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Abstract

Veracity is a critical dimension of data quality that directly im-
pacts a wide range of tasks. In entity search scenarios, Knowledge
Graphs (KGs) such as DBpedia and Wikidata serve as core resources
for accessing factual content. The veracity of these KGs is there-
fore essential for ensuring the reliability and trustworthiness of
retrieved entities — factors that directly influence user confidence
in the search system. However, ensuring the truthfulness of entities
remains a major challenge due to the complexities associated with
the scale, development, and maintenance of KGs.

This paper critically analyzes the impact of veracity in entity
search, using DBpedia as the underlying KG. To this end, we intro-
duce eRank, a veracity-driven re-ranking strategy that enhances
entities’ trustworthiness without sacrificing the ranking’s over-
all relevance. Furthermore, we propose the Active Learning-based
verAcity-Driven Defect IdentificatioN (ALADDIN) system, a light-
weight and scalable framework for veracity-driven defect detection.
ALADDIN identifies incorrect KG facts and exhibits high effective-
ness in downstream entity-centric tasks, such as entity summariza-
tion, entity card generation, and defect recommendation.
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1 Introduction

In today’s digital landscape, the widespread reuse and redistribution
of online content has raised concerns about information reliabil-
ity [30]. Users rely on search engine results and structured data
from Knowledge Graphs (KGs), which not only summarizes key
facts but also generates entity cards to provide concise informa-
tion and organize entity details, enabling context-aware user query
responses that are, ideally, also accurate and reliable [12, 70]. As
data from KGs is increasingly repurposed across various platforms,
ensuring its veracity — comprising accuracy, truthfulness, and con-
sistency — becomes essential. Indeed, data veracity is considered a
key metric in quality management, complementing the other four
V’s of Big Data (volume, velocity, variety, and value) [8, 14, 78],
and plays a crucial role in guaranteeing information trustworthi-
ness [53]. Hence, guaranteeing KGs veracity is crucial for ensuring
the reliability of information. Still, it is also challenging due to the
noisy, large-scale, and constantly evolving nature of KGs [82].

Entity search, the target of this work, focuses on structuring
information around entities, their attributes, and the relationships
between them [4], usually represented in KGs. Notable examples of
KGs include Wikidata [81] and DBpedia [3]. However, these KGs
are (semi-)automatically constructed and updated, which include
potentially incorrect or unreliable information [65, 82].

Akey aspect of veracity estimation in KGs is identifying incorrect
or unreliable triples - potential defects — compromising data quality.
Detecting such triples is crucial for improving KG veracity and
supporting downstream tasks. Despite its importance, veracity is
often addressed through manual or ad hoc methods that do not
scale with the growing size and complexity of KGs [36].

Existing efforts have proposed sampling-based approaches to
KG veracity estimation [28, 56, 57, 69], and recent work [59] intro-
duced a utility model based on entity popularity, showing promis-
ing but not yet scalable results. The literature shows limited work
on systematic solutions for assessing and leveraging veracity in
entity-centric systems. This gap limits our ability to guarantee the
reliability of retrieved entities and negatively impacts user experi-
ence in entity search or related entity-centric downstream tasks.

We address these challenges by exploring two research questions:

RQ1: How does integrating veracity estimation affect the effec-
tiveness and scalability of entity search systems?

RQ2: How can veracity signals be operationalized to support deci-
sion-making and veracity control in entity-centric tasks?
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To address RQ1, we propose eRank, a novel veracity-estimation
metric, and apply it to large-scale KGs to examine how veracity
influences entity search. Our experimental evaluation shows that
integrating veracity estimates into entity search systems effectively
prioritizes entities with higher veracity while maintaining relevance
to the query. This approach can enhance the user experience by
providing more reliable and credible results. eRank is centered
on enhancing veracity at the entity level; however, it does not
discern high-quality facts or individual triples within a KG at a
more granular level.

Hence, in addressing RQ2, we introduce the Active Learning-
based verAcity-Driven Defect IdentificatioN (ALADDIN) system:
a lightweight system engineered for defect detection. ALADDIN
integrates an offline-trained linear regression model with an on-
line active learning framework incorporating human feedback. In
this online phase, ALADDIN presents entity cards showcasing top-
ranked facts for a given entity, enabling users to assess their verac-
ity in context. This annotation approach using entity cards allows
ALADDIN to collect user feedback on the facts considered most per-
tinent by the ranking model, enhancing its defect detection abilities
where user validation is most crucial.

We evaluate the proposed method on four downstream tasks:
defect detection, entity summarization, entity card generation, and
defect recommendation. Each task leverages the predicted veracity
scores to serve a distinct purpose: defect detection targets the de-
tection of incorrect triples; entity summarization ranks facts based
on their estimated veracity; entity card generation constructs en-
tity cards guided by veracity scores and evaluates their quality
through human annotation; and defect recommendation selects po-
tentially incorrect triples under a budget constraint to prioritize
corrections. Our experiments demonstrate that ALADDIN progres-
sively enhances the accuracy of veracity predictions over time,
while requiring only a limited amount of labeled data.

The main contributions of this work are:

(1) A novel metric, eRank, for estimating entity-level veracity,
and extensive analyses to understand its impact on large-
scale entity search.

(2) ALADDIN, a veracity-driven, fact-level defect detector.

(3) An in-depth evaluation of ALADDIN on four downstream
tasks demonstrating its effectiveness in predicting veracity
and supporting diverse entity-centric tasks at scale.

Outline. The rest of the paper is as follows. Section 2 provides the
necessary background to develop eRank (Section 3) and ALADDIN
(Section 4). Sections 5 and 6 present the experiments, their setup,
and the results. Section 7 reports on related work. Finally, Section 8
concludes the paper and outlines possible future work directions.

2 Background

We explore the role of data veracity in entity-centric tasks from
a utilitarian view and the related evaluation challenges. Next, we
outline a utility-oriented framework for KG veracity assessment,
forming the basis for the development of eRank and ALADDIN.

