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Fault detection analysis
of Boolean control networks

Ettore Fornasini and Maria Elena Valcher

Abstract—In this paper we address the fault detection prob-
lem for Boolean control networks (BCNs). We first investigate
completeness and T -completeness of the set of input/output tra-
jectories. Next, we introduce the concept of meaningful fault, and
prove necessary and sufficient conditions under which meaningful
faults can be detected from the input/output trajectories of the
BCN. Two fault detection algorithms are provided.

I. INTRODUCTION

The renewed interest in Boolean control networks (BCNs)
can be credited to two major reasons. On the one hand, BCNs
have proved to be a convenient modeling tool to capture
a number of phenomena whose variables display only two
operation levels (on/off, high/low, 1/0...). In particular, BCNs
have been employed to describe genetic regulation networks
[11], [17]. On the other hand, the algebraic representation de-
veloped by D. Cheng and co-authors allows to cast BCNs into
the framework of linear state models (operating on canonical
vectors) [1], [2], [3]. This set-up opened new perspectives on
the solution of many problems for this class of systems. And,
indeed, within this setting, stability, stabilizability, controlla-
bility [13], observability [5] and optimal control [6], [12], have
been successfully investigated.

Research on fault detection originated in the seventies
and still represents a lively research area (see [8], [10] for
two extended surveys). Fault detection of logic circuits, in
particular, has received a lot of attention [9]. Recently, in [15],
this problem has been investigated by resorting to the semi-
tensor product method. However, the class of logic networks
considered in the paper was not described by a BCN and
the only faults were “stuck-at faults”, resulting in the fact
that one (or more) of the input or output variables remains
stuck at a certain value. Also, the failure location problem
in networks investigated in Chapter 4 of [3] pertains the
problem of evaluating whether a route connecting two nodes is
active or not. The fault detection problem for gene regulation
networks, described by means of Boolean networks, has been
investigated to address some biomedical problems. In [14] it
is observed that “the study of diseases such as cancer requires
the modeling of gene regulations and the loss of control
associated with it. The genetic alterations in the system can be
modeled using different fault models in the Boolean Network
paradigm.” Similarly, in [18], the Authors develop a Boolean
network to describe the failure of the oxidative stress response.

Aiming to generalize the results obtained in [14], [18] to
the broader context of Boolean control networks, in this paper
we address the situation when, as a consequence of a fault,
a BCN switches from its original model to a different one,
thus generating output trajectories that are not compatible
with its updating equations. The main question we want to
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answer is the following one. Assuming that the BCN equations
are known, but the state is not accessible, how can we
decide whether a fault has occurred, by evaluating the BCN
output that corresponds to the applied (known, but otherwise
arbitrary) control input?

The paper is organized as follows: section II introduces
the algebraic state representation of a BCN and investigates
completeness and T -completeness properties. Section III intro-
duces the concept of meaningful fault, and provides necessary
and sufficient conditions for a meaningful fault to be detected
from the input/output trajectories. Finally, in section IV two
fault detection algorithms are proposed. A preliminary version
of part of the first 3 sections appeared in [7].

Notation. Given k, n ∈ Z+, with k ≤ n, the symbol [k, n]
denotes the set {k, k+1, . . . , n}. Boolean vectors and matrices
take values in B := {0, 1}, with the usual operations (sum +,
product · and negation ·̄). δik denotes the ith canonical vector
of size k, Lk the set of k-dimensional canonical vectors, and
Lk×n ⊂ Bk×n the set of k × n matrices whose columns are
canonical vectors of size k. Any matrix L ∈ Lk×n can be
represented as a row whose entries are canonical vectors in
Lk, namely L = [ δi1k δi2k . . . δink ] , for suitable indices
i1, i2, . . . , in ∈ [1, k]. The `th entry of a vector v is [v]`.

Given a matrix L ∈ Bk×k (in particular, L ∈ Lk×k), we
associate with it a digraph D(L), with vertices 1, . . . , k. There
is an arc (j, `) from j to ` if and only if the (`, j)th entry of
L is unitary. A sequence j1 → j2 → . . . → jr → jr+1 in
D(L) is a path of length r from j1 to jr+1 provided that
(j1, j2), . . . , (jr, jr+1) are arcs of D(L). A closed path is a
cycle. A cycle with no repeated vertices is called elementary.

