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Abstract— In this paper, we assume that an autonomous
exosystem generates a reference output, and we consider the
problem of designing a distributed data-driven control law for
a family of discrete-time heterogeneous LTI agents, connected
through a directed graph, in order to synchronize the agents’
outputs to the reference one. The agents of the network are split
into two categories: leaders, with direct access to the exosystem
output, and followers, that only receive information from their
neighbors. All agents aim to achieve output synchronization by
means of a state feedback that makes use of their own states as
well as of an estimate of the exogenous system state, provided
by an internal state observer. Such observer has a different
structure for leaders and followers. Necessary and sufficient
conditions for the existence of a solution are first derived in
the model-based set-up and then in a data-driven context. An
example illustrates both the implementation procedure and the
performance of the proposed approach.

I. INTRODUCTION

Output regulation and output synchronization are funda-
mental control problems, that have attracted the interest of
the researchers since the early seventies. The solutions to
these problems, which are now part of the background of all
control engineers, rely on the Internal Model Principle and
have their foundations in some milestone papers from giants
of the control community [5], [7]–[9].

In the early years of this century, there has been a shift
from centralized control to distributed control mainly driven
by the growing complexity of modern systems, and the need
for greater scalability, fault tolerance, and real-time respon-
siveness. Distributed control enables decentralized decision-
making, improved resilience, and better handling of large-
scale, networked environments such as power grids, au-
tonomous vehicles, and industrial automation. This paradigm
shift has triggered a surge of research aiming to provide
distributed solutions to classic control problems, including
output regulation and synchronization. Reference [20] by
Su and Huang pioneered the research on this topic, first
exploring how cooperation among agents may allow all of
them to synchronize their outputs to a desired reference
trajectory generated by an exosystem. This first contribution
stimulated a long list of papers on this topic (see [2], [4],
[12], [13], [15], [17], to cite a few). The interested reader is
referred to [3] for an extensive review of the literature.

In recent years, the control systems community has wit-
nessed another major paradigm shift: from traditional model-
based approaches to data-driven methods. This transition is
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35131 Padova, Italy, e-mail: giulio.fattore@phd.unipd.it,
meme@dei.unipd.it

driven by the growing availability of large-scale data, the
advancements in machine learning, the increasingly higher
performance of computational methods and lower costs of
storage. This shift is reflected in a new trend of research,
aiming to explore how to achieve output synchronization
for multi-agent LTI systems when the agent models are not
available, but extensive data about their dynamics have been
collected in a preliminary offline phase.

To the best of our knowledge, [14] is the first paper
where data-driven output synchronization for (heteroge-
neous) multi-agent systems (MASs) is investigated. In [14]
agents are described by state-space models that are not
affected by the exosystem dynamics whose output they want
to track. However, a subset of the agents, called “leaders”,
has access to the exosystem state and they share it with their
neighbors to ensure that each agent achieves an asymptotic
estimate of the exosystem state. The matrices of the state
equations are assumed to be unknown, but the matrices
involved in the output equations, as well as the exosystem
model, are known. The design of the state feedback control
protocol is based only on data that are collected offline
for each agent. In [21] the data-driven cooperative output
regulation problem is investigated, by imposing a state feed-
back control strategy that relies on a dead-beat controller. A
network of heterogeneous agents is considered, in which the
state dynamics of all agents are affected by the exosystem
state. All the matrices involved in the agent dynamics are
supposed to be unknown. In [18] the data-driven output
containment control problem for heterogeneous multi-agent
systems is investigated. The agents dynamics is not affected
by the exosystem and all the systems matrices are unknown.
It worth remarking that in all these references the exosystem
state is accessible to a subset of the agents, nonetheless
all agents still implement a state observer to estimate the
exosystem state that updates based on the state estimates
of their neighbors. Reference [16] also deals with data
driven output regulation, but the authors achieve the goal by
introducing multiple copies of the exogeneous systems. Also,
the problem solution is obtained via RL techniques. Finally,
in [24] a data-driven algorithm is proposed to simultaneously
solve an optimal control problem and identify the matrices
which describe the system dynamics.

In this paper the output synchronization problem for a
discrete-time heterogeneous LTI MAS is investigated. The
agents of the network split into two categories: leaders,
whose dynamics is affected by the exosystem output they
want to track, and followers, that are not affected by it. In
order to synchronize its output with the exosystem one, each



agent implements a state-feedback control strategy, making
use of its own state and of its estimate of the exosystem
state. However, leaders produce the exosystem state estimate
by using a Luenberger observer, while followers achieve this
goal by exchanging information about the exosystem output
with their neighbors. Necessary and sufficient conditions for
the existence of a solution, first by resorting to a model-
based approach and then by relying only on data, are derived,
together with a (partial) parametrization of the problem
solutions. It is shown that, under suitable assumptions on the
informativity of the collected data, the data-driven solution
is equivalent to the model-based one. An illustrative example
concludes the paper showing the soundness of the proposed
method.

The main contributions of this paper compared to the
previous literature on this topic are the following ones:
- First of all, we assume what we regard as a more rational
problem set-up, by making the state observers the agents
implement consistent with their models. Indeed, if the
exosystem directly affects the agent dynamics it makes
sense to assume that such agents (the leaders) are aware
of this and take advantage of this information to obtain
an estimate of the exosystem state in the most efficient
way. This means that the state estimate relies on first-hand
information received from the exosystem, and not on the
state estimates of their neighbors. Meanwhile, agents whose
dynamics is not affected by the exosystem (the followers)
cannot reasonably have access to direct measurements
from the exosystem, and hence the best they can do is to
exchange information with their neighbors.
- We assume that leaders have access to the exosystem
output. Since they can provide exact information on such
output to their neighbors, it makes sense to exchange the
exosystem output estimate in order to correct the estimate
of the exosystem state (not the exosystem state estimate, nor
the agent output). This makes the overall system dynamics
simpler, effective, and easy to design.
- While the previous two comments hold true both for
the model-based and the data-driven solutions, focusing
on the data-driven solution we can claim that our set-up
and solutions are more articulated and complete than those
investigated in [14], [18]. On the other had, compared to
[21] and [16] the conditions for solvability we provide are
much simpler.
- We provide (see Propositions 4 and 7) novel conditions to
verify when data are informative for stabilization by state
feedback [14], [22] and a parametrization of the solutions.

