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THE EXCEPTIONAL SET IN SHORT INTERVALS FOR TWO
ADDITIVE PROBLEMS WITH PRIMES: A SURVEY

A. LANGUASCO

Abstract. We give a brief account about the exceptional sets in short intervals for
the Goldbach and the Hardy-Littlewood problems. In particular, we present two
recent results about Montgomery-Vaughan’s type estimates for such exceptional sets.

1. Goldbach Problem

The first problem we examine here is the well-known Goldbach’s conjecture: is it
true that every even number n > 2 can be written as a sum of two primes? At present
it is not known if this statement is true or false. In the following an even number which
is a sum of two primes will be called a G-number. A possible approach to this problem
is trying to estimate the number of its exceptions: so denote by E the set of even
integers larger than two which are not G-numbers. It is clear that a positive answer to
the Goldbach problem is equivalent to proving that E = ∅ and hence |E| = 0. As we
said before, we are unfortunately not able to prove such a strong result and, in fact, we
are very far from it. To explain why, after letting X be a sufficiently large parameter
and E(X) = E ∩ [1, X], we recall the best known result on |E(X)| (the cardinality of
the set E(X)):

Theorem 1.1 (Montgomery-Vaughan [15], 1975). There exists an effectively comput-
able positive constant δ such that

|E(X)| � X1−δ.

In this statement, and in the following, we denote with the I.M. Vinogradov’s nota-
tion f(x) � g(x) the existence of a positive constant C > 0 such that |f(x)| ≤ C|g(x)|.

Montgomery-Vaughan’s result means, from an asymptotic point of view, that there
are few exceptions to the Goldbach conjecture, but the quality of the estimation is
very far from |E(X)| � 1 (which means that every sufficiently large even integer is
a G-number). Concerning the order of magnitude of δ in Theorem 1.1, we remark
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that, in 1999, H. Li [12] was able to prove that δ = 0.079 is admissible while, recently,
J. Pintz [21] announced that Theorem 1.1 holds with δ = 1/3.

We recall that Theorem 1.1 is proved using the famous circle method which was
developed, around 1920, by G.H. Hardy, J.E. Littlewood and S. Ramanujan. Roughly
speaking, the circle method is an analytic technique which connects the number of
representations of an integer as a sum of other integers with an integral of trigonometric
functions of period 1; then the interval of integration is splitted in two subsets: the
first one is a union of few subsets of (0, 1) (in which the integrands are “big”: the
“major arcs”) and furnishes the expected main term of the additive problem considered
and the second one is a union of a large numbers of other subsets of (0, 1) (in which
the integrands are “small”: the “minor arcs”) and furnishes the expected error term.
Hardy, Littlewood and Ramanujan used their method to prove results on the partition
function (Hardy-Ramanujan; problem completely solved by H. Rademacher in 1937)
and on several additive problems with primes (Hardy-Littlewood; see their series of
articles named “Partitio Numerorum”).

We also recall that, relaxing the condition on one of the two summands, we obtain
better results. For example we have the following:

Theorem 1.2 (J. Chen [3, 4], 1966). Every sufficiently large number n can be written
as a sum of a prime and of an integer which has at most two prime factors.

The proof of Chen’s theorem is based on sieve techniques (see, e.g., Halberstam-
Richert [5], ch. 11). By relaxing the condition on the number of summands, we have
other important results:

Theorem 1.3 (I.M. Vinogradov [25], 1937). Every sufficiently large odd number n can
be written as a sum three primes.

Theorem 1.4 (O. Ramaré [23], 1995). Every even integer n can be written as a sum
of at most six primes. Every integer n > 1 can be written as a sum of at most seven
primes.

Vinogradov’s theorem is proved by using the circle method, while Ramaré’s result
follows from a combination of sieve techniques and of effective results on the distribution
of primes in arithmetic progressions.

