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On the consensus of homogeneous multi-agent

systems with positivity constraints

Maria Elena Valcher Fellow, IEEE, and Irene Zorzan

Abstract

This paper investigates the consensus problem for multi-agent systems, under the assumptions

that the agents are homogeneous and described by a single-input positive state-space model, the mutual

interactions are cooperative, and the static state-feedback law that each agent adopts to achieve consensus

preserves the positivity of the overall system. Necessary conditions for the problem solvability, that allow

to address only the special case when the state matrix is irreducible, are provided. Under the irreducibility

assumption, equivalent sets of sufficient conditions are derived. Special conditions either on the system

description or on the Laplacian of the communication graph allow to obtain necessary and sufficient

conditions for the problem solvability. Finally, by exploiting some results about robust stability either of

positive systems or of polynomials, further sufficient conditions for the problem solvability are derived.

Numerical examples illustrate the proposed results.

I. INTRODUCTION

Multi-agent systems and consensus problems have been very lively research topics in the

last decade. Early contributions on these subjects date back to the seventies [9], followed

by a few additional contributions in the eighties and nineties [40], [43], but it was only ten

years ago that milestone papers like [15], [25], [30], [36], stimulated a wide interest in these

problems within the Systems and Control community. The reason for such an impressive success

must be credited to the number of diverse and challenging practical problems that can be

formalized as consensus problems among agents: flocking and swarming in animal groups,

dynamics of opinion forming, coordination in sensor networks, clock synchronization, distributed

tasks among mobile robots/vehicles. In all these contexts, the common ingredient is the existence
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of different individuals/units (the agents), each of them performing a task and communicating

with its neighbours to achieve a common goal. Consensus algorithms propose distributed control

strategies that each agent implements, based on the received information, to reach a common

target, to converge to some common value or set of values (see, e.g. [22], [36], [39]).

In a number of these contexts, the information that the agents acquire and update, based on

the communication with the other agents, and on which they search for consensus, is the value

of variables that are intrinsically nonnegative. This is the case, for instance, when dealing with

wireless sensor networks in greenhouses [7], since the parameters that the sensors measure and

exchange are light intensity, humidity, and CO2 concentration, and the sensors must converge

to some common values for these parameters, based on which shading or artificial lights will

be controlled, watering/heating systems will be activated, CO2 will be injected, and so on.

Another interesting problem, formalized as a consensus problem with positivity constraint,

is the emissions control for a fleet of Plugin Hybrid Vehicles [23]. Each vehicle has a parallel

power-train configuration that allows for any arbitrary combination of the power generated by

the combustion engine and the electric motor. Moreover, the vehicles can communicate. Under

these assumptions, an algorithm was proposed in [23] to regulate in a cooperative way the CO2

emissions, so that no vehicle has a higher emission level than the others.

Finally, the distributed multi-vehicle coordination problem through local information exchange

investigated in [34], [35] is an example of consensus problem among agents (the vehicles) whose

dynamics is described by a linear positive state-space model.

In addition to the previous contributions, specifically addressing the positive consensus prob-

lem, there have been a number of contributions dealing with properties and performances

(stability, stabilization, L1-gain, optimal and distributed control) of positive multi-agent systems

and more generally of interconnected positive systems [10], [11], [12], [33], closely related to

the positive consensus problem.

Stimulated by this stream of research and by the aforementioned application problems, this

paper aims at investigating the consensus problem for homogeneous multi-agent systems, whose

agents are described by a continuous-time, single-input, positive state-space model. The agents

are supposed to be cooperative and the communication graph describing the agents’ mutual

interactions is a weighted, undirected and connected graph. Also, agents adopt a distributed state-

feedback control strategy, based on the information available on the states of their neighbouring

agents. As the agents’ states are intrinsically nonnegative, a natural requirement to introduce,
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in addition to consensus, is the positivity of the overall controlled multi-agent system. This

amounts to saying that the state feedback law adopted to achieve consensus must constrain

the state trajectories to remain in the positive orthant. The consensus problem under positivity

constraint was first addressed in [44], under quite different assumptions on the communication

structure, the feedback control law and the final goal. Indeed, first of all no communication

graph was introduced and an n-dimensional supervisory output-feedback controller, instead of a

distributed state-feedback control law, was adopted. This implies, in particular, that each agent

was assumed to interact with all the other agents, an assumption that does not seem realistic as

the number of the agents grows. Finally, consensus was imposed (for all the nonnegative initial

conditions) to a common constant value, a requirement that constrains the spectrum of the state

matrix of the agents’ state-space description and has here been removed.

The paper is organized as follows. Section II provides some background material about positive

matrices, graphs and Laplacians. In Section III the positive consensus problem is formalized.

A set of necessary conditions is provided in Section IV. In particular, first we determine a

necessary condition for the problem solvability that refers to the Frobenius normal form of the

matrix A involved in the state-space representation of each agent, and to the corresponding block

partitioned input-to-state matrix B. As a result of this necessary condition, the rest of the paper

can focus on the special case of an irreducible state matrix A. Additional necessary conditions

derived in Section IV prove to be fundamental for the subsequent derivations. The case when

the spectral abscissa of A is zero is completely solved in Section V. Section VI focuses on a

set of tighter requirements on the matrices A − λiBK involved in the problem solution, thus

leading to two families of sufficient conditions for the problem solvability. Section VII addresses

three special cases for which additional constraints, either on the matrices A and B involved in

the agents’ description or on the Laplacian associated with their communication graph, allow

to determine necessary and sufficient conditions for the solvability of the positive consensus

problem. Finally, Section VIII provides sufficient conditions for the problem solvability that are

based on the robust stability of positive systems [41] or on the robust stability of polynomials

[5].

The manuscript encompasses, in revised form, most of the results included in the conference

papers [45], [46], where we first proposed the positive consensus problem. But it also brings

novel contribution, since Section VII.C and Section VIII are completely new. New remarks

and examples have been introduced, to give a clear picture of this challenging problem whose
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complete solution is still under investigation.

II. BACKGROUND MATERIAL

If N is a positive integer, we denote by [1, N ] the finite set {1, 2, . . . , N}. 1N is the N -

dimensional vector with all entries equal to 1. ei denotes the ith canonical vector (whose size

is always clear from the context). A vector v = viei, vi > 0, is called ith monomial vector or,

generically, monomial vector. The Kronecker (or tensor) product of two matrices A ∈ Rm×n

and B ∈ Rp×q is defined as the matrix C = A⊗B ∈ Rpm×qn:

C = [A⊗B] :=


a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

... . . . ...

am1B am2B . . . amnB

 .
A real square matrix A is Hurwitz if all its eigenvalues lie in the open left complex halfplane.

R+ is the semiring of nonnegative real numbers. A matrix (in particular, a vector) A+ with

entries in R+ is a nonnegative matrix (A+ ≥ 0); if A+ ≥ 0 and at least one entry is positive, A+

is a positive matrix (A+ > 0), while if all its entries are positive it is a strictly positive matrix

(A+ � 0). A Metzler matrix is a real square matrix, whose off-diagonal entries are nonnegative.

An n×n Metzler matrix A (n > 1) is reducible if there exists a permutation matrix Π such that

Π>AΠ =

A11 A12

0 A22

 ,
where A11 and A22 are square (nonvacuous) matrices, otherwise it is irreducible. In general,

given a Metzler matrix A, a permutation matrix Π can be found such that (s.t.)

Π>AΠ =


A11 A12 . . . A1s

0 A22 . . . A2s

...
... . . . ...

0 0 . . . Ass

 , (1)

where each diagonal block Aii, of size ni × ni, is either scalar (ni = 1) or irreducible. (1) is

usually known as Frobenius normal form of A [19], [28].

Given A ∈ Rn×n, we denote by λmax(A) ∈ R the spectral abscissa of A, defined as

λmax(A) := max{<(λ), λ ∈ σ(A)}, where σ(A) is the spectrum of A. For a Metzler matrix

A, the following properties hold: a) the spectral abscissa is always an eigenvalue (namely the
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eigenvalue with maximal real part is always real) and it is called Frobenius eigenvalue; b)

there exists a positive eigenvector (Frobenius eigenvector) vF corresponding to λmax(A). If, in

addition, the Metzler matrix A is also irreducible, then a) λmax(A) is necessarily simple and b)

the Frobenius eigenvector vF is strictly positive. Moreover, the following monotonicity property

holds [41]: let A, Ā ∈ Rn×n be Metzler matrices such that A ≤ Ā, then λmax(A) ≤ λmax(Ā); if

in addition Ā is irreducible, then A < Ā implies λmax(A) < λmax(Ā).

An undirected, weighted graph is a triple [29], [31] G = (V , E ,A), where V = {1, . . . , N}
is the set of vertices, E ⊆ V × V is the set of arcs, and A = A> ∈ RN×N

+ is the (positive and

symmetric) adjacency matrix of the weighted graph G. In this paper we assume that G has no

self-loops, namely [A]ii = 0 for every index i ∈ [1, N ]. The graph is connected if for every

i, j ∈ V , i 6= j, there exists k > 0 such that [Ak]ij > 0. If [A]ij > 0 for every i, j ∈ V , i 6= j,

the graph G is called complete. We define the Laplacian matrix L ∈ RN×N as L := C − A,
where C ∈ RN×N

+ is a diagonal matrix whose ith diagonal entry is the weighted degree of vertex

i, i.e. [C]ii :=
∑N

l=1[A]il. Accordingly, the Laplacian matrix L = L> takes the following form:

versione pagina intera

L =


`11 `12 . . . `1N

`12 `22 . . . `2N
...

... . . . ...

`1N `2N . . . `NN

 =


∑N

j=1[A]1j −[A]12 . . . −[A]1N

−[A]12
∑N

j=1[A]2j . . . −[A]2N
...

... . . . ...

−[A]1N −[A]2N . . .
∑N

j=1[A]Nj

 .