Notation. The sets of real numbers and nonnegative in-
tegers are denoted by R and Z+, respectively. Given two
integers h and k, with h ≤ k, we let [h, k] denote the set
{h, h+1, . . . , k}. 1n is the all-one vector of size n. Suffixes
will be omitted when the dimensions are irrelevant or can be
deduced from the context. Given any matrix Q, its Moore-
Penrose pseudoinverse [1] is denoted by Q†. If Q is of full
row rank, then Q† = Q⊤(QQ⊤)−1, and it is a particular
right inverse of Q, by this meaning any (full column rank)

matrix Q# such that (s.t.) QQ# = I .
We use im(Q) to represent the column space of Q. The

spectrum of a square matrix Q is denoted by σ(Q) and is the
set of all its eigenvalues. The Kronecker product is denoted
by ⊗. Given matrices Mi, i ∈ [1, p], the block diagonal
matrix whose ith diagonal block is the matrix Mi is denoted
either by diag(Mi), i ∈ [1, p], or by diag(M1,M2, . . . ,Mp),
while given vectors vi, i ∈ [1, p], the column stacking of
these vectors is denoted either by col(vi), i ∈ [1, p], or
by col(v1, v2, . . . , vp). The (i, j)th entry of a matrix M is
denoted by [M ]i,j .

A weighted, directed graph (digraph) is a triple G =
(V, E ,A), where V = {1, . . . , N} = [1, N ] is the set of
nodes, E ⊆ V × V is the set of edges, and A ∈ RN×N is
the nonnegative, weighted adjacency matrix which satisfies
[A]i,j > 0 if and only if (iff) (j, i) ∈ E . We assume that
[A]i,i = 0 for every i ∈ V . The in-degree of the node i is
di =

∑N
j=1[A]i,j . The in-degree matrix D is the diagonal

matrix defined as D = diag(di), i ∈ [1, N ]. The Laplacian
associated with G = (V, E ,A) is defined as L .

= D −A. A
digraph is connected if there is a (directed) path from every
node to every other node. Given a digraph G = (V, E ,A), a
directed spanning tree is a subgraph of G that includes all
the vertices V and has a single root node from which all the
other nodes can be reached, without forming any cycle.

II. ERROR-FEEDBACK OUTPUT SYNCHRONIZATION:
PROBLEM STATEMENT

Consider an exosystem described by the equations

x0(t+ 1) = Sx0(t), (1a)
y0(t) = Rx0(t), (1b)

where t ∈ Z+, x0(t) ∈ Rn0 and y0(t) ∈ Rp are the state and
the output of the exogenous system, respectively. We make
the following standard assumptions on the exosystem.

Assumption 1. [12], [14], [15] All the eigenvalues of S
are simple and lie on the unit circle.

Assumption 2. [6], [14] The pair (R,S) is observable.

Consider a multi-agent system consisting of N heteroge-
neous agents. Without loss of generality, we assume that the
first Nl agents (in the following referred to as leaders) are
affected by the exosystem output y0(t), while the remaining
Nf

.
= N − Nl agents (the followers) have not. We let

G = (V, E ,A) denote the directed graph describing the
interactions among the N agents, and by G0 = ({0} ∪
V, E0,A0) the extended digraph including also the node 0
corresponding to the exosystem. The set E0 is obtained by
adding to the edges in E the edges from the exosystem node
to the Nl nodes representing the leaders. We assume that
the weights of all such edges are unitary. Under the previous
assumptions, the adjacency matrix A0 is uniquely identified
from A, and the Laplacian matrix associated with it can be



expressed in partitioned form as follows:

L0 =

 0 0⊤
Nl

0⊤
Nf

1Nl
Lll Llf

0Nf
Lfl Lff

 (2)

where Lll ∈ RNl×Nl and Lff ∈ RNf×Nf .
We introduce the following assumption on the digraph G0.

Assumption 3. [3], [12], [14], [15] The digraph G0

contains a directed spanning tree with root node 0.

The reason why we split the agents in leaders and fol-
lowers is because, unlike previous works on this topic, we
assume that if the exosystem output affects the dynamics of
an agent, the agent is aware of receiving direct information
from the source it aims at synchronizing with and is able
to transfer the received information to its neighbors. This
makes such an agent a leader in the communication process.
On the other hand, agents whose dynamics are not affected
by the exogenous system can only rely on the information
received from their neighbors, and hence act as followers.

Under the previous assumptions, the leader dynamics are

xi(t+ 1) = Aixi(t) +Biui(t) + Eiy0(t), (3a)
yi(t) = Cixi(t) +Diui(t) + Fiy0(t), (3b)

for i ∈ [1, Nl], while the followers dynamics are

xi(t+ 1) = Aixi(t) +Biui(t), (4a)
yi(t) = Cixi(t) +Diui(t), (4b)

i ∈ [Nl + 1, N ], where xi(t) ∈ Rni , ui(t) ∈ Rmi , and
yi(t) ∈ Rp are the state, input, and output of the ith agent,
respectively. The matrices Ai, Bi, Ci, Di, Ei, and Fi are real
matrices of suitable dimensions. As it is standard practice
in output regulation/synchronization literature, we define the
output tracking error of the ith agent as ei(t)

.
= yi(t)−y0(t).