Now we turn back to the Goldbach problem. Another kind of situation one might
study is the number of exceptions belonging to a “short” interval. This means that we
consider the exceptions to the Goldbach problem in the interval [X,X+H], where H =
o(X) as X → +∞. From now on we will write such a set as E(X,H) = E∩ [X,X+H].
It is clear that Theorem 1.1 cannot give us any information on such a short interval.
It is also clear that H cannot be too small; for example if we were able to prove
E(X,H) = ∅ for H = 2 and X sufficiently large, we would have that every sufficiently
large even number n is a sum of two primes, i.e., a proof of a weak version of the
Goldbach problem!

Several results the exceptional set in short intervals were proved during the last
twenty years but we recall now just the following ones since they are deeply connected
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with ours. In 1996 C.H. Jia, combining analytic method with sieve techniques, proved
that

Theorem 1.5 (Jia [8], 1996). Let A > 0, ε > 0 be arbitrary constants and H ≥ X
7

108
+ε;

then

|E(X,H)| � H log−AX.

Using only circle method techniques, the best result on E(X,H) was proved in 1993
by Perelli-Pintz:

Theorem 1.6 (Perelli-Pintz [18], 1993). Let A > 0, 0 < ε < 5/6 be arbitrary constants

and H ≥ X
7
36

+ε; then

|E(X,H)| � H log−AX.

As can be seen from the previous statements, there are two important parameters:
the quality of the estimate on |E(X,H)| and the uniformity on H.

So a natural question is: is it possible to obtain a short interval analogue of Theorem
1.1, i.e., to save a power of H in the estimate of |E(X,H)|?

Near 1980 an extension of Montgomery-Vaughan’s result to short intervals was given
by S.T. Luo-Q. Yao and Yao. They stated that there exists an effectively computable
positive constant δ such that, for every ε > 0, |E(X,H)| � H1−δ for H ≥ X

7
12

+ε.
But they made an oversight in the proof (in fact the mistake is in the application of
zero-density estimates for Dirichlet L- functions) and so, after correction, their theorem
becomes:

Theorem 1.7 (Luo-Yao [13] and Yao [26]). There exists an effectively computable

positive constant δ such that for H ≥ X
7
12

+2δ we have

|E(X,H)| � H1−δ.

In 2001 T.P. Peneva [16], see also the Corrigendum [17], obtained that the same

estimate on |E(X,H)| holds in the wider range H ≥ X
1
3
+δ. In fact an oversight in

Peneva’s estimate of the minor arcs let her state the result in the range H > X
1
3 ;

unfortunately this uniformity on H is not reached by her proof.
In 2003 we proved the following

Theorem 1.8 (L. [10]). There exists an effectively computable positive constant δ such

that for H ≥ X
7
24

+7δ we have

|E(X,H)| � H1−δ/600.

Here we just give an outline of the proof.

i) First we introduce a localization parameter Y for the primes and so we write
an even integer n ∈ [X,X + H] as p1 + p2 with X − Y < p1 ≤ X + Y and

Y/2 < p2 ≤ Y . Our result hence is obtained by using Y = X
7
8
+7δ+ε and

H = Y
1
3
+6δ+ε.



4 A. LANGUASCO

ii) Essentially, we follow the Montgomery-Vaughan argument to treat the contri-
bution of the major arcs and the Mikawa-Peneva technique to estimate the
mean squares of minor arcs. For technical reasons the main term estimate is
performed only at the centre of the major arcs. In the remaining part (“peri-
phery” of the major arcs), we study the individual contributions of the non-
exceptional zeros of Dirichlet L-functions located in a thin constant strip near
<(s) = 1 (“excluded zeros”). The mean-square estimation of the non-excluded
zeros in the periphery of the major arcs is performed using a slightly modified
version of Perelli-Pintz’s minor arcs technique.

iii) In the body of the proof we will use the zero-density estimate∑
q≤P

∑∗

χ

N(σ, T, χ) � (P 2T )
12
5

(1−σ)(logPT )22, (1)

for σ ∈ [1/2, 1], see Ramachandra [22], and the log-free zero-density estimate∑
q≤P

∑∗

χ

N(σ, T, χ) � (P 4T )
3
2
(1−σ), (2)

for σ ∈ [27/28, 1], see Peneva [16] and the Corrigendum [17], where ∗ means
that the summation is over primitive characters and N(σ, T, χ) = |{ρ = β+ iγ :
L(ρ, χ) = 0, β ≥ σ and |γ| ≤ T}| is the density functions for the zeros of the
Dirichlet L-functions.