If G is connected then `ii > 0 for every i ∈ [1, N ]. Notice that all rows of L sum up to 0, and

hence 1N is always a right eigenvector of L corresponding to the zero eigenvalue. The following

lemma states a useful and well-known result about Laplacian matrices of undirected graphs.

Lemma 1. [16], [36], [47] If the undirected, weighted graph G is connected, then L is a

symmetric positive semidefinite matrix, and 0 is a simple eigenvalue of L. As a consequence,

the eigenvalues of L, say λi = λi(L), i ∈ [1, N ], are nonnegative and real, and they can always

be sorted in non-decreasing order, namely as

0 = λ1 < λ2 ≤ · · · ≤ λN . (2)

In the following, we will steadily assume that G is an undirected, weighted and connected

graph. Consequently, both A and L are irreducible matrices [14].
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Set, now, `∗ := maxi=1,...,N `ii > 0. It is well-known [18] that if the eigenvalues of L are

sorted as in (2), then `∗ ≤ λN . In addition, since L is irreducible, then (see Theorem 3 in [18])

`∗ < λN . Consequently it is always true that 0 < `∗ < λN .

Lemma 2. [31] Let G be an undirected, weighted graph with N vertices and Laplacian L with

eigenvalues sorted as in (2). If `∗ < λ2, then G is complete.

III. PROBLEM STATEMENT

Consider N agents, each of them described by the same n-dimensional continuous-time

positive single-input system:

ẋi(t) = Axi(t) +Bui(t), t ∈ R+,

where xi ∈ Rn and ui ∈ R are the state vector and the input of the ith agent, respectively,

A = [aij] ∈ Rn×n is a non-Hurwitz Metzler matrix, and B = [bi] ∈ Rn
+ is a positive vector.

The communication among the N agents is described by an undirected, weighted and connected

communication graph G = (V , E ,A), with V = {1, . . . , N} and A = A> ∈ RN×N
+ irreducible,

with [A]ii = 0. Notice that the assumption that the adjacency matrix is positive corresponds

to assuming that the interactions between pairs of agents are cooperative. We assume that the

nonnegative eigenvalues of the Laplacian matrix L ∈ RN×N (with `ii > 0 for every i ∈ [1, N ])

are sorted as in (2). We also introduce the assumption that the graph G is not complete, namely

it is not true that each agent communicates with all the other agents. The completeness of G
is, indeed, a not realistic assumption for N sufficiently large, and removing that case allows to

slightly simplify the analysis. As a result, we can claim that 0 = λ1 < λ2 ≤ `∗ < λN .

Consider the state-feedback control law1:

ui(t) = K
N∑
j=1

[A]ij[xj(t)− xi(t)],

1This state-feedback control law is known in the literature as De Groot’s type law, since the first formal study of consensus is

credited to DeGroot [9]. This kind of state-feedback law has been assumed in the literature as the standard consensus algorithm

since the early contributions on the subject (see [30], [37] and references therein). Even nowadays, possibly with modifications

that account for the existence of time-varying communications among the agents or for the fact that relationships among agents

may be cooperative or competitive, this is the most common consensus protocol [42], [47], [49].
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where K ∈ R1×n is a feedback matrix to be designed. If we denote by x(t) ∈ RNn and u(t) ∈ RN

the state vector and the input vector of the multi-agent system, respectively, i.e.

x(t) :=
[
x>1 (t) . . . x>N(t)

]>
u(t) :=

[
u1(t) . . . uN(t)

]>
,

the overall dynamics is described by:

ẋ(t) = (IN ⊗ A)x(t) + (IN ⊗B)u(t)

u(t) = −(L ⊗K)x(t),

or equivalently by:

ẋ(t) = [(IN ⊗ A)− (IN ⊗B)(L ⊗K)]x(t). (3)

The consensus problem with positivity constraints, or positive consensus problem, can be stated

as follows: find a feedback matrix K ∈ R1×n such that:

(I) the overall system (3) is positive, i.e. A := (IN ⊗A)− (IN ⊗B)(L⊗K) is a Metzler matrix;

(II) the overall system (3) reaches consensus, i.e., limt→+∞ xi(t)−xj(t) = 0, ∀i, j ∈ [1, N ], for

almost all positive initial conditions.2

The positive consensus problem can be restated in algebraic terms, as proved in the following

proposition.

Proposition 1. Define the matrix K∗ = [k∗i ] ∈ R1×n
+ as3:

k∗i :=


minj=1,...,n

j 6=i

aji
bj

1

`∗
, if ∃ j 6= i such that bj 6= 0;

+∞, otherwise,

where `∗ = maxi=1,...,N `ii > 0. Then the positive consensus problem is solvable if and only if

there exists a matrix K ∈ R1×n
+ such that 0 ≤ K ≤ K∗ and all matrices A− λiBK, i ∈ [2, N ],

are Hurwitz.

2Requiring that consensus is achieved for almost all initial conditions is a standard set-up, see e.g. [32], [49], to the point

that often it is not even mentioned. In the special case of the positive consensus problem, we restrict our attention to positive

initial conditions, and initial conditions for which consensus may not be achieved necessarily belong to the boundary of the

positive orthant. The case when all nonnegative initial conditions lead to consensus would require to introduce the irreducibility

assumption on both the matrix A and the matrix A, see [44], constraints that seem unnecessary.
3Note that the only situation when K∗ is not a finite row vector is when B = biei for some i ∈ [1, n], and if so the only

infinite entry is k∗i = +∞.
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Proof. The positive consensus problem is solvable if and only if conditions (I) and (II) hold. As

far as requirement (I) is concerned, we notice that A takes the following form:

A =


A− `11BK −`12BK . . . −`1NBK
−`12BK A− `22BK . . . −`2NBK

...
... . . . ...

−`1NBK −`2NBK . . . A− `NNBK


and hence A is Metzler if and only if (a) all blocks A−`iiBK, i ∈ [1, N ], are Metzler and (b) all

blocks −`ijBK, i, j ∈ [1, N ], i 6= j, are non-negative. Since `ij ≤ 0 for every i, j ∈ [1, N ], i 6= j,

and they cannot be all zero (if so A would be the zero matrix), condition (b) holds if and only

if BK ≥ 0, but since B is a positive column vector, this amounts to saying that K ≥ 0.

On the other hand, by the definition of K∗, condition (a) holds if and only if K ≤ K∗.

Therefore, K makes A Metzler, namely condition (I) holds, if and only if 0 ≤ K ≤ K∗.

Finally, for requirement (II) we can rely on a classical result about consensus [15], [47]:

a necessary and sufficient condition for the agents to achieve consensus is that all matrices

A− λiBK, i ∈ [2, N ], are Hurwitz. This completes the proof.

Notice that Hurwitz stability of all matrices A − λiBK, i ∈ [2, N ], implies that the pair

(A,B) needs to be stabilizable, and hence in the following we will always make this assumption.

Note, also, that this is a special case of simultaneous stabilization problem, since we need to

simultaneoulsy stabilize all the pairs (A, λiB), i ∈ [2, N ], by resorting to state feedback matrices

that belong to the hypercube of vertices 0 and K∗.

IV. PRELIMINARY ANALYSIS: SOME NECESSARY CONDITIONS

As a first step, we want to understand under what conditions on the structure of the matrices

A and B the positive consensus problem is solvable. To this end, we preliminarily assume that

the Metzler matrix A is in Frobenius normal form (1) and the positive vector B is partitioned

consistently with A, namely

A =


A11 A12 . . . A1s

0 A22 . . . A2s

...
... . . . ...

0 0 . . . Ass

 , B =


B1

B2

...

Bs

 , (4)
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A−`∗BK∗=



A11 − `∗B1K
∗
1 A12 − `∗B1K

∗
2 . . . A1r − `∗B1K

∗
r

...
...

. . .
...

−`∗BrK
∗
1 −`∗BrK

∗
2 . . . Arr − `∗BrK

∗
r

A1r+1 − `∗B1K
∗
r+1 . . . A1s − `∗B1K

∗
s

...
. . .

...

Arr+1 − `∗BrK
∗
r+1 . . . Ars − `∗BrK

∗
s

Ar+1r+1 . . . Ar+1s

...
. . .

...

0 . . . Ass


(5)

———————————————————————————————————————

where Aii ∈ Rni×ni , i ∈ [1, s], are either scalar (ni = 1) or irreducible matrices, and Bi ∈ Rni
+ .

This is a not restrictive assumption, since we can always reduce ourselves to this situation by

resorting to a suitable permutation matrix Π, and hence moving from the pair (A,B) to the

pair (Π>AΠ,Π>B). It turns out that in order for the positive consensus problem to be solvable

only one of the irreducible diagonal blocks Aii can be non-Hurwitz. Specifically, we have the

following result.

Proposition 2. Assume without loss of generality (w.l.o.g.) that the Metzler matrix A and the

positive vector B are described as in (4), where Aii ∈ Rni×ni , i ∈ [1, s], are either scalar or

irreducible matrices, and Bi ∈ Rni
+ . Set r := max{i ∈ [1, s] : Bi 6= 0}. If the positive consensus

problem is solvable, then Aii is (Metzler and) Hurwitz for every i 6= r.

Proof. Any matrix K ∈ R1×n
+ , with 0 ≤ K ≤ K∗, can be partitioned in a way consistent with

A and B, namely as K =
[
K1 K2 . . . Ks

]
, with Kj ∈ R1×nj

+ . By the definition of K∗,

A − `∗BK∗ is necessarily Metzler and takes the block-triangular form given in (5). If r > 1

the only way for this matrix to be Metzler is that −`∗BrK
∗
j = 0 for every j ∈ [1, r − 1],

and since `∗ > 0 and Br > 0, this means that K∗j = 0 for every j ∈ [1, r − 1] (if r = 1

the result is trivially true). So, if K ∈ R1×n
+ , 0 ≤ K ≤ K∗, is any solution to the positive

consensus problem, then all its blocks Kj , j ∈ [1, r − 1], must be zero. Consequently, each

matrix A − λiBK, i ∈ [2, N ], takes the same block triangular form as A, with each diagonal

block Ajj − λiBjKj, j 6= r, coinciding with the corresponding diagonal block Ajj in A. So, the

Hurwitz property of A− λiBK, i ∈ [2, N ], implies that all the diagonal blocks Ajj , j 6= r, are

(Metzler and) Hurwitz.
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The following corollary immediately follows from the previous Proposition 1.