There is a bijective correspondence between Boolean vari-
ables X ∈ B and vectors x ∈ L2, defined by the relationship

x =
[
X
X̄

]
. (1)

We introduce the (left) semi-tensor product n between matri-
ces (in particular, vectors) [3]: given L1 ∈ Rr1×c1 and L2 ∈
Rr2×c2 (in particular, L1 ∈ Lr1×c1 and L2 ∈ Lr2×c2 ), we set
L1 n L2 := (L1 ⊗ IT/c1)(L2 ⊗ IT/r2), T := l.c.m.{c1, r2},
where l.c.m. denotes the least common multiple. If c1 = r2
then L1 n L2 = L1L2. So, the semi-tensor product extends
the standard matrix product. By resorting to it, we extend (1)
into a bijective correspondence between Bn and L2n : given
X = [X1 X2 . . . Xn ]> ∈ Bn, we set

x :=
[
X1

X̄1

]
n
[
X2

X̄2

]
n . . .n

[
Xn

X̄n

]
.

Given a sequence (w(t))t∈Z+ , we denote by (w(t))|[k,n] its
restriction to the “discrete window” [k, n], k, n ∈ Z+, k ≤ n.
Similarly, given a set of sequences B, we denote by B|[k,n] :=
{(w(t))|[k,n] : ∃ (w(t))t∈Z+ ∈ B}, the restriction of B to
[k, n]. The length of the window [k, n] is n− k + 1.

II. COMPLETENESS AND T -COMPLETENESS

A Boolean Control Network (BCN) is described by the
following equations

X(t+ 1) = f(X(t), U(t)),
Y (t) = h(X(t)), t ∈ Z+,

(2)
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where X(t), U(t) and Y (t) denote the state variable, the input
and the output at time t, taking values in Bn,Bm and Bp,
respectively. f and h are logic functions, i.e. f : Bn ×Bm →
Bn and h : Bn → Bp. By resorting to the semi-tensor product
n, the BCN (2) can be described as [3]

x(t+ 1) = Ln u(t) n x(t),
y(t) = H n x(t) = Hx(t), t ∈ Z+,

(3)

where x(t) ∈ LN ,u(t) ∈ LM and y(t) ∈ LP , with N :=
2n,M := 2m and P := 2p. L ∈ LN×NM and H ∈ LP×N
are matrices whose columns are canonical vectors. For every
u(t) = δjM , we set Lj := Ln u(t) ∈ LN×N .

The set Buy of the input/output trajectories of the BCN (3)
is the set of all pairs (u(t),y(t))t∈Z+ such that (y(t))t∈Z+ is
the output trajectory generated by (3) corresponding to some
initial state x(0) = x0 ∈ LN and to the input (u(t))t∈Z+ .

Definition 1: [19] The set Buy is

• left-shift invariant if (u(t),y(t))t∈Z+ ∈ Buy implies
(u(t+ k),y(t+ k))t∈Z+ ∈ Buy for every k ∈ Z+;

• complete if (u(t),y(t))|[τ,τ+T ] ∈ Buy|[τ,τ+T ] for every
τ, T ∈ Z+ implies (u(t),y(t))t∈Z+ ∈ Buy;

• T -complete if (u(t),y(t))|[τ,τ+T ] ∈ Buy|[τ,τ+T ] for
every τ ∈ Z+ implies (u(t),y(t))t∈Z+ ∈ Buy .

Proposition 1: Buy is left shift-invariant and complete.
Proof: Left shift-invariance is obvious, so we only need

to prove completeness. Given a sequence (u(t),y(t))t∈Z+ ∈
(LM×LP )Z+ , we consider its restrictions to all finite windows
[0, T ], with T ∈ Z+. If (u(t),y(t))|[0,T ] ∈ Buy|[0,T ] , the set

X T0 := {x0 ∈ LN : Hx0 = y(0), H(Ln u(0) n x0) = y(1),
H(Ln u(1) n Ln u(0) n x0) = y(2), ...,
H(Ln u(T − 1) n . . . Ln u(0) n x0) = y(T )}

of initial states that are compatible with this portion of
trajectory is not empty. Also, X 0

0 ⊇ X 1
0 ⊇ X 2

0 ⊇ ....
As these sets have finite cardinality, if limT→+∞ X T0 = ∅,
i.e., (u(t),y(t))t∈Z+ 6∈ Buy , then there must be a finite T̃

(depending on the specific pair) such that X T̃0 = ∅. So, by
performing a check on the windows [0, T ], T ∈ Z+ (and hence
on all finite windows [τ, τ + T ], τ, T ∈ Z+), we can decide
whether a given sequence is a trajectory of Buy or not.

As clarified in the previous proof, for every sequence
(u(t),y(t))t∈Z+ ∈ (LM × LP )Z+ that is not in Buy there
exists T̃ ∈ Z+ such that (u(t),y(t))|[0,T̃ ] 6∈ Buy|[0,T̃ ] .
However, in general, we cannot put an upper bound on the
length T̃ , since it may depend on the specific sequence. This
amounts to saying that the Buy may be complete but not
necessarily T -complete (see Example 1 in [7]).

