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Distributed unknown input observers for discrete-time LTI systems
Giorgia Disarò, Giulio Fattore and Maria Elena Valcher

Abstract—In this paper we consider the problem of distributed
estimation of the state of a discrete-time, linear and time-
invariant (LTI) state-space model affected by disturbances. We
assume that there is a connected network of sensors having
access to some output measurements as well as to part of the
control inputs applied to the system. Such sensors exchange
information with the goal of achieving consensus and providing
an asymptotically correct estimate of the original system state.
Necessary and sufficient conditions for the existence of distributed
unknown input observers with augmented states that achieve
both goals are derived. The problem solution exploits the theory
of decentralized output feedback control, thus making it possible
to inherit the algorithms available for the solution of that
problem.

I. INTRODUCTION

The ever-increasing spread of complex networked systems
has brought with it a series of new challenges in the control
community. Indeed, when dealing with systems comprising a
multitude of components and/or scattered over a large area,
it is important to implement the desired control actions in a
distributed fashion, by this meaning that each sensor/node in
the network has to accomplish the required task by exploiting
only the locally available information and the interactions with
its neighbors. Among the various problems that the researchers
in this field have tried to solve in a distributed manner, there
is certainly the state estimation one. However, while in a
centralized scenario we can assume to have access to all the
components of the input applied to the system and to measure
all the output components to reconstruct the system state, in
a distributed architecture each sensor receives only a subset
of the input and output components, and hence it may not
be able to accomplish the task autonomously. Therefore, it
is necessary to exploit cooperation among the agents, and
resort, for instance, to a consensus strategy, in which each
sensor shares its own state estimate with its neighbors in the
communication network.

During the last decades several algorithms for state estima-
tion have been adapted to the distributed case, such as the
Kalman filter, in a stochastic setting [9], [13], and the Luen-
berger observer, in a deterministic framework. Focusing on the
deterministic set-up, the works of Park and Martins [14], [15],
[16] address the problem of distributed state estimation for
a discrete-time autonomous system by relying on a network
of Luenberger-like observers. Each local observer, endowed
with an additional internal state, measures a portion of the
output vector and computes a state estimate using its own
measurements and the state estimates of other local observers
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shared through a communication graph. The introduction of an
augmented state allows to reduce the design of the distributed
observer to the synthesis of a decentralized dynamic output
feedback controller, and hence to use existing literature results.
The idea of using an extended observer has been applied also
to continuous-time systems. In [19] Wang and Morse propose
a linear time-invariant distributed observer for an m-channel
continuous-time linear system, where m − 1 estimators have
dimension equal to the state dimension n and one estimator is
endowed with an augmented state of dimension n+m−1. By
using results from classical decentralized control theory, they
show that, under suitable assumptions, it is possible to freely
assign the spectrum of the overall distributed observer.

In [10] the state estimation problem is solved by means of a
distributed Luenberger observer, based on the decomposition
of each node state space into a detectable and an undetectable
part. Then, cooperation is exploited to compensate the locally
undetectable parts. Another approach to the design of dis-
tributed observers has been proposed in [12], building upon
the fact that a given node may be able to reconstruct a portion
of the state by means of an appropriate Luenberger observer,
using only its own measurements. Therefore, the node only
needs to exchange information with neighbors to estimate the
portion of the state that is not locally detectable.

In the papers mentioned so far, the distributed state estima-
tion problem is addressed assuming that no disturbance affects
the system dynamics. However, in a real-life scenario, it is
highly unlikely that there are no disturbances and that each
node has access to all the input components. Therefore, in
recent times, the control community has started to investigate
the distributed state estimation problem in the presence of
unknown inputs. In [22] a distributed state estimation scheme
for linear continuous-time systems subject to unknown inputs
that is capable of reconstructing the global system state has
been proposed. The authors derive existence conditions con-
sistent with the results on centralized unknown input observers
available in the literature. The additional condition that allows
the estimation scheme to be implemented in a distributed
manner is the absence of vectors lying in the intersection of
the undetectable subspaces of all nodes in the network. The
same condition has been exploited in [2] to derive a distributed
unknown input observer (DUIO), whose design procedure
builds upon the one proposed in [22], but is simpler and more
distributed. In [20] a slightly stronger sufficient condition for
the existence of a distributed observer for a continuous-time
linear system has been proposed: the existence of at least one
detectable node. However, the strengthening of the condition
is motivated by the fact that the main focus of [20] is a data-
driven implementation of the distributed estimation scheme,
which requires a solvability condition that can be checked
directly on data. All the conditions provided in [2], [20] and
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[22] are only sufficient for the existence of a DUIO, and
applicable only to continuous-time systems, since they are all
based on a high-gain mechanism, that cannot be extended to
the discrete-time case.

In this paper we aim to fill this gap, and hence to design
a distributed unknown input observer for a discrete-time
LTI system. Specifically, inspired by the papers of Martins
and Park, that resort to the theory of decentralized output
feedback control, we consider an estimation scheme in which
each sensor is endowed with an augmented state. We derive
necessary and sufficient conditions to guarantee that, by using
the proposed architecture, the state estimates provided by each
node in the network asymptotically reach consensus and the
consensus value coincides with the true system state. The
problem solution leverages some concepts and tools borrowed
from classical decentralized control theory, and in particular
from dynamic output feedback control. It is worth highlighting
that although all the results are derived in a discrete-time
setting, they easily extend to continuous-time systems.

The paper is organized as follows. In Section II the problem
of interest is formally defined. In Section III necessary and
sufficient conditions for the problem solvability are provided.
The numerical example presented in Section IV validates
the effectiveness of the proposed scheme. Finally, Section V
concludes the paper. Some technical lemmas used in the proofs
of the main results are reported in the Appendix.

Notation. Given two integers h, k, with h ≤ k, we let [h, k]
denote the set {h, h + 1, . . . , k}. 0m×n is the zero matrix of
size m × n, 0n and 1n are the all-zero and all-one vectors
of size n, respectively. Suffixes will be omitted when the
dimensions are irrelevant or can be deduced from the context.
The Moore-Penrose pseudoinverse of a matrix Q is denoted
by Q†. The spectrum of a square matrix Q is denoted by
σ(Q). A square symmetric matrix Q is positive (semi)definite
if x⊤Qx > 0 (x⊤Qx ≥ 0) for every x ̸= 0. The Kronecker
product is denoted by ⊗. Given matrices Mi, i ∈ [1, p], the
block diagonal matrix whose ith diagonal block is the matrix
Mi is denoted by diag(Mi). The (i, j)th entry of a matrix M
is denoted by [M ]i,j .