Based on the leaders and followers descriptions (3) and (4),
it follows that for i ∈ [1, Nl]:

ei(t) = Cixi(t) +Diui(t) + FiRx0(t)−Rx0(t), (5)

while for i ∈ [Nl + 1, N ]

ei(t) = Cixi(t) +Diui(t)−Rx0(t). (6)

In this set-up, every ith agent needs to estimate the state of
the exosystem, in order to design a state feedback control
law that depends on both its state xi and on its estimate zi
of the exosystem state x0, described as follows:

ui(t) = Ki(xi(t)−Πizi(t)) + Γizi(t), (7)

where the matrices Ki ∈ Rmi×ni , Πi ∈ Rni×n0 and Γi ∈
Rmi×n0 , i ∈ [1, N ], are design parameters. Leaders have
direct access to y0(t) and hence can rely upon a Luenberger
observer [19] to generate the estimate zi(t) of x0(t):

zi(t+ 1) = Szi(t)− L(y0(t)−Rzi(t)), (8)

i ∈ [1, Nl], where L ∈ Rn0×p, is the observer gain to be
designed. On the other hand, followers need to exchange in-
formation with their neighbors to obtain a reliable asymptotic

estimate of x0(t). By extending the philosophy underlying
the Luenberger observer, followers update their estimate of
the exosystem state by collecting from their neighbors the
best estimate they can provide of the exosystem output. This
means the real exosystem output in the case where the jth
neighbor is a leader, and

ŷ0,j(t)
.
= Rzj(t)

in the case where the jth neighbor is a follower. Conse-
quently, the state estimate zi(t) for the ith follower, i ∈
[Nl + 1, N ], updates according to:

zi(t+ 1) =Szi(t) +
1

1 + di
H

 Nl∑
j=1

[A]i,j(y0(t)− ŷ0,i(t))

+

N∑
j=Nl+1

[A]i,j(ŷ0,j(t)− ŷ0,i(t))


=Szi(t) +

1

1 + di
H

 Nl∑
j=1

[A]i,j(y0(t)−Rzi(t))

+

N∑
j=Nl+1

[A]i,j(Rzj(t)−Rzi(t))

 , (9)

where [A]i,j is the (i, j)th entry of the adjacency matrix A,
while H ∈ Rn0×p is a matrix parameter to be designed.

Remark 1. To the best of our knowledge, the idea of relying
on Rzi(t) as an estimate of y0(t), to update the state estimate
dynamics, is original. It provides a simpler algorithm to
design the matrices of the observer-based state-feedback
controllers compared with the approach that directly employs
the agent outputs yi(t) (see [3], [25]).

In this scenario, the error-feedback output synchronization
problem is stated as follows.

Problem 1. Consider the exosystem (1) and the MAS whose
leaders are described as in (3), i ∈ [1, Nl], and whose
followers are described as in (4), i ∈ [Nl+1, N ], and assume
that Assumptions 1, 2, and 3 hold.
Design, if possible, matrices Ki ∈ Rmi×ni , Πi ∈ Rni×n0 ,
Γi ∈ Rmi×n0 , i ∈ [1, N ], L ∈ Rn0×p and H ∈ Rn0×p

so that the overall system, consisting of all the leaders and
followers, as well as the state observer equations (8) and (9),
under the state feedback control law (7), i ∈ [1, N ], satisfies
the following two conditions:

1) if x0(t) is identically zero, the system is asymptotically
stable;

2) for all initial conditions x0(0), xi(0), and zi(0),

lim
t→∞

ei(t) = 0p, ∀i ∈ [1, N ]. (10)

III. PROBLEM SOLUTION: MODEL-BASED APPROACH

For the subsequent analysis it is worth introducing (see
[15]) the ith agent state estimation error

δi(t)
.
= zi(t)− x0(t), (11)



and state tracking error

εi(t)
.
= xi(t)−Πizi(t). (12)

A. Leader Nodes Dynamics

Let us define the global vector corresponding to the leader
state dynamics as xl(t)

.
= col(xi(t)), i ∈ [1, Nl], and define

ul(t), yl(t), zl(t), el(t), δl(t), and εl(t) in a similar way.
Accordingly, we introduce the matrix Al

.
= diag(Ai), i =

[1, Nl], and define Bl, Cl, Dl, El, Fl, Kl, Πl and Γl in a
similar way. Finally, we define Sl

.
= (INl

⊗ S) and Rl
.
=

(INl
⊗R). We can rewrite the leader dynamics (3) in compact

form as

xl(t+ 1) =Alxl(t) +Blul(t) + El(1Nl
⊗ y0(t)), (13a)

yl(t) =Clxl(t) +Dlul(t) + Fl(1Nl
⊗ y0(t)). (13b)

Also, we can rewrite the state observers equations (8) and
the state feedback control laws (7) in compact form as

zl(t+ 1) =(Sl + LlRl)zl(t)− Ll(1Nl
⊗ y0(t)), (14a)

ul(t) =Kl(xl(t)−Πlzl(t)) + Γlzl(t). (14b)

Substituting (14b) inside (13), we obtain

xl(t+ 1) =(Al +BlKl)xl(t) +Bl(Γl −KlΠl)zl(t)

+ El(1Nl
⊗ y0(t)), (15a)

yl(t) =(Cl +DlKl)xl(t) +Dl(Γl −KlΠl)zl(t)

+ Fl(1Nl
⊗ y0(t)). (15b)

The dynamics of the state estimation error, of the state
tracking error and of the output tracking error become

δl(t+ 1) =(Sl + LlRl)δl(t), (16a)
εl(t+ 1) =(Al +BlKl)εl(t) (16b)

+ [AlΠl +BlΓl −Πl(Sl + LlRl)]δl(t)

+ (AlΠl +BlΓl + ElRl −ΠlSl)(1Nl
⊗ x0(t)),

el(t) =(Cl +KlDl)εl(t) + (CΠl +DlΓl)δl(t) (16c)
+ (CΠl +DlΓl + FlRl −Rl)(1Nl

⊗ x0(t)).

Note that the leader dynamics is completely decoupled from
the follower dynamics. By resorting to a change of basis we
can replace the state vector [xl(t)

⊤ zl(t)
⊤ (1Nl

⊗x0(t))
⊤]⊤

with [δl(t)
⊤ εl(t)

⊤ (1Nl
⊗ x0(t))

⊤]⊤. Consequently, under
Assumptions 1, 2, and 3, we can ensure that the internal
dynamics of the leaders are asymptotically stable when x0(t)
is identically zero (see point 1) of Problem 1) and the error
el(t) → 0 as t → ∞ (see point 2) of Problem 1) iff

c1) There exists a block diagonal matrix Kl s.t. (Al+BlKl)
is Schur stable;

c2) There exists a block diagonal matrix Ll s.t. (Sl+LlRl)
is Schur stable;

c3) There exist (block diagonal) matrices Πl and Γl s.t.

