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Abstract. Conversational systems are increasing their popularity since
they allow users to interact in a simple and natural way. Information
Retrieval (IR) and Recommender Systems (RS) represents two cate-
gories of systems that strongly rely on the interaction with the user. For
these reasons, recently many researches increased their effort towards
the development Conversational Information Retrieval (CIR) and Con-
versational Recommender Systems (CRS). Such systems, in fact, allow
to increase the ease of use from the user perspective and also to improve
the quality of the results. The aim of this tutorial is to show the best
and most frequently used approaches/paradigms to build CIR and CRS
systems and to understand how these can be evaluated. During the tuto-
rial the participants will be provided with the knowledge that is needed
to understand, create and evaluate CIR and CRS.
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1 Motivation

Conversational agents are rapidly growing in popularity. Such systems allow end
users to seek information through natural language. This not only benefits the
general public, but it might also improve the usability for specific categories of
users, such as children, elderly, and visually impaired users. At the same time,
the conversational interaction between the user and the systems comes with
additional challenges compared to a standard information-seeking agent, which
need to be properly addressed. For example, the system needs to be capable of
handling complex natural language structures that include anaphoras, ellipses
and co-references. It needs also to constantly maintain knowledge of the state of
the conversation and past interactions to adapt its responses accordingly. The
final challenge concerns the evaluation of these systems: compared to a single
interaction between the user and the system, a conversation might flow in several
different ways, making the evaluation of these systems a far more complete task.
This problem is exasperated by Large Language Models (LLMs), a very power-
ful resource to dialogue with the user, but whose answers are more challenging
to explain and evaluate. Traditionally, conversational agents are divided into
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Conversational Information Retrieval (CIR) systems and Conversational Rec-
ommender Systems. The former allows the user to retrieve information from a
corpus that satisfies the information need they express through their utterances.
The latter, on the other hand, employs an interactive process that allows the user
to progressively refine its preferences naturally, through dialogue, and obtain a
recommendation. While this separation is natural from the system perspective,
it does not allow the exploitation of the full potential of a system to seamlessly
converse with a user. At the same time, past efforts in the joint recommendation
and search [50,52,63] have shown the advantages of bridging these two categories
of systems.

In this tutorial, we will provide the participants with an overview of the his-
torical development of the CIR and CRS, trying to bridge them, highlighting the
similarities and differences, with the additional objective of fostering collabora-
tion between the research communities in nformation Retrieval (IR) and Rec-
ommender Systems (RS). Additionally, we will present Conversational Agents
Framework for Evaluation (CAFE), a recently developed evaluation framework
that threats the conversational agent as a holistic entity, overcoming the tradi-
tional dichotomy into CIR and CRS when it comes to the evaluation,

2 Format

The workshop will be organized into three modules, conversational search, con-
versational recommendation and evaluation. In the first two modules, we will
focus on the algorithmic and modelling aspects of the conversational systems,
highlighting similarities and differences, and emphasizing possible synergies
between the two. Finally, in the evaluation module, we will outline the chal-
lenges and opportunities the conversational context introduces in evaluating the
models. We focus on the evaluation with a holistic view, to frame both search
and recommendation within the same evaluation framework.

Conversational Search (1 h). Traditionally, Conversational Search (CS) agents
are divided into chit-chat bots [56,59] meant to entertain the user, and task-
oriented agents, devoted to completing a search task for the user [11,25]. Task-
oriented agents are further divided into three main categories, pure CIR systems
that retrieve the answer from a corpus [37,40,54,57,58], Question Answering
(QA) systems that answer users’ utterances with facts and atomic pieces of
information [34], and systems that generate the answer by employing a gen-
erative model [35]. Recent advances in the LLM domain and Retrieval Aug-
mented Generation (RAG) have blurred the borders between different categories
of approaches. The tutorial will provide an overview of the development of CS
systems through time and will focus on the latest advances introduced by the
recent LLM-based solutions. Besides the aspects related to the matching and
retrieval of the documents or the generation of the answer in response to a query,
several ancillary tasks were developed in the context of the conversational search.
Among them, we cite Query Performance Prediction (QPP) for CIR and the so-
called mixed-initiative interaction. QPP for CIR [20,41,42,53] focuses on the
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specific characteristics of the conversational setting to adjust the behaviour of
the conversational agent according to the predicted quality of the response. In a
similar spirit, the mixed-initiative interaction [3,10,26,46] allows the system to
ask clarifying questions, in case the system detects it has not enough information
to answer the user’s information need. The tutorial will provide an overview of
such aspects, to provide a comprehensive view of the research paths stemming
from CS.