Corollary 1. Assume w.l.o.g. that the Metzler matrix A and the positive vector B are described

as in (4), where Aii ∈ Rni×ni , i ∈ [1, s], are either scalar or irreducible matrices, and Bi ∈ Rni
+ .

Define the matrix K∗ ∈ R1×n
+ as in Proposition 1, and partition it accordingly to the partition

of A and B. Set r := max{i ∈ [1, s] : Bi 6= 0} and let K∗r ∈ R1×nr
+ be the rth block of K∗. The

positive consensus problem is solvable if and only if

i) Aii is (Metzler and) Hurwitz for every i 6= r;

ii) there exists a matrix Kr ∈ R1×nr
+ , 0 ≤ Kr ≤ K∗r , that makes the matrices Arr−λiBrKr, i ∈

[2, N ], Hurwitz.

If the previous conditions hold, then the row matrix K ∈ R1×n
+ , having Kr as rth block and all

remaining blocks equal to zero, is a solution.

Remark 1. The previous corollary entails far rich consequences, since it tells us that once the

non-Hurwitz Metzler matrix A is brought to Frobenius normal form (1), then the solvability of

the positive consensus problem requires to first check that all the diagonal blocks of Π>AΠ are

(Metzler and) Hurwitz, except for the (scalar or irreducible) diagonal block Arr, and then to

investigate the positive consensus problem for the pair (Arr, Br), by assuming as upper bound

on the vector Kr ∈ R1×nr
+ , the largest positive vector K∗r ∈ R1×nr

+ such that Arr − `∗BrKr is Metzler

Ajr − `∗BjKr ≥ 0, ∀ j ∈ [1, r − 1].

Example 1. Consider the following single-input positive state-space model for the generic agent

ẋi(t) = Axi(t) +Bui(t) =



−1 0 1 4 1 1

0 −2 1 4 1 1

0 1 −3 2 1
2

2

0 0 0 −1 1 4

0 0 0 3 −1 5

0 0 0 0 0 −1


xi(t)+



2

0

1

1

1

0


ui(t).

The pair (A,B) is stabilizable. A is in Frobenius normal form (1), with s = 4, n1 = n4 =

1, n2 = n3 = 2, and the only non-Hurwitz diagonal block is the one associated with the last
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nonzero block in B. Specifically, r = 3 and

A33 =

−1 1

3 −1

 , B3 =

1

1

 .
Therefore condition i) in Corollary 1 is satisfied. Assume that there are N = 3 agents and that

the Laplacian matrix of the communication graph is the following one:

L =


1 0 −1

0 1 −1

−1 −1 2

 .
In this case `∗ = 2, the eigenvalues of L are λ1 = 0 < λ2 = 1 < λ3 = 3 and K∗ =[
0 0 0 1 1

4
1
4

]
. We note, however, that

A33 − `∗B3K
∗
3 =

−3 1/2

1 −3/2

 ,
so it is true that A33 − `∗B3K

∗
3 is Metzler, but there exist matrices K3 > K∗3 such that

A33 − `∗B3K3 is Metzler, too. It is easy to see that the matrices Arr − λiBrK
∗
r , i ∈ [2, 3],

are Hurwitz, and hence condition ii) in Corollary 1 holds. Therefore, the positive consensus

problem is solvable. ♣

Corollary 1 immediately leads to the complete solution of the case when the diagonal block

Arr in (4) is scalar.

Corollary 2. Assume that A, B and r are as in Corollary 1, and nr = 1, namely Arr and Br

are scalar. The positive consensus problem is solvable if and only if the following conditions

hold: (a) Arr is the only non-Hurwitz diagonal block of A, and (b) the scalar matrix Arr −
λ2Brk

∗
r is negative (and hence Hurwitz). If so, a possible solution is given by the matrix K̄ =[

0>n1
. . . 0>nr−1

k∗r 0>nr+1
. . . 0>ns

]
.

Proof. For nr = 1 Corollary 1 states what follows: the positive consensus problem is solvable

if and only if Ajj is Hurwitz for every j 6= r, (namely condition (a) holds) and there exists a

real number kr, with 0 ≤ kr ≤ k∗r , s.t.

Arr − λiBrkr < 0, ∀ i ∈ [2, N ]. (6)
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But inequality (6) holds for some kr, with 0 ≤ kr ≤ k∗r , and every i ∈ [2, N ] if and only if it

holds for kr = k∗r and i = 2, which amounts to saying that condition (b) holds. This also shows

that K̄ solves the positive consensus problem.

As already mentioned in Remark 1 (see also Example 1), the matrix K∗r is not determined

only by the constraint of keeping Arr−`∗BrK
∗
r Metzler and with off-diagonal entries as small as

possible, but also by the additional constraints Ajr − `∗BjK
∗
r ≥ 0, j ∈ [1, r − 1]. Consequently,

there might exist Kr ∈ R1×nr
+ , Kr > K∗r , such that Arr − `∗BrKr is still Metzler. Before

proceeding it is thus convenient to define K̄∗r = [k̄∗i ] ∈ R1×nr
+ , K̄∗r ≥ K∗r , as

k̄∗i :=


minj=1,...,nr

j 6=i

[Arr]ji
[Br]j

1

`∗
, if ∃ j 6= i s.t. bj 6= 0;

+∞, otherwise.

Analogously, there might exist ` > `∗ s.t.Arr − `BrK
∗
r is still Metzler, and hence we define

¯̀∗ := max{λ ∈ R+ : Arr − λBrK
∗
r is Metzler}

= min
i,j=1,...,nr

j 6=i,[Br]ik∗j 6=0

[Arr]ij
[Br]ik∗j

≥ `∗.

Notice that if ¯̀∗ = `∗ then there exists j ∈ [1, nr] such that k̄∗j = k∗j , while if ¯̀∗ > `∗ then

K̄∗r � K∗r . Also, it is always true that `∗K̄∗r ≥ ¯̀∗K∗r .

Example 2. Consider the multi-agent system consisting of N = 3 agents and described in

Example 1. We have already seen that `∗ = 2, r = 3 and K∗3 =
[
1 1

4

]
. It is easy to see that

¯̀∗ = 3 > 2 = `∗, and hence K̄∗3 � K∗3 , specifically K̄∗3 =
[
3
2

1
2

]
�
[
1 1

4

]
= K∗3 . ♣

In the following, to simplify the notation, we will drop the subscript r and hence refer to

A ∈ Rn×n, B ∈ Rn
+ and K ∈ R1×n

+ , with 0 ≤ K ≤ K∗, under the steady assumption that n ≥ 2,

A is irreducible and the matrix K∗ is assigned and satisfies the constraint K∗ ≤ K̄∗, where K̄∗

is the largest of the positive row vectors K such that A− `∗BK is Metzler. Clearly, we rule out

the trivial case when K∗ = 0 and hence the problem has no solution.

We now provide three necessary conditions for the positive consensus problem solvability

under the irreducibility assumption on A. The first one will be a key tool for the following

analysis. The second one will provide a necessary condition on the spectrum of A. The last one

is a technical result we will need in the following proofs.
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Proposition 3. Assume that A is an n × n, n ≥ 2, Metzler non-Hurwitz, irreducible matrix,

B ∈ Rn
+ is a positive vector and K∗ ∈ R1×n

+ is assigned. If the positive consensus problem is

solvable, then

i) A− λ2BK∗ is a (Metzler and) Hurwitz matrix4;

ii) λmax(A) is a simple eigenvalue, and it is the only nonnegative real eigenvalue of σ(A);

iii) if A is non-singular, then A−1B is a positive vector and K∗A−1B > 1
λ2
> 0.

Proof. i) Under the assumption that the communication graph G is undirected, connected but

not complete, `∗ ≥ λ2, and hence A−λ2BK∗ ≥ A− `∗BK∗ is necessarily Metzler. Assume, by

contradiction, that A−λ2BK∗ is non-Hurwitz, namely λmax(A−λ2BK∗) ≥ 0. Then, for every K

such that 0 ≤ K ≤ K∗, A−λ2BK ≥ A−λ2BK∗ is a Metzler matrix, and by the monotonicity

property of the spectral abscissa, it follows that λmax(A − λ2BK) ≥ λmax(A − λ2BK∗) ≥ 0.

So, the positive consensus problem would not be solvable.

ii) The fact that λmax(A) is a simple nonnegative eigenvalue follows from the irreducibility of

A. The proof of the fact that there are no other nonnegative real eigenvalues relies on some

results about the positive observer problem reported in [2]. If the positive consensus problem

is solvable, we have already shown in i) that (A − λ2BK∗)> = A> − (λ2K
∗>)B> is Metzler

Hurwitz. By Lemma 4.6 and Theorem 4.7 in [2], this implies that the positive system

ż(t) = A>z(t),

y(t) = B>z(t),

admits a positive observer and hence the number of nonnegative real eigenvalues of A>, counting

the multiplicity, is at most 1. As σ(A) = σ(A>) and A is non-Hurwitz, then condition ii) holds.

We now show that, when A is non-singular, condition i) implies iii). As A − λ2BK
∗ is

Metzler and Hurwitz, its inverse exists and it is a negative matrix [33]. On the other hand, if A

is nonsingular, recalling that B > 0, we have

0 > (A− λ2BK∗)−1B = [In − λ2A−1BK∗]−1(A−1B) = A−1B(1− λ2K∗A−1B)−1.

