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Abstract

The aim of this paper is to introduce and characterize observability and reconstructibility properties

for Boolean networks and Boolean control networks, described according to the algebraic approach

proposed by D. Cheng and co-authors in the series of papers [3], [6], [7] and in the recent monography

[8]. A complete characterization of these properties, based both on the Boolean matrices involved in

the network description and on the corresponding digraphs, is provided. Finally, the problem of state

observer design for reconstructible BNs and BCNs is addressed, and two different solutions are proposed.

I. INTRODUCTION

Research interests in Boolean networks (BNs) have been motivated by the large number of

natural and artificial systems whose describing variables display only two distinct configurations,

and hence take only two values. Originally introduced to model simple neural networks, BNs

have recently proved to be suitable to describe and simulate the behavior of genetic regulatory

networks. Indeed, regulatory genes inside the cells act just like switches, that may take either an

“on” or an “off” state (1 and 0, respectively), and this discovery led Kauffman [14] to introduce

random Boolean networks as models for genetic networks (see also [23]).
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As a further application area, BNs have also been used to describe the interactions among

agents and hence to investigate consensus problems [12], [21].

BNs are autonomous systems, since they evolve as automata, whose dynamics is uniquely

determined once the initial conditions are assigned. On the other hand, when the network behavior

depends also on some (Boolean) control inputs, the concept of BN naturally extends to that of

Boolean control network (BCN).

In the last decade, D. Cheng and co-workers have developed an algebraic framework to deal

with both BNs and BCNs [3], [4], [5], [6], [7]. Their research efforts resulted in the recent

monography [8], where several theoretic problems, ranging from stability and stabilizability to

controllability, disturbance decoupling and optimal control, have been investigated. Even more,

they stimulated further research in this area (see, for instance [1], [9], [16], [18], [20]), aimed

at deepening specific control issues.

The main idea underlying this approach is that a Boolean network with n state variables

exhibits 2n possible configurations, and if any such configuration is represented by means of a

canonical vector of size 2n, all the logic maps that regulate the state-updating can be equivalently

described by means of 2n × 2n Boolean matrices. As a result, every Boolean network can be

described as a discrete-time linear system. In a similar fashion, a Boolean control network can be

converted into a discrete-time bilinear system or, more conveniently, it can be seen as a family

of BNs, each of them associated with a specific value of the input variables, and in that sense

it represents a switched system.

As a consequence of this algebraic set-up, logic-based problems can be converted into algebraic

problems and hence solved by resorting to the standard mathematical tools available for linear

state-space models and, in particular, for positive state-space models [10], [22], first of all graph

theory.

In this paper, by following this stream of research, we first address and characterize observ-

ability and reconstructibility of Boolean networks. Then, we extend this analysis to the class

of BCNs. Finally, we address the problem of designing a state observer for a BCN. In detail,

the paper is organized as follows: in section II we introduce and characterize observability, by

first considering two elementary cases (BNs consisting of a single cycle or of a single cycle and

some vertices accessing that cycle), and then moving to the general case. Reconstructibility is
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the focus of section III, where it is proved that this property is equivalent to the observability

of the reduced BN consisting of all the states of the BN that belong to some cycle.

Observability and reconstructibility for BCNs are introduced and investigated in sections IV

and V, respectively. Finally, in section VI, the observer design problem for BCNs (and hence,

as a corollary, for BNs), under the reconstructibility assumption, is analyzed, and two different

solutions are proposed. A preliminary version of the first part of the paper has been accepted

for presentation at the next CDC 2012 conference [11].

Notation. Z+ denotes the set of nonnegative integers. Given two integers k, n ∈ Z+, with

k ≤ n, by the symbol [k, n] we denote the set of integers {k, k+1, . . . , n}. We consider Boolean

vectors and matrices, taking values in B := {0, 1}, with the usual operations (sum +, product ·

and negation ¬).

δik will denote the ith canonical vector of size k, Lk the set of all k-dimensional canonical

vectors, and Lk×n ⊂ Bk×n the set of all k×n matrices whose columns are canonical vectors of

size k. Any matrix L ∈ Lk×n can be represented as a row vector whose entries are canonical

vectors in Lk, namely L = [ δi1k δi2k . . . δink ] , for suitable indices i1, i2, . . . , in ∈ [1, k].

A permutation matrix Π is a nonsingular square matrix in Lk×k. In particular, a matrix

Π = C =



0 0 . . . 0 1

1 0 . . . 0 0

0 1
. . . 0 0

...
... . . . . . . ...

0 0 . . . 1 0


= [ δ2

k δ3
k . . . δkk δ1

k ] (1)

is a k × k cyclic (permutation) matrix.

Given a matrix L ∈ Bk×k (in particular, L ∈ Lk×k), we associate with it [2] a digraph D(L),

with vertices 1, . . . , k. There is an arc (j, `) from j to ` if and only if the (`, j)th entry of L

is unitary. A sequence j1 → j2 → . . . → jr → jr+1 in D(L) is a path of length r from j1 to

jr+1 provided that (j1, j2), . . . , (jr, jr+1) are arcs of D(L). A closed path is called a cycle. In

particular, a cycle γ with no repeated vertices is called elementary, and its length |γ| coincides

with the number of (distinct) vertices appearing in it. Note that a k × k cyclic matrix has a

digraph that consists of one elementary cycle with length k.

There is a bijective correspondence between Boolean variables X ∈ B and vectors x ∈ L2,
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defined by the relationship

x =

[
X

¬X

]
.

We introduce the (left) semi-tensor product n between matrices (and hence, in particular, vectors)

as follows [8], [17], [19]: given L1 ∈ Rr1×c1 and L2 ∈ Rr2×c2 (in particular, L1 ∈ Lr1×c1 and

L2 ∈ Lr2×c2), we set

L1 n L2 := (L1 ⊗ IT/c1)(L2 ⊗ IT/r2), T := l.c.m.{c1, r2},

where l.c.m. denotes the least common multiple. The semi-tensor product represents an extension

of the standard matrix product, by this meaning that if c1 = r2, then L1 nL2 = L1L2. Note that

if x1 ∈ Lr1 and x2 ∈ Lr2 , then

x1 n x2 ∈ Lr1r2 .

For the various properties of the semi-tensor product we refer to [8]. By resorting to the semi-

tensor product, we can extend the previous correspondence to a bijective correspondence between

Bn and L2n . This is possible in the following way: given X = [X1 X2 . . . Xn ]> ∈ Bn set

x :=

[
X1

¬X1

]
n

[
X2

¬X2

]
n . . .n

[
Xn

¬Xn

]
.

This amounts to saying that

x = [X1X2 . . . Xn−1Xn, X1X2 . . . Xn−1
¬Xn, X1X2 . . .¬Xn−1Xn, . . . , ¬X1

¬X2 . . .¬Xn−1
¬Xn ]> .

II. OBSERVABILITY OF BOOLEAN NETWORKS

A Boolean Network (BN) is described by the following equations

X(t+ 1) = f(X(t)),

Y (t) = h(X(t)), t ∈ Z+,
(2)

where X(t) and Y (t) denote the n-dimensional state variable and the p-dimensional output

variable at time t, taking values in Bn and Bp, respectively. f and h are (logic) functions,

namely maps f : Bn → Bn and h : Bn → Bp. Upon representing the state and the output vectors
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X(t) and Y (t) by means of their equivalent x(t) and y(t) in LN and LP , respectively, where

N := 2n and P := 2p, the BN (2) can be described [8] as

x(t+ 1) = Ln x(t) = Lx(t),

y(t) = H n x(t) = Hx(t), t ∈ Z+,
(3)

where L ∈ LN×N and H ∈ LP×N are matrices whose columns are canonical vectors of size N

and P , respectively.

Definition 1: Given a BN (3),

• two states x1 = δiN and x2 = δjN are said to be indistinguishable, if the two output evolutions

of the BN starting at t = 0 from x(0) = x1 and from x(0) = x2, respectively1, coincide at

every time instant t ∈ Z+; otherwise they are distinguishable;

• the BN is said to be observable if every two distinct states are distinguishable.