For every subset J of an integer set [1, N ], N ≥ 1, we
denote by J c the complement of J with respect to [1, N ],
namely J c = [1, N ] \ J . If J = {j1, j2, . . . , jk} ⊆ [1, N ],
we denote by SJ the selection matrix obtained by juxtaposing
the (N -dimensional) canonical vectors ejℓ , jℓ ∈ J , i.e., SJ ≜[
ej1 . . . ejk

]
∈ RN×k. Accordingly, for any N×N matrix

M , MSJ is the submatrix of M obtained by selecting the
columns corresponding to the indices in J , while S⊤

JM is the
submatrix of M obtained by selecting the rows corresponding
to the indices in J .

An undirected, weighted graph is a triple G = (V, E ,A),
where V = [1, N ] is the set of nodes, E ⊆ V × V is the
set of edges, and A ∈ RN×N is the symmetric, nonnegative,
weighted adjacency matrix which satisfies [A]i,j = [A]j,i > 0
if and only if (i, j) ∈ E . An undirected graph is connected if
for every i, j ∈ V there exist k ∈ Z+ and vertices i1, . . . , ik ∈
V such that (i, i1), (i1, i2), . . . , (ik, j) are all edges in E . The
Laplacian associated with G = (V, E ,A) is the matrix L ∈
RN×N whose entries are defined as follows [L]i,j = −[A]i,j ,

if i ̸= j, [L]i,i =
∑N

k=1 [A]i,k. Since A = A⊤, then L = L⊤.

II. PROBLEM FORMULATION

The problem set-up we adopt is similar to the one adopted
in [2], [20], [22]. The main difference is that here we consider
a discrete-time dynamics. More specifically, we consider the
following discrete-time LTI system

x(t+ 1) = Ax(t) +Bu(t) + Ed(t), (1)

where t ∈ Z+, x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input, d(t) ∈ Rq is the unknown process disturbance, A ∈
Rn×n, B ∈ Rn×m, and E ∈ Rn×q . The system outputs are
measured through a sensor network G = (V, E ,A) comprising
N heterogeneous sensor nodes. At each time t, each node
of the network provides an output signal, that represents an
indirect measurement of the state and is given by

yi(t) = Cix(t), ∀i ∈ V = [1, N ], (2)

where yi(t) ∈ Rpi , and Ci ∈ Rpi×n. Moreover, we assume
that each sensor node has access only to a subset of the input
entries, and hence for every i ∈ V we can split the entries of
the control input u(t) into two parts: the measurable part ui(t),
and the unmeasurable part uui (t). Consequently, for every i ∈
V , we can always express Bu(t) as:

Bu(t) = Bm
i ui(t) +Bu

i u
u
i (t), (3)

where ui(t) ∈ Rmi , Bm
i ∈ Rn×mi , uui (t) ∈ Rm−mi , Bu

i ∈
Rn×(m−mi). Since d(t) is also unknown for each node, the
overall unknown input at node i and the associated system
matrix can be represented as

wi(t) ≜
[
uui (t)

⊤ d(t)⊤
]⊤ ∈ Rri , (4a)

Di ≜ [Bu
i E] ∈ Rn×ri , (4b)

where ri ≜ m −mi + q. Consequently, for every i ∈ V , the
system dynamics, from the perspective of the ith sensor node,
can be described as:

x(t+ 1) = Ax(t) +Bm
i ui(t) +Diwi(t). (5)

In the following, we will denote by Ti the system described
by the pair of equations (1)–(2) or, equivalently, by the pair
(5)–(2). It is worth highlighting that even if it is convenient to
adopt a different description for each sensor node, to underline
the fact that each of them has access to different information,
the system whose state needs to be estimated is unique and
described as in (1).

Remark 1. There is no loss of generality (see [22]) in
assuming that the matrix Di is of full column rank ri, since
in the following analysis the specific expression of wi(t) plays
no role and hence wi(t) can be redefined.

We consider a distributed state estimation scheme in which
each sensor node i ∈ V is equipped with an (augmented
unknown input) observer (in the following called DUIOi)
and generates an estimate of the state of system (1) at
time t, x̂i(t), using only the locally available information,
namely the input and output signals ui(t) and yi(t), and the
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local communication with its neighbors. A distributed state
estimation scheme is a distributed unknown input observer
(DUIO) [2], [22] if all the estimates provided by the sensors in
the network converge asymptotically to the true state of system
(1), independently of the initial conditions, of the control input
and of the disturbance acting on the system.

Definition 2. Given the systems Ti, i ∈ V , interacting through
a communication graph G = (V, E ,A), a set of observers
DUIOi, i ∈ V , is a distributed unknown input observer if

ei(t) ≜ x(t)− x̂i(t) −→
t→+∞

0, ∀ i ∈ V,

independently of the initial conditions, the input u and the
disturbance d.

We assume that the ith sensor node generates the estimate
x̂i(t) through the following augmented observer:

DUIOi
i∈V

:



zi(t+ 1) = Nizi(t) +Miui(t) + Liyi(t)

−Ki

N∑
j=1

[A]i,j [x̂j(t)− x̂i(t)]−Qiξi(t),

ξi(t+ 1) = Siξi(t) +Ri

N∑
j=1

[A]i,j [x̂j(t)− x̂i(t)],

x̂i(t) = zi(t) +Hiyi(t),
(6)

where [zi(t)
⊤ ξi(t)

⊤]⊤ ∈ Rn+βi is the augmented state of the
ith DUIO, x̂i(t) is the estimate of x(t) provided by node i.
Ni,Ki ∈ Rn×n, Mi ∈ Rn×mi , Li, Hi ∈ Rn×pi , Qi ∈ Rn×βi ,
Si ∈ Rβi×βi and Ri ∈ Rβi×n are matrices to be designed.
[A]i,j is the (i, j)th entry of the adjacency matrix A of the
communication graph G. Let us introduce the global vector

zG(t) ≜
[
z⊤1 (t) · · · z⊤i (t) · · · z⊤N (t)

]⊤
.