Since (1 − λ2K∗A−1B) is a scalar, all the nonzero entries of the vector A−1B must have the

same sign. Suppose by contradiction that A−1B is a negative vector, namely A−1B = −v,

4In the special case when B is an ith monomial vector and hence the ith entry of K∗ is +∞, in order to define A−λ2BK
∗

we assume that k∗i is arbitrarily large but otherwise finite. This will be a steady assumption also in the following.
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∃ v ∈ Rn
+. Let w ∈ Rn

+, w > 0, be the left Frobenius eigenvector of A, so that w>A =

λmax(A)w>. From B = −Av, upon multiplying by w> on both sides, we get 0 ≤ w>B =

−w>Av = −λmax(A)w>v ≤ 0, which implies w>B = 0. But if this were the case, then

w>(A − λ2BK
∗) = λmax(A)w>, namely w> would be a left eigenvector of A − λ2BK

∗

corresponding to the positive eigenvalue λmax(A), thus contradicting the Hurwitz assumption on

A− λ2BK∗. Hence, A−1B must be a nonnegative vector. Since A−1B(1− λ2K∗A−1B)−1 < 0,

this also means that 1 − λ2K
∗A−1B < 0, namely 1 < λ2K

∗A−1B, and since λ2 > 0 the

inequalities K∗A−1B > 1
λ2
> 0 follow.

V. THE CASE λmax(A) = 0

The case when A is irreducible and its spectral abscissa is 0 deserves an independent analysis

that easily leads to the conclusion that under these conditions the positive consensus problem is

always solvable.

Proposition 4. 5 Assume that A is an n×n, n ≥ 2, irreducible Metzler matrix with λmax(A) = 0,

and B is a positive vector. Then the positive consensus problem is always solvable and every K̄

such that 0 < K̄ � K∗ is a possible solution. If ¯̀∗ ≥ λN then every K̄ such that 0 < K̄ ≤ K∗

is a possible solution.

Proof. Let vF � 0 be the Frobenius eigenvector of the irreducible Metzler matrix A. We

first note that for every matrix K, the strictly positive vector (1N ⊗ vF ) is an eigenvector of

A = (IN ⊗ A) − (IN ⊗ B)(L ⊗ K) corresponding to the zero eigenvalue. For every K̄, with

0 < K̄ ≤ K∗, the matrix A is Metzler. On the other hand, if 0 < K̄ � K∗ the matrices

A − `iiBK̄, i ∈ [1, N ], have exactly the same nonzero pattern as the matrix A, and hence are

irreducible. This implies (the proof is a minor modification of the proof of Lemma 2 in [44])

that A is irreducible. Therefore, for every 0 < K̄ � K∗, A is an irreducible, Metzler matrix,

having the strictly positive vector (1N⊗vF ) as eigenvector corresponding to the zero eigenvalue.

This ensures [28] that λmax(A) = 0 and all the other eigenvalues have negative real part. Being

σ(A) = σ(A) ∪ σ(A − λ2BK) ∪ · · · ∪ σ(A − λNBK) [47], [48], it follows that all matrices

5We are indebted with the Associate Editor, Fabian Wirth, for the final version of Proposition 4 that improves upon our

original result.
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A−λiBK are Hurwitz, and hence consensus is achieved. On the other hand, if we assume that
¯̀∗ ≥ λN , then for every K̄, with 0 < K̄ ≤ K∗, we have

A > A− λiBK̄ ≥ A− λiB
( ¯̀∗

λN
K∗
)

= A− ¯̀∗B

(
λi
λN

K∗
)
≥ A− ¯̀∗BK∗.

As the matrices A−λiBK̄, i ∈ [2, N ], are lower bounded by a Metzler matrix, they are Metzler,

too. On the other hand, by the irreducibility assumption on A and the monotonicity of the spectral

abscissa, for every i ∈ [2, N ] we have

0 = λmax(A) > λmax

(
A− λiBK̄

)
, (7)

i.e. K̄ solves the positive consensus problem.

Remark 2. 1) The reasoning adopted within the first part of the previous proof does not extend to

the general case of arbitrary λmax(A) ≥ 0, since the fact that A is an irreducible matrix having

λmax(A) as Frobenius eigenvalue does not ensure that the matrices A − λiBK, i ∈ [2, N ], are

Hurwitz. 2) Condition 0 < K � K∗ ensures the irreducibility of A. When some of the entries

of K coincide with their upperbound, it is possible that one or more of the diagonal blocks

A− `iiBK, i ∈ [1, N ], is not irreducible and hence A is not necessarily irreducible. Consensus

may still be possible (in particular, as enlightened in the second part of the statement, if ¯̀∗ ≥ λN )

but it cannot be deduced through this path.

Example 3. Consider the positive single-input agent

ẋi(t) = Axi(t) +Bui(t) =

−1 1

1 −1

xi(t) +

1

2

ui(t).
A is an irreducible, Metzler, non-Hurwitz matrix with λmax(A) = 0. The pair (A,B) is stabiliz-

able. Assume that there are N = 8 agents and that the Laplacian matrix is:

L =



3 −1 0 −1 −1 0 0 0

−1 3 −1 0 0 −1 0 0

0 −1 3 −1 0 0 −1 0

−1 0 −1 3 0 0 0 −1

−1 0 0 0 3 −1 0 −1

0 −1 0 0 −1 3 −1 0

0 0 −1 0 0 −1 3 −1

0 0 0 −1 −1 0 −1 3


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The eigenvalues of L are λ1 = 0, λ2 = λ3 = λ4 = 2, λ5 = λ6 = λ7 = 4 and λ8 = 6, while

`∗ = 3. We assume K∗ =
[
1
6

1
6

]
<
[
1
6

1
3

]
= K̄∗, and hence ¯̀∗ = `∗. It is easy to see that for

every K =
[
k1 k2

]
with 0 < K ≤ K∗ the matrices

A− λiBK =


−1− λik1 1− λik2

1− 2λik1 −1− 2λik2

 , i ∈ [2, 8],

have negative traces and positive determinants and hence are Hurwitz. So, the positive consensus

problem is solvable. ♣

As the case λmax(A) = 0 has already been solved, in the following we will steadily assume

that λmax(A) > 0. By Proposition 3, a necessary condition for the positive consensus problem

to be solvable is that A has no other nonnegative real eigenvalue, and therefore, in particular,

0 6∈ σ(A). So, we will also assume that A is non-singular.

VI. SUFFICIENT CONDITIONS FOR THE PROBLEM SOLVABILITY: THE SET KMH

In this section we provide a set of sufficient conditions for the solvability of the positive

consensus problem that introduce additional constraints on the matrices A − λiBK, i ∈ [2, N ],

with respect to that of being Hurwitz: we investigate the case when either one or all the solutions

K, with 0 ≤ K ≤ K∗, of the positive consensus problem make the resulting matrices A −
λiBK, i ∈ [2, N ], not only Hurwitz but also Metzler.

Definition 1. Given an n×n, n ≥ 2, irreducible Metzler A, a positive vector B ∈ Rn
+, a positive

matrix K∗ ∈ R1×n
+ and positive eigenvalues 0 < λ2 ≤ · · · ≤ λN , we introduce the sets:

KH2 :={K : 0 ≤ K ≤ K∗, A− λ2BK Hurwitz}

KH :={K : 0 ≤ K ≤ K∗, A− λiBK Hurwitz, i ∈ [2, N ]}

KMH :={K ∈ KH : A− λiBK Metzler, i ∈ [2, N ]}.

It is clear that the set of solutions of the positive consensus problem, KH , is included in

KH2 , and in turn the set of solutions of the positive consensus problem that make the matrices

A − λiBK, i ∈ [2, N ], not only Hurwitz but also Metzler is a subset of KH . So, the following
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relationship holds: KH2 ⊇ KH ⊇ KMH . We want to determine necessary and sufficient conditions

ensuring either that KMH 6= ∅ or that KMH = KH . To this end, we need to preliminarily

investigate the structure of KH2 . We note that, as λ2 ≤ `∗, for every K ∈ KH2 , the matrix A−λ2BK
satisfies A− λ2BK ≥ A− `∗BK ≥ A− `∗BK∗, and hence, being lower-bounded by a Metzler

matrix, it is Metzler, too (this means that KH2 = KMH
2 := {K ∈ KH2 : A − λ2BK Metzler}).

Also, by Proposition 3, a necessary condition for the positive consensus problem to be solvable is

that K∗ ∈ KH2 , an assumption we will steadily make in the following. Lemma 3 below provides

a characterization of the set KH2 .

Lemma 3. Assume that A ∈ Rn×n is Metzler, irreducible, and non-singular with λmax(A) > 0,

B ∈ Rn
+, B > 0, and A− λ2BK∗ is Metzler and Hurwitz. Then

KH2 =

{
K : 0 ≤ K ≤ K∗ and KA−1B >

1

λ2

}
.

Proof. To prove the previous identity, we make the following observations:

1) Since KH2 = KMH
2 , it is easy to prove, along the same lines of the proof we provided in

[46] for KMH , that KH2 is a convex set;

2) For every K with 0 ≤ K ≤ K∗ the matrix A−λ2BK is Metzler, so we need to understand

for which K it is Hurwitz and for which K it is not. Clearly, 0 6∈ KH2 and hence KH2 (

{K : 0 ≤ K ≤ K∗};
3) By assumption K∗ ∈ KH2 and hence there exists ε > 0 such that for every K ∈ B(K∗, ε),

the ball of center K∗ and radius ε, A−λ2BK is Hurwitz. This ensures, in particular, that the

set KH2 intersects (possibly includes) the n faces F of the hypercube {K : 0 ≤ K ≤ K∗}
having one vertex in K∗.