Conversational Recommendation (1 h). CRS are traditionally composed of sev-
eral building blocks [28]. As for traditional RS, also for CRS personalization
plays an important role [31]. Nonetheless, in CRS there are additional needs with
respect to standard RS. A CRS, in fact, must be able to perform natural lan-
guage understanding and to represent the user preferences in the context of a sin-
gle conversation. Considering the latter, several techniques have been proposed
both to keep track of the user preferences and to exploit the expressed prefer-
ences for the recommendation process. In this context Knowledge Graphs (KG),
dense embeddings, and attention based mechanisms are frequently exploited
[13,38,43,62]. As in many other research fields, also for CRS the advancements
in the LLM domain had an important impact in the development of both the
systems [38,39,44,44,49,55] and the datasets [29,36]. In this tutorial, we present
the main structure and components of CRS (from traditional architectures to
modern, LLM based, ones), we discuss the role of personalization in CRS and
how appropriate user modelling may impact the recommendation performance
and we argue the advantages and disadvantages of such systems.

Evaluating a Conversational System (1 h). Traditionally, conversational agents
have been devoted to either search or recommendation, treating the two tasks
separately. As a consequence, each discipline developed its evaluation frame-
work, with limited cross-fertilization [18,19,30,45,48,51,60,61]. Similarly, shared
efforts within the IR community, such as TREC-CAsT [15–17,45], TREC-
iKaT [2], and datasets developed by the RS community, such as ReDial [33], its
LLM-based counterpart LLM-REDIAL [36], and the ConverRSE [27] dataset,
to name a few, focus exclusively on either search or recommendation. As a con-
sequence, the evaluation of an integrated conversational agent that operates
seamlessly as a searcher and recommender remains a challenging task with sev-
eral under-explored aspects. In this tutorial, we present and discuss the CAFE,
recently developed jointly by the IR, RS, and Natural Language Processing
(NLP) communities, during a Perspective Workshop in Dagsthul [12]. The CAFE
is based on six aspects that should be identified while designing the evaluation
protocol for an integrated CIR and CRS system: the goals that the stakeholder
aims to achieve, the relevant user aspects, the tasks that the system is expected
to complete, the scope of the evaluation (i.e., whether the system should be
evaluated at turn level, at a conversation level, or on the long run), the method-
ology (e.g., controlled lab studies, AB testing), and the measures that quantify
the effectiveness of the system across all the aforementioned evaluation aspects.
During the tutorial, we will present practical examples of each aspect mentioned
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before and discuss how they can be identified or chosen in a real-life scenario to
implement a holistic conversational agent evaluation.

3 Audience

This tutorial is expected to attract audience from a vast community including,
but not limited to Information Retrieval, Recommender Systems, and Natural
Language Processing at large. Furthermore, we also target the part of the com-
munities (both IR and RS) devoted to the evaluation, who can familiarize with
the conversational evaluation, a different evaluation setting that presents its own
peculiarities that should be accounted for.

Target Audience. Given the broad applicability of the conversational search
systems, the tutorial is tailored to target both academic and industry audience,
mainly belonging to IR and RS communities. We envision a tutorial that can be
useful to both research-versed audience, as well as practitioners that have more
interest in the practical aspects.

Prerequisite Knowledge. This tutorial will be self-contained and has minimal
prerequisite knowledge. The participants should be familiar with basic IR and
RS concepts, such as ranking and filtering. Furthermore, the audience should
be familiar with evaluation paradigms and shared campaigns, such as TREC.
Finally, considering the recent advances introduced in the domain by contextual
text representation and Large Language Models in particular, the participants
to the tutorial should have basic knowledge of related concepts, such as the
transformer architecture and dense encoding.

4 Tutorial History

In recent years, both tutorials related to CIR and CRS have been presented to
major conferences like RecSys, SIGIR and WSDM. Previous tutorials related
to CIR include: “Recent Advances in Conversational Information Retrieval” [24]
and “Conversational Information Seeking: Theory and Application” [14]. Existing
tutorials on CRS, instead, include: “RecSys 2021 Tutorial on Conversational
Recommendation: Formulation, Methods, and Evaluation” [32] and “Tutorial on
Conversational Recommendation Systems” [21–23].

Furthermore, in the past also workshops related to these research fields have
been proposed [1,4–9,47].

However, the previously presented tutorials relate to 3–5 years ago but in
recent years there have been many advancements in conversational systems. In
our tutorial, differently form the others, we will focus on both CIR and CRS
and their evaluation. We will highlight the differences and similarities between
conversational systems in different contexts. Thus, this tutorial will also make
it possible to better understand how to bridge the gap between CIR and CRS,
going towards the novel and promising field of Joint IR and RS.
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