The vectors ξG(t), uG(t), yG(t) and x̂G(t) are defined in an
analogous way. Also, we introduce the block diagonal matrices

N ≜ diag(Ni),M ≜ diag(Mi), L ≜ diag(Li),K ≜ diag(Ki),

Q ≜ diag(Qi), S ≜ diag(Si), R ≜ diag(Ri), H ≜ diag(Hi).

This allows us to rewrite the equations of the overall DUIO
as follows:

DUIO :


zG(t+ 1) = NzG(t) +MuG(t) + LyG(t)

+K(L ⊗ In)x̂G(t)−QξG(t),

ξG(t+ 1) = SξG(t)−R(L ⊗ In)x̂G(t),

x̂G(t) = zG(t) +HyG(t).

(7)

Assumption 1 (Communication network). The undirected,
weighted graph G = (V, E ,A) is connected, which amounts
to saying [11] that the Laplacian L is a symmetric positive
semidefinite matrix with 0 as an eigenvalue of multiplicity 1.

Remark 3. The idea of resorting to an augmented observer
to be able to later exploit the theory of decentralized output
feedback [6], [7] has been inspired by the milestone work
of Park and Martins [14], [15], [16]. However, as one can
easily see by a direct comparison, the choice of the observer
equations here is quite different from those adopted in the

aforementioned references. Indeed, in [14], [15], [16] the
core structure of the observer represents an extension of a
Luenberger observer, while in this paper we adopt a more
complex structure that is closer to those adopted in [2], [22],
due to the fact that with a Luenberger observer it is not
possible to decouple the estimation error update from the
effects of unknown inputs. Also, we introduce a consensus term
expressed through the Laplacian of the communication graph.

We are now ready to provide the formal statement of the
problem we are going to solve.

Problem 1. Given the systems Ti, i ∈ V , interacting through
the communication graph G = (V, E ,A), satisfying Assump-
tion 1, determine under what conditions block diagonal ma-
trices1 N,M,L,K,Q, S,R, and H can be found, so that the
state estimates provided by the nodes of the distributed state
estimation scheme (7) achieve consensus and the common state
estimate converges to the true state value. This amounts to say-
ing that the global estimation error eG(t) ≜ (1⊗x(t))−x̂G(t)
(defined by concatenation of the estimation errors of the
individual nodes ei(t), i ∈ V) converges to 0 as t → +∞,
regardless of the initial conditions, of the inputs and of the
disturbances acting on the systems.

III. NECESSARY AND SUFFICIENT CONDITIONS FOR
PROBLEM SOLVABILITY

In this section we provide necessary and sufficient condi-
tions for the solvability of Problem 1, stated in the previous
section. If we introduce the block diagonal matrices

Bm ≜ diag(Bm
i ), C ≜ diag(Ci), D ≜ diag(Di),

then, similarly to [18, Sections 2–3] and [22, Section 4], one
can describe the dynamics of the estimation error eG(t) =
(1 ⊗ x(t))− x̂G(t) in compact form as follows

eG(t+ 1) =
[
N +K(L ⊗ In)

]
eG(t)

+
[
(INn −HC)Bm −M

]
uG(t)

+
[
(INn −HC)(IN ⊗A)−N(INn −HC)− LC

]
xG(t)

+ (INn −HC)DwG(t) +QξG(t), (8)

where wG(t) is defined analogously to zG(t). Clearly, in order
to decouple the estimation error dynamics from the effects of
the (control and unknown) inputs and of the initial condition
of x, the following conditions must hold

M = (INn −HC)Bm, (9a)
(INn −HC)D = 0, (9b)
N = (INn −HC)(IN ⊗A)− (L−NH)C. (9c)

Correspondingly, equation (8) becomes

eG(t+ 1) = (N +K(L ⊗ In))eG(t) +QξG(t). (10)

The joint dynamics of eG(t) and ξG(t) is then given by[
eG(t+ 1)
ξG(t+ 1)

]
= Φ

[
eG(t)
ξG(t)

]
, (11)

1In the sequel when saying that the matrices N,M,L,K,Q, S,R, and
H are block diagonal, we will always mean that for each of them the ith
(not necessarily square) diagonal block has dimensions compatible with the
corresponding variables of the system Ti or the corresponding DUIOi (6).
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where

Φ ≜

[
N +K(L ⊗ In) Q
R(L ⊗ In) S

]
, (12)

and N satisfies (9c).
We first observe that (9a) is always feasible, so we can disre-
gard it in the following. Necessary and sufficient conditions for
the solvability of equation (9b) are given in Lemma 4 below,
whose proof is a trivial extension of the single agent case [4],
[5], being all matrices in (9b) block diagonal, and hence is
omitted.

Lemma 4. [20] The following facts are equivalent.
(i) Equation (9b) admits a block diagonal solution H =

diag(Hi), Hi ∈ Rn×pi .
(ii) For every i ∈ V , there exists Hi ∈ Rn×pi such that

HiCiDi = Di. (13)

(iii) For every i ∈ V , rank(CiDi) = rank(Di) = ri.

So, in the sequel we will always make the following:

Assumption 2 (Unknown input decoupling condition). For
every i ∈ V , rank(CiDi) = rank(Di) = ri.

We now consider condition (9c). Since all matrices in (9c)
are block diagonal, for every choice of L,N and H the matrix
F ≜ L−NH is block diagonal. And conversely, if we choose
block diagonal matrices F,N and H , then there exists a block
diagonal L such that F = L−NH . This allows us to rewrite
(9c) as

N = (INn −HC)(IN ⊗A)− FC, (14)

where F is a free block diagonal matrix parameter, whose
diagonal blocks have the same sizes of the diagonal blocks
of L. To conclude, we are reduced to finding block diagonal
matrices H , F , K, Q, R and S such that condition (9b)
is satisfied and the state estimation error, whose dynamics
obeys (11), asymptotically converges to zero. In the following
proposition we give necessary and sufficient conditions for
the existence of matrices N,K,Q,R and S such that the state
estimation error asymptotically goes to zero, independently of
the initial conditions.