In order to complete the description of KH2 , we only need to determine which matrices K in

the interior of the hybercube {K : 0 ≤ K ≤ K∗} belong to the boundary of KH2 . Clearly, such

matrices K leave A− λ2BK Metzler and irreducible, and hence they necessarily correspond to

the case when A−λ2BK loses the Hurwitz property by becoming singular (with all the remaining

eigenvalues in the open left complex half-plane)6. This amounts to saying that det(A−λ2BK) =

0, and since A is non-singular this means that detA · det(In − λ2A
−1BK) = 0, and hence

1 − λ2KA
−1B = 0, which means that KA−1B = 1/λ2. So, to conclude the interior of the

convex set KH2 consists of all the matrices in the interior of the hypercube {K : 0 ≤ K ≤ K∗}

6Note that this also means that this “lower boundary” of KH2 belongs to the closure of KH2 , but not to KH2 itself.
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that are strictly greater than some matrix K̄ belonging to the hyperplane K̄A−1B = 1/λ2. By

Proposition 3, part iii), the vector A−1B is positive and hence a matrix K belonging to the

interior of the hypercube {K : 0 ≤ K ≤ K∗} satisfies K � K̄ for some vector K̄ with

K̄A−1B = 1/λ2 if and only if KA−1B > 1/λ2.

We now investigate under what conditions KMH 6= ∅. To this end we introduce the set

KMN := {K : 0 ≤ K ≤ K∗, A− λNBK Metzler}.

It is easy to see, by resorting to the definition of K̄∗, that

KMN = {K : 0 ≤ K ≤ K∗} ∩ {K : 0 ≤ K ≤ `∗

λN
K̄∗},

and hence if we define K̂ = [k̂j] as follows:

k̂j := min{k∗j ,
`∗

λN
k̄∗j}, ∀ j ∈ [1, n],

then KMN = {K : 0 ≤ K ≤ K̂}. We can now provide an answer to the previous problem.

Proposition 5. Assume that A ∈ Rn×n is Metzler, irreducible, and non-singular, with λmax(A) >

0, B ∈ Rn
+, B > 0, and A − λ2BK

∗ is Metzler and Hurwitz. Then KMH = KH2 ∩ KMN .
Consequently, the following facts are equivalent:

i) KMH 6= ∅;
ii) KH2 ∩ KMN 6= ∅;

iii) A− λ2BK̂ is (Metzler and) Hurwitz.

Proof. If K ∈ KMH , then K satisfies 0 ≤ K ≤ K∗, and makes all matrices A − λiBK, i ∈
[2, N ], Metzler and Hurwitz. This ensures that A − λ2BK is Hurwitz (and hence K ∈ KH2 )

and A − λNBK is Metzler (and hence K ∈ KMN ). Conversely, let K be a matrix satisfying

0 ≤ K ≤ K∗, and such that A−λ2BK is Hurwitz and A−λNBK is Metzler. As A−λ2BK ≥
A− λiBK ≥ A− λNBK for every i ∈ [2, N ], the fact that the lower bound is Metzler ensures

that all matrices are Metzler. The fact that the upper-bound of this set of Metzler matrices is

Hurwitz ensures that all the matrices are Hurwitz. Consequently, K ∈ KMH . So, we have shown

that KMH = KH2 ∩ KMN . The equivalence of i) and ii) is obvious from the previous part of the

proof. To prove the equivalence of ii) and iii) observe that KH2 ∩KMN is the set of all matrices K

that belong to the hypercube {K : 0 ≤ K ≤ K̂}, and that satisfy KA−1B > 1/λ2. So, recalling
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that A−1B is a positive vector, either K̂ satisfies K̂A−1B > 1/λ2, namely it belongs to KH2 and

hence makes A− λ2BK̂ (Metzler and) Hurwitz, or KH2 ∩ KMN = ∅.

Note that, by putting together Proposition 5, Lemma 3 and the description of KMN , we obtain

KMH =

{
K : 0 ≤ K ≤ K̂ and KA−1B >

1

λ2

}
.

Example 4. Consider the positive single-input agent

ẋi(t) = Axi(t) +Bui(t) =

0 1

1 −3

xi(t) +

1

2

ui(t)
A is an irreducible, Metzler, non-Hurwitz matrix with λmax(A) > 0. The pair (A,B) is sta-

bilizable. If we assume that the Laplacian is the same as in Example 3, then we easily find

that K̄∗ remains the same. We assume that also K∗ is the same. We observe that `∗

λN
K̄∗ =[

1
12

1
6

]
<
[
1
6

1
6

]
= K∗, and hence K̂ = `∗

λN
K̄∗. It is easy to check that A−λ2BK̂ is (Metzler

and) Hurwitz, and indeed KMH = {K =
[
k1 k2

]
: 0 ≤ k1 ≤ 1/12, 0 ≤ k2 ≤ 1/6 and 5k1

+k2 > 1/2}. ♣

We now address the case when KH = KMH . To this end we need this preliminary lemma.

Lemma 4. Assume that A ∈ Rn×n is Metzler, irreducible, and non-singular with λmax(A) > 0,

B ∈ Rn
+, B > 0. The following facts are equivalent:

i) ¯̀∗ ≥ λN ;

ii) K̄∗ `
∗

λN
≥ K∗;

iii) A− λiBK∗ is Metzler for every i ∈ [2, N ].

Proof. i) ⇒ ii) By the way ¯̀∗ has been defined, we have that ¯̀∗ ≤ aij
bik∗j

,∀ i, j, i 6= j, and hence

k∗j ≤
aij
bi ¯̀∗

, ∀ i, j, i 6= j.

If i) holds, then k∗j ≤ aij
biλN

= `∗

λN

aij
bi`∗

,∀ i, j, i 6= j, and hence

k∗j ≤
`∗

λN
min

i=1,...,n
j 6=i,bi 6=0

aij
bi`∗

=
`∗

λN
k̄∗j , ∀ j ∈ [1, n],

thus proving that ii) holds.

ii) ⇒ iii) If K̄∗ `
∗

λN
≥ K∗, then for every i ∈ [2, N ]

A− λiBK∗ ≥ A− λiB
(
`∗

λN
K̄∗
)

= A− `∗B
(
λi
λN

K̄∗
)
≥ A− `∗BK̄∗.
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Since all the matrices A− λiBK∗ are lower bounded by the Metzler matrix A− `∗BK̄∗, they

are Metzler, too, and hence condition iii) holds.

iii) ⇒ i) By definition, ¯̀∗ := max{λ ∈ R+ : A − λBK∗ is Metzler}, so it is immediately seen

that if iii) holds then λi ≤ ¯̀∗ for every i ∈ [2, N ], and hence i) holds.

We can now make use of the previous lemma to derive the following result.

Proposition 6. Assume that A ∈ Rn×n is Metzler, irreducible, and non-singular with λmax(A) >

0, B ∈ Rn
+, B > 0, and A− λ2BK∗ is a (Metzler and) Hurwitz matrix. The following facts are

equivalent

i) ¯̀∗ ≥ λN ;

ii) K̄∗ `
∗

λN
≥ K∗;

iii) A− λiBK∗ is Metzler and Hurwitz for every i ∈ [2, N ];

iv) KH = KMH .

If any of the previous equivalent conditions hold, then KH = KMH coincides with KH2 .

Proof. The equivalence of i), ii) and iii), under the assumption that A− λ2BK∗ is Metzler and

Hurwitz, is an immediate consequence of Lemma 4. To prove that ii) and iv) are equivalent,

observe that, in general, KMH ⊆ KH ⊆ KH2 . On the other hand, by Proposition 5,

KMH = KH2 ∩ KMN = KH2 ∩ {K : 0 ≤ K ≤ K̂}.

So, if ii) holds, then K̂ = K∗ and this implies that KH2 ∩ KMN = KH2 . Consequently, KMH =

KH = KH2 , namely iv) holds. This also proves the final statement of the proposition.

Conversely, assume that condition ii) does not hold. Consequently, KMH = KH2 ∩KMN = KH2 ∩
{K : 0 ≤ K ≤ K̂} ( KH2 . In particular, by the structure of the sets KH2 and {K : 0 ≤ K ≤ K̂},
there exists K̄ that satisfies two requirements (see Figure 1 for the case n = 2): (1) K̄ belongs

to the interior of KH2 ; and (2) K̄ belongs to the boundary of KMH , and specifically to some face

F of {K : 0 ≤ K ≤ K̂} having K̂ as one of its vertices.

Clearly, A−λiBK̄ is Metzler and Hurwitz for every i ∈ [2, N ]. On the other hand, an ε > 0 can

be found such that B(K̄, ε) ⊂ KH2 and for every K̃ ∈ B(K̄, ε) the matrices A−λiBK̃, i ∈ [2, N ],

are Hurwitz. This implies that ∃ K̃ ∈ KH \ KMH , thus contradicting iv).

Remark 3. It is worth mentioning that [1] provides a complete parametrization, expressed

as the set of solutions of a Linear Programming problem, of all the matrices K that make
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K∗
K̄∗

`∗
λN
K̄∗

K̂
B(K̄, ε)

k1

k2
KH2

KMN

K∗

K̄∗

`∗
λN
K̄∗ = K̂

B(K̄, ε)

`∗
λN
K̄∗ = K̂

k1

k2
KH2

KMN

Figure 1. Sets KH2 and KMN for the case n = 2. On the left, we consider the case when K̄∗ `
∗

λN
is neither greater nor smaller

than K∗. On the right, the case K̄∗ `
∗

λN
< K∗.

A + BK Metzler and Hurwitz, where A is a Metzler matrix and B a positive matrix. Such

a parametrization could be adapted to this specific case, keeping in mind that we have not a

single pair (A,B), but N − 1 pairs (A, λiB), i ∈ [2, N ], and that we must take into account the

additional constraint 0 ≤ K ≤ K∗. We will make use of the aforementioned parametrization

later in the paper.

Remark 4. To conclude the section, we would like to remark another reason why the case when

the set KMH is non-empty is of particular interest. If K ∈ KMH , all matrices A − λiBK, i ∈
[2, N ], are not only Metzler and Hurwitz, but they also admit a common Linear Copositive

Lyapunov function [17], [24], [26], namely a function V (x) = v>x, with v � 0, such that

V̇i(x) = v>(A−λiBK)x < 0 for every x > 0 and every i ∈ [2, N ]. Indeed, for every choice of n

indices i1, i2, . . . , in ∈ [2, N ], the Metzler matrix [col1(A−λi1BK) col2(A−λi2BK) . . . coln(A−
λinBK)] is upper bounded by the Metzler Hurwitz matrix A−λ2BK, and hence is Hurwitz, in

turn. This ensures [17], [24] the existence of a common Linear Copositive Lyapunov function.