The Role of Data Veracity in Utilitarian Analysis. In the
evolving landscape of web search, there is a growing consensus that
traditional evaluation metrics focused primarily on ranking quality
are insufficient for capturing the full spectrum of user satisfaction
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and task success [13]. This shift has led to the emergence of a
broader evaluation framework known as utilitarian analysis, which
emphasizes the holistic nature of search experiences. Rather than
solely measuring relevance, utilitarian analysis considers the user’s
overall journey, including contextual factors and implicit costs such
as time, cognitive effort, and required interaction. This paradigm
applies across various search modalities, from explicit queries and
recommendation systems to content feeds and entity search.

Within this framework, the notion of Delphic costs and bene-
fits captures search operations’ intangible, non-monetary conse-
quences. These include impairments like misinformation, disinfor-
mation, and misrepresentation, which can distort the utility users
derive from search results [13]. In recent years, particular attention
has turned to the role of data veracity on these Delphic dimen-
sions [58], especially in the context of entity search tasks [59]. KGs
- in particular those generated through semi- or fully-automated
methods [84] — are inherently prone to inaccuracies [24, 25, 68],
thereby amplifying the costs associated with misinformation. As
a result, tasks such as entity cards generation become vulnerable;
when these information capsules contain erroneous data, they not
only diminish their intended benefits but also impose additional
cognitive and trust-related burdens on users.

Practical Challenges in Veracity Assessment for KGs. En-
suring data veracity is crucial for user experiences, which requires
a focused evaluation of KGs, emphasizing the importance of veri-
fication in downstream tasks. A foundational step in this process
involves manually verifying the correctness of KG contents - i.e.,
assessing the accuracy of its facts, primarily represented as triples in
the form of subject-predicate-object (s, p, 0) relationships. However,
real-world KGs such as Wikidata [81], DBpedia [3], and YAGO [76]
contain hundreds of millions, or even billions, of facts, making
exhaustive manual annotation impractical and prohibitively costly.

To overcome this limitation, recent work has explored the use
of sampling and estimation techniques [28, 56-58]. These methods
offer a cost-effective and statistically robust solution to veracity
assessment, especially with contained labeling budgets. Notably,
the utility of different KG parts may vary with respect to the down-
stream task. For example, entities with higher popularity or query
volume typically have a greater impact on user experience [29, 37].
As such, prioritizing verifying facts associated with these high-
utility entities can trigger the deployment of specific filtering or
correction mechanisms when data quality is compromised [17, 25].

Utility-Oriented Framework for KG Veracity Assessment. To
operationalize the connection between data veracity and task useful-
ness in entity search, we extend the utility-oriented KG evaluation
framework introduced by Marchesin et al. [58]. This framework
underpins our methodology for veracity-driven defect identifica-
tion. The key innovation lies in explicitly modeling the utility of
individual facts, segmenting the KG according to that utility, and
assessing veracity in a scalable and statistically robust way.

Framework input. The framework models a KG as a directed,
edge-labeled multi-graph G = (V,R, 1), where V = {E U A} is the
set of nodes — comprising entities E and attributes A; R is the set
of labeled relationships; and n : R — E x (E U A) assigns ordered
node pairs to relationships. This representation yields the ternary
relation T C E X R X (E U A), whose elements - the (s, p, o) triples
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— are the KG facts. Facts sharing the same subject e € E define an
entity cluster G[e] = {(s,p,0) € T | s = e}, whose size is denoted
by Me = |G[e]|. The total number of facts is denoted by M = |T|.

Utility and partitions. A popularity measure is used as a proxy
for the utility on downstream tasks. We employ SPARQL query
logs to assign popularity scores to KG facts, using query frequency
as a proxy for task relevance. Then, the Cumulative Square Root of
Frequency (CSRF) method [22], that has been shown to be effective
in similar settings [28, 54, 55], is adopted to create a partition family
P = {Pi}ile, with each partition representing a popularity stratum.

Sampling and estimation. To assess veracity within each parti-
tion, the Two-stage Weighted Cluster Sampling (TWCS) method [28]
is applied. In the first stage, n; entity clusters are sampled from a
partition P; with probability 7;; = M;;/M;, where M;; is the size
of the jth cluster from P; and M; = |P;|. In the second stage, up to
m facts are sampled from each selected cluster via simple random
sampling without replacement. Once fact annotations are gathered
for a partition, they are fed to an estimator /i to gauge the partition
veracity. By computing the estimated veracity fi;; of the jth sam-
pled cluster as the mean veracity of its sampled facts, the estimator
of u(P;) can be defined as fi; = nl, Z;il fij, which is known to be
unbiased [20].

Cost minimization. The framework employs an iterative esti-
mation procedure to minimize the annotation cost. In a nutshell,
the framework iteratively samples facts from a partition P; using
TWCS, gathers manual annotations, and computes an unbiased
veracity estimate jJ; for the target partition P;. The framework eval-
uates whether the current estimate meets a specified confidence
requirement at each iteration by constructing a 1 — a Confidence In-
terval (CI). The process terminates once the Margin of Error (MoE),
defined as half the CI width, falls below a user-defined threshold
¢, ensuring that the partition estimate is both cost-efficient and
statistically robust.

Formally, the iterative procedure aims to solve the following
constrained optimization problem:

cost(S(P;))

subject to MoE(ji;, a) < & V |S(P;)| = b;

minimize
S

where S(P;) denotes the sample drawn from partition P; under
the given sampling strategy S; cost(S(P;)) represents the effort
required to annotate the sampled facts; and b; is the portion of the
overall annotation budget b allocated to P;. The dual condition in
the constraint ensures that the process halts either when sufficient
precision is achieved (i.e., MoE < ¢;) or when the partition budget
is exhausted (i.e., |[S(P;)| = b;).