Proposition 5. Let N be a block diagonal matrix described
as in (14), with H satisfying (9b). The following facts are
equivalent:

(i) There exist block diagonal matrices K,Q,R and S such
that for every choice of the initial conditions, the vector[
eG(t)

⊤ ξG(t)
⊤]⊤, whose dynamics is described as in

(11), satisfies limt→+∞ eG(t) = 0.
(ii) There exist block diagonal matrices K,Q,R and S such

that the matrix Φ described as in (12) is Schur stable.

Proof. The implication (ii) ⇒ (i) is trivial, since the Schur
stability of Φ ensures that eG(t) asymptotically converges to 0,
independently of the initial conditions. So, the only implication
that needs to be proved is (i) ⇒ (ii).
Suppose that there exist block diagonal matrices K, Q, R,
and S such that the vector eG(t) of the autonomous system
(11) tends to zero asymptotically for every choice of eG(0)

and ξG(0). This amounts to saying that the output eG(t) of
the autonomous system[

eG(t+ 1)
ξG(t+ 1)

]
= Φ

[
eG(t)
ξG(t)

]
,

eG(t) =
[
INn 0

] [eG(t)
ξG(t)

]
,

converges asymptotically to zero for every choice of the
initial state. By Lemma 10 in Appendix A, if the pair
(
[
INn 0)

]
,Φ) is detectable then the whole state vector[

eG(t)
⊤ ξG(t)

⊤]⊤ converges to zero asymptotically and,
since this is true for every choice of the initial condition,
this ensures that Φ is Schur. On the other hand, if the pair
(
[
INn 0)

]
,Φ) is not detectable, this means (see, again,

Lemma 10) that the pair (Q,S) is not detectable and hence
in particular not observable. Since the matrices Q and S
are block diagonal, the detectability/observability of the pair
(Q,S) is equivalent to the detectability/observability of each
pair (Qi, Si), i ∈ V . Let T = diag(Ti) ∈ R

∑
i βi×

∑
i βi be

a nonsingular block diagonal matrix that reduces each pair
(Qi, Si) to standard observability form. Therefore, by applying
the change of basis associated to the block diagonal matrix
diag(INn, T ), the matrix Φ in the new basis (after a reordering
of the last

∑
i βi rows and columns) becomes N +K(L ⊗ In) Q11 0

R11(L ⊗ In) S11 0
R21(L ⊗ In) S21 S22

 ,
where Q11, R11, R21, S11, S21 and S22 are block diagonal
matrices, and the pair (Q11, S11) is observable. This implies
that the dynamics of eG(t) is given by

eG(t+ 1) =
[
N +K(L ⊗ In) Q11 0

] eG(t)ξoG(t)
ξuG(t)

 ,
where ξoG(t) and ξuG(t) are the observable and unobservable
part of the vector ξG(t), respectively, and hence it does not
depend on the dynamics of ξuG(t). Therefore, if we reduce the
augmented state of the DUIO in (7), by considering only the
vector

[
z(t)⊤ ξoG(t)

⊤ ]⊤
, we have found a choice of block

diagonal matrices, namely K, Q11, R11, and S11, such that the
vector eG(t) still converges to zero asymptotically and the pair
(Q11, S11) is observable (and hence detectable). By Lemma
10, this is equivalent to saying that the matrix Φ corresponding
to this choice of matrices is Schur stable.

As a result of Proposition 5, from now on, in order to ensure
that each DUIOi asymptotically tracks the state of system (1),
and hence the global state estimation error converges to zero,
we need to find a block diagonal matrix H , whose diagonal
blocks satisfy (13) for every i ∈ V , and block diagonal
matrices F , K, Q, R and S such that Φ is Schur stable, where
N = (INn −HC)(IN ⊗A)− FC.
In order to solve this problem we resort to the theory of
decentralized output feedback control, and to the concept of
decentralized fixed modes [6], [7]. To this end, we set

Ã ≜ N = (INn −HC)(IN ⊗A)− FC, B̃ ≜ INn, C̃ ≜ L ⊗ In,
(15)
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and we assume

B̃ =
[
B̃1 . . . B̃N

]
=

 In . . . 0
...

. . .
...

0 . . . In

 ,

C̃ =

 C̃1

...
C̃N

 =

 ℓ11In . . . ℓ1NIn
...

. . .
...

ℓN1In . . . ℓNNIn

 .

The matrix Φ becomes

Φ =

[
Ã+ B̃KC̃ B̃Q

RC̃ S

]
. (16)

If we temporarily assume that Ã is fixed (i.e., we assume that
H and F have been chosen), we know from [6], [7] that there
exist block diagonal matrices K,Q,R and S such Φ is Schur
stable if and only if all the decentralized fixed modes of the
triple (C̃, Ã, B̃), by this meaning all λ’s such that

λ ∈
⋂

K=diag(Ki)

σ(Ã+ B̃KC̃),

have moduli smaller than 1. By relying upon [6], [7], we derive
the following set of equivalent conditions.

Theorem 6. Suppose that the matrices Ã, B̃ and C̃ are defined
as in (15) and that Ã is fixed (namely H and F have been
chosen). Then the following facts are equivalent.

(i) There exist block diagonal matrices K = diag(Ki),Ki ∈
Rn×n, Q = diag(Qi), Qi ∈ Rn×βi , R = diag(Ri), Ri ∈
Rβi×n, and S = diag(Si), Si ∈ Rβi×βi , such that the
matrix Φ in (16) is Schur stable.

(ii) The decentralized fixed modes of the triple (C̃, Ã, B̃)
have moduli smaller than 1.

(iii) For every λ ∈ C, with |λ| ≥ 1, and every J ⊆ V

rank

([
λINn − Ã B̃S̃J
S̃⊤
J c(L ⊗ In) 0

])
≥ Nn, (17)

where S̃J ≜ SJ ⊗ In, and S̃J c ≜ SJ c ⊗ In.
(iv)

rank

([
λINn − Ã
L ⊗ In

])
= Nn, ∀λ ∈ C, |λ| ≥ 1.

(v) The pair ((L ⊗ In), Ã) is detectable.
(vi) ∄(v, λ), v ∈ Rn, v ̸= 0, λ ∈ C, |λ| ≥ 1, such that

Ã(1 ⊗ v) = λ(1 ⊗ v).