In order to analyze the observability problem, we introduce a family of equivalence relations

on the set LN of all states. We say that x1 and x2 are indistinguishable in k steps (x1 ∼k x2)

if the output evolutions, say y1(t) and y2(t), stemming from x1(0) = x1 and x2(0) = x2,

respectively, coincide for every t ∈ [0, k − 1]. The equivalence relation ∼k partitions LN into

disjoint classes. We let C∼,k be the set of such classes. It is easily seen that if two states are

indistinguishable in k + 1 steps then they are indistinguishable in k steps, while the converse

is not necessarily true. Therefore the cardinality of the set C∼,k+1 in general is greater than or

equal to the cardinality of C∼,k, and

|C∼,1| ≤ |C∼,2| ≤ |C∼,3| ≤ . . . . (4)

On the other hand, it can be shown [11] that if, for some positive integer k, |C∼,k| = |C∼,k+1|,

then C∼,k = C∼,k+1 and C∼,k = C∼,k+` for every ` ∈ Z+.

Note that condition |C∼,1| = 1 corresponds to the situation when all the BN states produce

the same output value, a situation that surely prevents the BN from being observable. So, when

discussing observability, we will always assume that ρ := |C∼,1|, which coincides with the

number of nonzero rows of H , is at least 2.

1In the following, we will denote the state and the output trajectories stemming from xi by xi(t) and yi(t), t ∈ Z+,

respectively. Accordingly, we will use xi(0) = xi for the initial state.
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Based on the above reasoning, we can prove a preliminary lemma.

Lemma 1: Given a BN (3), with ρ ≥ 2, consider two states x1 and x2 ∈ LN , and let y1(t) and

y2(t), t ∈ Z+, be the output trajectories stemming from x1(0) = x1 and x2(0) = x2, respectively.

Condition y1(t) = y2(t) for every t ∈ [0, N − ρ] implies y1(t) = y2(t) for every t ∈ Z+.

Proof: We only need to show that the smallest k such that |C∼,k| = |C∼,k+1| cannot be

greater than N − ρ + 1. This follows from the fact that |C∼,1| = ρ and, therefore, as far as the

sequence (4) is strictly increasing we have |C∼,k| ≥ k+ρ−1. On the other hand, |C∼,k| ≤ N for

every k. This ensures that |C∼,N−ρ+1| = |C∼,N−ρ+2|. Therefore, two output trajectories coincide

if and only if they coincide on the time interval [0, N − ρ].

As an immediate consequence of the previous lemma, a BN (3) is observable if and only if,

given the first N − ρ + 1 samples of any output trajectory of the BN, y(t), t ∈ [0, N − ρ], we

can determine the initial condition x(0) that has generated it. In fact, (see Example 1, below),

this bound is tight, by this meaning that there exist BNs for which N − ρ+ 1 output values are

required to determine the initial state.

Lemma 1 immediately leads to the following condition, which reminds of the analogous one

obtained for linear systems.

Proposition 1: A BN (3) is observable if and only if the observability matrix in N − 1 steps

ON−1 :=



H

HL

HL2

...

HLN−2


(5)

has N distinct columns.

As a further step, we want to relate the observability of a BN (3) to the structure of the

associated digraph D(L). To this goal, we first consider a BN whose digraph D(L) contains a

single cycle and all the other states access the cycle.

Proposition 2: Consider a BN (3), with

L =

[
W 0

T C

]
∈ LN×N ,
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where C is a k × k cyclic matrix and W is nilpotent. The BN is observable if and only if

i) [distinguishability of states before state merging] if i 6= j, condition LδiN = LδjN implies

HδiN 6= HδjN ;

ii) [distinguishability of states belonging to the cycle] every state belonging to the cycle, δiN , i ∈

[N − k + 1, N ], generates a periodic output trajectory with minimal period k.

Proof: [Necessity] If condition i) was not satisfied, the two initial states x1(0) = δiN and

x2(0) = δjN would produce the same state trajectory, starting at t = 1, and the corresponding

output trajectories, y1(t) and y2(t), t ∈ Z+, would coincide for every t ∈ Z+. Hence the two

states would be indistinguishable. On the other hand, if condition ii) is not satisfied, there would

be a state belonging to the cycle, say x(0) = δiN , i ∈ [N−k+1, N ], generating a periodic output

trajectory with minimal period k̄, a proper divisor of k, and hence it would be y(t+ k̄) = y(t)

for every t ∈ Z+. Consequently, the two states x(0) 6= x(k̄), belonging to the cycle, would be

indistinguishable.

[Sufficiency] We want to prove that if conditions i) and ii) hold, then the BN is observable.

Suppose it is not. Then two distinct states x1(0) = x1 and x2(0) = x2 can be found that

produce the same output trajectories, i.e. y1(t) = y2(t),∀ t ∈ Z+. If the two state trajectories

eventually coincide, then there exists a minimum t′ ∈ Z+ such that x1(t′ + 1) = x2(t′ + 1).

But then assumption i) is contradicted for the two distinct states x1(t′) = δiN and x2(t′) = δjN .

So, we now assume that, at every time t ∈ Z+, x1(t) 6= x2(t). Consider the sequence of

pairs (x1(t),x2(t)), t ∈ Z+. Since all such pairs take values in the finite set LN × LN , there

exist tm, tM ∈ Z+, with tm < tM , such that (x1(tm),x2(tm)) = (x1(tM),x2(tM)). As both

the trajectories x1(t) and x2(t) are periodic starting (at least) from t = tm, this means that

x1(tm) = δiN and x2(tm) = δjN , i 6= j, are indistinguishable states corresponding to the cyclic

part C. So, both these states, belonging to the cycle, generate a periodic output trajectory whose

minimal period is smaller than k.

Remark 1: Condition ii) in Proposition 2 can be simply restated by saying that the ordered

k-tuple (y(0),y(1), . . . ,y(k − 1)) corresponding to any periodic state trajectory is irreducible,

namely it cannot be obtained by repeating a shorter ordered sequence.
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Example 1: Consider the BN (3) with L = C an N ×N cyclic matrix and

H = [ δ1
2 δ1

2 . . . δ1
2 δ2

2 ] ∈ L2×N .

We may describe the BN by means of a suitable digraph, obtained by adding to D(L) the

information regarding the static output map H . This can be achieved by associating with each

node of D(L) a dashed arrow, labeled by the value of the corresponding output.

1	
  

y	
  =	
  δ21	
  

2	
  

y	
  =	
  δ21	
  
3	
  

y	
  =	
  δ21	
  

4	
  

y	
  =	
  δ21	
  

N	
  

y	
  =	
  δ22	
  
N-­‐1	
  

y	
  =	
  δ21	
  
N-­‐2	
  

y	
  =	
  δ21	
  

5	
  

y	
  =	
  δ21	
  

FIG. 1. Digraph corresponding to the BN of Example 1.

By Proposition 2 , the BN is observable. In order to determine x(0), consider the sequence

y(0),y(1), . . . ,y(N − 2). If all such vectors are equal to δ1
2 , then x(0) = δ1

N , otherwise if

y(t) = δ2
2 for some t ∈ [0, N−2], then x(t) = δNN and hence x(0) = δN−tN . Note that, in general,

it would not be possible to determine the initial state by stopping the output observation before

time t = N − 2. Finally, the observability matrix in N − 1 steps is

ON−1 =



H

HL

HL2

...

HLN−2


=



δ1
2 δ1

2 . . . δ1
2 δ1

2 δ2
2

δ1
2 δ1

2 . . . δ1
2 δ2

2 δ1
2

δ1
2 δ1

2 . . . δ2
2 δ1

2 δ1
2

...
... . . . ...

...
...