Framework output. Once the estimation process is complete,
each partition P; is associated with an estimated veracity score f;.
These partition-level scores can be propagated to the individual
facts within the partition - i.e., for any fact t € P;, its estimated
veracity is denoted as v(t) = f1;. The final output is a ranking of all
the facts in the KG associated with a veracity score defined at the
partition level. The annotated samples and partition-level estimates
produced by this framework serve as foundational blocks for the
veracity-driven strategies we develop in this work.
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3 Entity-Level Veracity-Driven Re-Ranking

Recent work introduced vRank [59], a fact-level veracity-driven
re-ranking method that combines veracity signals with relevance
scores from entity summarization models, to account for lower-
veracity facts in the rankings. Formally, given a fact t, it first applies
min-max normalization to the summarization model’s raw score
to obtain an fScore(t), and then adds the veracity estimate v(t) to
produce: vRank(t) = fScore(t) + o(t). The facts are then re-
ranked by descending vRank to favor those deemed both relevant
and more likely true [59].

However, entity search requires ranking whole entities, not in-
dividual facts, in response to a user query [4]. Hence, inspired by
vRank, we compute each entity’s overall veracity as the mean of
its associated fact veracity scores to bring veracity into this setting.
Then, we combine this with the entity search model’s normalized
relevance score. Formally, for entity e with fact cluster G[e] of size
M, we define:

1
eRank(e) = eScore(e) + Me Z o(t),
teGle]

where eScore(e) is the normalized relevance assigned by the entity
search model, and MLe >3 0(#) is the entity’s mean veracity.
Regarding granularity, vRank operates at the fact level — boosting
or demoting individual facts by adding their veracity scores to
normalized relevance — whereas eRank aggregates these fact-level
veracity estimates into a single mean score to rank entire entities.
Moreover, vRank applies veracity as a final re-ranking adjustment
for facts, while eRank integrates veracity directly into the core
scoring function, blending relevance and truthfulness in one step.

4 The ALADDIN System

In this section, we first motivate the need for operational, fine-
grained veracity inference by analyzing the limitations of existing
fact-level approaches. Then, we present the ALADDIN system, a
pipeline designed to address these challenges.

The need for operational fine-grained veracity inference. Al-
though vRank has been proposed to improve ranking by integrating
fact-level veracity with relevance, its effectiveness in real-world,
noisy settings is lacking. To motivate this, Figure 1 presents the
distribution of facts for 100 widely recognized DBpedia entities com-
monly used in entity search tasks [33, 35]. The figure indicates that
facts are primarily concentrated in one partition for most entities. A
bar with a uniform color represents this concentration, while a bar
with multiple colors signifies scattered facts across partitions with
varying popularity and veracity. As a result, the veracity scores,
which remain largely consistent for most facts of a given entity, act
as a constant additive factor. Therefore, they do not alter the rela-
tive ranking of facts, making vRank ineffective. This reveals a flaw
in vRank: its dependency on partition-level veracity scores lacks
the necessary detail to differentiate between true and false facts
within the same entity. This discovery highlights the requirement
for a finer-grained approach to assess veracity at the fact level. Our
proposed system, ALADDIN, addresses this limitation.

ALADDIN. Below, we describe the main steps of ALADDIN
pipeline illustrated in Figure 2.
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Figure 1: Partition distribution across the 100 entities widely used in entity-centric tasks. Partition 7 is the most popular, down
to Partition 1, which is the least popular. Veracity does not correlate with popularity.
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Figure 2: The ALADDIN pipeline: (1) Offline training of a linear regression model on KG fact embeddings, (2) veracity inference
on ranked facts, (3) entity card generation with threshold-based defect detection and replacement suggestions, (4) human fact
annotation with candidate evaluation, (5) online active learning updates.

@ Offline learning. The pipeline begins with the offline train-
ing of a linear regression model to estimate the veracity of facts
within the KG. Due to its simplicity and computational efficiency,
the linear regressor is particularly well-suited for online learning
scenarios, where rapid and incremental updates are essential [75].
The model is trained on a dataset of facts labeled with binary cor-
rectness annotations using the Squared Error loss function and
optimized via stochastic gradient descent [10].

Although the training labels are discrete, using a regression
model allows for more nuanced predictions. This design encourages
the model to produce outputs that tend to polarize toward 0 or 1,
while retaining the flexibility to assign intermediate veracity scores
to more uncertain facts, avoiding strict binary classification.

Each KG fact is embedded with TransE [11] to enrich the model
input. TransE graph embeddings capture both the structural (topo-
logical) and semantic (textual) aspects of the KG, enabling an ex-
pressive representation. Once trained, the model assigns to each
fact t a real-valued veracity score v#(t) € R, optimized to fall
within the [0, 1] interval. Scores closer to 0 suggest a defective fact,
while those closer to 1 a plausible fact.

@ Veracity inference. The trained regression model is then
applied to the ranked list of facts representing an entity (cluster)

generated by a fact ranking system. The model infers a veracity
score for each fact, indicating its plausibility. These scores are then
analyzed to identify low-quality but top-ranked facts, thereby flag-
ging them as potential and influential defects.

e Entity card generation. Once veracity scores have been
computed for an entity’s facts, ALADDIN presents human annota-
tors with an entity card: a concise, familiar layout that lists the top-h
ranked facts for that entity. Annotators review and label these facts,
reliable or not, which in turn triggers the system’s active learning
loop. This structured, user-friendly annotation format is meant to
make the annotation process faster and more intuitive [33, 71].

Each fact in the entity is associated with an inferred veracity
score, allowing us to set a threshold 0, to distinguish between
reliable (> 6,) and unreliable ( < 0,) facts. For any fact t deemed as
unreliable, a replacement candidate ¢’ is suggested. This candidate is
selected from the lower-ranked portion of the fact list (i.e., positions
beyond h), and is the highest-ranked fact with estimated veracity
above the threshold.

This entity card-based annotation strategy allows ALADDIN
to focus user feedback on the most critical and relevant facts by
prioritizing identifying defective content in the most visible and
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high-traffic parts of the KG, thereby maximizing utility for entity-
centric downstream tasks.