T -completeness of Buy is equivalent to the fact that by
suitably concatenating two input/output trajectories in Buy ,
that coincide on T consecutive time instants, we obtain another
trajectory in Buy . This fact, whose proof follows the same
lines as the one given by J.C. Willems in [19], is essential
in order to provide the graph theoretic characterization of T -
completeness given in Proposition 2, below.

Lemma 1: The set Buy is T -complete if and only if,
for every choice of the trajectories (u1(t),y1(t))t∈Z+ ,
(u2(t),y2(t))t∈Z+ in Buy and every τ ∈ Z+, condition

(u1(t),y1(t)) = (u2(t),y2(t)), ∀ t ∈ [τ, τ + T − 1], (4)

implies that Buy includes the pair

(u(t),y(t)) :=
{

(u1(t),y1(t)), 0 ≤ t ≤ τ − 1;
(u2(t),y2(t)), t ≥ τ ; t ∈ Z+,

Proposition 2: The set Buy is not T -complete for any
choice of T if and only if two distinct states x′ and x′′ ∈ LN
can be found such that the following three conditions hold:

i) there exists a periodic input (u(t))t∈Z+ such that the state
trajectories (x1(t))t∈Z+ , with x1(0) = x′, and (x2(t))t∈Z+ ,
with x2(0) = x′′, are periodic, and the corresponding output
sequences, (y1(t))t∈Z+ and (y2(t))t∈Z+ coincide;

ii) there exist xin ∈ LN , r ∈ Z+, r > 0, and an input
sequence ũ(0), ũ(1), . . . , ũ(r − 1) that drives the state from
x(0) = xin to x(r) = x′, meanwhile generating the output
sequence ỹ(0), ỹ(1), . . . , ỹ(r − 1), but x′′ cannot be reached
at t = r, by making use of the same input sequence and
generating the same output sequence;

iii) there exists an input sequence (ū(t))t∈Z+ that if ap-
plied starting from x(0) = x′′ generates an output sequence
(ȳ(t))t∈Z+ that cannot be generated by applying the same
input starting from x(0) = x′.

Proof: Suppose that conditions i)-iii) hold and let k be the
common period of the input/state trajectories (x1(t),u(t))Z+

and (x2(t),u(t))Z+ . Note that, for every choice of T , there
exist c, d ∈ Z+ and q ∈ [0, k − 1] such that ck ≥ T and
r = dk − q, and consider the two input/output trajectories
described as follows:

(û1(t), ŷ1(t)) =
{

(ũ(t), ỹ(t)), 0 ≤ t ≤ r − 1;
(u(t− r),y1(t− r)), t ≥ r;

(û2(t), ŷ2(t))=
{

(u(t+ q),y2(t+ q)), 0 ≤ t ≤ ck + r − 1;
(ū(t− ck − r), ȳ(t− ck − r)), t ≥ ck + r.

By the assumptions i)-iii) both these trajectories belong to Buy

but, even if they coincide in the time interval [r, r+ ck−1] ⊇
[r, r+T−1], they cannot be concatenated together thus getting
a new trajectory in Buy . Indeed, the trajectory

(û(t), ŷ(t)) =
{

(û1(t), ŷ1(t)), 0 ≤ t ≤ r − 1;
(û2(t), ŷ2(t)), t ≥ r;

is not in Buy . Therefore, by Lemma 1, Buy is not T -complete.
Conversely, suppose that Buy is not T -complete for any

choice of T and introduce the following notation. Given a
sequence (u(t),y(t))t∈Z+ ∈ (LM ×LP )Z+ , let X (u(t),y(t))
denote the (possibly empty) set of state trajectories compatible
with it, namely the set of all state trajectories (x(t))t∈Z+ ∈
(LN )Z+ such that, by choosing x(0) as initial state and
(u(t))t∈Z+ as input, one gets (x(t))t∈Z+ and (y(t))t∈Z+ as
state and output trajectories, respectively.
Assume, without loss of generality, that T ≥ MPN2 +
1. By Lemma 1, there exist two input/output trajectories
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(u1(t),y1(t))t∈Z+ , (u2(t),y2(t))t∈Z+ ∈ Buy and τ ∈ Z+

such that condition (4) holds, but the pair

(u(t),y(t)) :=
{

(u1(t),y1(t)), 0 ≤ t ≤ τ − 1;
(u2(t),y2(t)), t ≥ τ ; t ∈ Z+,

does not belong to Buy . Consider two state trajectories:
(x1(t))t∈Z+ ∈ X (u1,y1(t)) and (x2(t))t∈Z+ ∈ X (u2,y2(t)).
By the assumption on T and condition (4), there exist
ta, tb ∈ [τ, τ + T − 1], ta < tb, such that (u1(ta),y1(ta)) =
(u2(ta),y2(ta)) = (u2(tb),y2(tb)) = (u1(tb),y1(tb)), and
(x1(ta),x2(ta)) = (x1(tb),x2(tb)).