Proof. The equivalence of (i), (ii) and (iii) is true for general
matrices Ã, B̃ and C̃, and has been proved in [6], [7].
Similarly, (iv) ⇔ (v) is a standard result for discrete-time LTI
state space models. So, we will only prove the equivalence of
(iii) and (iv), and the equivalence of (iv) and (vi).
(iii) ⇒ (iv). Condition (iii) holds for every subset J ⊆ V ,
so in particular it holds for J = ∅. When so, B̃S̃J is the
empty matrix, while S̃⊤

J c = INn. Therefore for J = ∅ the
rank condition (17) becomes:

rank

([
λINn − Ã
L ⊗ In

])
≥ Nn, ∀λ ∈ C, |λ| ≥ 1,

that can be verified only with the equality sign.
(iv) ⇒ (iii). We observe that since B̃ = INn, then B̃S̃J = S̃J .
We first note that for J = V , the rank condition (17) becomes:

rank
([

λINn − Ã INn

])
≥ Nn, ∀λ ∈ C, |λ| ≥ 1,

that is always verified with the equality sign. For every J ⊂ V ,
with J ̸= ∅ and hence 1 ≤ |J | ≤ N − 1, the matrix S̃J has
always full column rank, equal to |J |n. This ensures that

rank
([

λINn − Ã B̃S̃J
])

≥ |J |n.

At the same time, the matrix

S̃⊤
J c(L ⊗ In) = (S⊤

J c ⊗ In)(L ⊗ In) = (S⊤
J cL)⊗ In

has full row rank |J c|n = (N − |J |)n (see Lemma 14, in
Appendix B). This ensures that for every J ⊆ V , with J ̸= ∅,
the matrix in (iii) has rank (at least) Nn, independently of
λ ∈ C. Therefore if the matrix in (iv) has rank Nn, then
condition (iii) holds also for J = ∅, and hence for every
J ⊆ V .
(iv) ⇔ (vi). Condition (iv) holds if and only if there is no pair
(w, λ), w ∈ RNn, w ̸= 0, λ ∈ C, |λ| ≥ 1, such that

Ãw = λw, and (L ⊗ In)w = 0. (18)

By Assumption 1, the matrix L has a single eigenvalue in 0 and
the corresponding eigenspace is span{1N}. By the properties
of the Kronecker product, this implies that ker(L ⊗ In) =
{w ∈ RNn : w = 1N ⊗ v,∃ v ∈ Rn}. Consequently, (18)
holds for some (w, λ), w ∈ RNn, w ̸= 0, λ ∈ C, |λ| ≥ 1, if
and only if there exists (v, λ), v ∈ Rn, v ̸= 0, λ ∈ C, |λ| ≥ 1,
such that Ã(1N ⊗ v) = λ(1N ⊗ v).

To summarize, Proposition 5 allows us to say that there
exists a DUIO described as in (7) if and only if there exist:
- a block diagonal matrix H , whose diagonal blocks satisfy
(13) for every i ∈ V , and
- block diagonal matrices F , K, Q, R and S
such that Φ is Schur stable.
On the other hand, by Theorem 6, this is the case if and only
if we can find:
- a block diagonal matrix H , whose diagonal blocks satisfy
(13) for every i ∈ V , and
- a block diagonal matrix F ,
such that Ã = N = (INn − HC)(IN ⊗ A) − FC has
no eigenvectors of the form 1N ⊗ v, for some v ∈ Rn,
corresponding to some unstable eigenvalue λ ∈ C, |λ| ≥ 1.

Since all matrices involved at this stage are block diagonal,
we are reduced ourselves to the problem of determining under
what conditions we can find matrices Hi satisfying (13) and
matrices Fi, i ∈ V , so that ∄(v, λ), v ∈ Rn, v ̸= 0, λ ∈
C, |λ| ≥ 1, such that

[(In −HiCi)A− FiCi]v = λv, ∀ i ∈ V. (19)

In the following proposition, we provide an equivalent
condition for the existence of such matrices Hi and Fi, i ∈ V .

Proposition 7. The following facts are equivalent.
(i) For every i ∈ V , there exist matrices Hi ∈ Rn×pi

satisfying (13) and Fi ∈ Rn×pi so that ∄(v, λ), v ∈
Rn, v ̸= 0, λ ∈ C, |λ| ≥ 1, such that (19) holds.
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(ii) ∄(v, λ), v ∈ Rn, v ̸= 0, λ ∈ C, |λ| ≥ 1, such that{
(In − H̄iCi)Av = λv,

Civ = 0,
∀ i ∈ V, (20)

where H̄i is the particular solution of (13) given by H̄i =
Di(CiDi)

†.

Proof. Throughout the proof, we will steadily refer to the
notation used in Appendix A, namely, for every i ∈ V , we
will denote by Pi the matrix In − HiCi for a generic Hi

satisfying (13) (and hence parametrized as in (26)), and by P̄i

the same matrix corresponding to Hi = H̄i.
(i) ⇒ (ii). We proceed by contradiction and we show that ¬(ii)
⇒ ¬(i). Assume that there exists (v, λ), v ∈ Rn, v ̸= 0, λ ∈
C, |λ| ≥ 1, such that (20) holds for every i ∈ V , namely{

P̄iAv = λv,

Civ = 0,
∀ i ∈ V.

By Lemmas 11 and 12 in Appendix A, for every i ∈ V
and every Pi, we have that σu(Ci, P̄iA) ⊆ σu(Ci, PiA),
namely the set of eigenvalues of the undetectable subsystem
UD(Ci, P̄iA) of the pair (Ci, P̄iA) is included in the set of
eigenvalues of the undetectable subsystem UD(Ci, PiA) of
the pair (Ci, PiA), and the eigenvectors of P̄iA belonging
to UD(Ci, P̄iA) are also eigenvectors of PiA belonging to
UD(Ci, PiA). Therefore, for every i ∈ V and every Pi, we
have that PiAv = λv, and Civ = 0. Consequently, for every
i ∈ V , every Hi ∈ Rn×pi satisfying (13), and every Fi ∈
Rn×pi , we get [(In−HiCi)A−FiCi]v = [PiA−FiCi]v = λv.
This contradicts (i).
(ii) ⇒ (i). Again, we proceed by contradiction and we show
that ¬(i) ⇒ ¬(ii). Assume that, for every i ∈ V , for every
Fi ∈ Rn×pi , and for every Hi ∈ Rn×pi satisfying (13),
∃(v, λ), v ∈ Rn, v ̸= 0, λ ∈ C, |λ| ≥ 1, such that (19) holds.
This, in particular, holds true if for every i ∈ V we choose
Hi = H̄i and Fi = F̄i, where F̄i is any matrix that moves
all the eigenvalues of P̄iA inside the unit circle, except those
belonging to σu(Ci, P̄iA) (see Lemma 13 in Appendix A).
This amounts to saying that for any λ ∈ C, |λ| ≥ 1,

λ ∈ σ(P̄iA− F̄iCi) ⇔ λ ∈ σu(Ci, P̄iA).