iv) The meaning of the previously mentioned constants 7/8 and 1/3 can be ex-
plained as follows. In the centre of the major arcs, our treatment requires (1)

and so Y has to be greater than X
7
12

+3δ+ε. In the periphery of major arcs un-
fortunately we are not able to reach the level X

7
12

+3δ+ε but only X
7
8
+7δ+ε. This

loss of uniformity is due to the use of the partial summation formula in the
estimate of ∑

Y/2<m≤Y

Λ(n−m)χ(n−m)mρ−1,

where ρ is an excluded zero of a Dirichlet L-function of a primitive character χ
and Λ is the von Mangoldt function. Moreover, in the mean-square estimates
of the minor arcs, we will have to choose H equal to Y

1
3
+6δ+ε.

Theorem 1.8 is, at present, the Montgomery-Vaughan’s type estimate which has the
widest uniformity onH. It won, in 2003, the Distinguished Award of Hardy-Ramanujan
Society.

It is an open problem to obtain the same estimate on |E(X,H)| with a better

uniformity on H, e.g., for H ≥ X
7
36

+δ. We think that it should be true, but, so
far, we have no proof of it. We also think that, to prove a further better uniformity on
H, some type of sieve method has to be inserted into our proof.
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2. Hardy-Littlewood problem

The second additive question we discuss here is the Hardy-Littlewood problem. In
1923 Hardy and Littlewood [6, 7] conjectured that every sufficiently large integer is
either a kth-power of an integer or a sum of a prime and a kth-power of an integer,
for k = 2, 3. In the following we will call Hardy-Littlewood number (HL-number) an
integer which is a sum of a prime and of a kth-power of an integer, k ∈ N, k ≥ 2.

As we said for the Goldbach problem, a strategy to prove results on the HL-problem
is to study the number of its exceptions. So denote by Ek the set of integers which are
neither an HL-number nor a kth-power of an integer. We will study the cardinality of
the sets Ek(X) = Ek∩ [1, X] and Ek(X,H) = Ek∩ [X,X+H], where X is a sufficiently
large parameter and H = o(X) as X → +∞. It is clear that the Hardy-Littlewood
conjectures are equivalent to |Ek(X)| � 1 for k = 2, 3. At first sight such a problem
seems to be deeply connected with Goldbach’s conjecture but the integer powers are
sparser and have a more regular distribution than primes. The regular distribution of
powers suggests that the HL-problem should be easier than Goldbach’s one but their
sparsity suggests it should be harder. By now, in fact, several results on HL-numbers,
which are similar to the ones known on Goldbach problem, can be proved. For example,
it is possible to obtain that the exceptions of the HL-problem are asymptotically few.
In fact, about fifteen years ago, Brünner-Perelli-Pintz proved the following result:

Theorem 2.1 (Brünner-Perelli-Pintz [2], 1989). There exists an effectively computable
positive constant δ such that

|E2(X)| � X1−δ.

The same estimate was independently proved in the same years by A.I. Vinogradov
[24]. Theorem 2.1 can be considered an analogue of Theorem 1.1 but in its proof
several technical difficulties concerning the contributions to the main term of the non-
exceptional zeros of Dirichlet L-functions located in a strip near the line <(s) = 1
(such contributions are not present in the proof of Theorem 1.1) have to be avoided. A
similar result was proved for the general case k ≥ 2 by A. Zaccagnini [27] in 1992. To
generalize Brünner-Perelli-Pintz’s proof to the case k ≥ 2, Zaccagnini had to develop
a more sophisticated treatment of the arithmetic part (the singular series).

As for Theorem 1.1 on the Goldbach problem, Theorem 2.1 does not have any
consequences on the estimate of |Ek(X,H)|. In this case, several results were proved in
the latest ten years; as before, we cite only the ones which are strictly connected with
ours. In the first part of the nineties of the last century, Perelli-Pintz and H. Mikawa
proved independently:

Theorem 2.2 (Perelli-Pintz [19] and Mikawa [14]). Let A > 0, ε > 0 be arbitrary
constants and H ≥ X7/24+ε; then

|E2(X,H)| � H log−AX.