Even more, every Linear Copositive Lyapunov function for the matrix A− λ2BK is necessarily

a Linear Copositive Lyapunov function for all the matrices A− λiBK, i ∈ [2, N ].
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VII. SPECIAL CASES

In the present section we consider some special cases, namely special classes of agents’

models or special communication graphs (and hence Laplacian matrices), for which necessary

and sufficient conditions for the solvability of the positive consensus problem can be derived.

A. The case when B is a canonical vector

We consider the case when B is a monomial vector, namely B = biei, for some bi > 0 and

i ∈ [1, n]. The interest in this case comes from the fact that a good number of physical systems

that can be modelled through positive or compartmental state-space models have an input-to-state

matrix B which is canonical. This happens every time the control input directly affects only one

of the state variables (e.g., the gene expression model, some thermal or fluid network models,

some chemical reaction networks). As an additional example, in the vehicle model used in [34],

[35] to investigate the distributed multi-vehicle coordination problem, the matrix A is Metlzer

and unstable, while the matrix B is a canonical vector. In this situation, it entails no loss of

generality assuming B = e1, since we can always reduce ourselves to this situation by resorting

to a suitable permutation and to a scaling factor that modify the numeric values of the possible

solutions, but do not affect the problem solvability. Accordingly, we can express A as

A =

a11 r>

c A22

 , (8)

where a11 ∈ R, r, c ∈ Rn−1
+ are nonnegative vectors, and A22 ∈ R(n−1)×(n−1) is a Metzler matrix.

Therefore for every K = [kj] ∈ R1×n and λi we have

A−λiBK =


a11 − λik1 a12 − λik2 . . . a1n − λikn

a21 a22 . . . a2n
...

... . . . ...

an1 an2 . . . ann

 =

a11 − λik1 r> − λi[k2 . . . kn]

c A22

 .
(9)

As previously remarked, there is no upper bound on the first entry of the matrix K̄∗, and hence

K̄∗ =
[
k̄∗1 k̄∗2 . . . k̄∗n

]
=
[
+∞ a12

`∗
. . . a1n

`∗

]
=
[
+∞ 1

`∗
r>
]
. We consider first the case

when also the first entry of K∗ is +∞. Note that if we consider the block form of the pair

(A,B) (see (4)), this situation arises only if Bi = 0 for every i ∈ [1, r− 1], and hence Br is the

only nonzero block in B.
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Proposition 7. Assume that A is an irreducible Metzler non-Hurwitz matrix described as in (8),

B = e1 and K∗ =
[
+∞ k∗2 . . . k∗n

]
. The positive consensus problem is solvable if and only

if A22 is (Metzler and) Hurwitz.

Proof. [Sufficiency] Let α0, . . . , αn−2 and αn−1 = 1 be the coefficients of the characteristic

polynomial of A22, namely det(sIn−1 − A22) = sn−1 + αn−2s
n−2 + · · · + α1s + α0, and notice

that if A22 is (Metzler and) Hurwitz, then αi > 0 for every i ∈ [0, n− 1]. We now prove that, if

this is the case, there always exists a feedback matrix K =
[
k1 0 . . . 0

]
, with 0 < K ≤ K∗

(in practice, k1 > 0, since there are no bounds on k∗1), that solves the positive consensus problem.

To this aim, notice that for this choice of K the Metzler matrix A− λ2BK takes the form:

A− λ2BK =

a11 − λ2k1 r>

c A22

 .
So, if we define ā := −a11 + λ2k1, and set r>adj(sIn−1 −A22)c =: βn−2s

n−2 + · · ·+ β1s+ β0,

the characteristic polynomial of A− λ2BK can be expressed as:

det(sIn − A+ λ2BK) = det(sIn−1 − A22)(s+ ā)− r>adj(sI − A22)c

= (sn−1 + αn−2s
n−2 + · · ·+ α1s+ α0)(s+ ā)− (βn−2s

n−2 + · · ·+ β1s+ β0)

= sn + (αn−2 + ā)sn−1 + (αn−3 + āαn−2 − βn−2)sn−2 + · · ·+ (α0 + āα1 − β1)s+ (āα0 − β0).

Therefore, if we take k1 > 0 large enough so that ā > maxi=0,...,n−1
βi−αi−1

αi
, where we set

α−1 = βn−1 = 0, then the Metzler matrix A− λ2BK is Hurwitz since all the coefficients of its

characteristic polynomial are positive [14]. Moreover, for every i ∈ [3, N ], the Metzler matrix

A − λiBK is such that A − λiBK ≤ A − λ2BK and, by the monotonicity property of the

spectral abscissa, it follows that K solves the positive consensus problem.

[Necessity] If the consensus problem is solvable, then Â := A − λ2BK
∗ is Metzler and

Hurwitz, and a necessary condition for this to happen is that its principal submatrix Â22, obtained

by deleting the first row and the first column in Â, is (Metzler and) Hurwitz. As Â22 = A22, the

result follows.

Example 5. Consider the positive single-input agent

ẋi(t) = Axi(t) +Bui(t) =


−1 1 0

0 −1 1

1 0 2

xi(t) +


0

0

1

ui(t).
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Notice that A is an irreducible Metzler and non-Hurwitz matrix and that the pair (A,B) is

stabilizable. Consider N = 3 agents and the same adjacency matrix as in Example 1. The

eigenvalues of L are λ1 = 0 and λ2 = 1 < λ3 = 3. The matrix A11, obtained by deleting the

third row and the third column of A, is Hurwitz, and indeed by choosing K =
[
0 0 7

]
we

get that both matrices A− λ2BK and A− λ3BK are Metzler and Hurwitz.

On the other hand, if we assume as vector B the canonical vector B = e2, it is easily seen

that the positive consensus problem is not solvable. ♣

It is worth underlying that the necessary condition given in Proposition 7 is independent of the

fact that the first entry of K∗ is infinite or finite. Indeed, when B = e1, a necessary condition for

the solvability of the positive consensus problem is that A22 is Metzler and Hurwitz. However,

when k∗1 < +∞, this is no longer sufficient. Indeed, the possibility of resorting to a feedback

matrix K whose unique nonzero entry is the first one works if and only if

k∗1 ≥ k1 > λ−12

(
a11 + max

i=0,...,n−1

βi − αi−1
αi

)
.

Differently, the characteristic polynomial of the matrices A− λiBK, i ∈ [2, N ], would not have

positive coefficients, thus ruling out the Hurwitz property of these matrices. Therefore the study

of the conditions that ensure the positive consensus when k∗1 < +∞ requires, in the general

case, a completely different analysis, that keeps into account the specific values taken by the

matrix K∗, and is still an open problem.

B. Second-order agents

Consensus among agents described by second order models has been the subject of a good

number of papers (see e.g. [50], and references therein). In this subsection we investigate the

case when each agent is modelled by a second-order (positive) linear system, i.e.

ẋi(t) = Axi(t) +Bui(t) =

a11 a12

a21 a22

xi(t) +

b1
b2

ui(t), (10)

with a12, a21, b1 and b2 nonnegative real numbers. Note that we steadily assume that A is Metzler,

non-Hurwitz and non-singular. Recalling that any matrix M ∈ R2×2 is Hurwitz if and only if

tr(M) < 0 and det(M) > 0, after elementary manipulations it can be seen that for every

A ∈ R2×2, B ∈ R2 and K ∈ R1×2, the matrix M := A− λBK is Hurwitz if and only if λKB > tr(A);

λK adj(A)B < det(A).
(11)
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This simple observation allows to prove the following Lemma.

Lemma 5. Given A ∈ R2×2 and non-singular, B ∈ R2 and K ∈ R1×2, for every choice of the

N − 1 positive real numbers 0 < λ2 ≤ λ3 ≤ · · · ≤ λN , the following facts are equivalent:

i) A− λBK is Hurwitz for every λ ∈ [λ2, λN ];

ii) A− λiBK is Hurwitz for every i ∈ [2, N ];

iii) A− λiBK is Hurwitz for i = 2, N .

Proof. i) ⇒ ii) ⇒ iii) are obvious. Assume that iii) holds. If A − λ2BK and A − λNBK are

Hurwitz matrices, inequalities (11) hold true for λ = λ2 and λ = λN , but then such inequalities

are obviously verified also for every λ ∈ [λ2, λN ]. This ensures that A − λBK is Hurwitz for

every λ ∈ [λ2, λN ], namely i) holds.

From the previous lemma it follows that, when dealing with second-order agents, checking

whether a candidate feedback matrix K ∈ R1×2
+ , 0 ≤ K ≤ K∗, solves the positive consensus

problem amounts to checking whether A− λ2BK and A− λNBK are both Hurwitz.

The following proposition provides necessary and sufficient conditions for the solvability of

the positive consensus problem when dealing with two-dimensional agents.

Proposition 8. Assume that each agent is described by a second order positive state-space

model (10), with A Metzler, non-singular and non-Hurwitz. Then the positive consensus problem

is solvable if and only if

i) A− λ2BK∗ is a (Metzler and) Hurwitz matrix;

ii) σ(A) = (λmax(A), µ), with λmax(A) > 0 and µ < 0.

Moreover, when conditions i) and ii) hold, then K∗ ∈ KH and

KH =

{
K ∈ R1×2

+ : 0 ≤ K ≤ K∗, KA−1B >
1

λ2

}
= KH2 . (12)

Proof. [Necessity] If the positive consensus problem is solvable, then i) and ii) follow imme-

diately from Proposition 3.