Clearly, x′ := x1(ta) 6= x2(ta) =: x′′, otherwise
the two state trajectories (x1(t))t∈Z+ ∈ X (u1,y1(t)) and
(x2(t))t∈Z+ ∈ X (u2,y2(t)) would coincide till t = τ +T −1
and hence the two input/output trajectories could be concate-
nated. So, the two distinct periodic state/input sequences of
period k := tb − ta obtained as

(xp1(t),u(t)) :=
{

(x1(t+ ta),u1(t+ ta)), 0 ≤ t ≤ k − 1;

(xp1(t− k),u(t− k)), t ≥ k

(xp2(t),u(t)) :=
{

(x2(t+ ta),u2(t+ ta)), 0 ≤ t ≤ k − 1;

(xp2(t− k),u(t− k)), t ≥ k

and hence corresponding to the same input, generate the same
output sequence, thus proving i). By the way these trajec-
tories have been obtained from (u1(t),y1(t))t∈Z+ , (u2(t),
y2(t))t∈Z+∈Buy , conditions ii) and iii) are satisfied, too.

Proposition 2 shows that T -completeness is related to the
way a BCN can “reach” and “leave” its periodic trajectories.
Fig. 1 illustrates the idea underlying Proposition 2. The two
cycles represent the two periodic state trajectories obtained
starting from x′ and x′′, respectively, corresponding to the
input u and generating the same output y1 = y2 (condition
i)). In the upper trajectory, the state xin can be connected to
x′ through the input ũ, while generating the output ỹ, but no
state can be connected to x′′, by resorting to ũ, in the lower
trajectory, while generating the output ỹ (condition ii)). The
input output pair (ū, ȳ), appearing in the lower trajectory but
prohibited in the upper one, illustrates condition iii).
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Fig. 1: Intuitive description of lack of T -completeness

III. FAULT DETECTION

Given a BCN, we want to investigate the problem of
determining, from the measurement of its input and output
trajectories, whether a fault has affected the BCN functioning.
The first step toward this direction is to define what do
we mean by a fault and what may be the outcome of a
fault. Here we consider the basic set-up of a BCN with two
possible configurations: a non-faulty (NF) and a faulty (F)

one, and the fault affects only the state-update, not the output
measurements. We henceforth represent the non-faulty BCN
as in (3) and the faulty one as

x(t+ 1) = L(F ) n u(t) n x(t),
y(t) = H n x(t) = Hx(t), t ∈ Z+,

(5)

and we set L(F )
j := L(F )nδjM , j ∈ [1,M ]. If we introduce the

fault signal (f(t))t∈Z+ , taking values in L2, and we assume
that f(t) = δ12 corresponds to the non-faulty BCN and f(t) =
δ22 to the faulty one, the overall BCN dynamics becomes

x(t+ 1) = L̃n f(t) n u(t) n x(t),
y(t) = H n x(t) = Hx(t), t ∈ Z+.

(6)

where L̃ := [L L(F ) ] ∈ LN×2NM . We assume that the
BCN cannot autonomously recover from a fault; so once the
fault signal switches from δ12 to δ22 , it cannot switch back to
δ12 , and the fault sequence is described by a step function

f(t) =
{
δ12 , for 0 ≤ t < t̄;
δ22 , for t ≥ t̄, (7)

where t̄ = +∞ in case no fault affects the BCN. We want
to investigate under what conditions we can detect the fault
occurrence from the measurement of the input and output
sequences generated by the BCN (6). To better formalize this
problem and its solution, we denote by x(t; x0,u(·), f(·)) and
y(t; x0,u(·), f(·)), the state and output vectors of the BCN
(6) at time t, when it starts from x(0) = x0 and the input and
fault sequences are u(·) and f(·), respectively.

As a preliminary remark, we notice that a fault taking
place at time t̄, for certain values of x̄ := x(t̄) ∈ LN and
u(t), t ≥ t̄, may not reveal itself. Indeed, it is possible that
the state trajectory generated by the faulty BCN (5) starting
from x̄ at t = t̄, under the effect of u, coincides with the
state trajectory that the non-faulty BCN (3) generates in the
same conditions. This is not an unreasonable situation, since
it corresponds to the case when the faulty part of the system
is not involved in the dynamic evolution and hence the fault
cannot be detected. Under this perspective, it is convenient to
introduce the concept of meaningful fault.