Moreover, exploiting again Lemma 13, if v ∈ Rn, v ̸= 0, is
an eigenvector of P̄iA − F̄iCi corresponding to some λ ∈
σu(Ci, P̄iA), then P̄iAv = λv and Civ = 0. Consequently,
[(In − H̄iCi)A− F̄iCi]v = [P̄iA− F̄iCi]v = λv, implies that
(20) holds. This contradicts (ii).

We are now ready to state the main result of the paper, in
which we provide necessary and sufficient conditions for the
solvability of Problem 1.

Theorem 8. The following facts are equivalent.
(i) There exists a distributed unknown input observer

(DUIO) of the form (7) for system (1).
(ii) There exist block diagonal matrices H = diag(Hi), Hi ∈

Rn×pi , F = diag(Fi), Fi ∈ Rn×pi , K = diag(Ki),Ki ∈

Rn×n, Q = diag(Qi), Qi ∈ Rn×βi , R = diag(Ri), Ri ∈
Rβi×n, and S = diag(Si), Si ∈ Rβi×βi such that

Φ=

[
(INn −HC)(IN ⊗A)− FC +K(L ⊗ In) Q

R(L ⊗ In) S

]
,

is Schur stable, and H satisfies (9b).
(iii) For every i ∈ V , there exist matrices Fi ∈ Rn×pi and

Hi ∈ Rn×pi satisfying (13) so that ∄(v, λ), v ∈ Rn, v ̸=
0, λ ∈ C, |λ| ≥ 1, such that (19) holds.

(iv) ∄(v, λ), v ∈ Rn, v ̸= 0, λ ∈ C, |λ| ≥ 1, such that (20)
holds, where H̄i = Di(CiDi)

†.

The proof of the previous theorem is a direct consequence of
Propositions 5 and 7, and of Theorem 6, and hence is omitted.

IV. EXAMPLE

Example 9. Consider a network of N = 3 sensors described
by the following Laplacian (of a connected communication
graph)

L =

 1 −1 0
−1 2 −1
0 −1 1

 ,
and a system of the form (1)-(2) with matrices:

A =

0.6 0.6 −0.6
0 1.2 −0.6
0 0 −0.6

 , B =

1 0
0 1
0 0

 , E =

10
1

 ,
C1 =

[
1 1 0
0 1 0

]
, C2 =

[
0 0 1
1 0 0

]
, C3 =

[
0 1 1
1 0 0

]
.

Assume that the matrices in (4b) weighting the overall un-
known input for each sensor are:

D1 =

0 1
1 0
0 1

 , D2 = D3 =

1 1
0 0
0 1

 .
It can be easily checked that condition (iii) of Lemma 4 is
satisfied, and hence there exist matrices Hi, i ∈ V , satisfying
(13). Assume Hi = H̄i = Di(CiDi)

†, ∀ i ∈ V , so that

H̄1 =

1 −1
0 1
1 −1

 , H̄2 =

0 1
0 0
1 0

 , H̄3 =

0 1
0 0
1 0

 .
It is easy to verify that ∄(v, λ), v ∈ Rn, v ̸= 0, λ ∈ C, |λ| ≥ 1,
such that (20) holds, and hence there exists a DUIO of
the form (7) for the system. From H̄i we derive matrices
Mi, i ∈ V . Then, for every i ∈ V , we design the matrices
Fi (and hence Ni and Li) in order to place in zero all the
movable eigenvalues of the matrices PiA−FiCi (referring to
the notation adopted in Appendix A). We get

N1 =

 0 0 0
0 0 0

−0.6 −0.6 0

 , M1 =

 0
0
−1

 , L1 =

 0 0
0 0

−0.6 0


N2 =

0 0 0
0 1.2 1.4
0 0 0

 , M2 =

01
0

 , L2 =

 0 0
−0.6 0
0 0


N3 =

0 0 0
0 −0.8 −2.6
0 0.8 2.6

 , M3 =

 0
1
−1

 , L3 =

 0 0
−0.6 0
0.6 0

 .



7

0 10 20 30 40 50
-3

-2

-1

0

1

2

3

4

5
104

0 10 20 30 40 50
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
105

0 10 20 30 40 50
-1

-0.5

0

0.5

1

1.5
105

Fig. 1. Dynamics of the state estimation error component-wise

We are now remained to design the matrices Ki, Qi, Ri and
Si for every i ∈ V . To this end, we leverage the results in [3]
and [16], and we make the system controllable and observable
from the first sensor node (channel) by randomly selecting
Ki, i ∈ [2, 3] (since this can be achieved for almost every
choice of such matrices). In particular, we set

K2 =

0.16 −2.21 −0.61
2.10 1.56 2.05
1.90 0.70 −2.77

 , K3 =

−1.62 0.13 0.66
1.79 1.61 0.91
−0.42 −0.64 −1.11

 .

Then, we design the matrices K1, Q1, R1 and S1 following
the algorithm for the synthesis of a centralized dynamic output
feedback controller proposed in [1]. By placing in zero all the
eigenvalues of the matrix

Φ1 ≜

[
Ã+

∑3
i=2 B̃iKiC̃i B̃1Q1

R1C̃1 S1

]
,

we obtain

K1 =

−1.96 −2.96 −2.96
−8.93 −7.93 −8.93
1.98 1.98 2.98

 , Q1 =

−20.33 0.30
−51.17 3.52
2.59 3.83

 ,
R1 =

[
1 1 1
0 0 0

]
, S1 =

[
7.11 −0.47
1 0

]
.

The dynamics of the state estimation error component-wise
and for each node in the network is shown in Figure 1.