@ Fact annotation. Human annotators evaluate the facts once
an entity card is generated. For each fact deemed reliable, annotators
are asked to assess whether the fact is correct or not. For unreliable
facts, annotators are presented with a candidate replacement and
asked to choose among four options: (i) the replacement is correct,
(ii) the original fact is correct, (iii) both are correct, or (iv) both are
incorrect. Options (iii) and (iv) are included to mitigate annotation
bias and accommodate cases where both facts are equal.

After collecting annotations, each fact is mapped to a binary label.
When a candidate replacement is marked as correct, it receives a 1
while the original fact gets a 0; conversely, if the original is marked
correct, the reverse labeling is applied. When both facts are correct
(or incorrect), both are assigned a 1 (or a 0), respectively.

@ Online learning. Annotations are then used incrementally
as labeled data to refine the linear regression model through online
active learning. The model is updated in batches, where each batch
is the set of annotations derived from a single entity card.

The linear regressor makes the model susceptible to overfitting
when the incoming annotation stream is heavily biased, e.g., con-
sisting predominantly of correct or incorrect facts [7]. We propose
a residual-based selection strategy that filters for the most informa-
tive and representative training examples. Specifically, we exclude
annotations where the model predictions closely align with human
evaluations, as such cases are less likely to contribute a meaningful
learning signal and may reinforce bias.

Formally, let e be an entity with annotated facts #4,.. ., t. We
define the batch of selected annotations for model update as:

Qe = {(ti, 1(t1)) : loa(t) = L(t:)| > 5,1 € [1..h]}

where 1(t;) denotes the binary correctness label and 05 the
residual threshold. We compute the residuals between predicted
veracity scores and annotated correctness labels. We retain only
those annotations where the residual is greater than 85 = 0.5, repre-
senting the decision boundary between predicting correctness and
incorrectness. A residual of > 0.5 indicates that the model predic-
tion leans towards the opposite correctness label compared to the
human annotation, making the discrepancy informative for model
updates. Note that 05 can be adjusted within the [0, 1] interval to
impose more stringent or lenient filtering.

This selection mechanism ensures that the model focuses on
learning from high-disagreement cases, where human judgment
and model output diverge significantly. As a result, it mitigates the
risk of overfitting caused by imbalanced annotation distributions
and strengthens the model’s generalization capabilities.

Active learning. The steps from @) to @ collectively represent
the active learning strategy enforced by ALADDIN to enhance de-
fect detection in a utility-aware, cost-effective, and scalable manner.
These steps are repeated until a predefined allocation budget is
exhausted or a custom stopping criterion is met.

ALADDIN can handle KGs through the support for incremental
updates and integrating new annotations. It is inherently light-
weight, relying on a simple linear regression model that is com-
putationally inexpensive, transparent, and explainable, allowing
for downstream error analysis. Additionally, since the input graph
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embeddings can be pre-computed offline, the system further bene-
fits from improved efficiency. Most importantly, ALADDIN is both
cost-effective and utility-aware, as it aims at minimizing the need
for manual labeling by directing annotation efforts toward the most
informative and critical examples relevant to downstream tasks.

5 Experimental Setup

We present the KG and collections, along with the experimental
design and task setup developed to address the research questions.!

The reference KG is the English version of DBpedia 2015-
10 [43], which comprises 6.2 million entities, 1.1 billion facts, and
739 ontology types. As documented in [58], DBpedia 2015-10 is the
reference also for the utility-oriented framework for evaluating the
veracity of KGs. [58] created seven popularity-oriented partitions,
each reflecting a distinct level of veracity. The reported veracity
levels for these partitions (with their Cls), are as follows: the Parti-
tion 1 has a veracity of 0.83 + 0.02; partitions 2 and 3 a veracity of
0.85 + 0.02; Partitions 4 and 5 a veracity of 0.89 + 0.02; Partition 6
a veracity of 0.90 + 0.03; and, Partition 7 a veracity of 0.87 + 0.03.
Partition 1 is the least popular up to Partition 7, which is the most
popular (cf. Section 2). This indicates that veracity and popularity
are independent, or orthogonal, assessment metrics.

While DBpedia 2015-10 overall is of high quality, the observed
variation in veracity across partitions highlights the importance of
methods that can effectively prioritize high-veracity data to maxi-
mize utility in downstream tasks. At the same time, the narrow Cls
underscore the robustness of the underlying estimation procedure.

We consider three collections in our experiments.

DBpedia-Entity v2. Introduced in [35] for evaluating entity
search systems over DBpedia 2015-10. This collection retains only
DBpedia entities with both title and abstract, resulting in a total
of 4.6 million entities. It comprises 485 queries with relevance
judgments on a three-point graded scale, ranging from 0 (irrelevant)
to 2 (highly relevant). In addition to the queries and judgments, the
collection includes the official runs of 12 systems.

DBpedia-Defect. Derived from [58] within the utility-oriented
framework for KG veracity assessment. This collection comprises
9, 930 facts from DBpedia 2015-10, spanning various topics includ-
ing entertainment, news, history, sports, business, and science. At
least three crowdworkers annotated each triple using binary cor-
rectness labels. Final labels were determined through a quality-
weighted majority voting scheme, where annotator reliability was
estimated using a separate validation set annotated by domain
experts. There are 7, 949 correct and 1, 395 incorrect triples.

DBpedia-Fact. Introduced in [33] to evaluate query-dependent
entity summarization methods over DBpedia 2015-10. The collec-
tion includes only DBpedia entities with a title, an abstract, and
at least five valid predicates, ensuring minimum descriptive rich-
ness. It comprises 100 query-entity pairs, representing a subset of
those available in DBpedia-Entity v2. Each query g; is associated
with a target entity e;, and the corresponding set of facts from the
entity cluster G[e;] forms the input for summarization. Overall,
the collection contains 4, 069 facts, with an average of 41 facts per
entity. Judgments are provided across three dimensions: (i) fact im-
portance to the entity (3-point scale); (ii) fact relevance to the query

1Code and data: https://github.com/KGAccuracyEval/defect-detectiondentity-search
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(3-point scale); and (iii) a combined utility score integrating the
two (5-point scale). In addition, the collection includes official runs
for each of these dimensions using four fact ranking approaches:
RELIN [16], a PageRank-based approach, and three variants of
DynES [33], a learning-to-rank approach, trained on importance
(DynES/i), relevance (DynES/r), and combined utility (DynES/u)
judgments, respectively.