AlΠl +BlΓl + ElRl =ΠlSl, (17a)
ClΠl +DlΓl + FlRl =Rl. (17b)

Under condition c3), the dynamics of the state estimation
errors, of the state tracking errors and of the output tracking
errors become:

δl(t+ 1) =(Sl + LlRl)δl(t), (18a)
εl(t+ 1) =(Al +BlKl)εl(t)− (El +ΠlLl)Rlδl(t) (18b)

el(t) =(Cl +KlDl)εl(t) + (CΠl +DlΓl)δl(t). (18c)

B. Follower Nodes Dynamics

Let us define the global vector corresponding to the fol-
lower state dynamics as xf (t)

.
= col(xi(t)), i ∈ [Nl+1, N ],

and define uf (t), yf (t), zf (t), ef (t), δf (t), and εf (t) in a
similar way. Accordingly, we introduce the matrices Af

.
=

diag(Ai), i ∈ [Nl+1, N ] and, in a similar way, we define Bf ,
Cf , Df , Kf , Πf and Γf . Finally, we define Df

.
= diag(di),

i ∈ [Nl +1, N ], where di is the in-degree of the ith node of
the network, Sf

.
= (INf

⊗S) and Rf
.
= (INf

⊗R). We can
rewrite the follower dynamics (4) in compact form as

xf (t+ 1) =Afxf (t) +Bfuf (t), (19a)
yf (t) =Cfxf (t) +Dfuf (t). (19b)

The state observer equations (9) and the state feedback laws
(7) become

zf (t+ 1) =[Sf − (INf
+Df )

−1Lff ⊗HR]zf (t) (20a)

− [(INf
+Df )

−1Lfl ⊗H](1Nl
⊗ y0(t)),

uf (t) =Kf (xf (t)−Πfzf (t)) + Γfzf (t). (20b)

The dynamics of the state estimation errors, of the state
tracking errors and of the output tracking errors for the
followers are:

δf (t+ 1) =[Sf − (INf
+Df )

−1Lff ⊗HR]δf (t), (21a)
εf (t+ 1) =(Af +BfKf )εf (t) (21b)

+ [AfΠf +BfΓf −ΠfSf

+Πf (INf
+Df )

−1Lff ⊗HR
]
δf (t)

+ (AfΠf +BfΓf −ΠfSf )(1Nf
⊗ x0(t)),

ef (t) =(Cf +KfDf )εf (t) (21c)
+ (CfΠf +DfΓf )δf (t)

+ (CfΠf +DfΓf −Rf )(1Nf
⊗ x0(t)).

Note that the follower dynamics is decoupled, in turn, from
the leader dynamics. By resorting to a change of basis we re-
place the state vector [xf (t)

⊤ zf (t)
⊤ (1Nf

⊗x0(t))
⊤]⊤ with

[δf (t)
⊤ εf (t)

⊤ (1Nf
⊗ x0(t))

⊤]⊤. So, under the proposed
assumptions, we can ensure that the internal dynamics of the
followers are asymptotically stable (see point 1) of Problem
1) and ef (t) → 0 as t → ∞ (see point 2) of Problem 1) iff
c4) There exists a block diagonal matrix Kf s.t. (Af +

BfKf ) is Schur stable;
c5) There exists a matrix H s.t.[

Sf − (INf
+Df )

−1Lff ⊗HR
]

is Schur stable;
c6) There exist (block diagonal) matrices Πf and Γf s.t.

AfΠf +BfΓf =ΠfSf , (22a)
CfΠf +DfΓf =Rf . (22b)



Under condition c6), the dynamics of (21) become:

δf (t+ 1) =
[
Sf − (INf

+Df )
−1Lff ⊗HR

]
δf (t), (23a)

εf (t+ 1) =(Af +BfKf )εf (t) (23b)

+Πf

[
(INf

+Df )
−1Lff ⊗HR

]
δf (t)

ef (t) =(Cf +KfDf )εf (t) +Rfδf (t). (23c)

C. Model-Based Solution

As a consequence of the previous analysis, the problem
solvability reduces to the possibility of satisfying conditions
c1)-c6). We have the following result.

Theorem 1. Consider the exosystem (1) and the MAS with
leaders described as in (3), i ∈ [1, Nl], and followers
described as in (4), i ∈ [Nl + 1, N ]. Under Assumptions
1, 2, and 3, Problem 1 is solvable iff

i) for each i ∈ [1, N ], the pair (Ai, Bi) is stabilizable,

and there exist matrices Πi, Γi, of suitable dimensions, s.t.

ii) for each i ∈ [1, Nl],

AiΠi +BiΓi + EiR = ΠiS, (24a)
CiΠi +DiΓi + FiR = R, (24b)

iii) for each i ∈ [Nl + 1, N ],

AiΠi +BiΓi = ΠiS, (25a)
CiΠi +DiΓi = R. (25b)

Proof: We first observe that, by Assumption 2, the
pair (R,S) is observable. This ensures that there exists L
such that S + LR is Schur stable, and hence c2) holds for
Ll = INl

⊗L. On the other hand, Assumptions 1 and 3 ensure
that there exists a matrix H such that S − λHR is Schur
stable for every λ ∈ σ((INf

+Df )
−1Lff ) (see Lemmas 11

and 12 in the Appendix). Corresponding to this matrix H
condition c5) holds.
We observe, now, that there exist matrices Ki, i ∈ [1, N ],
such that conditions c1) and c4) hold if and only if each pair
(Ai, Bi) is stabilizable, which is exactly condition i). Finally,
conditions c3) and c6) are equivalent to ii) and iii).

IV. DATA-DRIVEN APPROACH

In this section we assume that Assumptions 1, 2, and 3
hold, and we introduce a new assumption.

Assumption 4. All the matrices that describe the leaders and
followers are unknown, while the matrices S and R which
describe the exogenous system dynamics are known.