Definition 2: Given an initial state x0 ∈ LN and an input
sequence (u(t))t∈Z+ , a fault sequence (f(t))t∈Z+ induces
a meaningful fault for the BCN (6) if the state trajectory
(x(t; x0,u(·), f(·)))t∈Z+ , generated by (6) corresponding to
x0, u and f , is different from the state trajectory (x(t; x0,u(·),
δ12))t∈Z+ (which coincides with the one) generated by the non-
faulty system (3) corresponding to the same initial condition
and input.

Meaningful fault sequences are the only ones we may hope
to detect, by making use of the input and output trajectories,
and hence we will restrict our attention to them. Moreover,
we will move our attention from the time t̄ to the first time
tf ≥ t̄ a meaningful fault modifies the state trajectory We can
now formalize the concept of detectable fault.

Definition 3: Given a BCN (6), an initial state x0 ∈ LN , an
input sequence (u(t))t∈Z+ , and a (meaningful) fault sequence
(f(t))t∈Z+ , we say that the (meaningful) fault is detectable if
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the input/output pair (u(t),y(t; x0,u(·), f(·))t∈Z+ generated
by the BCN (6) does not belong to Buy .
To answer the problem we posed, it is convenient to define

X∗ := {x∗ ∈ LN : ∃ u∗ ∈ LM s.t.
Ln u∗ n x∗ 6= L(F ) n u∗ n x∗}, (8)

and, for every x∗ ∈ X∗,
U∗(x∗) := {u∗ ∈ LM : Lnu∗nx∗ 6= L(F ) nu∗nx∗}. (9)

Also, UY ∗ denotes the set of input/output trajectories
(u(t),y(F )(t)) ∈ (LM ×LP )Z+ generated by the faulty BCN
(5) corresponding to some x(0) = x∗ ∈ X∗ and to some input
(u(t))t∈Z+ with u(0) ∈ U∗(x∗). In other words, we focus on
input/output trajectories for which a fault located at t = 0 is
meaningful and modifies that state evolution starting at t = 1.

Proposition 3: For the BCN (6) the following facts are
equivalent:

i) for every initial condition x0 ∈ LN and every input
sequence (u(t))t∈Z+ , every fault that is meaningful (for the
specific choice of x0 and u) is also detectable;

ii) UY ∗ ∩Buy = ∅. (10)

Proof: If condition (10) does not hold, there exist
x0 ∈ X∗ and (u(t))t∈Z+ , with u(0) ∈ U∗(x0), such that
f(t) = δ22 ,∀ t ∈ Z+, is a meaningful fault sequence, but
the fault cannot be detected. Conversely, suppose there exist
x0 ∈ X∗ and an input sequence (u(t))t∈Z+ , for which some
fault sequence (f(t))t∈Z+ , described as in (7), is meaningful
but not detectable. This means that the corresponding pair
(u(t),y(t))t∈Z+ belongs to Buy . If tf ≥ t̄ is the first time
instant such that Ln u(tf ) n x(tf ) 6= L(F ) n u(tf ) n x(tf ),
then x(tf ) ∈ X∗, u(tf ) ∈ U∗(x(tf )) and the portion of
input/output trajectories (u(t),y(t))|[tf ,+∞) belongs to both
UY ∗ and Buy , thus contradicting (10).

Condition (10) can be checked by resorting to a graph
theoretic approach. The idea is to introduce a graph that is
able to keep in parallel the state-transitions in the non-faulty
BCN and in the faulty one, starting from any pair of states and
corresponding to any input sequence. We introduce the NF-F
(non-faulty-faulty) directed graph G = (V, E), where
• the vertex set V is the set of all pairs of states, namely
{(δiN , δ

j
N ) ∈ LN × LN};

• the labeled edge set E is defined as follows: there is an edge
labeled by u ∈ LM from the pair (δiN , δ

j
N ) to the pair (δhN , δ

k
N )

if and only if δhN = LnunδiN and δkN = L(F )nunδjN . Note
that from every pair (δiN , δ

j
N ) there are M outgoing arcs, one

for each value of the input u.
The vertex set is partitioned into 2 classes: C0 and C1. A pair
(δiN , δ

j
N ) belongs to C1 if HδiN = HδjN , while it belongs to

C0 if HδiN 6= HδjN .
Proposition 4: Given the BCN (6), let G = (V, E) be

the associated NF-F directed graph. All meaningful faults
affecting the BCN are detectable if and only if each path in
G endowed with the properties:
P1) it starts from some vertex pair (x0,x∗) ∈ LN ×X∗;
P2) the first arc of the path (outgoing from (x0,x∗)) is labeled
by some u∗ ∈ U∗(x∗);
eventually enters the class C0.