Task 1: Entity search. In this first experiment, we investi-
gate the impact of veracity on entity search systems (RQ1) on
the DBpedia-Entity v2 collection. We consider the 12 official base-
line runs and apply eRank, our veracity-driven re-ranking strategy,
to re-rank their results. We adopt min-max normalization for the
eScore(-) component of eRank and, to be consistent with the origi-
nal evaluation [35], we report nDCG@10 and nDCG@100.

Task 2: Defect detection. In this set of experiments, we evaluate
the performance of ALADDIN in predicting fact veracity (RQ2).
The experiments use the DBpedia-Defect collection for offline train-
ing and offline/online testing, and a portion of DBpedia-Fact for
online training. Specifically, we randomly sample 1, 000 facts from
DBpedia-Defect as the test set, using the rest for offline training.
For online training, we consider the four official runs from DBpedia-
Fact, each comprising a ranked list of facts for 100 entities, resulting
in a total of 400 fact rankings. From these, 50 rankings are randomly
selected and held out for evaluating subsequent tasks, while the
remaining 350 are split into 300 for training and 50 for validation.

The KG facts used as input to ALADDIN are encoded using
TransE [11], an energy-based model for learning KG embeddings,
trained for 100 epochs with a learning rate of 0.1 to optimize Focal
Loss [48], which effectively handles imbalanced data like DBpedia-
Defect. Each fact is embedded by concatenating the embeddings
of the subject, predicate, and object — each represented with 384
features. The linear regressor is trained offline for 1,000 epochs.
For online training, entity cards are generated from DBpedia-Fact
rankings following the procedure described in [33]. We set the
veracity threshold 6, = 0.5 to distinguish between reliable and
unreliable facts, considering a fact correct if its predicted verac-
ity exceeds this threshold. We adopt an invscaling learning rate
schedule, which gradually reduces the learning rate as training
progresses [9]. This approach is well-suited to online learning, as
it enables larger parameter updates in the early stages and more
conservative updates later, reducing the risk of oscillations as new
annotations are provided [75]. To further prevent overfitting, we
also apply early stopping based on validation performance: after
each annotation round, we evaluate the model on the validation
set and stop training if performance degrades for more than five
consecutive rounds, retaining the best-performing model. This pro-
cess converged after 130 rounds, with 300 annotated facts selected
for training by the residual-based selection strategy. Entity card an-
notations were performed by one expert annotator using a custom
interface, as shown in Figure 3.

Performance is reported on the DBpedia-Defect test set for of-
fline and online settings, using {binary, weighted} F1 and balanced
accuracy to assess class imbalance.

Task 3: Entity summarization. In this experiment, we eval-
uate the impact of the veracity scores produced by ALADDIN on
fact ranking (RQ2). To this end, we resort to the DBpedia-Fact
collection. We take the official baseline runs from the four fact
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. N Replacements

Entity: Liam_Howlett __ __ __ __ Factswith predicted veracity < 0.5
[1~ original: shortbescription: English musician, DJ and record producer — Replacement: |

CardA recordLabel: XL_Recordings

1- shortDescriptions Enlish musician, DJ and record producer |~ '®% O e Bocareet L sathnatcorec |

|2 19711 1992

2-birthPlace: Braintree, Essex
3- placeOfBirth: Braintree, Essex, England
4- birthDate: 1971-08-21

5- birthvear: 1971

Figure 3: Interface for the online active learning stage. Can-
didate replacements (highlighted in the red box) are shown
only when the veracity predicted by ALADDIN is below 0.5;
otherwise, no replacement is suggested (in the green box).

ranking approaches and re-rank their results using the veracity
scores predicted by ALADDIN. Specifically, for each fact ¢ in the
ranking, we compute the ALADDIN-enhanced score as

ARank(t) = fScore(t) + v 7(1),

where fScore(t) is the min-max normalized score produced by the
original fact ranking model, and v # (¢) is the predicted veracity
score from ALADDIN. We compare the performance of these re-
ranked outputs with those of the original methods and with the
vRank-based re-ranking proposed in [59]. Results are reported using
nDCG@5 and nDCG@10 for consistency with prior work [33, 59].

Task 4: Entity card generation. The goal of this experiment is
to assess how users perceive the quality of entity cards generated
from ALADDIN-enhanced rankings compared to those derived
from the original rankings (RQ2). For this evaluation, we use the 50
rankings previously held out from DBpedia-Fact during the setup
of Task 2. Each ranking is re-ranked using ALADDIN, and entity
cards are generated for both the original and re-ranked versions
following the procedure outlined in [33].

For each pair of competing cards, four annotators were asked
to indicate which version — original or ALADDIN re-ranked — pre-
sented more accurate factual content, or to choose “no preference”
if both are equally accurate. To prevent bias, the position of the two
cards (left or right) was randomized when presented to annotators.

Evaluation is based on annotator preferences across all card pairs.
Specifically, we measure the number of preferences expressed in
favor of the original cards, the ALADDIN-based cards, and the cases
where no preference was indicated.

Task 5: Defect recommendation. In this experiment, we assess
the effectiveness of ALADDIN in recommending facts that are most
likely to be incorrect (RQ2). The goal of defect recommendation is
twofold: (i) to flag low-veracity facts that are likely incorrect, and
(ii) to enable a budget-aware correction strategy that prioritizes the
most critical issues — ensuring that limited resources are allocated
efficiently to address the most impactful errors first.