We assume to have collected offline output measurements
from the exogenous system, as well as input, state and output
measurements from the leader and follower systems on a
finite time window of (sufficiently large) length T +1: yd0

.
=

{yd0(t)}T−1
t=0 , ud

i
.
= {ud

i (t)}
T−1
t=0 , xd

i
.
= {xd

i (t)}Tt=0 and ydi
.
=

{ydi (t)}
T−1
t=0 , i = [1, N ]. Accordingly, we set

Y p
0

.
=
[
yd0(0), . . . , y

d
0(T − 1)

]
∈ Rp×T

Up
i

.
=
[
ud
i (0), . . . , u

d
i (T − 1)

]
∈ Rmi×T

Xp
i

.
=
[
xd
i (0), . . . , x

d
i (T − 1)

]
∈ Rni×T

Xf
i

.
=
[
xd
i (1), . . . , x

d
i (T )

]
∈ Rni×T

Y p
i

.
=
[
ydi (0), . . . , y

d
i (T − 1)

]
∈ Rp×T

In order to solve Problem 1 in a data-driven set-up, we
need to understand how conditions i), ii) and iii) in The-
orem 1 translate in terms of data matrices. Note that while
condition ii) pertains only leaders and condition iii) only
followers, condition i) pertains both. However, due to the
different state-space models generating the collected data,
the conditions we will derive for leaders and followers will
be different.

A. Leader Nodes Dynamics

We start by introducing the set of all leader systems
(Ai, Bi, Ei, Ci, Di, Fi) that are compatible with the col-
lected data (Y p

0 , U
p
i , X

p
i , X

f
i , Y

p
i ), for i ∈ [1, Nl]:

Σl
i
.
= {(Ai, Bi, Ei, Ci, Di, Fi)

:

[
Xf

i

Y p
i

]
=

[
Ai Bi Ei

Ci Di Fi

]Xp
i

Up
i

Y p
0

 .

We also introduce for every i ∈ [1, Nl] the set

Σ0,l
i

.
=
{
(A0

i , B
0
i , E

0
i , C

0
i , D

0
i , F

0
i )

:

[
A0

i B0
i E0

i

C0
i D0

i F 0
i

]Xp
i

Up
i

Y p
0

 =

[
0
0

] .

The first aspect we want to address is condition i) for
leaders. In a model-based set-up, the stabilizability of each
pair (Ai, Bi) is necessary and sufficient for the existence of
a matrix Ki such that Ai + BiKi is Schur stable. When
we rely on data, we are not able to identify the specific
sextuple (Ai, Bi, Ei, Ci, Di, Fi) that has generated the data,
and hence in particular the specific pair (Ai, Bi). This means
that we need to be able to design from data a matrix Ki that
makes Ai+BiKi Schur stable for every pair (Ai, Bi) that is
compatible with the collected data. For this reason, we resort
to the following definition and characterization.

Definition 2. [14, Definition 3] The data (Y p
0 , U

p
i , X

p
i , X

f
i ,

Y p
i ) are said to be informative for stabilization by state

feedback if there exists a feedback gain Ki s.t. Ai + BiKi

is Schur stable for all (Ai, Bi, Ei, Ci, Di, Fi) ∈ Σl
i.

Proposition 3. [14, Proposition 2] The data (Y p
0 , U

p
i , X

p
i ,

Xf
i , Y

p
i ) are informative for stabilization by state feedback

iff
i) Xp

i is of full row rank;
ii) There exists a right inverse (Xp

i )
# of Xp

i , s.t.
iia) Xf

i (X
p
i )

# is Schur stable;
iib) Y p

0 (X
p
i )

# = 0.
When so, the stabilizing feedback gain is Ki = Up

i (X
p
i )

#.



It is worth noticing that, as a consequence of Proposition
3, if the data (Y p

0 , U
p
i , X

p
i , X

f
i , Y

p
i ) are informative for

stabilization by state feedback, then Xp
i is of full row rank,

and the matrix

Ψi
.
=

[
Xp

i

Y p
0

]
∈ R(ni+p)×T (27)

satisfies rank(Ψi) = rank(Xp
i ) + rank(Y p

0 ) = ni +
rank(Y p

0 ). This allows us to introduce a parametrization of
all possible right inverses (Xp

i )
# of Xp

i that satisfy iib) of
Proposition 3, as well as a method to check if in this set
there exists at least one matrix for which also iia) holds.

Proposition 4. Let Ψi be defined as in (27), with Xp
i of full

row rank, and rank(Ψi) = ni+rank(Y p
0 ), and let Ψ†

i be its
Moore-Penrose inverse. The following facts are equivalent:

1) There exists a matrix (Xp
i )

# such that Ψi(X
p
i )

# =[
Ini

0

]
and Xf

i (X
p
i )

# is Schur.

2) The pair
(
Xf

i Ψ
†
i

[
Ini

0

]
, Xf

i

(
IT −Ψ†

iΨi

))
is stabi-

lizable.

3) rank

[
Xf

i Ψ
†
i

[
Ini

0

]
− λIni

Xf
i

(
IT −Ψ†

iΨi

)]
= ni,

∀ λ ∈ C, |λ| ≥ 1.

Proof: Let L0 and R0 be a full column rank matrix and
a full row rank matrix, respectively, such that Y p

0 = L0R0,
so that

Ψi =

[
Ini

0
0 L0

] [
Xp

i

R0

]
.

Note that in the previous factorization the matrix on the left
is of full column rank, while the matrix on the right is of full
row rank and such common rank coincides with rank(Ψi).
Consequently, by the properties of the Moore-Penrose inverse
[10], we can claim that

Ψ†
i =

[
Xp

i

R0

]† [
Ini

0
0 L0

]†
.

Now, set

Ψ#
i

.
= Ψ†

i +
(
IT −Ψ†

iΨi

)
Qi, (28)

where Qi is a free matrix parameter.
We want to prove that a matrix (Xp

i )
# satisfies

Ψi(X
p
i )

# =

[
Ini

0

]
(29)

if and only if it satisfies

(Xp
i )

# = Ψ#
i

[
Ini

0

]
, (30)

for some Ψ#
i is expressed as in (28), i.e., for some Qi.

