii) Quando la catena è irriducibile, si determini il valore dell’indice di imprimitività della matrice
di transizione, quando è riducibile, si determinino le classi ergodiche e le eventuali classi
transitorie.

Soluzione Di seguito si riportano i grafi delle catene:

t t t t t t t t- - - - - - -

6 �
�
�

6

S8 S7 S6 S5 S4 S3 S2 S11 1 1 1 1 1 1

p18 = 1
2

p17 = 1
2

Caso A

t t t t t t t t- - - - - - -

6 �
�
�

6

S8 S7 S6 S5 S4 S3 S2 S11 1 1 1 1 1 1

p18 = 1
2

p16 = 1
2

Caso B

t t t t t t t t- - - - - - -

6 �
�
�
��

6 �
��

6

S8 S7 S6 S5 S4 S3 S2 S11 1 1 1 1 1 1

p17 = 1
3

p16 = 1
3

p15 = 1
3

Caso C

4.i) Nel caso C la catena non è irriducibile (la matrice ha una colonna nulla). Negli altri due
casi la catena è irriducibile (basta osservare che il suo grafo è fortemente connesso). Il polinomio
caratteristico è dato da

−p1n − zp1,n−1 − z2p1,n−2 − . . .− zn−1p1,1 + zn

Quindi esso vale

−1
2
− 1

2
z + z8 = −1

2
zn0 − 1

2
zn1 + zn2 Caso A (1.54)

−1
2
− 1

2
z2 + z8 = −1

2
zñ0 − 1

2
zñ1 + zñ2 Caso B (1.55)

Nel caso A la catena è regolare. Infatti la matrice di transizione è primitiva, ovvero irriducibile
con indice di imprimitività 1. Lo si vede ricorrendo al criterio basato sulle potenze a coefficiente
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non nullo nel polinomio caratteristico:

MCD(n1 − n0, n2 − n1) = MCD(1, 7) = 1

Nel caso B la matrice è irriducibile con indice di imprimitività 2: infatti

MCD(ñ1 − ñ0, ñ2 − ñ1) = MCD(2, 6) = 2

4.ii) Nel caso A determiniamo l’autovettore dominante sinistro corrispondente all’autovalore 1,
risolvendo l’equazione pT0 P = pT0 .
Posto pT0 = [ ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ] e scelto ξ1 = 1, si ricava 1 = ξ2 = ξ3 = ξ4 = ξ5 =
ξ6, quindi ξ8 = 1

2 e infine ξ7 = 1.
Rinormalizzando pT0 a un vettore stocastico si trova

pT0 = [ γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 ] = [ 2
15

2
15

2
15

2
15

2
15

2
15

2
15

1
15 ]

che rappresenta la distribuzione asintotica di probabilità della catena nel caso A.
Il tempo medio richiesto per rivisitare lo stato S8 partendo da S8 è dato da 1

γ8
= 15 passi.

4.iii) Per il caso B si è già risposto al punto 4.i). Per il caso C (catena non irriducibile), le classi
di comunicazione sono due (come è evidente anche dal grafo):

{S8} classe transitoria

{S1, S2, S3, S4, S5, S6, S7} classe ergodica.

Esercizio 3.9. Si considerino le catene di Markov C1 e C2 caratterizzate dalle matrici di transizione

P1 =


0 0 1/2 1/2
0 0 1/2 1/2

3/4 1/4 0 0
1 0 0 0

 , P2 =

 1/4 1/4 1/2
2/3 0 1/3
1/2 1/2 0

 (1.56)

4.i) Per entrambe le catene si costruisca il grafo che ne rappresenta l’evoluzione in un passo.

4.ii) Per la catena regolare, nell’ipotesi che lo stato iniziale sia S1, si determini la distribuzione
asintotica di probabilità sugli stati della catena

lim
t→+∞

eT1 P
t
2

e il tempo medio richiesto perchè la catena ritorni nello stato S1

4.iii) Per la catena non regolare, si dimostri che è irriducibile, si determini l’indice di irriducibilità
e si calcolino gli autovalori periferici.

4.iv) Ne caso della catena non regolare, se la distribuzione iniziale di probabilità è xT (0), si verifichi
che al divergere di t la distribuzione xT (t) tende ad avere carattere periodico.

SOLUZIONE 4.i)
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Figura 4.1

4.ii) E’ immediato che P 2
2 � 0. Quindi la catena C2 è regolare. Asintoticamente la dis-

tribuzione è quella dell’autovettore di Perron sinistro, indipendentemente dalla distribuzione in-
iziale.

