/* Copyright (C) 2022-2025 Alessandro Languasco */ \\ Global variables: global(defaultprecision); /************* GENERAL CASE q = +-1 mod 8, prime *********/ {Aqdivisors(q,defaultprecision)=local(minutes, millisec, seconds, ghcommon, elaptimefinalcomp, qminusone, a, g, G, h, H, R, A, E, rho, rhoalphan, rhobetan, alphan, nq, betan, prime1, prime2, qclass8, kroneckerchar, w, b1, b2, rhodivisorsfile, logtwo, logten, accuracy, zetafactor, trunckroneckerchar, startAproduct, startalphaproduct, startbetaproduct, elapbetaproducttime, elapalphaproducttime, elapAproducttime, start, elappreptime, nqprime ); \\ DO NOT DEFINE the variables x,p ; they are formal variables needed in the polynomials \\ minutes,millisec,seconds: used just to compute the elapsed computation time; local variables \\ defaultprecision: used to fix the precision used in the computations; global variable print("************ A. LANGUASCO *************"); print("********* COMPUTATION of Aq(1) - d(n) mod q **********"); print("********* q = -1,1 mod 8 **********"); \\ precision setting default(realprecision,defaultprecision); default(format,f); if (isprime(q) == 0, print("q has to prime "); return() ); qminusone = q-1; qclass8 = q%8; if (qclass8 <> 1 && qclass8 <> 7, print("q has to be = -1,1 mod 8"); return() ); rhodivisorsfile = fileopen("rhodivfile-prodeulerrat.csv", "a"); \\filewrite(rhodivisorsfile,"q;nq;nqprime;Aq(1);rho(q);rhonorm;rhoalpha;rhoalphanorm;rhobeta;rhobetanorm;accuracy;millesecs"); logten = log(10); logtwo = log(2); accuracy = defaultprecision*logten; \\ zeta(x) = 1 + ERR(x), with |ERR(x)| < 2^(1-x) for x>=3 zetafactor = 1.; \\ means |ERR(q-1)| < 2^(2-q) < 10^(-defaultprecision) if (q <= 2 + accuracy / logtwo, zetafactor = zeta(qminusone)); print("Starting computation of Aq - divisors"); print("---------"); \\ initializations start=gettime(); \\ quadratic Kronecker character (chi_1) values kroneckerchar = vector(qminusone, j, kronecker(j,q) ); \\nq determination (2|q) = 1 since q =+-1 mod 8 forprime(j=3, qminusone, if (kroneckerchar[j] == -1 , nq = j; break)); \\nqprime determination forprime(j=nq+1, qminusone, if (kroneckerchar[j] == -1 , nqprime = j; break)); \\ primes for Lemma 2 functions prime1 = nextprime(nq+1); prime2 = nextprime(prime1+1); /***** generating the polynomials *****/ \\ to truncate the polynomial for g and h, see their definition in the paper b1 = prime1-1; b2 = prime2-1; \\ generating coefficients for g and h trunckroneckerchar = vector(b2, j, kroneckerchar[j]); trunckroneckerchar[prime1] = 0; \\ to discard x^{p1-1}; see the definition in the paper elappreptime=gettime()-start; startAproduct= gettime(); \\ Aq Euler product a = (1-x)*Polrev(kroneckerchar); \\ generates the Fekete polynomial for Aq(1) A = subst(a, x, 1/p); \\ formal substitution of x->1/p R = prodeulerrat(A); \\ evaluates the Euler product \\ BY FAR, THIS IS THE MOST TIME-CONSUMING PART R *= zetafactor; \\ R = zetafactor * R; see A(q) definition in the paper elapAproducttime=gettime()-startAproduct; startalphaproduct= gettime(); \\ generates the common part of the polynomials (1-x)*g(x) and (1-x)*h(x) ghcommon = (1-x)*Polrev(trunckroneckerchar); \\ generate the error polynomial (1-x)*E(x) E = Pol((1-x)*x^(b1)+x^(b2)); \\ alpha Euler product g = ghcommon-E; \\ getting the polynomial g for the product alpha \\print(g); G = subst(g, x, 1/p); \\ formal substitution of x->1/p alphan = prodeulerrat(G); \\ evaluates the Euler product elapalphaproducttime=gettime()-startalphaproduct; startbetaproduct= gettime(); \\ beta Euler product h = ghcommon + E; \\ getting the polynomial h for the product beta \\print(h); H = subst(h, x, 1/p); \\ formal substitution of x->1/p betan = prodeulerrat(H); \\ evaluates the Euler