Clearly, if (30) holds for some Qi, then

Ψi(X
p
i )

# = Ψi

[
Ψ†

i +
(
IT −Ψ†

iΨi

)
Qi

] [Ini

0

]
= ΨiΨ

†
i

[
Ini

0

]
=

[
Ini

0
0 L0L

†
0

] [
Ini

0

]
=

[
Ini

0

]

which means that (29) holds.
Conversely, suppose that (29) holds. Since L0 is of full
column rank, this means that[

Xp
i

R0

]
(Xp

i )
# =

[
Ini

0

]
.

Since
[
Xp

i

R0

]
is of full row rank, by Lemma 13, we can claim

that (Xp
i )

# can be expressed as

(Xp
i )

# =

[
Xp

i

R0

]† [
Ini

0

]
+

(
IT −

[
Xp

i

R0

]† [
Xp

i

R0

])
Qi

[
Ini

0

]
(31)

for some matrix Qi. It is easy to see that[
Xp

i

R0

]† [
Ini

0

]
=

[
Xp

i

R0

]† [
Ini 0
0 L0

]† [
Ini

0

]
as well as[

Xp
i

R0

]† [
Xp

i

R0

]
=

[
Xp

i

R0

]† [
Ini

0
0 L0

]† [
Ini

0
0 L0

] [
Xp

i

R0

]
.

This shows that (31) coincides with (30), where Ψ#
i is

described as in (28) for some Qi.
1) ⇔ 2) From the previous analysis, it follows that condition
1) holds if and only if there exists Qi such that

Xf
i (X

p
i )

# = Xf
i

(
Ψ†

i +
(
IT −Ψ†

iΨi

)
Qi

)[Ini

0

]
=

(
Xf

i Ψ
†
i

[
Ini

0

])
+
(
Xf

i

(
IT −Ψ†

iΨi

))
Qi

[
Ini

0

]
is Schur. This is equivalent to saying that the pair(
Xf

i Ψ
†
i

[
Ini

0

]
, Xf

i

(
IT −Ψ†

iΨi

))
is stabilizable (condi-

tion 2)).
2) ⇔ 3) Follows from the PBH reachability test [19].

We now address condition ii) in Theorem 1 from a data-
driven perspective.

Proposition 5. For every i ∈ [1, Nl], given the data (Y p
0 , U

p
i ,

Xp
i , X

f
i , Y

p
i ), the following conditions are equivalent:

1) There exist matrices Πi and Γi such that (24) hold for
all the sextuples (Ai, Bi, Ei, Ci, Di, Fi) ∈ Σl

i.
2) There exists a matrix Mi such that

Xf
i Mi = Xp

i MiS, (32a)
Y p
i Mi = R, (32b)

Y p
0 Mi = R. (32c)

Proof: The proof is inspired by the proof in [14,
Lemma 3] and has some similarities with the proof in [21,
Lemma 2].
1) ⇒ 2) If we denote by (Ai, Bi, Ei, Ci, Di, Fi)
the “real” sextuple that generated the data, then
clearly (Ai, Bi, Ei, Ci, Di, Fi) ∈ Σl

i and the sextuples



(Âi, B̂i, Êi, Ĉi, D̂i, F̂i) compatible with the data are those
and only those that satisfy[

Ai − Âi Bi − B̂i Ei − Êi

Ci − Ĉi Di − D̂i Fi − F̂i

]Xp
i

Up
i

Y p
0

 =

[
0
0

]
,

which implies that (Ai−Âi, Bi−B̂i, Ei− Êi, Ci− Ĉi, Di−
D̂i, Fi− F̂i) ∈ Σ0,l

i . Consequently, if the equations (24) hold
for all the sextuples compatible with the data, this means that
for all (Âi, B̂i, Êi, Ĉi, D̂i, F̂i) ∈ Σl

i, it must hold that[
Ai − Âi Bi − B̂i Ei − Êi

Ci − Ĉi Di − D̂i Fi − F̂i

]Πi

Γi

R

 =

[
0
0

]
. (33)

This implies that

kerL

Xp
i

Up
i

Y p
0

 ⊆ kerL

Πi

Γi

R


where kerL(Q)

.
= {v : v⊤Q = 0⊤}. This ensures that there

exists a matrix Mi such thatXp
i

Up
i

Y p
0

Mi =

Πi

Γi

R

 .

This implies that Xp
i Mi = Πi, U

p
i Mi = Γi, Y

p
0 Mi = R, and

hence (32c) holds. Moreover, equation (24a) becomes

AiΠi +BiΓi + EiR = ΠiS,

⇒ AiX
p
i Mi +BiU

p
i Mi + EiY

p
0 Mi = Xp

i MiS,

⇒ Xf
i Mi = Xp

i MiS,

while equation (24b) becomes

CiΠi +DiΓi + FiR = R,

⇒ CiX
p
i Mi +DiU

p
i Mi + FiY

p
0 Mi = Y p

0 Mi,

⇒ Y p
i Mi = Y p

0 Mi,

that are exactly (32a) and (32b).
2) ⇒ 1) Suppose that there exists a matrix Mi such that (32)
hold. Set Πi

.
= Xp

i Mi, and Γi
.
= Up

i Mi. For every sextuple
(Ai, Bi, Ei, Ci, Di, Fi) ∈ Σl

i, condition (32a), making use
of (32c), leads to

(AiX
p
i +BiU

p
i + EiY

p
0 )Mi = Xp

i MiS

⇒ AiX
p
i Mi +BiU

p
i Mi + EiY

p
0 Mi = Xp

i MiS

⇒ AiΠi +BiΓi + EiR = ΠiS

that is equal to (24a).
Similarly, starting from (32b) and using (32c), for every
sextuple (Ai, Bi, Ei, Ci, Di, Fi) ∈ Σl

i we get

(CiX
p
i +DiU

p
i + FiY

p
0 )Mi = R

⇒ CiX
p
i Mi +DiU

p
i Mi + FiY

p
0 Mi = R

⇒ CiΠi +DiΓi + FiR = R.

that is equal to (24b).