Per ottenere la distribuzione asintotica si risolve l’equazione

[ γ1 γ2 γ3 ]

 1/4 1/4 1/2
2/3 0 1/3
1/2 1/2 0

 = [ γ1 γ2 γ3 ]

[ γ1 γ2 γ3 ]

−3/4 1/4 1/2
2/3 −1 1/3
1/2 1/2 −1

 = [ 0 0 0 ]

[ γ1 γ2 γ3 ] =
[ 10

23
6
23

7
23

]
(1.57)

Il tempo medio richiesto per rivisitare lo stato S1 è dato da 1
γ1

= 23
10

4.iii) La matrice I4 + P1 + P 2
1 + P 3

2 è strettamente positiva, quindi la catena è irriducibile.
Non è regolare, dal momento che i i blocchi diagonali di P 2t

1 sono nulli per ogni t > 0. L’indice
di irriducibilità vale 2 (per t grandi in ogni posizione della matrice si alternano il valore 0 e un
valore positivo) Gli autovalori periferici sono λ0 = 1 e λ1 = −1, cui corrisponde, rispettivamente,
un autovettore stocastico sinistro pT0 e un autovettore sinistro wT

1 . Gli altri due autovalori λ2 e
λ3 hanno modulo minore di 1, con autovettori sinistri wT

2 e wT
3 .

4.iv) Rispetto alla base di Jordan si ha

xT (0) = pT0 + α1wT
1 + α2wT

2 + α3wT
3 (1.58)

Al divergere di t la distribuzione di probabilità sui 4 stati

xT (t) = pT0 + α1(−1)twT
1 + α2P

t
1wT

2 + α3P
t
1wT

3 ∼ pT0 + α1(−1)twT
1

diventa periodica, di periodo 2:
- negli istanti pari si ha xT (2t) = pT0 + α1wT

1 ,
- negli istanti dispari si ha xT (2t+ 1) = pT0 − α1wT

1 .
Si noti che il vettore wT

1 ha nulla la somma delle componenti, come si evince postmoltiplicando
per l’autovettore di Perron destro 14 entrambi i membri di (1.58).
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Esercizio 3.10 - Si consideri il sistema lineare positivo

x(t+ 1) =

 1 1 0
1 1 0
0 2 2

x(t) +

 1
0
1

u(t) = Fx(t) + gu(t) (1.59)

4.i) Si determini un insieme di generatori per il cono di raggiungibilità CRk . Esiste un istante k
in cui risulta CRk = CRk+1? (si giustifichi la risposta)

4.ii) Esiste un cambiamento di base nello spazio di stato che, preservando la positività del sistema,
lo porti in forma canonica di controllo o, più in generale, in una forma in cui Fc è matrice
compagna?

4.iii) Esiste una matrice di retroazione K > 0 che renda minore di 2 il raggio spettrale della matrice
F + gK? e che lo renda eguale a 2? (si giustifichino le risposte)

Soluzione
4. i) CRk è generato dai vettori positivi g, Fg, . . . , F k−1g, quindi (riscalando i vettori) da 1

0
1

 ,
 1

1
2

 ,
 1

1
3

 , . . . ,
 1

1
k − 1

 (1.60)

Nessuno dei vettori dell’elenco appartiene al cono generato dai vettori che lo precedono. Una figura
rende evidente l’asserto.
Per una dimostrazione analitica, basta osservare che se l’ultimo vettore fosse combinazione a co-
efficienti non negativi dei vettori precedenti, avremmo

α1

 1
0
1

+ α2

 1
1
2

+ α3

 1
1
3

+ . . .+ αk−2

 1
1

k − 2

 =

 1
1

k − 1

 = F k−1g, con αi ≥ 0 (1.61)

Ma allora deve essere :
α1 = 0, affinché le prime due componenti di F k−1g siano eguali,∑k−2
i=2 αi = 1 (combinazione convessa) affinchè prime due componenti di F k−1g valgano 1.