We perform this evaluation on the DBpedia-Defect test set, where
ALADDIN is used to predict fact veracity scores. The facts are then
ranked in ascending order of predicted veracity, allowing identifica-
tion and prioritization of the least trustworthy ones. Performance
is measured in terms of precision and recall.

6 Experimental Results

ROQ1: Veracity impact at scale. The first experiment addresses
how veracity estimation impacts entity search (Task 1). Table 1
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Table 1: Performances of entity-search systems comparing
the original ranking (Orig) to the eRank-based ranking.

nDCG@10 nDCG@100
Model ‘ Orig  eRank | Orig  eRank
BM25 0.26 0.26 0.36 0.37
PRMS 0.39 0.39 0.47 0.47
MLM-All 0.40 0.41 0.49 0.49
LM 0.42 0.42 0.50 0.50
SDM 0.42 0.43 0.51 0.52
LM+ELR 0.42 0.42 0.51 0.51
SDM+ELR 0.44 0.43 0.52 0.52
MLM-CA 0.44 0.44 0.51 0.52
BM25-CA 0.44 0.45 0.53 0.54
FSDM 0.45 0.46 0.53 0.54
BM25F-CA 0.46 0.47 0.55 0.56
FSDM+ELR 0.46 0.46 0.54 0.54

Table 2: 7 and 74p metrics for DBpedia-entity-v2 retrieval
methods: original ranking vs eRank-based ranking.

cutoff@10 cutoff@100
Model ‘ T TAP ‘ T TAP
BM25 0.77 0.75 0.39 0.36
PRMS 0.69 0.68 0.28 0.24
MLM-ALL 0.70 0.68 0.28 0.25
LM 0.73 0.71 0.30 0.26
SDM 0.79 0.77 0.34 0.30
LM+ELR 0.71 0.69 0.29 0.26

SDM-ELR 0.79 0.78 0.34 0.30
MLM-CA 0.75 0.73 0.32 0.28
BM25-CA 0.76 0.74 0.32 0.29
FSDM 0.73 0.71 0.32 0.28
BM25F-CA 0.74 0.72 0.33 0.29
FSDM-ELR 0.74 0.71 0.32 0.28

compares the performance of the original search systems (Orig
column) with that of the eRank-based re-ranking strategy (eRank
column), using nDCG@10 and nDCG@100 as evaluation metrics.
The results show that applying eRank does not degrade retrieval
effectiveness, while contributing to improved veracity. In some
cases, eRank even yields modest gains in nDCG.

To confirm the retrieval stability of eRank, we assessed whether
it introduces statistically significant performance differences com-
pared to the original rankings. The goal is to verify that eRank
preserves effectiveness while promoting higher-veracity entities.
To this end, we computed Cohen’s d to measure effect size and
performed a paired t-test. Across all systems, effect sizes remained
well below 0.2 and p-values exceeded 0.01 in nearly all cases, indi-
cating no significant difference in retrieval performance between
the original and eRank-based rankings.

To verify that the ranking changes introduced by eRank are sub-
stantial, we computed Kendall’s Tau (r) and Tau Average Precision
(zap) between the original and eRank-based rankings. As shown in
Table 2, all runs yielded low 7 and 74p values. Low 7 values indicate
that eRank significantly alters the original ranking order, while
low 74p values highlight that these changes affect the top-ranked
positions. Combined with stable nDCG scores, these results suggest
that eRank generates meaningfully different rankings that maintain
relevance to the query while promoting higher-veracity entities.
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Figure 4: Veracity gain of entity search systems on the
DBpedia-Entity-v2 collection after eRank re-ranking,.

Table 3: ALADDIN performance for defect detection. Ayg
refers to ALADDIN trained only offline, while Ay;, consider
also the online training.

binary F1 ~ weighted F1  balanced accuracy

Aoty 0.79 0.70 0.63
Aon 0.83 0.72 0.64

Finally, we conduct a fact-level analysis to examine how the
entity-level re-ranking introduced by eRank affects the positioning
of higher-veracity facts. Specifically, using the partition-based ve-
racity estimates computed for DBpedia 2015-10 by [58], we quantify
veracity gain as the relative improvement in rank positions of facts
from higher-veracity partitions after applying eRank, compared
to their original positions. This allows us to assess whether pri-
oritizing higher-veracity entities also promotes more trustworthy
facts. As shown in Figure 4, all tested entity search systems benefit
from eRank, with improvements reaching up to 34%. These results
confirm that eRank not only enhances entity-level veracity, but also
boosts higher-veracity facts, thus promoting trust at scale.

RQ1: Take-home message

eRank promotes entities with higher-veracity facts to top ranks, provid-
ing a re-ranking strategy that enhances ranking quality while maintain-
ing the overall relevance to the query untouched.

RQ2: Veracity effects in action. To explore how veracity sig-
nals can support decision-making and veracity control in entity-
centric tasks, we begin with defect detection (Task 2). For this task,
we assess the effect of online active learning and human-in-the-
loop supervision by comparing ALADDIN trained with online feed-
back to its offline counterpart. Table 3 reports performance on the
DBpedia-Defect test set, evaluated using {binary, weighted} F1 and
balanced accuracy. All metrics indicate improved performance with
active online training. The binary F1 increases from 0.79 to 0.83,
showing that user feedback helps the model refine its predictions.
Both the weighted F1 and balanced accuracy also rise, reflecting
more effective handling of class imbalance.

We next examine the effects of ALADDIN’s veracity scores in
entity summarization (Task 3), where they are used to re-rank the
outputs of RELIN and DynES on the DBpedia-Fact collection. Ta-
ble 4 compares the original, vRank-based, and ALADDIN-based
rankings. Differences in nDCG@5 and nDCG@10 are minimal,
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Table 4: Analysis of the DynES and RELIN runs in terms of importance, relevance, and utility. Original, vRank and ALADDIN

(ARank) are the three ranking approaches considered.