δ1
2 δ2

2 . . . δ1
2 δ1

2 δ1
2


.
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Proposition 3: Consider a BN (3), with

L = blockdiag{D1, D2, . . . , Dr} ∈ LN×N , (6)

and Dν =

[
Wν 0

Tν Cν

]
∈ Lnν×nν , (7)

where Wν is a (nν − kν)× (nν − kν) nilpotent matrix, and Cν is a kν × kν cyclic matrix. The

BN is observable if and only if

i) [distinguishability of states before state merging] if i 6= j, condition LδiN = LδjN implies

HδiN 6= HδjN ;

ii) [distinguishability of states belonging to a cycle] for every ` ∈ [1, r], the ordered k`-tuple

(Hδi+1
N , Hδi+2

N , . . . , Hδi+k`N ), with2 i := (n1 + n2 + . . .+ n`−1) + (n` − k`), is irreducible;

iii) [distinguishability of states belonging to different cycles] if `, d ∈ [1, r], ` 6= d, and k` =

kd =: k, the two ordered k-tuples

(Hδi+1
N , Hδi+2

N , . . . , Hδi+kN ), (Hδj+1
N , Hδj+2

N , . . . , Hδj+kN ),

with i = (n1 + n2 + . . . + n`−1) + (n` − k`) and j = (n1 + n2 + . . . + nd−1) + (nd − kd),

neither coincide nor can be obtained one from the other by means of cyclic permutations.

Proof: [Necessity] The necessity of conditions i) and ii) follows immediately from

Proposition 2. On the other hand, if condition iii) was not satisfied, there would be two initial

states corresponding to two distinct cycles and generating the same periodic output trajectory,

thus contradicting observability.

[Sufficiency] We want to prove that if conditions i), ii) and iii) hold, then the BN is observable.

Suppose it is not. Then two distinct states x1(0) = x1 and x2(0) = x2 could be found that produce

the same output trajectory. If x1 and x2 correspond to the same block Dν then, by the same

reasoning adopted in the proof of Proposition 2, either i) or ii) would be contradicted. So, assume

that such indistinguishable states correspond to different blocks, say D` and Dd, ` 6= d. Since both

state trajectories eventually become periodic of periods k` and kd, respectively, the corresponding

output trajectories become periodic, too, and since condition ii) holds, the minimal periods of the

outputs coincide with the minimal periods of the state trajectories. Since the output trajectories

2We assume n0 := 0.
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coincide, by the indistinguishability of the states, it follows that k` = kd. Set k := k` = kd and let

tm ∈ Z+ be the smallest time t such that x1(t) = δi+1
N for i = (n1+n2+. . .+n`−1)+(n`−k`), and

assume that x2(tm) = δh+1
N for some h ∈ [(n1+n2+. . .+nd−1)+(nd−kd), n1+n2+. . .+nd−1].

Then the two sequences

(Hδi+1
N , HLδi+1

N , . . . , HLk−1δi+1
N ), (Hδh+1

N , HLδh+1
N , . . . , HLk−1δh+1

N )

coincide, thus contradicting iii).

Remark 2: Conditions i), ii) and iii) of Proposition 3 can be expressed in a rather compact

form if we block-partition the matrix H , according to the block partition of L. Indeed, if we

assume that

H = [H1n H1c | H2n H2c | . . . | Hrn Hrc ] ,

where each block [Hνn Hνc ] has size P × nν , while Hνc has size P × kν , then the BN (3) is

observable if and only if

i) each block

 Wν 0

Tν Cν

Hνn Hνc

 has all distinct columns;

ii) each block Hνc cannot be seen as the juxtaposition of two or more copies of the same block

(say Φν), i.e. Hνc 6= [ Φν Φν . . . Φν ];

iii) if ` 6= d, the blocks H`c and Hdc are distinct and cannot be obtained one from the other by

means of cyclic permutations of the columns, i.e. 6 ∃ a cyclic matrix C and h ∈ Z+ such

that Hdc = H`cC
h.

Proposition 3 provides a general characterization of observability for Boolean networks. This

is due to the fact that the matrix L of every BN can be reduced to the block diagonal form (6)-

(7), by means of a suitable permutation matrix. Indeed, every state trajectory of a BN takes only

a finite number of distinct values and hence it eventually becomes periodic (possibly constant).

The fact that all columns of L are canonical vectors implies that the set of all states of the

BN can be partitioned into say r (disjoint) domains of attraction, each of them consisting of an

elementary cycle (called equilibrium point, in case it consists of a single state) and a number of

states that eventually converge to it.
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Proposition 4: Given a BN (3), there exists r ∈ N and a permutation matrix Π such that

Π>LΠ = blockdiag{D1, D2, . . . , Dr} ∈ LN×N , (8)

with Dν =

[
Wν 0

Tν Cν

]
∈ Lnν×nν , (9)

where Wν is a (nν − kν)× (nν − kν) nilpotent matrix, and Cν is a kν × kν cyclic matrix.

Proof: Let Z1,Z2, . . . ,Zr be the distinct elementary cycles (possibly equilibrium points) of

the system, and let D1,D2, . . . ,Dr be the corresponding disjoint domains of attraction. Clearly,

a permutation matrix Π can be found such that Π>LΠ is block diagonal as in (8). Even more,

we can order the states of each domain Dν so that those belonging to Zν are the last ones. So,

it entails no loss of generality assuming that each diagonal block is as in (9), where Cν is the

cyclic matrix associated with Zν . All the states of Dν \ Zν produce trajectories that belong to

Zν after a finite number of steps, which means that, for a sufficiently high k,

Dk
ν =

[
W k
ν 0

∗ Ck
ν

]
=

[
0 0

∗ Ck
ν

]
,

and hence Wν is nilpotent.

Propositions 3 and 4 have mainly a theoretical value, as they connect the topological structure

of the digraph D(L) to the observability property. However, the evaluation of the permutation

matrix Π is computationally demanding, as it requires to determine the limit cycles and the

corresponding domains of attraction. As a matter of fact, observability of a BN can be char-

acterized in a much simpler way, whose practical feasibility will be addressed in Remark 6.

To this goal it is sufficient to notice that every elementary cycle of length k corresponds to

k distinct periodic state trajectories, depending on the specific choice of the initial state. On

the other hand, each of these k periodic trajectories is uniquely associated with the ordered k-

tuple (x(0),x(1), . . . ,x(k− 1)). By taking this perspective, we can merge the distinguishability

conditions ii) and iii) into a single one.

Theorem 3: A BN (3) is observable if and only if

i) [distinguishability of states before state merging] for every x1,x2 ∈ LN , with x1 6= x2,

condition Lx1 = Lx2 implies Hx1 6= Hx2;
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ii) [distinguishability of states belonging to (the same or different) cycles] for every pair of

distinct periodic state trajectories of the same minimal period k, described by the two

ordered k-tuples

(x1,x2, . . . ,xk) 6= (x̄1, x̄2, . . . , x̄k),

the corresponding output trajectories are periodic with (minimal) period k and described by

two different ordered k-tuples, i.e.

(Hx1, Hx2, . . . , Hxk) 6= (Hx̄1, Hx̄2, . . . , Hx̄k).

III. RECONSTRUCTIBILITY OF BOOLEAN NETWORKS

In the previous section we have seen that, as for linear state-space models, observability

corresponds to the possibility of uniquely determining the system initial condition x(0) from

the observation of the corresponding output evolution in some interval [0, T ]. Reconstructibility

property may be introduced along the same perspective, as the possibility of determining the

system final state x(T ) from the corresponding output evolution in [0, T ].

Definition 2: A BN (3) is said to be reconstructible if there exists T ∈ Z+ such that the

knowledge of the output trajectory y(t), t ∈ [0, T ], allows to uniquely determine x(T ) (and

hence x(t) for every t ≥ T ). If this is the case, the smallest such T will be denoted by Tmin.

It is clear that observability implies reconstructibility. On the other hand, it is also obvious

that if all the states of a BN belong to some cycle (or, in particular, are equilibrium points), then

once the state x(T ) has been uniquely identified, the state x(0) can be determined by moving

backward. This means that, for a BN whose digraph D(L) is the union of cycles, observability and

reconstructibility are equivalent properties. In the general case, it turns out that reconstructibility

is equivalent to the fact that all states that belong to the cycles are distinguishable one from the

other.