Per quanto riguarda l’ultima componente di F k−1g, abbiamo infine

k−2∑
i=2

αii ≤
k−2∑
i=2

αi(k − 2) = k − 2 < k − 1

e si conclude che nessuna scelta delle αi consente di soddisfare la (1.61).
Quindi per ogni k il cono CRk è contenuto propriamente in CRk+1.
4.ii) Se F fosse simile ad una matrice compagna positiva, il polinomio caratteristico di F

avrebbe negativi o nulli tutti i coefficienti, eccetto quello (unitario) del monomio di grado massimo.
Ma il polinomio caratteristico di F è (z − 2)[(z − 1)2 − 1] = z3 − 4z2 + 4z e quindi non soddisfa la
condizione richiesta.
Senza calcolare il polinomio caratteristico di F , si perviene alla medesima conclusione osservando
che la coppia (F,g) è raggiungibile e che se il polinomio caratteristico fosse del tipo anzidetto
dovremmo avere CRn = CRn+1, in contrasto con quanto si è trovato al punto (i).

4. iii) Qualunque sia K > 0, vale la diseguaglianza F +gK > F , quindi l’autovalore di Perron
di F + gK è maggiore o eguale all’autovalore di Perron di F . Si noti poi che

F + gK =

 1 + k1 1 + k2 k3

1 1 0
k1 2 + k2 2 + k3


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La matrice
[

1 1
1 1

]
è strettamente positiva e ha raggio spettrale 2. Ogni incremento di un suo ele-

mento ne aumenta il raggio spettrale e pertanto ogni scelta K1 = [ k1 k2 0 ] > 0 rende maggiore
di 2 il raggio spettrale di F + gK1.
Per ogni scelta K2 = [ 0 0 k3 ] > 0, risulta

F + gK2 =

 1 1 k3

1 1 0
0 2 2 + k3

 >
 1 1 0

1 1 0
0 2 2 + k3

 ,
quindi il raggio spettrale di F + gK2 è almeno 2 + k3 > 2.
Infine, nel caso K = K1 + K2 = [ k1 k2 0 ] + [ 0 0 k3 ] > 0 con K1 e K2 entrambe positive,
basta porre F +gK = F +gK1 +gK2 per concludere che il raggio spettrale della matrice reazionata
è ancora una volta maggiore di 2.

Esercizio 3.11 Si consideri il sistema lineare positivo

x(t+ 1) =


1/3 1/3 0 1/4
1/3 0 0 1/3
1/3 0 0 1/2
1/4 0 1/4 1/4

x(t) +


0 0
1 0
0 1
0 0

u(t) = Fx(t) +Gu(t)

6i Si stabilisca se l’origine è punto di equilibrio asintoticamente stabile per l’ingresso nullo.

6ii Se u(t) = ū =
[

2
2

]
, ∀t ≥ 0, esiste in R4

+ un corrispondente stato di equilibrio per il

sistema? Si tratta di un equilibrio stabile? Se ne determini il valore [eventuali inverse di
matrici possono essere lasciate indicate].

6iii) Si stabilisca qual è il cono di raggiungibilità del sistema.

Soluzione

(6i) Le somme di riga della matrice F sono tutte strettamente minori di 1, quindi l’autovalore di
Perron è minore di 1 e il sistema autonomo ha l’origine che è punto di equilibrio asintoticamente
stabile.

(6ii) Si deve risolvere in xe l’equazione xe = Fxe + Gū ovvero (I4 − F )xe = Gū. La matrice
(I4 − F ) è invertibile, non avendo autovalori nulli, e grazie al fatto che lo spettro della matrice F
è interno alla circonferenza unitaria, l’inversa (I4 − F )−1 è esprimibile come somma della serie
convergente di matrici positive I + F + F 2 + F 3 + . . . Quindi la somma della serie è positiva ed è
positiva la soluzione

xe = (I4 − F )−1Gū = 2


2/3 −1/3 0 −1/4
−1/3 1 0 −1/3
−1/3 0 1 −1/2
−1/4 0 −1/4 3/4


−1 

0
1
1
0


L’equilibrio in xe per l’ingresso costante ū è asintoticamente stabile. Infatti, se lo stato iniziale è
x(0) = xe + ∆xe, e poniamo x(t) = xe + ∆x(t), da

x(t+ 1) = xe + ∆x(t+ 1) = Fxe + F∆x(t) +Gū
xe = Fxe +Gū
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sottraendo membro a membro si ricava

∆x(t+ 1) = F∆x(t)

che, attesa l’infinitesimalità di F t, converge a zero qualunque sia ∆x(0).
(6iii) I generatori del cono di raggiungibilità sono le colonne di [G FG F 2G . . . ]. Poiché i
vettori g1, Fg1,g2, Fg2 nel loro complesso formano una matrice monomia

0 1/3 0 0
1 0 0 0
0 0 1 0
0 0 0 1/4


il cono di raggiungibilità coincide con R4

+.