B. Follower Nodes Dynamics

For i ∈ [Nl+1, N ], based on equations (4), we define the
set of all quadruples (Ai, Bi, Ci, Di), representing followers,
that are compatible with the data (Up

i , X
p
i , X

f
i , Y

p
i ) as

Σf
i

.
=

{
(Ai, Bi, Ci, Di) :

[
Xf

i

Y p
i

]
=

[
Ai Bi

Ci Di

] [
Xp

i

Up
i

]}
.

Also, as in the previous subsection, we introduce the set

Σ0,f
i

.
=

{
(A0

i , B
0
i , C

0
i , D

0
i ) :

[
A0

i B0
i

C0
i D0

i

] [
Xp

i

Up
i

]
=

[
0
0

]}
.

We now address the data-driven characterization of con-
dition i) in Theorem 1 for the followers.

Definition 6. [22, Definition 12] The data (Up
i , X

p
i , X

f
i ,

Y p
i ) are are said to be informative for stabilization by state

feedback if there exists a feedback gain Ki such that Ai +
BiKi is Schur stable for all (Ai, Bi, Ci, Di) ∈ Σf

i .

The characterization of informativity for stabilization by
state feedback provided in Proposition 7, below, is similar
to, but much simpler than, the one provided in Proposition
4 and is omitted due to space constraints.

Proposition 7. The following facts are equivalent:
i) The data (Up

i , X
p
i , X

f
i , Y

p
i ) are informative for stabi-

lization by state feedback.
ii) Xp

i is of full row rank, and there exists a right inverse
(Xp

i )
# of Xp

i such that Xf
i (X

p
i )

# is Schur.
iii) Xp

i is of full row rank and the pair(
Xf

i (X
p
i )

†, Xf
i (IT − (Xp

i )
†Xp

i )
)

is stabilizable.
iv) Xp

i is of full row rank, and
rank

([
Xf

i (X
p
i )

† − λIni Xf
i (IT − (Xp

i )
†Xp

i )
])
=ni,

∀ λ ∈ C, |λ| ≥ 1.

Note that corresponding to every (Xp
i )

# satisfying ii), we
obtain the stabilizing feedback gain Ki = Up

i (X
p
i )

# (see
[22]). The following result is the analogous, for followers,
of Proposition 5 and hence its proof is omitted.

Proposition 8. For every i ∈ [Nl + 1, N ], given the data
(Up

i , X
p
i , X

f
i , Y

p
i ), the following conditions are equivalent:

1) There exist matrices Πi and Γi such that (25) hold for
all quadruples (Ai, Bi, Ci, Di) ∈ Σf

i .
2) There exists a matrix Mi such that

Xf
i Mi = Xp

i MiS, (34a)
Y p
i Mi = R. (34b)

C. Data-driven solution

By putting together the model-solution given in Theorem
1, and the characterizations given for leaders in Propositions
4 and 5, and for followers in Propositions 7 and 8, we obtain
the complete data-driven solution of Problem 1.

Theorem 9. Consider the exosystem (1) and the MAS with
leaders described as in (3), i ∈ [1, Nl], and followers
described as in (4), i ∈ [Nl+1, N ]. Assume that Assumptions



1, 2, 3 and 4 hold. Problem 1 is solvable based on the
families of collected data (Y p

0 , U
p
i , X

p
i , X

f
i ), i ∈ [1, N ], iff

i) For each i ∈ [1, Nl],
ia) rank(Ψi) = ni + rank(Y p

0 ).

ib) The pair
(
Xf

i Ψ
†
i

[
Ini

0

]
, Xf

i

(
IT −Ψ†

iΨi

))
is sta-

bilizable.
ic) There exists a matrix Mi s.t. equations (32) hold.

ii) For each i ∈ [Nl + 1, N ],
iia) Xp

i is of full row rank.
iib) The pair

(
Xf

i (X
p
i )

†, Xf
i (IT − (Xp

i )
†Xp

i )
)

is stabi-
lizable.

iic) There exists a matrix Mi s.t. equations (34) hold.

Example 10. Consider an exosystem and a group of 5 agents
(2 leaders and 3 followers) connected through the binary (i.e.
[A]ij is either 0 or 1) digraph G0 depicted in Figure 1 and
with dynamics described by the following matrices:

S =

[
sin(0.2) cos(0.2)

− cos(0.2) sin(0.2)

]
, R =

[
−1 1

]
,

A1 =

0 1 −1
1 0 1
2 0 1

 , B1 =

1 0 0
0 −1 1
1 0 2

 , E1 =

 2
−1
1

 , B4 =

55
5

 ,

C1 =
[
1 0 1

]
, D1 =

[
1 2 3

]
, C2 =

[
2 1

]
, C3 =

[
1 1

]
,

A2 =

[
0 2
0 3

]
, B2 =

[
1
1

]
, E2 =

[
2
−1

]
, A3 =

[
1 1
10 3

]
, B3 =

[
3
2

]
,

A4 =

2 1 4
1 3 5
0 0 4

 , A5 =

2 1 3
1 2 4
0 0 4

 , B5 =

1 3 1
5 −3 6
0 5 −1

 ,

C4 =
[
1 2 3

]
, C5 =

[
1 2 1

]
, D5 =

[
3 6 −1

]
,

F1 =
[
5
]
, D2 =

[
3
]
, F2 =

[
3
]
, D3 =

[
6
]
, D4 =

[
3
]
.