Theorem 4: Given a BN (3), the following facts are equivalent:

i) the BN is reconstructible;
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ii) the reduced BN, obtained from (3) by considering only the states that belong to some cycle3,

is observable;

iii) for every pair of distinct periodic state trajectories of the same minimal period k, described

by the two ordered k-tuples

(x1,x2, . . . ,xk) 6= (x̄1, x̄2, . . . , x̄k),

the corresponding output trajectories are periodic of (minimal) period k and described by

two different k-tuples, i.e.

(Hx1, Hx2, . . . , Hxk) 6= (Hx̄1, Hx̄2, . . . , Hx̄k).

Moreover, when the BN is reconstructible, Tmin ≤ Tr+N̄−1, where Tr is the minimum number

of steps after which the state of the BN surely belongs to a cycle, while N̄ is the number of

states of the BN that belong to a cycle, i.e.

Tr := min{t ∈ Z+ : Ltx ∈ ∪ri=1Zi, ∀ x ∈ LN}|,

N̄ := |{x ∈ LN : x ∈ Zi,∃ i ∈ [1, r]}|,

Zi, i ∈ [1, r], being the distinct cycles of the BN.

Proof: i) ⇒ iii) If iii) were not satisfied, there would be two distinct initial states, x1 and

x̄1, that produce two distinct periodic state trajectories of the same minimal period and the same

output trajectory. Hence at every time t, we would not be able to distinguish x(t) from x̄(t),

the states reached at time t starting from x1 and from x̄1, respectively. So, for every choice of

T , from the output in [0, T ], we could not determine the state at time T .

iii) ⇒ ii) Follows from Theorem 3.

ii) ⇒ i) Set T := Tr + N̄ − 1. Every state trajectory x(t) is surely periodic for t ≥ Tr,

which amounts to saying that x(Tr) belongs to some cycle Zi, i ∈ [1, r]. If N̄ = 1, namely the

reduced BN is one-dimensional, then clearly reconstructibility holds for T = Tr. So, assume

now that N̄ > 1 (and hence ρ, the number of nonzero rows of H , is not smaller than 2).

By the observability of the reduced BN and Lemma 1, we can claim that upon observing

3Note that the definition is well posed, since cycles are invariant sets, and indeed each state belonging to a cycle can only

access one and only one state belonging to the same cycle.
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y(t), t ∈ [Tr, Tr + N̄ − 2], we can identify the state x(Tr). So, in particular, we can determine

x(Tr + N̄ − 1). This ensures that the BN is reconstructible and that Tmin ≤ Tr + N̄ − 1.

Remark 5: By referring to the notation adopted in Proposition 3, it is easy to see that Tr is

the largest of the nilpotency indices of the matrices Wν , ν ∈ [1, r], and hence

Tr + N̄ − 1 ≤
(

max
i∈[1,r]

(ni − ki)
)

+
r∑
i=1

ki − 1.

Also, if we assume again that H is block-partitioned as in Remark 2, the BN (3) is reconstructible

if and only if

i) each block Hνc cannot be seen as the juxtaposition of two or more copies of the same

block, i.e. Hνc 6= [ Φν Φν . . . Φν ];

ii) if ` 6= d, the blocks H`c and Hdc are distinct and cannot be obtained one from the other by

means of cyclic permutations of the columns, i.e. 6 ∃ a cyclic matrix C and h ∈ Z+ such

that Hdc = H`c C
h.

Remark 6: To conclude the section, we want to comment on the feasibility of the observ-

ability and reconstructibility tests provided by Theorems 3 and 4. To test reconstructibility, we

can proceed as follows: we first determine Tr as4

Tr = min{t ∈ Z+ : rankLt = rankLt+1},

and let I be the set of indices of the nonzero rows in LTr . Such indices correspond to the

states that belong to some cycle or are equilibrium points. If |I| = 1, the BN is obviously

reconstructible. If |I| > 1, the BN is reconstructible if and only if the output trajectories

corresponding to the initial states δiN , i ∈ I , are distinct. This amounts to checking that all

the columns of

ON̄−1 =


H

HL
...

HLN̄−2

 , with N̄ := |I|,

corresponding to the indices in I are distinct.

4For Boolean matrices three notions of rank have been defined: column rank, row rank and Schein rank [15], however for the

semigroup of Boolean matrices LN×N these three concepts coincide and they can be simply regarded as the maximum number

of distinct rows (or columns) in the matrix.
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On the other hand, by Theorem 3, a BN is observable if and only if it is reconstructible and

the matrix

[
L

H

]
has all distinct columns.

The following example shows that the bound Tmin ≤ Tr + N̄ − 1 is tight.

Example 2: Consider the BN (3) with

L = [ δ2
8 δ3

8 δ4
8 δ4

8 δ6
8 δ7

8 δ8
8 δ4

8 ] ,

H = [ δ1
2 δ1

2 δ1
2 δ1

2 δ1
2 δ1

2 δ1
2 δ1

2 ] .

1	
  

y	
  =	
  δ21	
  

2	
  

y	
  =	
  δ21	
  

3	
  

y	
  =	
  δ21	
  

4	
  

y	
  =	
  δ21	
  

5	
   6	
  

y	
  =	
  δ21	
  

7	
  

y	
  =	
  δ21	
  

8	
  

y	
  =	
  δ21	
  y	
  =	
  δ21	
  

FIG. 2. Digraph corresponding to the BN of Example 2.

It is easy to see that the BN is reconstructible, since there is only one vertex (vertex 4)

belonging to a cycle (N̄ = 1). Also, we easily see that Tr = 4 (the distance from 5 to 4). We

want to prove that the smallest time instant T at which we are able to identify the state x(T )

from the output evolution y(t), t ∈ [0, T ], is just Tr + N̄ − 1 = 4. This follows trivially from

the fact that there is no chance to identify the current state from the output evolution up to that

time, unless it is clear that we have reached the state δ4
8 .

Remark 7: Reconstructibility may be related to the indistinguishability classes C∼,k, k ∈ N,

that we introduced in the previous section. Indeed, it is easy to see that a BN is reconstructible
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if and only if there exists T̄ ∈ Z+ such that in every indistinguishability class Ki of C∼,T̄ there is

only one state that belongs to a cycle. This is also equivalent to saying that there exists T ∈ Z+

such that, for every class Ki of C∼,T , the set LTKi consists of a single state. Clearly, T̄ is related

to the observability index of the reduced BN, while T to the reconstructibility index of the BN.

IV. OBSERVABILITY OF BOOLEAN CONTROL NETWORKS

A Boolean Control Network (BCN) is described by the following equations

X(t+ 1) = f(X(t), U(t)),

Y (t) = h(X(t)), t ∈ Z+,
(10)

where X(t), U(t) and Y (t) denote the n-dimensional state variable, the m-dimensional input

and the p-dimensional output at time t, taking values in Bn,Bm and Bp, respectively. f and h

are logic functions, i.e. f : Bn × Bm → Bn and h : Bn → Bp. By resorting to the semi-tensor

product n, the BCN (10) can be described [8] as

x(t+ 1) = Ln u(t) n x(t),

y(t) = H n x(t) = Hx(t), t ∈ Z+,
(11)

where x(t) ∈ LN ,u(t) ∈ LM and y(t) ∈ LP , with N := 2n,M := 2m and P := 2p. L ∈ LN×NM
and H ∈ LP×N are matrices whose columns are canonical vectors of size N and P , respectively.

For every choice of the input variable at t, namely for every u(t) = δjM , L n u(t) =: Lj is a

matrix in LN×N . So, we can think of the state equation of the BCN (11) as a Boolean switched

system,

x(t+ 1) = Lσ(t)x(t), t ∈ Z+, (12)

where σ(t), t ∈ Z+, is a switching sequence taking values in [1,M ]. For every j ∈ [1,M ], the

BN

x(t+ 1) = Ljx(t), t ∈ Z+, (13)

represents the jth subsystem of (12).

