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Abstract

OpenPTrack is an open source software for multi-camera calibration and people tracking in RGB-D camera networks.
It allows to track people in big volumes at sensor frame rate and currently supports a heterogeneous set of 3D sensors.
In this work, we describe its user-friendly calibration procedure, which consists of simple steps with real-time feed-
back that allow to obtain accurate results in estimating the camera poses that are then used for tracking people. On top
of a calibration based on moving a checkerboard within the tracking space and on a global optimization of cameras
and checkerboards poses, a novel procedure which aligns people detections coming from all sensors in a x-y-time
space is used for refining camera poses.
While people detection is executed locally, in the machines connected to each sensor, tracking is performed by a sin-
gle node which takes into account detections from all over the network. Here we detail how a cascade of algorithms
working on depth point clouds and color, infrared and disparity images is used to perform people detection from
different types of sensors and in any indoor light condition.
We present experiments showing that a considerable improvement can be obtained with the proposed calibration
refinement procedure that exploits people detections and we compare Kinect v1, Kinect v2 and Mesa SR4500 per-
formance for people tracking applications. OpenPTrack is based on the Robot Operating System and the Point Cloud
Library and has already been adopted in networks composed of up to ten imagers for interactive arts, education,
culture and human-robot interaction applications.

Keywords: OpenPTrack, people tracking, RGB-D, open source, multi-camera, network calibration, human-robot
interaction, Microsoft Kinect, Microsoft Kinect v2, Mesa SwissRanger, stereo.

1. Introduction

The ability to detect and track people in real time is
useful for a variety of applications: from video surveil-
lance to robotics, from education to art. With the advent
of commercially available consumer RGB-D cameras,
and continued efforts in computer vision research to im-
prove multi-modal image and point cloud processing,
robust person tracking from a single camera with the
stability and responsiveness necessary to drive interac-
tive applications is now possible at low cost [1]. How-
ever, these sensors usually have a limited field of view
and working range, that only allows to track people in
a narrow area. Moreover, people tracking is still more
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prone to errors when a person gets occluded by other
people or objects. Exploiting multiple cameras in a net-
work can solve both these issues, but the extension of
people tracking algorithms to multi-camera scenarios is
not straightforward.

For this purpose, we created OpenPTrack1, an open
source, BSD licensed, project launched in 2013 to cre-
ate a scalable, multi-camera solution for person track-
ing that specifically aims to support applications in ed-
ucation, art, and culture. This project aims at enabling
artists and creators to work with robust real-time per-
son tracking in real-world projects. OpenPTrack aims
to support creative coders in the arts, culture, and edu-
cational sectors who wish to experiment with real-time
person tracking as an input for their applications. In or-

1Website: http://openptrack.org, repository: https://

github.com/OpenPTrack/open_ptrack.
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Target audience Education, Arts, Culture Various Various Various High-end Production Industrial sensing

Core technology Networked 3D imagers 3D Imager 2D Camera(s) 2D Camera 2D Cameras Radio Frequency

Output Type ID, 3D Centroid ID, Skeletal Data ID, 2D Centroid ID, 3D Position, Orientation ID, Dense Skeletal Data ID, 3D Position

Max. Tracking Volume Large Small Small to Medium Small to Medium Can be very large Can be very large

Fusion of multiple views Intrinsic N/A Up to developer Up to developer Intrinsic N/A

Typical refresh rate (Hz) 30-60 30 15-30 30-60 60-120+ 20-50

Lag (perceptual) Low Low Low Low Very low Medium

Maximum people tracked Many Typically 4 Tradeoff with volume Tradeoff with volume Many Many

Person detection Yes Yes Not usually N/A Yes N/A

ID Stability Medium Medium to High Low High High Very high

3D Tracking Yes Yes No Yes Yes Yes

Skeletal Tracking No Yes No No Yes No

Must carry / wear something No No No Yes Yes Yes

Position accuracy High High Varies greatly Medium to High Very high Medium

Occlusion resistance High in multi-imager nets Low Low Low High Requires multiple tags

Visible light sensitivity Minimal Minimal Yes Yes Some None

IR light sensitivity Depends on imager Yes Depends on imager Depends on imager Often No