[Sufficiency] We first show that, under assumption ii), if inequalities (11) hold for i = 2

and some K ≥ 0, then they hold also for i = N and the same K ≥ 0. As KB ≥ 0,

λNKB ≥ λ2KB > tr(A). On the other hand, condition ii) implies that det(A) < 0 and therefore

λ2Kadj(A)B < det(A) implies Kadj(A)B < 0. This also ensures that λNKadj(A)B <

λ2Kadj(A)B < det(A). By Lemma 5, we have shown that K ∈ KH if and only if K satisfies
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inequalities (11) for i = 2, namely A−λ2BK is Hurwitz, which amounts to saying that K ∈ KH2 .

As a result, condition i) ensures that K∗ ∈ KH , and KH = KH2 can be described as in (12).

Example 6. Consider the positive single-input agent

ẋi(t) = Axi(t) +Bui(t) =

−1 1

3 −1

xi(t) +

1

1

ui(t)
Assume that there are N = 3 agents and that the Laplacian matrix of the communication graph is

as in Example 1, so that `∗ = 2 and the eigenvalues of L are λ1 = 0 < λ2 = 1 < λ3 = 3. Clearly

the spectrum of A satisfies condition ii) of Proposition 8. Also, we assume K∗ =
[
3/2 1/2

]
.

Therefore A−BK∗ is Metzler and Hurwitz. So, the positive consensus problem is solvable and

K∗ is a solution (note, however, that A− λ3BK∗ is Hurwitz but not Metzler). ♣

C. Communication graph whose Laplacian satisfies special conditions

We consider now the case when the eigenvalues of the Laplacian L satisfy some algebraic

condition. Before proceeding let us introduce the Metzler part of a matrix: given any matrix

M = [mij] ∈ Rn×n, we define [21] the Metzler part of M , and denote it by M(M), the matrix

[M(M)]ij :=

mii, if i = j;

|mij|, if i 6= j.

In [21], Hinrichsen and Plischke proved the following monotonicity result (see [13], by Fang and

coauthors, for an alternative proof): let N ∈ Rn×n be a Metzler matrix, then for any M ∈ Rn×n

such that M(M) ≤ N the following inequalities hold: λmax(M) ≤ λmax(M(M)) ≤ λmax(N).

The previous result allows us to easily derive the following condition.

Proposition 9. Assume that the eigenvalues of the Laplacian L are such that λ2 +λN ≤ 2`∗ and

all entries of K∗ are finite7. The positive consensus problem is solvable if and only if A−λ2BK∗

is a (Metzler and) Hurwitz matrix. When so, K = K∗ is a possible solution.

Proof. We already know (see Proposition 3) that the fact that A − λ2BK∗ is a (Metzler and)

Hurwitz matrix is a necessary condition for the problem solvability. So, we want to prove

7This is always the case if B has at least two nonzero entries, but it also applies to the case when B = e1 and k∗1 < +∞,

as previously discussed.
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that when λ2 + λN ≤ 2`∗, it becomes also sufficient. For k ∈ [3, N ], consider the matrix

A∗k := A− λkBK∗. Its Metzler part is equivalently defined as

[M(A∗k)]ij =

λkbik
∗
j − aij, if i 6= j and aij − λkbik∗j < 0;

aij − λkbik∗j , otherwise.

Note that condition aij−λkbik∗j < 0 necessarily implies bi > 0. We want to show thatM(A∗k) ≤
A − λ2BK

∗. Clearly, for all pairs (i, j) such that [M(A∗k)]ij = [A∗k]ij this is true because

aij − λkbik∗j ≤ aij − λ2bik∗j . On the other hand, if condition λ2 + λk ≤ 2`∗ holds, then for every

pair of indices i, j ∈ [1, n], with i 6= j,

aij
bi

2

λk + λ2
≥ aij

bi

1

`∗
≥ min

i=1,2,...,n
i6=j

aij
bi

1

`∗
= k̄∗j ≥ k∗j ,

and this implies that λkbik∗j − aij ≤ aij − λ2bik∗j . So, condition A∗k ≤ M(A∗k) ≤ A − λ2BK∗

and the Hurwitz property of A − λ2BK
∗ ensure that λmax(A

∗
k) < 0, and hence all matrices

A− λkBK∗, k ∈ [2, N ], are Hurwitz.

Condition λ2 + λN ≤ 2`∗ in Proposition 9 only depends on the interconnection topology

among the agents. The interest in this condition comes from the fact that several meaningful

unweighted graphs satisfy it. Among them it is worth mentioning (connected) k-regular graphs,

complete bipartite graphs Kp,q with p ≥ 2q (see Theorem 2.21 in [27]), any tree with a unique

vertex of degree `∗ (see Theorem 8 in [3], Theorem 2.1 in [8]). As a further example, consider

the case of N ≥ 3 agents whose interconnection topology is described by a star graph, by this

meaning that there is an internal node (say node 1) communicating with the remaining N − 1

nodes, and there is no other interaction among the agents. The Laplacian matrix is given by:

L =


N − 1 −1 . . . −1

−1 1 . . . 0
...

... . . . ...

−1 0 . . . 1.


In this case `∗ = N − 1, and since

∑N
i=1 λi =

∑N
i=1 `ii = 2N − 2, it follows that λ2 + λN ≤

2(N − 1) = 2`∗. In addition, if we replace any ray of the star graph with a complete (sub)graph

of arbitrary dimension, the algebraic condition λ2 + λN ≤ 2`∗ still holds (see Theorem 4.4 in

[4]). Notice that this communication topology describes quite a realistic situation: the existence

of an agent (playing the role of a coordinator) that communicates with all the other agents, and
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the partition of the remaining agents of the network into groups (not necessarily of the same

dimension) such that every agent communicates with all (and only) the agents belonging to its

own group.

On the other hand, consider the m-dimensional hypercube defined in [20], [38], namely the

graph whose vertex set V consists of the N := 2m m-tuples with binary coordinates 0 or 1

and where two vertices are adjacent whenever their corresponding vectors differ in exactly one

entry. In this case `∗ = `ii = m for every i ∈ [1, N ] and the Laplacian matrix has (distinct)

eigenvalues λ̃k = 2k with multiplicity
(
m
k

)
for k ∈ [0,m]. Consequently, it is always true that

λ2 + λN = 2 + 2m > 2m = 2`∗.

VIII. SUFFICIENT CONDITIONS FOR PROBLEM SOLVABILITY

In this section we present some sufficient conditions for the problem solvability that rely

on the theory of robust stability of positive systems and on the theory of robust stability of

polynomials, and in general lead to matrices A − λiBK that are Hurwitz but not necessarily

Metzler. Since we have already remarked that the set of solutions KH is a subset of the set

KH2 = KMH
2 = {K : 0 ≤ K ≤ K∗ and A − λ2BK is Metzler and Hurwitz}, the key idea is

to start from some K ∈ KH2 and to determine sufficient conditions that make such a solution

“robust”, in the sense that it does not hold only for λ = λ2 but for every λ ∈ [λ2, λN ].

A. Sufficient conditions from robust stability of positive systems

In this subsection some results on the robust stability of positive linear systems are exploited

to derive sufficient conditions for the solvability of the positive consensus problem. In particular,

Proposition 10 below provides a sufficient condition for a matrix K ∈ R1×n
+ to solve the positive

consensus problem expressed as an LMI.

Proposition 10. Given a state feedback matrix K ∈ KH2 , if any of the following two equivalent

conditions holds:

i) |K (A− λ2BK)−1B| < 1
λN−λ2

;

ii) ∃p ∈ Rn
+, p� 0, that solves the linear program p> (A− λ2BK) +K � 0;

p>B < 1
λN−λ2

;
(13)
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then K ∈ KH . This implies that{
K ∈ KH2 : |K (A− λ2BK)−1B| < 1

λN − λ2

}
⊆ KH .

Proof. We first prove the equivalence between conditions i) and ii), which relies on some L1-gain

characterization for positive systems reported in [6]. Consider the positive system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Kx(t)
(14)

and assume that the input u obeys the output feedback control law u(t) = −λ2y(t) + v(t). The

resulting closed-loop system is described by

ẋ(t) = (A− λ2BK)x(t) +Bv(t)

y(t) = Kx(t)
(15)

and its transfer function is given by W (s) = K(sI−A+λ2BK)−1B. Since K ∈ KH2 , the positive

system (15) is asymptotically stable, and by Proposition 2 in [6] its L1-gain g can be expressed

in terms of its transfer function as g = W (0) = −K (A− λ2BK)−1B = |K(A− λ2BK)−1B|.
Condition i) amounts to saying that the L1-gain of the positive system (15) is smaller than

(λN−λ2)−1, and by Lemma 1 in [6] this is true if and only if the linear program (13) is feasible.

To prove that condition i) ensures that K solves the positive consensus problem, namely

K ∈ KH , we make use of a result on robust stability of positive systems by Son and Hinrichsen

(see [41]). Set Ā := A− λ2BK, ∆ := λ2 − λ and notice that for every λ ∈ [λ2, λN ]

A− λBK = Ā+ ∆BK, (16)

where Ā is Metzler and Hurwitz and ∆BK is a perturbation matrix. Specifically, the matrix

BK gives the structure of the perturbation, while ∆ can be regarded as an unknown scalar

disturbance that gives the size of the perturbation.

By Theorem 5 in [41], the stability radius of the positive system ẋ(t) = Āx(t) with respect

to perturbations described as in (16), namely r(Ā;B,K) := inf{|∆| : λmax(Ā + ∆BK) ≥ 0},
can be computed as |K(A− λ2BK)−1B|−1. So, if condition i) holds, then

r(Ā;B,K) =
1

|K(A− λ2BK)−1B| > λN − λ2,

and this ensures that A − λBK is Hurwitz for every λ ∈ [λ2, λN ]. Therefore, K solves the

positive consensus problem and the final statement follows.
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Remark 5. By following up on Remark 3, we can observe that the parametrization given by Ait

Rami and Tadeo in [1] can be used to provide an alternative statement of the previous conditions

i) and ii). Indeed, we first note that condition K ∈ KH2 is equivalent to saying that

K =
[
z1 z2 . . . zn

]
d1

. . .

dn


−1

=: z>D−1,

where the n-dimensional vectors z > 0,d := D1n � 0, satisfy

Ad +B1>n z < 0,

aijdj + bizj ≥ 0,

z> ≤ K∗D.