We set T = 6. The inputs ui(t), t ∈ [0, 5], and the
initial states xi(0) and x0(0), i ∈ [1, 5], have been
randomly generated from a standard Gaussian distribu-
tion. We have collected the corresponding data matrices
(Y p

0 , U
p
i , X

p
i , X

f
i , Y

p
i ). By relying on the previous analysis,

we have obtained the following matrices:

L =

[
−0.5719
−0.4692

]
, H =

[
0.1987
−0.9801

]
,

K1 =

 0.7908 0.1046 0.5590
−0.1677 0.2658 0.0935
−1.3346 0.0327 −0.8135

 ,

K2 =
[
−0.0001 −2.8999

]
, K3 =

[
−1.0303 −0.5076

]
,

K4 =
[
−2.4279 0.7161 −0.0281

]
,

K5 =

 3.5372 1.1530 −1.7219
−0.6923 −0.2701 −0.5844
−3.4587 −1.3458 0.4763

 , Π1 =

 9.4737 −0.7312
−0.8750 3.8708
0.0693 −3.3919


Π2 =

[
0.3327 3.4521
−1.0572 1.1880

]
, Π3 =

[
0.0399 0.2869
0.4135 −1.0947

]
,

Π4 =

−0.7908 0.3916
0.6203 1.4994
−2.8368 −1.0040

 , Π5 =

 0.2158 0.0351
−0.4961 0.1923
0.1232 −0.1110

 ,

Γ1 =

 5.5430 −0.1230
4.3996 −3.3488

−10.1109 1.6856

 , Γ5 =

 0.0329 0.0156
−0.0861 0.1020
−0.0710 −0.0326

 ,

Γ2 =
[
0.7972 −3.3640

]
, Γ3 =

[
−0.2422 0.3013

]
,

Γ4 =
[
2.3536 0.2073

]
.

0

1 2

4

3 5

Fig. 1: Graph G0.

We have then tested the proposed data driven solution,
randomly generating from a standard Gaussian distribution
the initial condition xi(0), i = [1, 5], and x0(0), and the
results shown in Figure 2 highlight the excellent performance
of the output synchronization algorithm.
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Fig. 2: Plot of the leaders (left) and followers (right) estima-
tion error δi(t) (top) and output tracking error ei(t) (bottom).

APPENDIX

Lemma 11. Under Assumption 3, each eigenvalue λ of
σ((INf

+Df )
−1Lff ) (see (2)) satisfies the following condi-

tions: a) λ ̸= 0; b) λ ∈ {z ∈ C : |z − 1| < 1}.

Proof: a) Consider the condensed graph Gc, obtained
from G0 by merging all leader nodes and the node 0 repre-
senting the exosystem. There is an edge from this new node
to any of the follower nodes if and only if there was an edge
from one of the leaders to that follower in G0. Conversely,
there is an edge from any follower to the new node if and
only if there was an edge from that follower to one of the
leaders in G0. It is easy to see that the Laplacian associated
with this new digraph is related to L0 in (2) as follows:

Lc =

[
Nl + 1⊤

Nl
Lll1Nl

1⊤
Nl
Llf

Lfl1Nl
Lff .

]



Assumption 3, introduced for G0, still holds for Gc. But then
we can resort to Lemma 1 in [20] to claim that Lff is
nonsingular square. As (I +Df )

−1 is nonsingular, too, then
a) holds.

b) By Gershgorin’s Circle theorem [11], we can say that

σ((INf
+Df )

−1Lff )

⊂
⋃

j∈[Nl+1,N ]

{
z ∈ C :

∣∣∣∣z − dj
1 + dj

∣∣∣∣ ≤ N∑
k=Nl+1

[A]jk
1 + dj

}
,

but, by Assumption 3,
∑N

k=Nl+1[A]jk ≤ dj , and hence for
all j ∈ [Nl + 1, N ] and every λ ∈ σ((INf

+Df )
−1Lff ):∣∣∣∣λ− dj

1 + dj

∣∣∣∣ ≤ dj
1 + dj

that, together with a), implies b).

Lemma 12. Set σ((INf
+Df )

−1Lff ) = {λ1, λ2, . . . , λNf
}.

Under Assumptions 1, 2 and 3, there exists a matrix H such
that S − λiHR is Schur stable for all i ∈ [1, Nf ].

Proof: First, we want to prove that if (R,S) is
observable, then there exists a vector v ̸= 0 such that
(v⊤R,S) is observable. Let T be a nonsingular matrix s.t.
T−1ST = diag(µ1, . . . , µn0

), with |µj | = 1, µk ̸= µj if
k ̸= j. It follows that (R,S) is observable if and only if
(RT, T−1ST ) is observable, and by the PBH observability
criterion this is the case if and only if RT does not have
null columns. On the other hand, (v⊤R,S) is observable if
and only if (v⊤RT, T−1ST ) is observable, which happens
if and only if v⊤RT does not have null entries.
Let wi denote the ith column of RT , then v⊤wi = 0 if
and only if v ∈ (im(wi))

⊥. Since
⋃n0

i=1 (im(wi))
⊥ ⫋ Rp,

it follows that exists v ∈ Rp \
(⋃n0

i=1 (im(wi))
⊥
)

, namely
exists v ̸= 0 such that v⊤RT does not have null entries, and
thus (v⊤R,S) is observable.
Now it remains to show that if (v⊤R,S) is observable then
there exists q ∈ Rn0 such that S − λiqv

⊤R is Schur for all
i ∈ [1, Nf ], but this is the dual result of [23, Theorem 3.2].
Note that we can apply such result because condition (17)
in [23] holds, due to Lemma 11. So, the result holds for
H = qv⊤.

Lemma 13. Let A ∈ Rn×r and B ∈ Rk×r, and assume that

Ψ
.
=

[
A
B

]
∈ R(n+k)×r

is of full row rank. A matrix C ∈ Rr×n satisfies

ΨC =

[
In
0

]
(35)

if and only if

C =
(
Ψ† + (Ir −Ψ†Ψ)Q

) [In
0

]
(36)

for some matrix Q ∈ Rr×(n+k).

Proof: Since Ψ is of full row rank, its right inverses
are those and those only that can be expressed as

Ψ# = Ψ† +
(
Ir −Ψ†Ψ

)
Q, (37)

as Q varies in Rr×(n+k). Therefore if C is expressed as in
(36), for some Q, then obviously (35) holds. Conversely, if
C satisfies (35), the fact that B is of full row rank ensures
that [

A
B

] [
C B†] = [In ∗

0 Ik

]
,

for some matrix ∗ and hence there exists B# such that

Ψ
[
C B#

]
=

[
A
B

] [
C B#

]
=

[
In 0
0 Ik

]
.

This immediately implies that
[
C B#

]
is a right inverse

of Ψ and hence can be expressed as in (37) for some Q.
Therefore (36) holds.
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