Costume sensitivity Must be humanoid Must be humanoid None Must show tag Must wear marker suit None

Multiple imager types Yes No Yes Yes Yes N/A

Typical setup time Medium Very low Low to Medium Low to Medium Medium to High Medium to High

App integration complexity Low Low Low to Medium Low to Medium Medium to High Low to Medium

Open source software Yes Usually Usually Usually No No

Off-the-shelf parts Yes Yes Yes Yes No No

Typical system cost $$ $ $ $ $$$$ $$$

RF Tracking                     

(e.g., Zebra)
OpenPTrack

Single Kinect         

(w/ Microsoft SDK or 

OpenNI/NiTE)

Blob Tracking         

(e.g., Community Core 

Vision)

Augmented Reality                  

(e.g., AR Toolkit)

Motion Capture           

Marker-based                    

(e.g., Vicon)

Figure 1: Comparison of popular tracking technologies. Techniques based on a single sensor have clear limitations in terms of tracking space and
accuracy. OpenPTrack targets people tracking in large spaces, fusing multiple views for allowing to track many people with high resistance to
occlusion, similarly to what can be obtained with motion capture systems or with radio frequency sensors. Nevertheless, it does not require the
person to wear anything and the installation costs are considerably lower since it uses off-the-shelf parts and open source software.

der to allow application developers to easily use it for
their work, we also focused on providing user-friendly
calibration and tracking processes by automating most
of the operations that were required to the user. The
system allows to use a network of imagers to track the
moving centroids (center of mass) of people within a
defined area. These data are also provided as a simple
JSON-formatted stream via UDP, which can be incorpo-
rated into creative coding tools like Max/MSP, Touchde-
signer, and Processing, as well as a variety of other soft-
ware languages and environments.

In addition to the applications listed above,
OpenPTrack is also perfectly suited to be adopted
in environments where a robot has to interact with a
human, such as in a RoboCup@Home scenario [2] or
when a human and a robot share the same workspace in
a factory [3]. The constant and real time monitoring of
people positions is a necessary condition to avoid any
injury that an industrial robot could cause to a human.

OpenPTrack contains numerous state-of-the-art algo-
rithms and pipelines for RGB and/or depth-based peo-
ple detection and tracking, and has been created on top
of a modular node based architecture, to support the
maximum re-use of code and a distributed implemen-
tation. In particular, it is built on other open source
libraries: the Point Cloud Library (PCL [4]), Open
Source Computer Vision (OpenCV [5]) and Robot Op-
erating System (ROS [6]). It currently works with
the first and second generation Microsoft Kinect, Mesa

Imaging Swissranger SR4500 and custom stereo cam-
eras built with a pair of PointGrey cameras.

The main contributions of this work are:

• a real-time, easy to use, and precise calibration
process that also exploits people detections for re-
fining camera poses

• a quantitative comparison of three RGB-D sensors
for the purpose of people tracking

• a number of new features and optimizations imple-
mented in OpenPTrack with respect to the people
detection and tracking algorithms in [1]

The remainder of the paper is organized as follows:
In Section 2, we review the most recent works on RGB-
D people detection and tracking and camera networks,
while in Section 3 we present the sensors that can be
used to build an OpenPTrack network. Section 4 de-
scribes the three stages of the procedure implemented
in OpenPTrack for calibrating a network of RGB-D sen-
sors in real time. Section 5 gives an overview of our de-
tection algorithms and of the differences with [1], while
Section 6 details an efficient version of the tracking node
and Section 7 explains our efforts towards system us-
ability. Experiments on network calibration and peo-
ple tracking with different sensors are reported in Sec-
tion 8, while some interactive applications exploiting
OpenPTrack are described in Section 9. Conclusions
are drawn in Section 10.
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2. Related work

2.1. People tracking from RGB-D data

Since the introduction of low-cost RGB-D sensors,
a number of people detection and tracking algorithms
which exploit combined color and depth information
have been proposed. Most of these approaches apply
a sliding window technique to RGB and/or depth im-
ages for people detection ([7], [8]), thus requiring high
parallelization with GPUs to obtain real time perfor-
mance. Moreover, the preferred tracking algorithm in
this context is a multi-hypothesis tracking, that is able
to recover from failures, but is also computationally ex-
pensive, thus hardly usable in real time scenarios with
many people.