Definition 3: A BCN (3) is observable if for any two initial states x1 = δi2n and x2 = δj2n , i 6=

j, and any input sequence u(t), t ∈ Z+, the output evolutions y1(t) and y2(t), t ∈ Z+, are

distinct.
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In [8], Chapter 16, a different notion of observability has been introduced, stating that a

BCN is observable if for any two states x1 = δi2n and x2 = δj2n , i 6= j, there exists an input

sequence uij(t), t ∈ Z+, such that the corresponding output evolutions y1(t) and y2(t), t ∈ Z+,

are distinct. In [13] (page 177), these two notions are referred to as “initial-state determinability

in the strong sense” and “initial-state determinability in the wide sense”, respectively. For linear

state-space models these two notions are equivalent, since the observability problem can always

be reduced to that of determining the initial condition that generated the free state evolution.

This is not the case when dealing BCNs. Indeed, observability given in Definition 3 implies the

notion of observability given in [8], while the converse is not true, due to the fact that it is not

possible to express the (state and) output dynamics as the sum of a free and a forced evolution,

and hence remove the forced component.

Observability property considered in this paper allows to determine the initial condition of a

BCN when it evolves under the effect of an arbitrary input. This is consistent with the natural

requirement of estimating the initial (or the current) state of a BCN, driven by an arbitrary

control sequence, and hence under regular working conditions, and not by means of an ad hoc

experiment. On the other hand, the observability property introduced in [8] allows to identify

the initial condition of the BN only by carrying on multiple parallel experiments, as clarified in

[13], and not by making use of the observation of a single pair of corresponding input/output

evolutions.

To address observability, we introduce some new notation. Since for BCNs the state evolution

depends on both the state and the input we will consider instead of just state trajectories, state-

input trajectories, described by the pairs (x(t),u(t)), t ∈ Z+. Also, we say that a state-input

trajectory is periodic of (minimal) period k ∈ N if (x(t),u(t)) = (x(t+k),u(t+k)), ∀ t ∈ Z+,

(and there is no smaller k for which this is true). A periodic state-input trajectory of period

k ∈ N is described by an ordered k-tuple of pairs(
(x1,u1), (x2,u2), . . . , (xk,uk)

)
,

where by this notation we mean that

x`+1 = Ln u` n x`, ∀ ` ∈ [1, k − 1], and x1 = Ln uk n xk,

and, as before, we say that such a k-tuple is irreducible if it cannot be expressed as the repetition

of shorter tuples. This amounts to saying that k is the minimal period.
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Theorem 8: A BCN (11) is observable if and only if

i) [distinguishability of states before state merging] for every x1,x2 ∈ LN and for every

u ∈ LM , conditions (x1,u) 6= (x2,u) and Ln u n x1 = Ln u n x2 imply Hx1 6= Hx2;

ii) [distinguishability of states belonging to (the same or different) cycles] for every pair of

distinct periodic state-input trajectories of the same minimal period k and described by the

two distinct ordered k-tuples(
(x1,u1), (x2,u2), . . . , (xk,uk)

)
6=
(

(x̄1,u1), (x̄2,u2), . . . , (x̄k,uk)
)
, (14)

the corresponding output trajectories are periodic of (minimal) period k and described by

two different k-tuples, i.e.

(Hx1, Hx2, . . . , Hxk) 6= (Hx̄1, Hx̄2, . . . , Hx̄k).

Proof: [Necessity] If condition i) was not satisfied for two initial states x1(0) = x1 6=

x2(0) = x2 and some u ∈ LM , any input sequence u(t), t ∈ Z+, with u(0) = u, would

produce two state trajectories satisfying x1(t) = x2(t) for t ≥ 1, and the corresponding output

trajectories, y1(t) and y2(t), would coincide for every t ∈ Z+. Hence the two states would be

indistinguishable, a contradiction.

On the other hand, if condition ii) was not satisfied, there would be two distinct initial states,

x1 and x̄1, that generate the same periodic output trajectory, corresponding to the periodic input

u(t) =

{
ut+1, for t ∈ [0, k − 1],

u(t− k), for t ≥ k,

where the vectors u1,u2, . . . ,uk have been introduced in equation (14). So, again, observability

would be contradicted.

[Sufficiency] We want to prove that if conditions i) and ii) hold, then the BCN is observable.

Suppose it is not. Then two distinct states x(0) and x̄(0) and some input sequence u(t), t ∈ Z+,

could be found such that the corresponding output trajectories, y(t) and ȳ(t), coincide for every

t ∈ Z+. Let x(t) and x̄(t), t ∈ Z+, be the state trajectories corresponding to the given initial

states and input. If there would be t′ ∈ Z+ such that the two state trajectories coincide at t′+ 1,

i.e. x(t′ + 1) = x̄(t′ + 1), this would contradict assumption i) for the two state-input pairs

(x(t′),u(t′)) and (x̄(t′),u(t′)). So, we now assume that, at every time t ∈ Z+, x(t) 6= x̄(t).

Consider the sequence of triples (x(t), x̄(t),u(t)), t ∈ Z+. Since all such triples take values in
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the finite set LN × LN × LM , there exist tm, k ∈ Z+, k > 0, such that (x(tm), x̄(tm),u(tm)) =

(x(tm + k), x̄(tm + k),u(tm + k)), and we may always select the smallest such k. Clearly if we

replace the original sequence u(t) with the sequence

ũ(t) :=

{
u(t), 0 ≤ t ≤ tm + k − 1;

ũ(t− k), t ≥ tm + k;

we still get two output trajectories completely identical (and identical to the original ones till

t = tm + k − 1). But this means that the two distinct irreducible k-tuples(
(x(tm),u(tm)), . . . , (x(tm + k − 1),u(tm + k − 1))

)
(

(x̄(tm),u(tm)), . . . , (x̄(tm + k − 1),u(tm + k − 1))
)
,

generate the same output k-tuple, as

(y(tm), . . . ,y(tm + k − 1)) = (ȳ(tm), . . . , ȳ(tm + k − 1)).

This contradicts condition ii).

We illustrate the previous conditions by means of an example.

Example 3: Consider a BCN (11) and suppose that 5

L1 := Ln δ1
2 =



1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 1 0 0 1

0 0 0 1 0


= [ δ1

5 δ4
5 δ3

5 δ5
5 δ4

5 ] ,

L2 := Ln δ2
2 =



0 0 0 0 0

1 0 0 0 0

0 1 1 0 0

0 0 0 1 1

0 0 0 0 0


= [ δ2

5 δ3
5 δ3

5 δ4
5 δ4

5 ] ,

H =

[
1 1 0 1 0

0 0 1 0 1

]
= [ δ1

2 δ1
2 δ2

2 δ1
2 δ2

2 ]

5Note that the size of the system matrices Li is N = 5 which is not a power of 2, but the analysis is not affected by this

fact.
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The BCN can be represented by the following digraph, obtained by overlapping the two

digraphs D(L1) and D(L2). (Blue) arcs labelled by u = δ1 belong to D(L1), while (red) arcs

labelled by u = δ2 belong to D(L2). As for BNs, the outgoing (dashed) arrows indicate for each

state the corresponding output value (y = δ1 or y = δ2).

1	
   2	
   3	
  

5	
  4	
  

y	
  =	
  δ21	
   y	
  =	
  δ21	
  
y	
  =	
  δ22	
  

y	
  =	
  δ21	
   y	
  =	
  δ22	
  

u=δ21	
   u=δ21	
  

u=δ21	
  

u=δ21	
  

u=δ22	
  

u=δ21	
  

u=δ22	
   u=δ22	
  

u=δ22	
  

u=δ22	
  

FIG. 3. Digraph corresponding to the BCN of Example 3.

It is a matter of simple computation to verify that both conditions of Theorem 8 are verified.