product elapbetaproducttime=gettime()-startbetaproduct; elaptimefinalcomp=elappreptime+elapAproducttime+elapalphaproducttime+elapbetaproducttime; print("q = ", q); print("nq(", q, ") = ", nq); print("nq'(", q, ") = ", nqprime); w = 2^(-nq); print("---"); print("A(", q, ",1) = ", R ); rho = (1 + R)/(1-R); print("rho = ", rho); print("rho_tilde = ", rho * w); print("---"); print("betan(", nq, "," , q, ") = ", betan ); rhobetan = (1 + betan)/(1-betan); print("rhonbeta = ", rhobetan ); print("rhonbetanorm = ", rhobetan * w ); print("---"); print("alphan(", nq, "," , q, ") = ", alphan ); rhoalphan = (1 + alphan)/(1-alphan); print("rhonalpha = ", rhoalphan ); print("rhonalphanorm = ", rhoalphan * w ); print("---"); print("q & nq & nqprime & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde"); print("$", q, "$ & $", nq, "$ & $", nqprime, "$ & $", R, " $ & $", rho, " $ & $", rho * w, "$ \\\\ \\hline"); print("---"); print("nq & q & rhonalpha & rhonbeta "); print("$", nq, "$ & $", q, "$ & $", rhoalphan, " $ & $", rhobetan, " $ & $", rho, "$ \\\\ \\hline"); print("---------"); filewrite1(rhodivisorsfile,q); filewrite1(rhodivisorsfile,";"); filewrite1(rhodivisorsfile,nq); filewrite1(rhodivisorsfile,";"); filewrite1(rhodivisorsfile,nqprime); filewrite1(rhodivisorsfile,";"); filewrite1(rhodivisorsfile,R); filewrite1(rhodivisorsfile,";"); filewrite1(rhodivisorsfile,rho); filewrite1(rhodivisorsfile,";"); filewrite1(rhodivisorsfile,rho*w); filewrite1(rhodivisorsfile,";"); filewrite1(rhodivisorsfile,rhoalphan); filewrite1(rhodivisorsfile,";"); filewrite1(rhodivisorsfile,rhoalphan * w); filewrite1(rhodivisorsfile,";"); filewrite1(rhodivisorsfile,rhobetan); filewrite1(rhodivisorsfile,";"); filewrite1(rhodivisorsfile,rhobetan * w ); filewrite1(rhodivisorsfile,";"); filewrite1(rhodivisorsfile, defaultprecision ); filewrite1(rhodivisorsfile,";"); filewrite(rhodivisorsfile, elaptimefinalcomp ); fileflush(rhodivisorsfile); fileclose(rhodivisorsfile); seconds=floor(elaptimefinalcomp/1000)%60; minutes=floor(elaptimefinalcomp/60000); millisec=elaptimefinalcomp- minutes*60000 - seconds*1000; print("Total computation time (output time included): ", minutes, " min, ", seconds, " sec, ", millisec, " millisec"); seconds=floor(elappreptime/1000)%60; minutes=floor(elappreptime/60000); millisec=elappreptime- minutes*60000 - seconds*1000; print("Preparation time (output time included): ", minutes, " min, ", seconds, " sec, ", millisec, " millisec"); seconds=floor(elapAproducttime/1000)%60; minutes=floor(elapAproducttime/60000); millisec=elapAproducttime- minutes*60000 - seconds*1000; print("A(q) product computation time (output time included): ", minutes, " min, ", seconds, " sec, ", millisec, " millisec"); seconds=floor(elapalphaproducttime/1000)%60; minutes=floor(elapalphaproducttime/60000); millisec=elapalphaproducttime- minutes*60000 - seconds*1000; print("ALPHA product computation time (output time included): ", minutes, " min, ", seconds, " sec, ", millisec, " millisec"); seconds=floor(elapbetaproducttime/1000)%60; minutes=floor(elapbetaproducttime/60000); millisec=elapbetaproducttime- minutes*60000 - seconds*1000; print("BETA product computation time (output time included): ", minutes, " min, ", seconds, " sec, ", millisec, " millisec"); print("****** END PROGRAM ********"); } /**** RESULTS **** New run july 27th 2025 --------- macbook ARM --------- languasc@rozycki ~ % gp GP/PARI CALCULATOR Version 2.17.2 (released) arm64 running darwin (aarch64/GMP-6.3.0 kernel) 64-bit version compiled: Mar 7 2025, Apple clang version 16.0.0 (clang-1600.0.26.6) threading engine: pthread, nbthreads = 8 (readline v8.2 enabled, extended help enabled) Copyright (C) 2000-2024 The PARI Group PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER. Type ? for help, \q to quit. Type ?18 for how to get moral (and possibly technical) support. parisize = 8000000, primelimit = 1048576, factorlimit = 1048576 ------ q <= 100 ------ ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- q = 7 nq(7) = 3 nq'(7) = 5 --- A(7,1) = 0.458175374302921827638937646284263464587768628852480873516 rho = 2.69123126773155290630742717482368921730707567404537665645 rho_tilde = 0.336403908466444113288428396852961152163384459255672082056 --- betan(3,7) = 0.518129296788080596043569544939347180024716847434338906307 rhonbeta = 3.15049096504302405901097604117785432217628979120422980775 rhonbetanorm = 0.393811370630378007376372005147231790272036223900528725969 --- alphan(3,7) = 0.438618380624200524969748303109148800399703288765876559432 rhonalpha = 2.56263890902555925733978510811007661265851707999689944404 rhonalphanorm = 0.320329863628194907167473138513759576582314634999612430505 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $7$ & $3$ & $0.458175374302921827638937646284263464587768628852480873516 $ & $2.69123126773155290630742717482368921730707567404537665645 $ & $0.336403908466444113288428396852961152163384459255672082056$ \\ \hline --- nq & q & rhonalpha & rhonbeta $3$ & $7$ & $2.56263890902555925733978510811007661265851707999689944404 $ & $3.15049096504302405901097604117785432217628979120422980775 $ & $2.69123126773155290630742717482368921730707567404537665645$ \\ \hline --------- Total computation time (output time included): -1 min, 59 sec, 989 millisec Preparation time (output time included): -1 min, 59 sec, 983 millisec A(q) product computation time (output time included): 0 min, 0 sec, 2 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 2 millisec BETA product computation time (output time included): 0 min, 0 sec, 2 millisec ****** END PROGRAM ******** ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- q = 17 nq(17) = 3 nq'(17) = 5 --- A(17,1) = 0.447549513648168557638511450029638552429559551867483867732 rho = 2.62023393844256274534572641894361825899149547051879521437 rho_tilde = 0.327529242305320343168215802367952282373936933814849401796 --- betan(3,17) = 0.518129296788080596043569544939347180024716847434338906307 rhonbeta = 3.15049096504302405901097604117785432217628979120422980775 rhonbetanorm = 0.393811370630378007376372005147231790272036223900528725969 --- alphan(3,17) = 0.438618380624200524969748303109148800399703288765876559432 rhonalpha = 2.56263890902555925733978510811007661265851707999689944404 rhonalphanorm = 0.320329863628194907167473138513759576582314634999612430505 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $17$ & $3$ & $0.447549513648168557638511450029638552429559551867483867732 $ & $2.62023393844256274534572641894361825899149547051879521437 $ & $0.327529242305320343168215802367952282373936933814849401796$ \\ \hline --- nq & q & rhonalpha & rhonbeta $3$ & $17$ & $2.56263890902555925733978510811007661265851707999689944404 $ & $3.15049096504302405901097604117785432217628979120422980775 $ & $2.62023393844256274534572641894361825899149547051879521437$ \\ \hline --------- Total computation time (output time included): 0 min, 0 sec, 3 millisec Preparation time (output time included): 0 min, 0 sec, 0 millisec A(q) product computation time (output time included): 0 min, 0 sec, 1 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 1 millisec BETA product computation time (output time included): 0 min, 0 sec, 1 millisec ****** END PROGRAM ******** ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- q = 23 nq(23) = 5 nq'(23) = 7 --- A(23,1) = 0.898576458864156997644651084962786708511332965074728471471 rho = 18.7192878261001825739181174131915574081394448346863422941 