Importance Relevance Utility
nDCG@5 nDCG@10 nDCG@5 nDCG@10 nDCG@5 nDCG@10
Model Orig  oRank  ARank | Orig oRank  ARank Orig  oRank  ARank | Orig oRank  ARank Orig  oRank  ARank | Orig oRank  ARank
RELIN 0.48 0.52 0.49 0.53 0.56 0.54 0.36 0.37 0.32 0.43 0.43 0.40 0.47 0.50 0.46 0.54 0.56 0.53
DynES/i 0.79 0.79 0.78 0.80 0.81 0.79 0.47 0.48 0.46 0.54 0.55 0.53 0.72 0.73 0.70 0.76 0.76 0.75
DyneES/r 0.58 0.58 0.56 0.62 0.62 0.60 0.53 0.53 0.51 0.58 0.58 0.56 0.62 0.62 0.60 0.66 0.66 0.64
DynES/u 0.77 0.77 0.76 0.78 0.77 0.79 0.58 0.59 0.56 0.65 0.65 0.62 0.76 0.76 0.74 0.79 0.79 0.77

Table 5: Ranking correlations for the entity summarization
models, between the original ranking and vRank, and be-
tween the original ranking and ALADDIN (ARank).

cutoff@5 cutoff@10
vRank ARank vRank ARank
Model T TAP T TAP T TAP T TAP

DynES/i 0.80 0.79 0.28 0.26 0.81 0.79 0.27 0.25
DynES/r 0.89 0.90 0.24 0.25 0.79 0.80 0.20 0.25

RELIN 0.98 0.94 0.06 0.05 0.98 0.95 0.10 0.05
DynES/u 0.84 0.77 0.27 0.24 0.84 0.77 0.27 0.17

with no statistically significant variation (Cohen’s d < 0.2, p-value
> 0.01), indicating that veracity-driven re-ranking does not compro-
mise effectiveness. Notably, this finding holds across all considered
evaluation dimensions - i.e., importance, relevance , and utility.

While both vRank and ALADDIN maintain performance, cor-
relation metrics (r and 74p in Table 5) reveal a key distinction:
vRank largely preserves the original ranking order, offering only
marginal veracity gains, whereas ALADDIN introduces substantial
reordering. This confirms the limitations of vRank (cf. Section 3)
and underscores ALADDIN’s ability to prioritize higher-veracity
facts without compromising ranking effectiveness.

Given the substantial ordering differences introduced by AL-
ADDIN-based rankings, we assess their impact on entity card gen-
eration (Task 4). We analyzed annotations from four experts who
assessed 50 pairs of entity cards generated from DBpedia-Fact rank-
ings. Based on majority voting for each pair, ALADDIN-generated
cards were preferred in 20 cases (40%), the originals in 13 (26%), and
no preference was expressed in 17 cases (34%). These results indi-
cate that ALADDIN improves or preserves user perception without
detriment in 74% of the cases.

Finally, given the inexpensive, transparent, and explainable na-
ture of ALADDIN, we evaluate its utility for defect recommendation
(Task 5) — a critical first step for downstream error analysis. Specif-
ically, we use ALADDIN to compute the veracity scores of facts
and assess how effectively these scores guide the identification of
potentially defective or low-veracity parts of the KG.

To test ALADDIN under varying resource constraints, we evalu-
ate its performance on the DBpedia-Defect test set by measuring
precision and recall at different selection budgets — specifically, the
top 10%, 20%, 25%, and 50% of facts ranked from lowest to highest
predicted veracity. Table 6 reports results for both the standard
(online) ALADDIN model and its offline variant. Following the DB-
pedia partitioning defined in [58], evaluation is conducted over

Table 6: Precision and recall for ALADDIN before (Ayg) and
after online training (Aon) across different budget levels. We
report performance for all facts (All), and the least (Low) and
most popular partitions (High). The % gain column shows
the improvement from offline to online.

Precision Recall
Budget | Subset | A,g  Aon %gain || Ao Aon  %gain
All 0.42 0.42 - 0.65 0.65 -
10% Low 0.60 0.66 +10.00 0.57 0.65 +14.00
High 0.54 0.60 +11.10 0.50 0.59 +18.00
All 0.34 0.77 +126.50 0.58 0.61 +5.00
20% Low 0.64 0.67 +4.68 0.64 0.68 +6.25
High 0.70 0.71 +1.43 0.68 0.73 +7.35
All 0.29 0.66 +127.58 0.54 0.63 +16.66
25% Low 0.66 0.69 +4.54 0.67 0.70 +4.47
High 0.73 0.73 - 0.72 0.75 +4.16
All 0.61 0.66 +8.19 0.58 0.66 +13.80
50% Low 0.67 0.69 +2.98 0.67 0.71 +5.97
High 0.71 0.72 +1.40 0.71 0.75 +5.63

three subsets: the full test set (All), 253 facts from low-veracity
partitions (Low), and 258 facts from high-veracity partitions (High).

Results show that online ALADDIN consistently outperforms
its offline counterpart, particularly in identifying low-veracity facts
under constrained budgets. At 10% budget, both versions perform
similarly on the full test set, but the online variant achieves higher
precision and recall for both Low and High subsets. At 20%, it ex-
hibits a sharp increase in All precision (from 0.34 to 0.77), along with
gains in recall. Improvements occur also across veracity-specific
subsets. As the budget increases to 25% and 50%, the advantages of
online learning persist, confirming its effectiveness.

These findings underscore ALADDIN’s effectiveness in defect
recommendation, even under strict budget constraints. As such,
prioritizing the verification of its recommended facts can trigger
the deployment of filtering or correction mechanisms when data
veracity issues are detected.

RQ2: Take-home message

ALADDIN operationalizes veracity signals in entity search, enabling
defect detection across entity-centric tasks and enhancing data veracity
without compromising search effectiveness.