By keeping in mind that |K (A− λ2BK)−1B| = −K (A− λ2BK)−1B (see the proof of

Proposition 10), we can rewrite condition i) in Proposition 10 as:

−z>
(
AD − λ2Bz>

)−1
B <

1

λN − λ2
and condition ii) as “∃p ∈ Rn

+, p� 0, that solves the linear program p>
(
AD − λ2Bz>

)
+ z> � 0;

p>B < 1
λN−λ2

.

Lemma 6. Assume that A ∈ Rn×n is a non-singular and non-Hurwitz Metzler matrix. Assume

also that A− λ2BK∗ is a (Metzler and) Hurwitz matrix. Then, the sufficient condition given in

Proposition 10 holds for some K ∈ KH2 if and only if it holds for K = K∗.

Proof. Sufficiency is obvious. To prove necessity, we consider condition i) of Proposition 10

and prove that for every K ∈ KH2 it holds

|K(A− λ2BK)−1B| ≥ |K∗(A− λ2BK∗)−1B|. (17)

To this aim, notice that K(A − λ2BK)−1B = K(In − λ2A−1BK)−1A−1B = (KA−1B)(1 −
λ2KA

−1B)−1. Recalling that KA−1B > 1
λ2

for every K ∈ KH2 , condition (17) can be rewritten

as
KA−1B

λ2(KA−1B)− 1
≥ K∗A−1B

λ2(K∗A−1B)− 1
. (18)
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Set x(K) := KA−1B and notice that, since A−1B is a positive vector (see Proposition 3, part

iii)), it holds x(K∗) ≥ x(K) for every K ∈ KH2 . Now, consider the function f(x) := x
λ2x−1 ,

x > 1
λ2

. It is easy to see that f(x) is a monotone and strictly decreasing function since f ′(x) =

− 1
(λ2x−1)2 < 0. But then, f(x(K)) ≥ f(x(K∗)) for every K ∈ KH2 , namely condition (18)

holds.

As an immediate corollary of Lemma 6, we can rewrite the sufficient condition given in

Proposition 10 as follows.

Corollary 3. Assume that A ∈ Rn×n is a non-singular and non-Hurwitz Metzler matrix. If

A−λ2BK∗ is (Metzler and) Hurwitz and any of the following two equivalent conditions holds:

i) |K∗ (A− λ2BK∗)−1B| < 1
λN−λ2

;

ii) ∃p ∈ Rn
+, p� 0, s.t. p> (A− λ2BK∗) +K∗ � 0, and p>B < 1

λN−λ2
,

then K∗ solves the positive consensus problem.

B. A sufficient condition from the theory of robust stability for polynomials

Another sufficient condition for a matrix K ∈ R1×n
+ to solve the positive consensus problem

can be derived from a criterion of robust stability of polynomials, i.e. stability of polynomials

with uncertain coefficients. Before proceeding, we introduce the Hurwitz matrix associated with

a given polynomial [5].

Definition 2. [5] Consider the polynomial d(s) = ans
n + an−1s

n−1 + · · · + a1s + a0 ∈ R[s] of

degree n (an 6= 0). The Hurwitz matrix associated with d(s) is the n× n real matrix

Hd,n :=



an−1 an−3 an−5 . . . 0

an an−2 an−4 . . . 0

0 an−1 an−3 . . . 0

0 an an−2 . . . 0
...

...
... . . . ...

0 . . . . . . . . . a0


For the sake of clarity, the matrix Hd,n has the following structure: the first and the second

rows coincide with the second and the first row of the Routh table, respectively, completed with

zeros; every couple of consecutive rows is obtained by the previous couple of rows by means
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of a one-step shift to the right (and the insertion of a 0 on the left). Note that if a0 6= 0, then

Hd,n is non-singular [5].

Proposition 11. Denote by d(s) the characteristic polynomial of A ∈ Rn×n, i.e. d(s) :=

det(sIn − A), and let λ̄ ∈ [λ2, λN ] and K ∈ R1×n
+ , 0 ≤ K ≤ K∗, be such that A − λ̄BK

is Hurwitz. Define the polynomial, of degree (at most) n − 1, q(s) := K adj(sIn − A)B, and

denote by Hq,n ∈ Rn×n the Hurwitz matrix associated with q(s) regarded as a polynomial of

degree n. Define also the matrix pencil

Hp,n(λ) := Hd,n + λHq,n, λ ∈ R, (19)

and denote by 0 ≤ µ1 < · · · < µk the nonnegative, real, distinct eigenvalues of Hp,n(λ), namely

the nonnegative, real, distinct values for which the matrix pencil Hp,n(λ) becomes a singular

matrix. If there exists j ∈ [1, k] such that [λ2, λN ] ⊂ (µj, µj+1), where µk+1 = +∞, then for

every i ∈ [2, N ] the matrix A− λiBK is Hurwitz, i.e. K solves the positive consensus problem.

Before proceeding with the proof of Proposition 11 we need to state the following Lemma

on the robust stability of polynomials.

Lemma 7. Let d(s) and q(s) be two polynomials such that deg d(s) = n > deg q(s). Consider

the family of polynomials parametrized by λ, p(s, λ) = d(s) + λq(s), where λ ∈ [λ−, λ+] and

λ− > 0. Assume that there exists λ̄ ∈ [λ−, λ+] such that p(s, λ̄) is Hurwitz. Then, the polynomial

p(s, λ) is Hurwitz for every λ ∈ [λ−, λ+] if and only if the Hurwitz matrix associated with

p(s, λ), namely Hp,n(λ), is nonsingular for every λ ∈ [λ−, λ+].

The proof of Lemma 7 above follows from a simple application of Lemma 4.8.3 in [5]

once we notice that for every λ ∈ [λ−, λ+] the polynomial p(s, λ) can be written as p(s, λ) =

p(s, λ̄) + (λ− λ̄)q(s). For the sake of brevity, the proof is omitted.

We can now prove Proposition 11.

Proof. (Proposition 11) Introduce the characteristic polynomial p(s, λ) of the matrix A− λBK

p(s, λ) := det(sIn − A+ λBK) = d(s) + λq(s),

and note that the Hurwitz matrix associated with p(s, λ) is the matrix pencil Hp,n(λ) defined

in (19). Since by hypothesis p(s, λ̄) is Hurwitz and there exists j ∈ [1, k] such that Hp,n(λ) is
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nonsingular for every λ ∈ (µj, µj+1) ⊃ [λ2, λN ], then it follows from Lemma 7 that p(s, λ) is

Hurwitz for every λ ∈ [λ2, λN ], and hence K solves the positive consensus problem.

Example 7. Consider the positive single-input agent:

ẋi(t) = Axi(t) +Bui(t) =


−1 1 0

0 1 1

0.5 2 −3

xi(t) +


0

2

1

ui(t)
Assume that there are N = 5 agents and that the Laplacian matrix of the communication graph

is the following one:

L =



1.05 −0.8 −0.25 0 0

−0.8 1.05 0 −0.25 0

−0.25 0 1 −0.25 −0.5

0 −0.25 −0.25 1 −0.5

0 0 −0.5 −0.5 1


.

In this case `∗ = 1.05, λ2 = 0.3876, λ5 = 1.9405 and K̄∗ =
[
0 1.9048 0.4762

]
. We assume

K∗ = K̄∗. Notice that the necessary condition of Proposition 3 is satisfied since λmax(A) =

1.4901 is the only nonnegative real eigenvalue of σ(A) and A − λ2BK
∗ is a (Metzler and)

Hurwitz matrix. Now, since k∗1 = 0, for every K ∈ R1×3
+ , 0 ≤ K ≤ K∗, the matrix Hq,n takes

the following form:

Hq,n =


2k2 + k3 7k2 + 4k3 0

0 9k2 + 4k3 0

0 2k2 + k3 7k2 + 4k3

 ,
and the matrix pencil defined in (19) results

Hp,n(λ) =


3 −5.5 0

1 −3 0

0 3 −5.5

+ λ


2k2 + k3 7k2 + 4k3 0

0 9k2 + 4k3 0

0 2k2 + k3 7k2 + 4k3

 .
Then, it is easy to verify that the eigenvalues of the matrix pencil are µ̃1 = 5.5

7k2+4k3
and the zeros

of the polynomial g(µ̃) = µ̃2(2k2 + k3)(9k2 + 4k3) + µ̃(14k2 + 5k3)− 3.5. If we choose K = K∗

we have µ1 = 0.0951 < µ2 = 0.3609, and hence [λ2, λ5] ⊂ (µ2,+∞) and by Proposition 11 K∗

solves the positive consensus problem. ♣
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IX. CONCLUDING REMARKS

In this paper we have investigated the positive consensus problem for homogeneous multi-agent

systems, described by a single-input positive state-space model, by assuming that the agents’

interactions are cooperative, and distributed control is achieved through the classic DeGroot’s

feedback control law. Preliminary analysis allowed us to focus only on the case when the agents’

state matrix is an irreducible Metzler matrix. Necessary or sufficient conditions for problem

solvability have been derived. Equivalent conditions for problem solvability have been derived by

introducing special assumptions either on the agents’ description or on the communication graph.

The practical relevance of those assumptions has been commented upon in the corresponding

subsections. As a general solution is still missing, in Section VI we have provided a complete

analysis of the cases when stronger versions of the original problem are addressed: namely

when we search for a (single) feedback matrix K that makes all matrices A−λiBK, i ∈ [2, N ],

Metzler and Hurwitz, and the case when all the solutions of the positive consensus problem

make the aforementioned matrices Metzler and Hurwitz. Future research aims at determining

weaker sufficient conditions for the problem solution, and on focusing on special classes of

communication graphs for which a complete solution is available.
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