Moreover, in 1995, Perelli-Zaccagnini were able to generalize this result to the fol-
lowing:
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Theorem 2.3 (Perelli-Zaccagnini [20]). Let A > 0, ε > 0 be arbitrary constants and
H ≥ X7/12(1−1/k)+ε; then

|Ek(X,H)| � H log−AX.

Recently the author proved the following Montgomery-Vaughan type estimate for
the exceptional set of the Hardy-Littlewood problem (k ≥ 2) in short intervals:

Theorem 2.4 (L. [11], 2003). Let k ≥ 2 be a fixed integer and K = 2k−2. There exists

an effectively computable positive constant δ such that for H ≥ X7/12(1− 1
k
)+δ

|Ek(X,H)| � H1−δ/(5K).

Again, we give just an outline of the proof.

i) We insert a localization parameter Y for the primes and write an HL-number
n ∈ [X,X + H] as p + mk with X − Y ≤ p ≤ X + Y and Y/2 ≤ mk ≤ Y .

Theorem 2.4 is obtained using Y = X7/12+10δ+ε and H = Y (1− 1
k
)+δ.

ii) To treat the centre of the major arcs we adopt the circle method setting used
by Brünner, Perelli, Pintz and Zaccagnini. So we estimate the contribution of
the zeros of Dirichlet L-functions located in a suitable thin strip near <(s) = 1
(“excluded zeros”) as “secondary” main terms.

iii) In the body of the proof we will use the zero-density estimate (1) and the
following log-free zero-density estimate: let ε > 0, then∑

q≤P

∑∗

χ

N(σ, T, χ) � (P 2T )(2+ε)(1−σ), (3)

for σ ∈ [4/5, 1], see M. Jutila [9]. In this case we have no need for the sharper
log-free density estimate (2) since the level of minor arcs essentially implies
Y > X1/2, see iv).

iv) The meaning of the previously mentioned constants 7/12 and (1 − 1
k
) can be

explained as follows. In the error term of the explicit formula for the function
ψ(x, χ) =

∑
m≤x Λ(m)χ(m) we have to choose the vertical level T of the zeros as

T ≥ X1+7δY −1 log2X and, to estimate the contribution of the secondary main
terms using (3), we have to choose T ≤ X1/2−ε−2δ. Combining such relations
we get Y ≥ X1/2+ε+9δ which is already satisfied since in the centre of the major
arcs our treatment requires (1) and hence Y ≥ X7/12+ε+10δ. Moreover, in the
mean-square estimates of the minor arcs and of the periphery of major arcs,
we will choose H ≥ Y (1− 1

k
)+δ. Here, unlike the Goldbach case, we can use the

regular distribution of powers to give a careful estimate the contributions of the
periphery of the major arcs without any loss of uniformity on Y .

v) Finally, other differences with the proof of Theorem 1.8 are that a stronger zero-
free region for Dirichlet L-functions and a stronger result on Deuring-Heilbronn
phenomenon are needed. Moreover, the arithmetic part (the singular series) is
more difficult to treat with respect to the Goldbach case.
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Finally, we remark that the uniformity on H in Theorem 2.4 seems to be the
best possible for this problem while the quality of the estimate can be improved to
|Ek(X,H)| � H1−δ/(ck), where c > 0 is an absolute constant, using the Brüdern-Perelli
[1] approach (we did not use it in the proof of Theorem 2.4 to avoid the technical
difficulties involved).

Since it seems that Theorem 2.4 is essentially optimal, a natural and interesting
question is which result can be proved on |Ek(X,H)| assuming some hypothesis on
the distribution of the zeros of the Dirichlet L-functions. To be more explicit: is
it possible, assuming the Generalized Riemann Hypothesis, to prove an estimate of
the type |Ek(X,H)| � H1− 1

ck , where c > 0 is an absolute constant, uniformly for

H � X
1
2
(1−1/k)+ε? We have a preliminary result of this type but, for now, it holds only

with a weaker uniformity on H.
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