Proof: Condition (10) holds if and only if for every
x∗ ∈ X∗, every u∗ ∈ U∗(x∗), and every input sequence
(u(t))t∈Z+ , with u(0) = u∗, no state x0 ∈ LN can be
found such that y(t; x0,u(·), δ12) = y(t; x∗,u(·), δ22), for
every t ∈ Z+. This amounts to saying that for every x∗ ∈ X∗,
every u∗ ∈ U∗(x∗), every input sequence (u(t))t∈Z+ , with
u(0) = u∗, and every state x0 ∈ LN there exists a time
instant t̂ ≥ 0 such that x1 := x(t̂; x0,u(·), δ12) generates an
output that is different from the output generated by x2 :=
x(t̂; x∗,u(·), δ22). This simply means that (x1,x2) ∈ C0.

Remark 1: Proposition 4 provides a necessary and suffi-
cient condition for all meaningful faults to be detectable. The
existence of a not detectable meaningful fault corresponds,
henceforth, to the case when a path can be found, satisfying
P1) and P2) but never leaving the class C1. This ensures the
existence in C1 of a cycle that can be reached from the pair
(x0,x∗). Note that the existence of a cycle in C1 is equivalent
to the existence of a not detectable fault. However, this fault
is not necessarily meaningful, unless it can be reached starting
from a pair (x0,x∗) satisfying P1) and P2).

Remark 2: Proposition 4 provides a way (at least when
N,M and P are not too large) to check whether meaningful
faults are always detectable. Indeed, one simply needs to ex-
plore in the NF-F graph all the paths endowed with properties
P1) and P2) and see after how many steps they enter C0.
One may wonder how long these paths may be, in the worst
case, and hence how heavy is this test from a computational
viewpoint. If every path satisfying P1) and P2) eventually
enters C0, it cannot encounter the same vertex pair in C1

twice. So its length is upper bounded by the cardinality of
C1, and, in the worst case, the maximum number of distinct
path (of length |C1| ) we have to evaluate in the NF-F digraph
is upper-bounded by |X∗|R(maxx∗∈X∗ |U∗(x∗)|)M |C1|−1 �
N2M |C1|, where R is the cardinality of the largest set of states
that correspond to the same output value.

Remark 3: If all meaningful faults are detectable, when
any such fault f affects the BCN and tf denotes the smallest
t ≥ 0 such that x(t,x(0),u(·), f(·)) 6= x(t,x(0),u(·), δ12),
we have (u(t),y(t))|[0,tf+D] 6∈ Buy|[0,tf+D], and f can be
detected within D ≤ |C1| time instants from tf . As there are
no upper bounds on tf , the idea of storing the input/output
data from t = 0 to t = tf + D is not feasible, unless we
assume the T -completeness of Buy for some T ≥ 0. If so,
we can store and update the samples on a sliding window of
length T + 1. As we will see in the next section, in order to
detect faults it is more convenient to exploit the knowledge of
the internal structure of the BCN, thus performing detection
algorithms that do not require the T -completeness of Buy .

Example 1: Consider a BCN (3) with N = 4, M = 2,
P = 4 and

L1 := Ln δ12 = [ δ24 δ34 δ24 δ44 ] ,
L2 := Ln δ22 = [ δ14 δ34 δ44 δ44 ] ,
H := [ δ14 δ24 δ24 δ34 ] .

The BCN is represented by the digraph of Fig. 2, obtained by
overlapping the digraphs D(L1) and D(L2). (Blue) continuous
arcs belong to D(L1), while (red) dashed arcs belong to
D(L2). For each vertex j (corresponding to δj4), in addition



5

to the two outgoing arcs describing the state transitions asso-
ciated with u = δ12 and u = δ22 , there is an arrow describing
the output value associated with it (y = δj4, j ∈ [1, 4]).

1" 2"

3"4"

u=δ22"

u=δ21"

u=δ22"

u=δ21"

u=δ21"
u=δ22"

u=δ21"

u=δ22"

y=δ41"

y=δ42"

y=δ42"

y=δ43"

Fig. 2: Digraph corresponding to the (non-faulty) BCN of Example 1

Assume, now, that, as a consequence of a fault, the matrices
describing the BCN become (see Fig. 3)

L
(F )
1 := L(F ) n δ12 = [ δ44 δ34 δ24 δ44 ] ,

L
(F )
2 := L(F ) n δ22 = [ δ14 δ34 δ44 δ14 ] ,
H := [ δ14 δ24 δ24 δ34 ] .