rho_tilde = 0.584977744565630705434941169162236169004357651083948196691 --- betan(5,23) = 0.916850779228909835416677911291295302299925792490423457856 rhonbeta = 23.0531418268609003184857276806683038586857850885743587848 rhonbetanorm = 0.720410682089403134952678990020884495583930784017948712025 --- alphan(5,23) = 0.897813044296315189281089379777004468377906648563104632058 rhonalpha = 18.5719696924866996139207933541007149680235307403926994739 rhonalphanorm = 0.580374052890209362935024792315647342750735335637271858558 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $23$ & $5$ & $0.898576458864156997644651084962786708511332965074728471471 $ & $18.7192878261001825739181174131915574081394448346863422941 $ & $0.584977744565630705434941169162236169004357651083948196691$ \\ \hline --- nq & q & rhonalpha & rhonbeta $5$ & $23$ & $18.5719696924866996139207933541007149680235307403926994739 $ & $23.0531418268609003184857276806683038586857850885743587848 $ & $18.7192878261001825739181174131915574081394448346863422941$ \\ \hline --------- Total computation time (output time included): 0 min, 0 sec, 3 millisec Preparation time (output time included): 0 min, 0 sec, 0 millisec A(q) product computation time (output time included): 0 min, 0 sec, 1 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 1 millisec BETA product computation time (output time included): 0 min, 0 sec, 1 millisec ****** END PROGRAM ******** ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- q = 31 nq(31) = 3 nq'(31) = 11 --- A(31,1) = 0.516820785012757788705384212520040784046479120252761760392 rho = 3.13925089897090810987728952626151370494442874685073440490 rho_tilde = 0.392406362371363513734661190782689213118053593356341800612 --- betan(3,31) = 0.518129296788080596043569544939347180024716847434338906307 rhonbeta = 3.15049096504302405901097604117785432217628979120422980775 rhonbetanorm = 0.393811370630378007376372005147231790272036223900528725969 --- alphan(3,31) = 0.438618380624200524969748303109148800399703288765876559432 rhonalpha = 2.56263890902555925733978510811007661265851707999689944404 rhonalphanorm = 0.320329863628194907167473138513759576582314634999612430505 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $31$ & $3$ & $0.516820785012757788705384212520040784046479120252761760392 $ & $3.13925089897090810987728952626151370494442874685073440490 $ & $0.392406362371363513734661190782689213118053593356341800612$ \\ \hline --- nq & q & rhonalpha & rhonbeta $3$ & $31$ & $2.56263890902555925733978510811007661265851707999689944404 $ & $3.15049096504302405901097604117785432217628979120422980775 $ & $3.13925089897090810987728952626151370494442874685073440490$ \\ \hline --------- Total computation time (output time included): 0 min, 0 sec, 5 millisec Preparation time (output time included): 0 min, 0 sec, 0 millisec A(q) product computation time (output time included): 0 min, 0 sec, 1 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 2 millisec BETA product computation time (output time included): 0 min, 0 sec, 2 millisec ****** END PROGRAM ******** ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- q = 41 nq(41) = 3 nq'(41) = 7 --- A(41,1) = 0.504311182221407966673019915352424830736647370961233677443 rho = 3.03478942487125969929494971797080264176721891080174709090 rho_tilde = 0.379348678108907462411868714746350330220902363850218386363 --- betan(3,41) = 0.518129296788080596043569544939347180024716847434338906307 rhonbeta = 3.15049096504302405901097604117785432217628979120422980775 rhonbetanorm = 0.393811370630378007376372005147231790272036223900528725969 --- alphan(3,41) = 0.438618380624200524969748303109148800399703288765876559432 rhonalpha = 2.56263890902555925733978510811007661265851707999689944404 