Specifically:

i) L1δ
2
5 = L1δ

5
5 = δ4

5 but Hδ2
5 6= Hδ5

5;

L2δ
2
5 = L2δ

3
5 = δ3

5 but Hδ2
5 6= Hδ3

5;

L2δ
4
5 = L2δ

5
5 = δ4

5 but Hδ4
5 6= Hδ5

5;

ii) there are two cycles of length 1 corresponding to the input δ1
2 , namely self loops, but they

correspond to two states that generate different outputs; similarly, there are two cycles of

length 1 corresponding to the input δ2
2 , but they generate different output trajectories. Finally,

there are two distinct ordered 2-tuples that correspond to 2 periodic input-state trajectories,

namely

((δ4
5, δ

1
2), (δ5

5, δ
1
2)) 6= ((δ5

5, δ
1
2), (δ4

5, δ
1
2)),

and they generate two different periodic output trajectories

(δ1
2, δ

2
2) 6= (δ2

2, δ
1
2).
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Consequently, the BCN is observable.

Remark 9: Observability corresponds to the possibility of uniquely determining the initial

state of the BCN, once the input sequence u(t), t ∈ Z+, and the corresponding output y(t), t ∈

Z+, are known. As we have seen in section II, the initial state of an observable BN can be

retrieved from the output samples y(t), t ∈ [0, N−2]. Something similar happens with observable

BCNs, as indeed, the knowledge of u(t) and y(t) for t ∈ [0, N2] is sufficient to uniquely

determine x(0). To show this, it is sufficient to prove that if there exist an input sequence

u(t), t ∈ Z+, and two states, say x1 and x2, such that y1(t) = y2(t) for every t ∈ [0, N2],

then there exists an input ũ(t), t ∈ Z+, that makes the states x1 and x2 indistinguishable (i.e.

ỹ1(t) = ỹ2(t) for every t ∈ Z+). Indeed, consider the sequence of pairs (x1(t),x2(t)) generated

from (x1(0),x2(0)) = (x1,x2) corresponding to u(t). Clearly, since at each time t the pair

(x1(t),x2(t)) belongs to the finite set LN ×LN , a cardinality argument ensures that there exist

tm and k, with 0 ≤ tm < tm + k ≤ N2, such that (x1(tm),x2(tm)) = (x1(tm + k),x2(tm + k)).

So, as in the proof of Theorem 8, the input sequence

ũ(t) :=

{
u(t), 0 ≤ t ≤ tm + k − 1;

ũ(t− k), t ≥ tm + k;
(15)

would produce two identical output sequences.

As a matter of fact, the upper bound of N2 can be significantly improved. To this end, we may

ask how large the parameter T can be chosen, so that two distinct initial states x1 and x2 generate

two output sequences y1(t) and y2(t) that coincide for every t ∈ [0, T ], without contradicting

observability. We have already noticed that all pairs (x1(t),x2(t)), t ∈ [0, T ], must be distinct.

On the other hand, if at some time instant t′, x1(t′) = x2(t′), then the output trajectories y1(t)

and y2(t) would necessarily coincide from t′ onward. Finally, if there exist tm and k, with

0 ≤ tm < tm + k ≤ T , such that x1(tm) = x2(tm + k) and x2(tm) = x1(tm + k), then it is

clear that the input sequence (15) would again produce two identical output sequences. So, in

the time interval [0, T ] all pairs (x1(t),x2(t)), t ∈ Z+, must be distinct, cannot have two entries

of same value and cannot appear in one order and in the reversed one. This implies that

T + 1 ≤ N2 −N −
N−1∑
i=1

i =
N−1∑
i=1

i =
N(N − 1)

2
=: N∗,

and hence

T ≤ (N + 1)(N − 2)

2
.
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Remark 10: To conclude we want to compare the characterization of the observability prop-

erty given in [8] (see Theorem 9.4, pages 228-229) with a similar one that can be obtained for

the observability notion used in this paper. To this end we denote by

Ou,h :=



H

HLi0

HLi1Li0
...

HLih−2
. . . Li1


the observability matrix in h steps corresponding to the input sequence

u(0) = δi0M , u(1) = δi1M , . . . ,u(h− 2) = δ
ih−2

M .

Clearly, the ith column of Ou,h provides the output sequence y(t), t ∈ [0, h− 1], corresponding

to the aforementioned input and the initial condition x(0) = δiN . By the previous remark,

observability here addressed is equivalent to the fact that all the matrices Ou,N∗ , for every

choice of the input sequence, have distinct columns. The characterization given in Theorem 9.4

of [8] can be equivalently restated by saying that the BCN is observable in the sense of [8] if

and only if the matrix obtained by piling up all the matrices Ou,N∗ has distinct columns.

V. RECONSTRUCTIBILITY OF BOOLEAN CONTROL NETWORKS

Definition 4: A BCN (11) is said to be reconstructible if there exists T ∈ Z+ such that, for

every input sequence, the simultaneous knowledge6 of the input and the output trajectories, u(t)

and y(t), t ∈ [0, T ], allows to uniquely determine x(T ).

The characterization of reconstructibility is similar to the one obtained for BNs, even if its

proof is more challenging.

Theorem 11: A BCN (11) is reconstructible if and only if for every pair of distinct periodic

state-input trajectories of the same minimal period k and described by the two ordered k-tuples(
(x1,u1), . . . , (xk,uk)

)
6=
(

(x̄1,u1), . . . , (x̄k,uk)
)
,

6Due to the structure of the equations (11), in order to reconstruct the final state at t = T the input value at t = T is

unnecessary. We chose this definition just for the sake of simplicity.
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the corresponding output trajectories are periodic of (minimal) period k and described by two

different k-tuples, i.e.

(Hx1, Hx2, . . . , Hxk) 6= (Hx̄1, Hx̄2, . . . , Hx̄k).

Proof: [Necessity] If the condition would not be satisfied, the two distinct periodic state

trajectories generated from x1 and x̄1, corresponding to the periodic input sequence

u(t) =

{
ut+1, for t ∈ [0, k − 1],

u(t− k), for t ≥ k,

would produce to the same periodic output trajectory. So, all pairs of states along the two state

trajectories would be distinct and indistinguishable, and reconstructibility would be contradicted.

[Sufficiency] Suppose, by contradiction, that the BCN is not reconstructible. This means that

there exists a pair of corresponding input and output trajectories u(t) and y(t), t ∈ Z+, such

that for every T ∈ Z+ the set XT of all states that are compatible at time T with the given input

and output has cardinality greater than 1. It is clear that

|X0| ≥ |X1| ≥ . . . ≥ |Xt| ≥ ....,

and there exists T̄ such that C := |XT̄ | = |XT̄+t| for every t ≥ 0, and C > 1. Again, by a

cardinality argument, we can claim that there exist two states x1, x̄1 and two integers tm ≥ T̄

and k > 0 such that

x1, x̄1 ∈ Xtm ∩ Xtm+k,

and the two distinct periodic sequences corresponding to the two irreducible k-tuples

((x1(tm),u(tm)), . . . , (x1(tm + k − 1),u(tm + k − 1)),

((x̄1(tm),u(tm)), . . . , (x̄1(tm + k − 1),u(tm + k − 1)),

with x1(tm) = x1 and x̄1(tm) = x̄1, generate the same periodic output, since

(Hx1(tm), Hx1(tm + 1), . . . , Hx1(tm + k − 1) =

(y(tm),y(tm + 1), . . . ,y(tm + k − 1)) =

(Hx̄1(tm), Hx̄1(tm + 1), . . . , Hx̄1(tm + k − 1)).
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Remark 12: It is worthwhile noticing that the same reasoning adopted at the end of the

previous section for observability applies to reconstructibility. This ensures that, independently

of u(t), t ∈ Z+, if the BCN is reconstructible, the final state can be identified within N(N−1)
2

steps.

Example 4: Consider a BCN (11) and suppose that

L1 := Ln δ1
2 =


0 0 0 0

0 0 0 0

1 1 1 0

0 0 0 1

 = [ δ3
4 δ3

4 δ3
4 δ4

4 ] ,

L2 := Ln δ2
2 =


0 0 0 0

0 0 0 0

0 0 1 0

1 1 0 1

 = [ δ4
4 δ4

4 δ3
4 δ4

4 ] ,

H =

[
1 1 0 1

0 0 1 0

]
= [ δ1

2 δ1
2 δ2

2 δ1
2 ] .