It is easy to see that L(F ) = [L(F )
1 L

(F )
2 ] differs from

L = [L1 L2 ] only in the first and last columns. X∗ =
{δ14 , δ44} and U∗(δ14) = {δ12}, while U∗(δ44) = {δ22}. In the
NF-F directed graph, all paths starting from (x0, δ

1
4), with first

outgoing arc labelled by δ12 , either start in C0 (for x0 6= δ14)
or reach C0 in one step.

1" 2"

3"4"

u=δ22"

u=δ21"

u=δ22"

u=δ21"
u=δ21"

u=δ22"

u=δ21"u=δ22"

y=δ41"

y=δ42"

y=δ42"

y=δ43"

Fig. 3: Faulty version of the BCN in Example 1
All paths starting from (x0, δ

4
4), with first outgoing arc labelled

by δ22 , either start in C0 (for x0 6= δ44) or reach C0 in one step.
So, all meaningful faults are detectable in D = 1 step. ♠

IV. FAULT DETECTION ALGORITHMS

In this section we propose two different solutions to the
problem of testing whether a fault occurred or not, by as-
suming that all meaningful faults are detectable, but Buy

is not necessarily T -complete. The ideas underlying the two
algorithms are two classical ones, well known in the literature
about model-based fault detection for linear systems since the
eighties (see [8], [10]). The first algorithm relies on the idea of
producing copies of the original systems that are not affected

by faults. By comparing the outputs they produce with the
output produced by the (potentially faulty) real system, one
can detect fault occurrence. The second algorithm, on the other
hand, exploits observer-based fault detection, one of the most
popular techniques based on analytical redundancy. The idea is
to use the BCN input and output to estimate the current BCN
state. If none of the possible N states is compatible with the
input and output values generated by the BCN up to some time,
a fault has occurred. From a computational viewpoint, we have
in both cases dynamical systems working in parallel with the
original BCN. The first technique requires r ≤ R < N (the
meaning of the symbols will be explained below) copies of the
original BCN, but the fault detection algorithm reduces to a
simple comparison. The second technique, on the other hand,
is based on a Boolean system of size N that at each steps
performs two Boolean products and one AND operation.

A. Fault-detection based on physical redundancy
Since the initial state of the BCN is a canonical vector in

LN , for any input sequence u(t), t ∈ Z+, there are N (not
necessarily distinct) output trajectories. If the output trajectory
we get from the BCN under observation is not one of them,
the system is faulty. So, a simple idea is to compare the output
trajectory of the BCN under observation with those of N non-
faulty BCNs, starting from one of the possible states in LN and
stimulated by the same input. This idea can be further refined.
First, we do not need N copies of the non-faulty BCN to make
a comparison. Indeed, from the output at time t = 0 we know
that only the states belonging to XNF

0 := {δiN : HδiN = y(0)}
are admissible, and the others can be discarded at the first step.
Therefore we keep at most R copies of the BCN (3), where R
is the cardinality of the largest set of states that correspond to
the same output value. Second, as soon as the output of any of
these BCN copies differs from the output of the BCN under
observation, the comparison does not need to be carried on.

Algorithm 1
[Initialization] Set τ := 0,XNF

0 := {δiN : HδiN =
y(0)} = {δi1N , δ

i2
N , . . . , δ

ir
N}, where r := |XNF

0 | ≤ R denotes
the cardinality of the set XNF

0 . For k = 1, 2, . . . , r, we
let (x(k)(t))t∈Z+ and (y(k)(τ))t∈Z+ denote the state and the
output trajectories of the kth copy of the non-faulty BCN
starting from x(k)(0) := δikN , and corresponding to (u(t))t∈Z+ .

We let Cτ be the set of the indices of the non-faulty BCNs
whose output trajectory coincides with the output trajectory y
of the BCN under observation up to time τ , and initialize C0

as C0 := [1, r].
[Recursive step] Set τ := τ + 1. For every k ∈ Ct−1, if

y(k)(τ) 6= y(τ), then set Cτ := Cτ−1 \ {k}. If Cτ = ∅, then
a fault has occurred and the algorithm stops. Otherwise repeat
the recursive step.

B. Observer-based fault detection
A way to test whether a fault occurred or not, consists in

verifying, at every time τ , whether the set XNF
τ of the states

that the non-faulty BCN (3) can reach at time τ , under the
effect of the input sequence u(t), t ∈ [0, τ − 1], meanwhile
generating the output y(t), t ∈ [0, τ ], is non-empty.