7 Related Work

KG and Data Veracity. KGs support information integration and
semantic organization, playing a pivotal role in applications such as
information retrieval, question answering, recommender systems,
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and so on. Prominent examples include DBpedia [3], YAGO [77], and
Wikidata [81], all comprising millions of entities and from hundreds
of millions to billions of facts. Due to their large-scale and often
automated construction, KGs frequently lack meticulous curation,
which leads to issues such as incompleteness, inconsistencies, and
noise [86]. As a result, the reliability of the information they contain
cannot always be guaranteed, making data veracity assessment a
critical aspect [1].

Veracity assessment in KGs is essential for ensuring their reliabil-
ity, yet it remains relatively underexplored. The standard approach
relies on manually auditing the veracity of KG facts — a process
that is infeasible for large and dynamically evolving KGs. To over-
come this limitation, a range of efficient and cost-effective tech-
niques have emerged. These include sampling methods [28, 56, 57],
inference-based crowdsourcing approaches [63], cross-KG fact vali-
dation techniques [51], human-machine collaborative systems [69],
and utility-oriented estimation strategies [58, 59].

Among its applications, veracity assessment plays a crucial role
in mitigating misinformation within information retrieval tasks [60].
This line of work is often framed within the broader paradigm of
credible retrieval, which focuses on retrieving accurate and trust-
worthy information from sources that meet established reliability
standards [30]. Notable efforts in this direction include the ROMCIR
workshop series [41, 66, 67, 72], the TREC Health Misinformation
tracks [18, 19], and the CLEF eHealth CHS tasks [31, 40]. Yet, de-
spite their relevance, these efforts have not directly examined the
contribution of KGs or their veracity to credible retrieval.

Beyond veracity assessment, error detection mechanisms are
also essential for supporting entity-centric tasks in KGs. Existing
approaches to error detection can be categorized into four groups:
(i) outlier detection using statistical and machine learning tech-
niques [64, 65, 85]; (ii) external validation through comparison with
web data or other KGs [27, 44, 46]; (iii) graph exploration and struc-
tural analysis [38]; and (iv) error diagnosis via ontology reasoning
and formal constraints [47]. Despite their utility, these methods
often suffer from scalability limitations, high computational costs,
and heavy dependence on ontology reasoning, resulting impractical
for modern, large-scale KGs. Even LLM-based solutions are not ma-
ture yet to address defect detection effectively — both when used as
standalone approaches [58] and within RAG-based pipelines [73].

Entity-centric tasks. KG entities play a crucial role in web
search, providing the structured semantic data essential for entity
search, summarization, and card generation [35].

The entity search task has witnessed a growing range of meth-
ods, from traditional text-based approaches [5, 34] to learning-based
methods [15, 23, 52]. In this context, various datasets have been in-
troduced to support benchmarking and comparison of entity search
approaches. The most notable are the DBpedia-Entity v1 [6] and
DBpedia-Entity v2 [35]. More recently, Arabzadeh et al. [2] released
LaQuE, a framework for entity search with real-user queries. LaQuE
builds on queries from the ORCAS dataset [21] and maps them to
DBpedia 2015-10 entities. However, in contrast to DBpedia-Entity
v2, which features an average of 36 relevant entities per query, the
LaQuE dataset contains only an average of 1.08 relevant entities per
query. This makes DBpedia-Entity v2 better suited to investigate
the effects of veracity-driven re-ranking strategies, as changes in
ranking can have a tangible impact on the ordering of relevant
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entities. Therefore, we adopt DBpedia-Entity v2 as the reference
collection for our experiments, offering a more robust basis for
evaluating the impact of veracity on entity search.

Another key task is entity summarization, which involves
identifying the most salient facts about an entity to generate an
optimal, size-constrained summary comprising a subset of relevant
information [49]. A variety of approaches have been proposed, lever-
aging strategies such as PageRank-based ranking [79, 80], hierarchi-
cal clustering [32], and deep neural networks [26, 42, 45, 50, 61, 83].
Given our focus on the role of veracity in entity search and its
downstream applications, we restrict our attention to a specific
subtask: query-dependent entity summarization [33], which entails
ranking the facts of an entity based on both their importance for
the entity and relevance to the query. In this setting, two methods
represent the state-of-the-art: RELIN [16], a PageRank-inspired
approach, and DynES [33], a learning-to-rank method.

Building on entity summaries, entity cards have been shown to
influence search behavior. Bota et al. [12] found out that users en-
gage more with relevant cards, boosting interactions with organic
search results. Navalpakkam et al. [62] showed that entity cards
reduce information-seeking time as they contain relevant content.
Shokouhi and Guo [74] analyzed how proactive card usage is af-
fected by time and local factors. Hasibi et al. [33] further showed
that users favor query-dependent summaries over static ones. In
healthcare, Jimmy et al. [39] observed that users prioritize the first
entity card when seeking condition-related information.

8 Conclusions and Future Work

In this work, we analyzed the impact of KG veracity on entity
search. We introduced eRank, an entity-level, veracity-driven re-
ranking strategy that prioritizes high-quality entities in search
results without compromising retrieval effectiveness.

To support veracity assessment at scale, we proposed ALADDIN
- a lightweight system for defect detection. ALADDIN combines a
linear regression model trained offline with an online active learn-
ing mechanism powered by human feedback. During the online
phase, the system presents users with entity cards featuring the top-
ranked facts about an entity, enabling fast and intuitive accuracy
assessment. By prioritizing feedback on the most relevant facts, this
strategy guides the learning process toward correcting the most
significant errors, making user input both targeted and efficient.

Extensive experiments confirmed the effectiveness of ALADDIN
across entity-centric tasks. The use of online active learning im-
proved both defect detection and recommendation, even under tight
annotation budgets. For entity summarization and card generation,
ALADDIN showed greater sensitivity to fact quality and enhanced
the perceived content relevance. Together, these results highlight
the value of fine-grained veracity estimation and the benefits of
lightweight, feedback-driven systems for enhancing KG reliability.

As future work, we aim to integrate ALADDIN into KG error cor-
rection pipelines, enabling precise error detection, quantification,
and feedback-driven corrections.
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