rhonalphanorm = 0.320329863628194907167473138513759576582314634999612430505 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $41$ & $3$ & $0.504311182221407966673019915352424830736647370961233677443 $ & $3.03478942487125969929494971797080264176721891080174709090 $ & $0.379348678108907462411868714746350330220902363850218386363$ \\ \hline --- nq & q & rhonalpha & rhonbeta $3$ & $41$ & $2.56263890902555925733978510811007661265851707999689944404 $ & $3.15049096504302405901097604117785432217628979120422980775 $ & $3.03478942487125969929494971797080264176721891080174709090$ \\ \hline --------- Total computation time (output time included): 0 min, 0 sec, 7 millisec Preparation time (output time included): 0 min, 0 sec, 0 millisec A(q) product computation time (output time included): 0 min, 0 sec, 3 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 2 millisec BETA product computation time (output time included): 0 min, 0 sec, 2 millisec ****** END PROGRAM ******** ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- q = 47 nq(47) = 5 nq'(47) = 11 --- A(47,1) = 0.915564527190921027656098571139780059874780359316593570499 rho = 22.6867270764539244689979834380851325291210940161697311036 rho_tilde = 0.708960221139185139656186982440160391535034188005304096987 --- betan(5,47) = 0.916850779228909835416677911291295302299925792490423457856 rhonbeta = 23.0531418268609003184857276806683038586857850885743587848 rhonbetanorm = 0.720410682089403134952678990020884495583930784017948712025 --- alphan(5,47) = 0.897813044296315189281089379777004468377906648563104632058 rhonalpha = 18.5719696924866996139207933541007149680235307403926994739 rhonalphanorm = 0.580374052890209362935024792315647342750735335637271858558 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $47$ & $5$ & $0.915564527190921027656098571139780059874780359316593570499 $ & $22.6867270764539244689979834380851325291210940161697311036 $ & $0.708960221139185139656186982440160391535034188005304096987$ \\ \hline --- nq & q & rhonalpha & rhonbeta $5$ & $47$ & $18.5719696924866996139207933541007149680235307403926994739 $ & $23.0531418268609003184857276806683038586857850885743587848 $ & $22.6867270764539244689979834380851325291210940161697311036$ \\ \hline --------- Total computation time (output time included): 0 min, 0 sec, 7 millisec Preparation time (output time included): 0 min, 0 sec, 0 millisec A(q) product computation time (output time included): 0 min, 0 sec, 3 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 2 millisec BETA product computation time (output time included): 0 min, 0 sec, 2 millisec ****** END PROGRAM ******** ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- q = 71 nq(71) = 7 nq'(71) = 11 --- A(71,1) = 0.981075357290720578572892039380146350418397461528754442659 rho = 104.682312248850504704730966602883462421955082486280965609 rho_tilde = 0.817830564444144568005710676585027050171524081924070043821 --- betan(7,71) = 0.982458136849913452663005468256860875609563613667685992346 rhonbeta = 113.012974727267353049355544740857282609681507300936023080 rhonbetanorm = 0.882913865056776195698090193287947520388136775788562680309 --- alphan(7,71) = 0.980970080424897228935791455593548999293768188213773382832 rhonalpha = 104.097659089250197303031479434237189758514457201861911005 rhonalphanorm = 0.813262961634767166429933433079978044988394196889546179727 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $71$ & $7$ & $0.981075357290720578572892039380146350418397461528754442659 $ & $104.682312248850504704730966602883462421955082486280965609 $ & $0.817830564444144568005710676585027050171524081924070043821$ \\ \hline --- nq & q & rhonalpha & rhonbeta $7$ & $71$ & $104.097659089250197303031479434237189758514457201861911005 $ & $113.012974727267353049355544740857282609681507300936023080 $ & $104.682312248850504704730966602883462421955082486280965609$ \\ \hline --------- Total computation time (output time included): 0 min, 0 sec, 5 millisec Preparation time (output time included): 0 min, 0 sec, 0 millisec A(q) product computation time (output time included): 0 min, 0 sec, 3 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 1 millisec BETA product computation time (output time included): 0 min, 0 sec, 1 millisec ****** END PROGRAM ******** ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- q = 73 nq(73) = 5 nq'(73) = 7 --- A(73,1) = 0.898339084168655588699878545658343212379173567120691795780 rho = 18.6732439762592985533629405864402714364011924734863103533 rho_tilde = 0.583538874258103079792591893326258482387537264796447198541 --- betan(5,73) = 0.916850779228909835416677911291295302299925792490423457856 rhonbeta = 23.0531418268609003184857276806683038586857850885743587848 rhonbetanorm = 0.720410682089403134952678990020884495583930784017948712025 --- alphan(5,73) = 0.897813044296315189281089379777004468377906648563104632058 rhonalpha = 18.5719696924866996139207933541007149680235307403926994739 rhonalphanorm = 0.580374052890209362935024792315647342750735335637271858558 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $73$ & $5$ & $0.898339084168655588699878545658343212379173567120691795780 $ & $18.6732439762592985533629405864402714364011924734863103533 $ & $0.583538874258103079792591893326258482387537264796447198541$ \\ \hline --- nq & q & rhonalpha & rhonbeta $5$ & $73$ & $18.5719696924866996139207933541007149680235307403926994739 $ & $23.0531418268609003184857276806683038586857850885743587848 $ & $18.6732439762592985533629405864402714364011924734863103533$ \\ \hline --------- Total computation time (output time included): 0 min, 0 sec, 6 millisec Preparation time (output time included): 0 min, 0 sec, 0 millisec A(q) product computation time (output time included): 0 min, 0 sec, 3 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 2 millisec BETA product computation time (output time included): 0 min, 0 sec, 1 millisec ****** END PROGRAM ******** ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- q = 79 nq(79) = 3 nq'(79) = 7 --- A(79,1) = 0.505207323331751963627968967643873591409107209148748964215 rho = 3.04209701216126450666780151334488115444920787348129074602 rho_tilde = 0.380262126520158063333475189168110144306150984185161343253 --- betan(3,79) = 0.518129296788080596043569544939347180024716847434338906307 rhonbeta = 3.15049096504302405901097604117785432217628979120422980775 rhonbetanorm = 0.393811370630378007376372005147231790272036223900528725969 --- alphan(3,79) = 0.438618380624200524969748303109148800399703288765876559432 rhonalpha = 2.56263890902555925733978510811007661265851707999689944404 rhonalphanorm = 0.320329863628194907167473138513759576582314634999612430505 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $79$ & $3$ & $0.505207323331751963627968967643873591409107209148748964215 $ & $3.04209701216126450666780151334488115444920787348129074602 $ & $0.380262126520158063333475189168110144306150984185161343253$ \\ \hline --- nq & q & rhonalpha & rhonbeta $3$ & $79$ & $2.56263890902555925733978510811007661265851707999689944404 $ & $3.15049096504302405901097604117785432217628979120422980775 $ & $3.04209701216126450666780151334488115444920787348129074602$ \\ \hline --------- Total computation time (output time included): 0 min, 0 sec, 5 millisec Preparation time (output time included): 0 min, 0 sec, 0 millisec A(q) product computation time (output time included): 0 min, 0 sec, 3 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 1 millisec