In other words, one starts at time τ = 0 by determining the
set XNF

0 of the initial states compatible with y(0). At τ = 1,
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one evaluates XNF
1 of the states that are compatible with y(1)

and can be obtained from the states in XNF
0 by applying u(0).

By proceeding in this way, we obtain the sequence of sets
XNF
τ , whose cardinality decreases with τ . If for some τ we

have XNF
τ = ∅, a fault has occurred. On the other had, if

XNF
τ 6= ∅, the portion of trajectory (u(t),y(t))[0,τ ] belongs

to Buy|[0,τ ], but considering the delay in revealing the fault,
we can only ensure that no meaningful fault had affected the
system up to time τ − D + 1. At every time τ the indices
of the states that are compatible with a given output sample
δjP are the indices of the unitary entries of the Boolean vector
H>δjP . In detail, the algorithm is the following one:
Algorithm 2

[Initialization] Set τ := 0,XNF
0 := {δiN : HδiN = y(0)} =

{δiN : [H>y(0)]i = 1} and v0 :=
∑
δiN∈XNF

0
δiN = H>y(0).

[Recursive step] Set τ := τ + 1, and

XNF
τ := {δiN : [Lnu(τ−1)nvτ−1]i = 1∧ [H>y(τ)]i = 1}.

If XNF
τ = ∅ then a fault occurred: STOP. Otherwise set vτ :=∑

δiN∈XNF
τ

δiN and repeat the recursive step.

- BCN -

- NF-BCN(1) -

- NF-BCN(r) -

u

y

y(1)

y(r)

Fig. 4: Block scheme corresponding to Algorithm 1

-y(0)
v0 = H>y(0)

? ?

u(0)

-y(1)
v1 = [H>y(1)] ∧ [Ln u(0) n v0]

? ?

u(1)

-y(2)
v2 = [H>y(2)] ∧ [Ln u(1) n v1]

? ?
Fig. 5: Flowchart corresponding to Algorithm 2

Example 2: Consider the BCN (3) with matrices

L1 := Ln δ12 = [ δ24 δ34 δ44 δ14 ] ,
L2 := Ln δ22 = [ δ14 δ34 δ34 δ24 ] ,
H := [ δ12 δ12 δ22 δ22 ] ,

initialized at t = 0 with x(0) = δ14 . Assume that at time t = 1
a fault occurs and the faulty BCN is described as follows

L
(F )
1 := L(F ) n δ12 = [ δ24 δ34 δ44 δ14 ] = L1,

L
(F )
2 := L(F ) n δ22 = [ δ14 δ34 δ34 δ14 ] ,

(while H is unaltered) We want to illustrate how the two al-
gorithms work when the input sequence is u(0) = δ12 ,u(1) =
δ12 ,u(2) = δ22 ,u(3) = δ12 ,u(4) = δ22 ,u(5) = δ22 , ... and the

measured output sequence is y(0) = δ12 ,y(1) = δ12 ,y(2) =
δ22 ,y(3) = δ22 ,y(4) = δ22 ,y(5) = δ12 ,y(6) = δ12 , ...

Algorithm 1:
For τ = 0, one has XNF

0 = {δ14 , δ24}. C0 = [1, 2], x(1)(0) =
δ14 → y(1)(0) = δ12 , x(2)(0) = δ24 → y(2)(0) = δ12 . For
τ = 1, one has x(1)(1) = δ24 → y(1)(1) = δ12 , x(2)(1) =
δ34 → y(2)(1) = δ22 , and hence C1 = [1]. For τ = 2, one has
x(1)(2) = δ34 → y(1)(2) = δ22 and hence C2 = [1]. For τ = 3,
one has x(1)(3) = δ34 → y(1)(3) = δ22 and hence C3 = [1].
For τ = 4, one has x(1)(4) = δ44 → y(1)(4) = δ22 and hence
C4 = [1]. For τ = 5, one has x(1)(5) = δ24 → y(1)(5) = δ12
and hence C5 = [1]. Finally, for τ = 6, one has x(1)(6) =
δ34 → y(1)(6) = δ22 and hence C6 = ∅. A fault has occurred.

Algorithm 2:
XNF

0 = {δ14 , δ24},v0 = [ 1 1 0 0 ]> .
XNF

1 = {δ24},v1 = [ 0 1 0 0 ]> .
XNF

2 = {δ34},v2 = [ 0 0 1 0 ]> .
XNF

3 = {δ34},v3 = [ 0 0 1 0 ]> .
XNF

4 = {δ44},v4 = [ 0 0 0 1 ]> .
XNF

5 = {δ24},v5 = [ 0 1 0 0 ]> .
XNF

6 = ∅. A fault has occurred.
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