The BCN can be represented as in the following digraph:

1	
   2	
  

4	
  3	
  

y	
  =	
  δ21	
   y	
  =	
  δ21	
  

y	
  =	
  δ22	
  

u=δ21	
  

u=δ21	
  u=δ21	
  

u=δ22	
  

u=δ21	
  u=δ22	
  

u=δ22	
  

y	
  =	
  δ21	
  

u=δ22	
  

FIG. 4. Digraph corresponding to the BCN of Example 4.
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It is a matter of simple computation to verify that both conditions of Theorem 11 are verified.

More easily, it is immediate to verify that, independently of the input and of the initial condition,

the output evolution from T = 1 onward is either δ1
2 or δ2

2 . In the former case it means that

x(T ) = x(t) = δ4
4 for every t ≥ T , and in the latter case we have x(T ) = x(t) = δ3

4 for every

t ≥ T . Consequently, the BCN is reconstructible.

VI. STATE OBSERVERS

The aim of this section is that of designing a state observer for a BCN, by this meaning

a Boolean system that receives, as its inputs, the BCN input and output, and produces as its

output an estimate of the current BCN state. We propose two different solutions. Both of them

can be described by means of Boolean control networks. However, they will be derived as linear

Boolean systems whose describing vectors consist of blocks of canonical vectors, and hence we

will introduce them by making use of this more intuitive set-up. Clearly, a necessary condition

for the existence of a state observer is that the BCN is reconstructible in some interval [0, T ].

A. Shift-register observer

We first notice that, due to the time-invariance of the BCN, reconstructibility implies that the

simultaneous knowledge of the input and the output trajectories, u(τ) and y(τ), τ ∈ [t − T, t],

allows7 to uniquely determine x(t). This ensures that the vector

z(t) :=



u(t− T )

y(t− T )

...

u(t)

y(t)


∈ (LM × LP )× . . .× (LM × LP )︸ ︷︷ ︸

T+1

, (16)

7It is worthwhile to remark that even when T is the smallest time instant such that reconstructibility in [0, T ] is possible,

nonetheless, for sufficiently large values of t, the minimum value of T̃ such that from u(τ) and y(τ), τ ∈ [t− T̃ , t], one can

determine x(t) can be significantly smaller than T .
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corresponding to an input/output trajectory, uniquely identifies the final state x(t) of the BCN.

We let R denote the reconstructibility map that associates every such “admissible”8 vector z(t)

to the final state x(t) ∈ LN . We want to implement the map R by means of a linear Boolean

system. To this end, set Z := MT+1P T+1 and introduce the (bijective) map ψ : (LM × LP ) ×

. . .× (LM × LP )→ LZ , mapping each vector z(t) into the corresponding canonical vector

z(t) := u(t− T ) n y(t− T ) n . . .n u(t) n y(t) ∈ LZ .

Clearly, the set of admissible vectors z(t) biuniquely corresponds to the subset of “admissible”

canonical vectors in LZ . The static map

Ĥ : LZ → LN : δjZ 7→

{
R(ψ−1(δjZ)), if δjZ is admissible;

δ1
N , otherwise;

associates every admissible vector δjZ in LZ with the unique state that is reconstructible at time

t from z(t) = ψ−1(δjZ). If δjZ is not admissible, Ĥ associates it with an arbitrary state in LZ
(e.g. δ1

N ). Consequently, the following Boolean system9

z(t+ 1) =



0 IM+P 0 . . . 0

0 0 IM+P . . . 0
...

... . . . ...

0 0 . . . . . . IM+P

0 0 . . . . . . 0


z(t) +



0 0

0 0
...

...

0 0

IM 0

0 IP


[

u(t+ 1)

y(t+ 1)

]
, (17)

z(t) = ψ(z(t)),

x̂(t) = Ĥz(t), (18)

once initialized with an arbitrary z(0) ∈ (LM × LP )× . . .× (LM × LP ), produces an estimate

x̂(t) of the BCN state satisfying

x̂(t) = x(t), ∀ t ≥ T.

8In the following, an input/output trajectory

("
u(t)

y(t)

#
: t ∈ Z+

)
will be called “admissible” if there exists an initial state

x(0) such that when the input sequence at time t is u(t), then the corresponding output is y(t). Accordingly, the vector z(t)

in (16) will be called “admissible” if it coincides with the restriction of an admissible trajectory to the time window [t− T, t].
9The symbol + in the following equation denotes the Boolean sum, but one may notice that, since the nonzero entries in the

two vectors are necessarily located in different positions, this can be seen also as a standard sum.
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The previous observer may be described as a modified version of a BCN (11), namely as

z(t+ 1) = M n u(t+ 1) n y(t+ 1) n z(t),

x̂(t) = Ĥz(t),

for a suitable choice of the matrix10 M ∈ LZ×MPZ . The substitution of u with the pair (u,y) is

rather natural, since this pair represents the observer input. However, differently from a standard

BCN (11), the values of the pair we need to update the state vector at t+ 1 is not (u(t),y(t)),

but (u(t+ 1),y(t+ 1)). This is unavoidable, since the state estimate at time t naturally requires

the information on the output at the same time instant.

Clearly, the proposed solution finds an immediate adaptation to the case of BNs. In that case,

it is sufficient to replace the pair (u,y) with the output y alone, thus getting a state observer

that takes the following form

z(t+ 1) = M n y(t+ 1) n z(t),

x̂(t) = Ĥz(t),

with

z(t) := y(t− T ) n y(t− T + 1) n . . .n y(t) ∈ LZ , Z := P T+1.

We illustrate the previous method by means of a simple example.

Example 5: Consider the reconstructible BCN of Example 4. In this case T = 1,

z(t) =


u(t− 1)

y(t− 1)

u(t)

y(t)

 ,
and

z(t) = u(t− 1) n y(t− 1) n u(t) n y(t).

10If we introduce the block matrix (also called “dummy operator” in [8]) Φk,h := [ Ik Ik . . . Ik ]| {z }
h times

, then it is not hard to

prove that

M = ΦMTPT ,P n ΦMTPT+1,M nW,

where W is the product of suitable swap matrices (see [8], page 63), that perform the variable permutation W n u(t + 1) n

y(t+ 1) n z(t) = z(t) n u(t+ 1) n y(t+ 1).
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The “admissible” vectors z(t) are the following ones:


δ1

2

δ1
2

u(t)

δ2
2

 ,

δ1

2

δ2
2

u(t)

δ2
2

 ,

δ2

2

δ2
2

u(t)

δ2
2

 ,

δ1

2

δ1
2

u(t)

δ1
2

 ,

δ2

2

δ1
2

u(t)

δ1
2

 ; u(t) ∈ {δ1
2, δ

2
2}

 .

R is the map that associates δ3
4 to all admissible vectors z(t) whose last block is δ2

2 , and δ4
4 to

all admissible vectors z(t) whose last block is δ1
2 . The admissible vectors z(t) are

{δ1
16, δ

2
16, δ

3
16, δ

4
16, δ

6
16, δ

8
16, δ

9
16, δ

11
16, δ

14
16, δ

16
16}.

While δ1
16, δ

3
16, δ

9
16, and δ11

16 correspond to the final state x̂(t) = δ4
4, all the other admissible vectors

correspond to x̂(t) = δ3
4. This implies that the matrix Ĥ takes the following form:

Ĥ = [ δ4
4 δ3

4 δ4
4 δ3

4 ∗ δ3
4 ∗ δ3

4 δ4
4 ∗ δ4

4 ∗ ∗ δ3
4 ∗ δ3

4 ] ,

where the symbol ∗ denotes an arbitrary canonical vector in L4 (for instance δ1
4).