BETA product computation time (output time included): 0 min, 0 sec, 1 millisec ****** END PROGRAM ******** ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- q = 89 nq(89) = 3 nq'(89) = 7 --- A(89,1) = 0.505038282406622222829193287216864449800431531750956410184 rho = 3.04071654212870891599553414693089724917009527969569702246 rho_tilde = 0.380089567766088614499441768366362156146261909961962127808 --- betan(3,89) = 0.518129296788080596043569544939347180024716847434338906307 rhonbeta = 3.15049096504302405901097604117785432217628979120422980775 rhonbetanorm = 0.393811370630378007376372005147231790272036223900528725969 --- alphan(3,89) = 0.438618380624200524969748303109148800399703288765876559432 rhonalpha = 2.56263890902555925733978510811007661265851707999689944404 rhonalphanorm = 0.320329863628194907167473138513759576582314634999612430505 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $89$ & $3$ & $0.505038282406622222829193287216864449800431531750956410184 $ & $3.04071654212870891599553414693089724917009527969569702246 $ & $0.380089567766088614499441768366362156146261909961962127808$ \\ \hline --- nq & q & rhonalpha & rhonbeta $3$ & $89$ & $2.56263890902555925733978510811007661265851707999689944404 $ & $3.15049096504302405901097604117785432217628979120422980775 $ & $3.04071654212870891599553414693089724917009527969569702246$ \\ \hline --------- Total computation time (output time included): 0 min, 0 sec, 5 millisec Preparation time (output time included): 0 min, 0 sec, 0 millisec A(q) product computation time (output time included): 0 min, 0 sec, 3 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 1 millisec BETA product computation time (output time included): 0 min, 0 sec, 1 millisec ****** END PROGRAM ******** ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- q = 97 nq(97) = 5 nq'(97) = 7 --- A(97,1) = 0.899311551807478380244703619674742835814872682030238729256 rho = 18.8632518019931600244048574235737731655600913482061283462 rho_tilde = 0.589476618812286250762651794486680411423752854631441510818 --- betan(5,97) = 0.916850779228909835416677911291295302299925792490423457856 rhonbeta = 23.0531418268609003184857276806683038586857850885743587848 rhonbetanorm = 0.720410682089403134952678990020884495583930784017948712025 --- alphan(5,97) = 0.897813044296315189281089379777004468377906648563104632058 rhonalpha = 18.5719696924866996139207933541007149680235307403926994739 rhonalphanorm = 0.580374052890209362935024792315647342750735335637271858558 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $97$ & $5$ & $0.899311551807478380244703619674742835814872682030238729256 $ & $18.8632518019931600244048574235737731655600913482061283462 $ & $0.589476618812286250762651794486680411423752854631441510818$ \\ \hline --- nq & q & rhonalpha & rhonbeta $5$ & $97$ & $18.5719696924866996139207933541007149680235307403926994739 $ & $23.0531418268609003184857276806683038586857850885743587848 $ & $18.8632518019931600244048574235737731655600913482061283462$ \\ \hline --------- Total computation time (output time included): 0 min, 0 sec, 6 millisec Preparation time (output time included): 0 min, 0 sec, 0 millisec A(q) product computation time (output time included): 0 min, 0 sec, 4 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 1 millisec BETA product computation time (output time included): 0 min, 0 sec, 1 millisec ****** END PROGRAM ******** *** last result: cpu time 61 ms, real time 80 ms. Goodbye! ------ q <= 2*10^4 ------ gp2c-run -pmy_ -g -W Adivisors-file-v6.gp results_rho_div_20000.txt & ? forprime(q=2,2*10^4,qmod8=q%8;if(qmod8==1||qmod8==7,init_Adivisors_file_v6();Aqdivisors(q,57))) Output results on the files: - results_rho_div_20000.txt - rhodivfile-prodeulerrat-20000.csv --------------------- default(parisizemax,"12G") *** Warning: new maximum stack size = 12000002048 (11444.094 Mbytes). ? init_Adivisors_file_v6();Aqdivisors(31391,57) ************ A. LANGUASCO ************* ********* COMPUTATION of Aq(1) - d(n) mod q ********** ********* q = -1,1 mod 8 ********** Starting computation of Aq - divisors --------- *** Aqdivisors: Warning: increasing stack size to 16000000. *** Aqdivisors: Warning: increasing stack size to 32000000. *** Aqdivisors: Warning: increasing stack size to 64000000. *** Aqdivisors: Warning: increasing stack size to 128000000. *** Aqdivisors: Warning: increasing stack size to 256000000. *** Aqdivisors: Warning: increasing stack size to 512000000. *** Aqdivisors: Warning: increasing stack size to 1024000000. *** Aqdivisors: Warning: increasing stack size to 2048000000. *** Aqdivisors: Warning: increasing stack size to 4096000000. *** Aqdivisors: Warning: increasing stack size to 8192000000. *** Aqdivisors: Warning: increasing stack size to 12000002048. q = 31391 nq(31391) = 31 nq'(31391) = 37 --- A(31391,1) = 0.999999999052967941217892165576092177279347796168204757764 rho = 2111860924.35454277627683908925278299227080590583044322132 rho_tilde = 0.983411876649848546961713158177576489872674413877745727690 --- betan(31,31391) = 0.999999999068670949468476627417627833810040502670308532622 rhonbeta = 2147468714.65809118242180480451320876213321353346670497867 rhonbetanorm = 0.999993046120782933394333722308840957532270594251670399061 --- alphan(31,31391) = 0.999999999052300035788774249587625699316406215870501990001 rhonalpha = 2110372559.43858515148331915906495221602703184160666055006 rhonalphanorm = 0.982718802727100044248308594834502886993359700593473645888 --- q & nq & A(q,1) & rho=(1+A(q,1))/(1-A(q,1)) & rho_tilde $31391$ & $31$ & $0.999999999052967941217892165576092177279347796168204757764 $ & $2111860924.35454277627683908925278299227080590583044322132 $ & $0.983411876649848546961713158177576489872674413877745727690$ \\ \hline --- nq & q & rhonalpha & rhonbeta $31$ & $31391$ & $2110372559.43858515148331915906495221602703184160666055006 $ & $2147468714.65809118242180480451320876213321353346670497867 $ & $2111860924.35454277627683908925278299227080590583044322132$ \\ \hline --------- Total computation time (output time included): 6 min, 44 sec, 620 millisec Preparation time (output time included): -1 min, 59 sec, 995 millisec A(q) product computation time (output time included): 6 min, 44 sec, 625 millisec ALPHA product computation time (output time included): 0 min, 0 sec, 0 millisec BETA product computation time (output time included): 0 min, 0 sec, 0 millisec ****** END PROGRAM ******** ? ## *** last result: cpu time 6min, 44,636 ms, real time 19min, 444 ms. **********/ /******** --------- I7 assembled machine with Ubuntu --------- GP/PARI CALCULATOR Version 2.17.2 (released) amd64 running linux (x86-64/GMP-6.3.0 kernel) 64-bit version compiled: Mar 7 2025, gcc version 13.3.0 (Ubuntu 13.3.0-6ubuntu2~24.04) threading engine: pthread, nbthreads = 24 (readline v8.2 disabled, extended help enabled) Copyright (C) 2000-2024 The PARI Group PARI/GP is free software, covered by the GNU General Public License, and comes WITHOUT ANY WARRANTY WHATSOEVER. Type ? for help, \q to quit. Type ?18 for how to get moral (and possibly technical) support. parisize = 8000000, primelimit = 1048576, factorlimit = 1048576 -------- q <= 10^5 -------- gp2c-run -pmy_ -g -W Adivisors-file-v6.gp results_rho_div_100000.txt & default(parisizemax,"58G") forprime(q=2,10^5,qmod8=q%8;if(qmod8==1||qmod8==7,init_Adivisors_file_v6();Aqdivisors(q,57))) Output results on the files: - results_rho_div_100000.txt - rhodivfile-prodeulerrat-100000.csv