V. CONCLUSIONS

In this paper we investigated the problem of designing a
distributed unknown input observer for a discrete-time LTI
system. More specifically, we considered an augmented ob-
server in which each sensor node is endowed with an addi-
tional internal state, and has access only to its partial output
measurements as well as to part of the control inputs applied to
the system. We showed that, under a connectivity assumption
on the network graph, it is possible to exploit cooperation
among the agents and obtain that the state estimates provided
by each node reach consensus and asymptotically align with
the true state. By resorting to the theory of decentralized output
feedback, we provided necessary and sufficient conditions for
the existence of such a DUIO. The current analysis remains
valid in continuous-time and can be easily extended to the case
of directed graphs.

APPENDIX

A. Technical results about detectability

Lemma 10. Consider the following system of equations[
x1(t+ 1)
x2(t+ 1)

]
=

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
= Γ

[
x1(t)
x2(t)

]
,

y(t) =
[
In1 0

] [x1(t)
x2(t)

]
= x1(t),

where x1(t) ∈ Rn1 , x2(t) ∈ Rn2 , and Γ ≜

[
A11 A12

A21 A22

]
.

The following facts are equivalent.
(i) For every x1(0) ∈ Rn1 and every x2(0) ∈ Rn2 ,

y(t) −→
t→+∞

0 implies
[
x1(t)
x2(t)

]
−→

t→+∞
0.

(ii) The pair (
[
In1

0
]
,Γ) is detectable.

(iii) The pair (A12, A22) is detectable.

Proof. (i) ⇔ (ii). This equivalence is a standard result for
linear state-space models (see, e.g., [17]).
(ii) ⇔ (iii). By applying the PBH observability test, we have
that the pair (

[
In1

0
]
,Γ) is detectable if and only if for

every z ∈ Cn1+n2 , |z| ≥ 1, it holds

rank

 zIn1
−A11 −A12

−A21 zIn2 −A22

In1
0

 = n1 + n2,

which, in turn, holds if and only if

rank

([
−A12

zIn2
−A22

])
= n2.

The previous condition is equivalent to the detectability of the
pair (A12, A22).

We consider a matrix pair2 (C, Ā), where Ā ∈ Rn×n and
C ∈ Rp×n that is not detectable. Then there exists [21] a
nonsingular square matrix T ∈ Rn×n that reduces (C, Ā) to
standard detectability form, by this meaning that

T−1ĀT =

[
Ā11 0
Ā21 Ā22

]
, CT =

[
C1 0

]
, (21)

where Āii ∈ Rni×ni , i = 1, 2, and C1 ∈ Rp×n1 , the pair
(C1, Ā11) is detectable, while Ā22 has all the eigenvalues of
modulus greater than or equal to 1. We refer to σ(Ā22) as the
set of eigenvalues of the undetectable subsystem of the pair
(C, Ā) and denote it by σu(C, Ā). Clearly, σu(C, Ā) ⊆ σ(Ā).
It is well-known that, given λ ∈ C, with |λ| ≥ 1, then λ ∈
σu(C, Ā) if and only if the PBH observability matrix loses
rank in λ, i.e.,

rank

([
λIn − Ā

C

])
< n. (22)

We define the undetectable subspace of the pair (C, Ā) as the
set [21] (see, also, [2], [22])

UD(C, Ā) ≜ Xno(C, Ā) ∩ ker(ψu,Ā(Ā)), (23)

2In this section we will resort to a simplified notation, but all the results
stated/derived in the sequel will later be used for specific matrix pairs
associated with each ith sensor node, i ∈ V, and hence the pairs will come
with suffixes.
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where

Xno(C, Ā) ≜ ker




C
CĀ

...
CĀn−1


 ,

while ψu,Ā(z) denotes the (monic) divisor of the minimal an-
nihilating polynomial of Ā, ψĀ(z), comprising all its unstable
zeros. If the pair (C, Ā) is in standard detectability form, then

UD(C, Ā) = span{ei : i ∈ [n1 + 1, n]}.

If not, and T is the nonsingular square matrix that reduces
(C, Ā) to standard detectability form (21), then

UD(C, Ā) = span{Tei : i ∈ [n1 + 1, n]}.

Finally, a nonzero vector v ∈ Rn is an eigenvector of Ā be-
longing to UD(C, Ā) if and only if there exists λ ∈ σu(C, Ā)
such that [

λIn − Ā
C

]
v = 0. (24)

Let us introduce a full column matrix D ∈ Rn×r and consider
the equation

HCD = D, (25)

in the unknown matrix H ∈ Rn×p, which is solvable if and
only if rank(CD) = rank(D) = r. The set of solutions H of
(25) can be parametrized as follows [5]:

H = D(CD)† + Y (In − CD(CD)†), (26)

where Y ∈ Rn×n is arbitrary. In the following we will steadily
refer to the following notation:

H̄ ≜ D(CD)†, P ≜ In−HC, for H generic, P̄ ≜ In−H̄C.

We observe that as rank(H̄) = r, then [8] the corresponding
P̄ has rank n−r, while for a generic H satisfying (25) we can
only claim that rank(P ) ≤ n − r since PD = 0 and hence
im(D) ⊆ ker(P ). We have the following results.

Lemma 11.
(i) The set σu(C, P̄A) of eigenvalues of the undetectable
subsystem of (C, P̄A) is given by

σu(C, P̄A) =
{
z ∈ C, |z| ≥ 1 : rank

([
zI −A −D

C 0

])
< n+r

}
;

(ii) σu(C, P̄A) ⊆ σu(C,PA), for every other P .

Proof. The following proof is inspired by the proof of Theo-
rems 1 and 2 in [5].
(i) For every z ∈ C, it holds that

rank

([
zI −A −D
C 0

])

≥ rank

 P 0
D† 0
0 I

[
zI −A −D
C 0

] [
I 0

zD† −D†A I

]
= rank

zP − PA 0
0 I
C 0


= r + rank

([
I zH
0 I

] [
zP − PA

C

])
= r + rank

([
zI − PA

C

])
,

where the inequality in the first row becomes an equality if
P = P̄ . The previous reasoning has two consequences:
1) for every z ∈ C we have that

rank

([
zI − P̄A

C

])
+ r = rank

([
zI −A −D
C 0

])
,

thus proving that (i) holds. 2) For every z ∈ C,

rank

([
zI − P̄A

C

])
+ r = rank

([
zI −A −D
C 0

])
≥ rank

([
zI − PA

C

])
+ r, (27)

and hence

rank

([
zI − PA

C

])
≤ rank

([
zI − P̄A

C

])
. (28)

Consequently, if λ ∈ C, |λ| ≥ 1,

λ ∈ σu(C, P̄A) ⇔ rank

([
λI − P̄A

C

])
< n

⇒ rank

([
λI − PA

C

])
< n

⇔ λ ∈ σu(C,PA).