B. Multiple states observers

We now propose an alternative solution for the state reconstruction of the BCN (11). To this

end, we consider the set C∼,1 of all the indistinguishability classes in 1 step, namely all classes

of state vectors that produce the same output value:
{
i ∈ [1, N ] : HδiN = δhP

}
, h ∈ [1, P ]. We

denote by ν the largest of the cardinalities of such classes

ν := max
h∈[1,P ]

∣∣{i ∈ [1, N ] : HδiN = δhP}
∣∣ .

The state of the observer is a vector z(t) ∈ LN × . . .× LN︸ ︷︷ ︸
ν times

with ν blocks, denoted by zi(t), i ∈

[1, ν], each of them belonging to LN .

We first describe the algorithm, whose purpose is that of updating the (multiple, i.e. ν)

estimates of the BCN state at time t + 1 (the ν blocks of z(t + 1)), based on the estimates

we had at time t (the ν blocks of z(t)) and on the current input sample u(t). At each time t,

the ith state estimate zi(t) is consistent with a number of input and output samples not smaller

than those any estimate zj(t), with j > i, is compatible with. We will further comment on

the rationale underlying the algorithm after having described it. We denote by arr and dep

the indices of the current block of the “arrival state” z(t + 1) and of the current block of the
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“departure state” z(t), respectively, considered by the algorithm. Once we have considered all ν

blocks of z(t), dep takes values greater than ν. On the other hand, when we have updated all the

ν blocks of z(t+ 1) the algorithm iteration is completed, and the time variable is updated. Also,

we introduce two sets: Dt and At+1. We initialize the set Dt with all the indices of the states

that are compatible with the output sample y(t), while At+1 is initially empty. As the algorithm

proceeds, all these indices are moved from Dt to At+1.

In detail, the observer state updates according to the following algorithm:

Inizialization: Set t := 0, arr := 1, dep := 1, Dt := {i ∈ [1, N ] : HδiN = y(t)} and At+1 := ∅.

Step 1: Until arr ≤ ν, dep ≤ ν and Dt 6= ∅,

if zdep(t) = δjN with j ∈ Dt,

then

zarr(t+ 1) = Ln u(t) n zdep(t)

arr := arr + 1;

dep := dep+ 1;

Dt := Dt \ {j};

At+1 := At+1 ∪ {j};

otherwise

dep := dep+ 1.

Step 2: If arr ≤ ν and Dt 6= ∅ then

set j := min{i ∈ [1, N ] : i ∈ Dt};

zarr(t+ 1) = Ln u(t) n δjN ;

arr := arr + 1;

dep := dep+ 1;

Dt := Dt \ {j};

At+1 := At+1 ∪ {j};

go back to Step 2;

otherwise

go to Step 3;

Step 3: If arr ≤ ν and Dt = ∅ then

set j := min{i ∈ [1, N ] : i ∈ At+1};

zarr(t+ 1) = Ln u(t) n δjN ;
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arr := arr + 1;

dep := dep+ 1;

go back to Step 3;

otherwise

go to Step 4;

Step 4: Set t := t+ 1, arr := 1, dep := 1, Dt := {i ∈ [1, N ] : HδiN = y(t)} and At+1 := ∅, and

go back to Step 1.

The idea underlying the algorithm is

(a) first, all distinct blocks zdep(t) of z(t) are ordinately considered: if they are compatible

with the output sample y(t) they are used to determine the current block zarr(t+ 1) by means

of the formula zarr(t+ 1) = Ln u(t) n zdep(t). If not, they are simply neglected;

(b) if the number dt of such distinct blocks in z(t) is smaller than the cardinality νt of the

class {i ∈ [1, N ] : HδiN = y(t)}, then νt − dt blocks of the vector z(t + 1) are evaluated by

making use of the remaining νt−dt canonical vectors δjN of {i ∈ [1, N ] : HδiN = y(t)}, through

the formula zarr(t+ 1) = Ln u(t) n δjN ;

(c) if νt < ν, the remaining blocks in z(t+ 1) are evaluated by making use of δiN , where i is

the smallest index in {i ∈ [1, N ] : HδiN = y(t)}.

It is clear that the first block of z(t), t > 0, is the state that has proved to be compatible with

the largest number of output and input samples. In particular, at time T + 1 the state z1(T + 1)

is compatible with the input-output trajectory (u(t),y(t)), t ∈ [0, T ]. So, independently of the

initial state of the observer, the state updating algorithm is conceived in such a way that, if the

original BCN is reconstructible in [0, T ], then z1(T + 1) = x(T + 1).

Example 6: We illustrate also this algorithm by referring to Example 4. We notice that C∼,1
consists of two classes:

{i ∈ [1, 4] : Hδi4 = δ1
2} = {1, 2, 4},

{i ∈ [1, 4] : Hδi4 = δ2
2} = {3}.

The index ν coincides with the cardinality of the largest class and hence it is 3. Suppose that

we have the input trajectory u(0) = δ2
2,u(1) = δ1

2,u(2) = δ2
2, ..., and the corresponding output

trajectory y(0) = δ1
2,y(1) = δ1

2,y(2) = δ1
2, .... We can initialize the observer state, for instance,

with z(0) = [ δ1
4 δ3

4 δ2
4 ]>.
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We set t := 0, D0 := {1, 2, 4} and A1 := ∅. By applying the previous algorithm, we easily

find

z1(1) := Ln u(0) n z1(0) = δ4
4,

z2(1) := Ln u(0) n z3(0) = δ4
4,

z3(1) := Ln u(0) n δ4
4 = δ4

4.

At t = 1, we have D1 := {1, 2, 4} and A2 := ∅, and the algorithm gives

z1(2) := Ln u(1) n z1(1) = δ4
4,

z2(2) := Ln u(1) n δ1
4 = δ4

4,

z3(2) := Ln u(1) n δ2
4 = δ4

4.

Clearly, z1(2) = δ4
4 = x(2).

Also, in this case, the state observer could be described by means of a BCN, upon replacing

each vector z(t) with the corresponding “canonical” representation ξ(t), thus getting a system

of the following kind

ξ(t+ 1) = M n u(t) n y(t) n ξ(t),

x̂(t) = Ĥξ(t),

for suitable matrices11 M and Ĥ .

To conclude the section, we want to compare the different philosophies underlying the two

proposed observers. The shift-register observer is essentially the dynamic implementation of the

11It is difficult to find a general expression for the matrix M , whose existence is however ensured by the fact that every triple

(u(t),y(t), z(t)) is mapped into a single vector z(t+1) and, consequently, each canonical vector u(t)ny(t)n ξ(t) is mapped

into a unique canonical vector ξ(t+ 1). On the other hand, the matrix Ĥ can be easily determined along the lines we used for

the previous observer. Indeed, as x̂(t) = z1(t), we can first determine the swap matrix W such that

W n ξ(t) = W n z1(t) n z2(t) n . . .n zν(t) = z2(t) n . . .n zν(t) n z1(t),

and then apply a finite sequence of dummy operators, to delete the variables z2(t) n . . .n zν(t). This implies that

Ĥ = ΦN,N n ΦN2,N n . . .n φNν−1,N nW.
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static map R. Under the reconstructibility assumption, the map R allows to reconstruct the state

of the BCN at time t from the input and output values in the window [t− T, t]. Such input and

output samples, ordered from the oldest to the most recent, constitute the blocks of the observer

state at time t, whose updating consists in removing the oldest samples and acquiring the new

ones. The key ingredient of the BCN state estimation is represented by the static map Ĥ , that

acts on the “canonical representation” z(t) of the observer state and realizes the map R.

On the other hand, the multiple states observer proceeds according to a different rationale.

It memorizes all the current state estimates, and it updates only those that are compatible with

the current output sample, by making use of the system laws and the knowledge of the current

input value. So, the observer state consists of ν possible estimates of the BCN state. The blocks

with lower index in the observer state are those that have proved to be compatible with a larger

number of input/output samples, and for this reason once they prove to be compatible with the

input and output for T + 1 consecutive time instants, they provide the real value of the BCN

state. It is worth noticing that the key ingredient of this observer is the state updating law, while

the static output map, that provides the BCN state estimate, simply consists in selecting the first

block of the observer state vector.
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