Lemma 12. If v ∈ Rn, v ̸= 0, is an eigenvector of P̄A
belonging to UD(C, P̄A), and hence corresponding to some
λ ∈ C, |λ| ≥ 1, then it is also an eigenvector of PA belonging
to UD(C,PA) and corresponding to the same λ, for every P .

Proof. This proof is, in turn, inspired by the proof of Theorem
2 in [5]. The following equivalent conditions hold (see (24)):[

λI − P̄A
C

]
v = 0 ⇔

λI − P̄A 0
0 I
C 0

[
v
0

]
= 0

⇔

I 0 −λH̄
0 I 0
0 0 I

λP̄ − P̄A 0
0 I
C 0

[
v
0

]
= 0

⇔
[
λI −A −D
C 0

] [
I 0

λD† −D†A I

] [
v
0

]
= 0

⇔
[
(I −DD†)(λI −A)

C

]
v = 0.
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This, in particular, implies that v is an eigenvector of P̄A
belonging to UD(C, P̄A) (and corresponding to λ) if and only
if3 {

Cv = 0,

(λI −A)v ∈ ker(I −DD†) = im(D),
(29)

which is equivalent to[
v
w

]
∈ ker

([
λI −A −D
C 0

])
, ∃w ∈ Rr. (30)

On the other hand, if (30) holds then

0 =

[
P λH
0 Ip

] [
λI −A −D
C 0

] [
v
w

]
=

[
λI − PA

C

]
v.

This implies that each eigenvector of P̄A that belongs to
UD(C, P̄A) is also an eigenvector of PA belonging to
UD(C,PA) (and it corresponds to the same eigenvalue).

Lemma 13. Let (C, Ā), with Ā ∈ Rn×n and C ∈ Rp×n, be an
undetectable pair and let σu(C, Ā) be the set of eigenvalues
of the undetectable subsystem of the pair (C, Ā). Then there
exists L ∈ Rn×p such that

(i) the set of the unstable eigenvalues of Ā− FC coincides
with σu(C, Ā);

(ii) if (v, λ), with v ∈ Rn, v ̸= 0, and λ ∈ C, |λ| ≥ 1,
satisfies (Ā− FC)v = λv, then Āv = λv and Cv = 0.

Proof. Let T ∈ Rn×n be a nonsingular matrix that reduces the
pair (C, Ā) to standard detectability form (21), with (C1, Ā11)
detectable, and σ(Ā22) = σu(C, Ā). Let F1 be a matrix such
that Ā11 − F1C1 is Schur. Then clearly the set of unstable
eigenvalues in

σ

([
Ā11 0
Ā21 Ā22

]
−
[
F1

0

] [
C1 0

])
coincides with σu(C, Ā). This implies that the matrix

L ≜ T

[
F1

0

]
guarantees that the set of unstable eigenvalues in σ(Ā−FC)
coincides with σu(C, Ā), and hence (i) holds.

On the other hand, we observe that condition[
Ā11 − F1C1 0

Ā21 Ā22

] [
v1
v2

]
= λ

[
v1
v2

]
3The equality ker(I − DD†) = im(D) can be proved as follows. From

(I − DD†)D = 0, we deduce that im(D) ⊆ ker(I − DD†), and this
implies that rank(I − DD†) ≤ n − r, where we exploited the fact that D
is of full column rank. On the other hand, there exists an orthonormal matrix
T ∈ Rn×n, i.e., such that TT⊤ = T⊤T = I , for which

T⊤D =

[
∆
0

]
,

where ∆ ∈ Rr×r is a nonsingular matrix. Therefore, we have

T⊤(I −DD†)T =

[
Ir −∆(DD†)−1∆⊤ 0

0 In−r

]
,

which implies that rank(I−DD†) ≥ n−r. Thus, we conclude that rank(I−
DD†) = n− r, and hence ker(I −DD†) = im(D).

for some λ ∈ C, |λ| ≥ 1, and [v⊤1 v⊤2 ]
⊤ ̸= 0, implies v1 = 0

(as λ ̸∈ σ(Ā11 − F1C1)). Therefore[
C1 0

] [v1
v2

]
= 0.

But this implies that

(Ā− FC)v = λv, |λ| ≥ 1 ⇒ Cv = 0,

and hence it is also true that Āv = λv and Cv = 0. This
proves (ii).

B. Properties of the Laplacian

Lemma 14. Let L ∈ RN×N be the Laplacian of an undi-
rected, weighted and connected graph G = (V, E ,A), and
let I, with 1 ≤ |I| ≤ N − 1, be a subset of V = [1, N ].
Consider the block matrix S̃I given by S̃I = SI ⊗ In, where
SI ∈ RN×|I| is the selection matrix corresponding to I. Then,
S̃⊤
I (L ⊗ In) is of full row rank, i.e.,

rank(S̃⊤
I (L ⊗ In)) = |I|n.

Proof. It entails no loss of generality assuming that I = [1, k],
where k = |I|, since we can always reduce ourselves to this
case by means of permutations. If k = N − 1, then we can
exploit Lemma 3 in [20] to claim that S⊤

I LSI is positive
definite and hence nonsingular. On the other hand, if 1 ≤ k <
N − 1, then set H ≜ [1, N − 1], let SH be the corresponding
selection matrix and let ŜI be the (N−1)×k selection matrix
corresponding to I = [1, k] regarded as a subset of [1, N −1].
Then

S⊤
I LSI = Ŝ⊤

I [S⊤
HLSH]ŜI .

The matrix S⊤
HLSH is positive definite because |H| = N − 1.

On the other hand, every principal submatrix of a positive
definite matrix is positive definite, in turn, and this proves
that Ŝ⊤

I [S⊤
HLSH]ŜI is positive definite.

This implies that S̃⊤
I (L⊗ In)S̃I = (S⊤

I LSI)⊗ In is positive
definite and hence S̃⊤

I (L ⊗ In) is of full row rank.
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