Recent works ([9], [10], [1], [3], [11]) allow to avoid
the sliding window approach that usually leads to ana-
lyze thousands of detection windows per image. These
new methods exploit the assumption, also adopted by
OpenPTrack, that people stand/walk on a ground plane
and cluster algorithms on depth data to find a small
number of Regions Of Interest (ROIs) which are can-
didates to contain people and are then classified with
more robust and computational demanding algorithms.

An open source implementation of the people detec-
tion algorithms in [10] and [1] is available in the Point
Cloud Library [4]. In ROS-Industrial Human Tracker
repository2, these algorithms are combined with other
people detectors in a people detection cascade which
obtains even more computational efficiency and which
is combined with the tracking algorithm described in
[3]. Also the code for the GPU-based and the CPU-
based versions of the people detection and tracking soft-
ware in [11] has been recently released3.

2.2. Multi-camera people tracking

All of the software described above is targeted to
track people from a single RGB-D camera which can
move onboard a wheeled robot. However, none of these
provides the possibility to perform people tracking in a
distributed fashion by exploiting multiple cameras.

Some works exist on people tracking and re-
identification from multiple 2D cameras. Some of them
assume that the network has been calibrated ([12], [13]),

2https://github.com/ros-industrial/human_tracker/

tree/develop.
3http://www.vision.rwth-aachen.de/software/

realpdt/realpdt.

while others perform tracking with uncalibrated cam-
eras [14]. One of the main methods for determining spa-
tial positions of people is to geometrically transform im-
ages based on a predetermined ground plane homogra-
phy ([15], [16], [17]). Tracking can then be done based
on the estimated ground plane positions. Unfortunately,
none of these works address the problem of network cal-
ibration and they do not provide an open source imple-
mentation of the presented methods.

2.3. Multi-camera calibration

The problem of network calibration is not necessarily
connected to the people tracking application and con-
cerns a whole branch of works in literature. Auvinet
et al. [18] proposed a new method for calibrating multi-
ple depth cameras for body reconstruction by using only
depth information. Their algorithm is based on plane
intersections and the NTP protocol for data synchro-
nization. The calibration achieves good results: even if
the depth error of the sensor is 10 mm, the reconstruc-
tion error with three depth cameras is, in the best case,
less than 6 mm. A drawback of their implementation
is that they have to manually select the plane corners
and, above all, they only deal with depth sensors, thus
avoiding the possibility to add the color information to
the fused data. Another approach to solve the calibra-
tion problem is the one proposed by Le and Ng [19]:
they jointly calibrate groups of sensors. More specifi-
cally, each group is composed by a set of sensors that
can provide a 3D representation of the world (e.g. a
stereo camera, an RGB camera and a depth camera,
etc.). First of all, they calibrate the intrinsics of each
sensor, secondly they calibrate the extrinsic parameters
of each group and then they calibrate the extrinsic pa-
rameters of each group with respect to all the others.
Finally, they refine the calibration parameters of the en-
tire system in one optimization step. Their experiments
show that this method not only reduces the calibration
error, but also requires little human intervention.

A procedure that jointly calibrates the pose of all the
sensors does not accumulate errors like a calibration
based on sensor pairs do. For this reason, we act in a
similar way for performing the calibration that involves
the use of a checkerboard.

The idea of using people detections for calibration
has been recently explored in literature: in [20], detec-
tions are used for computing the intrinsic parameters of
a camera together with the foot-head homology, while,
in [21], they are exploited for estimating the plausible
range of 3D position and height for people walking on
the ground plane. In this work, instead, we use peo-
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Table 1: Comparison of the sensors currently supported by OpenPTrack.
Kinect v1 Kinect v2 SR4500 Stereo

Depth resolution 320x240 512x424 172x144 variable
Depth range [m] 0.8 - 8 0.4 - 10 0.4 - 9 variable
Intensity resolution 640x480 1920x1080 172x144 variable
Type of intensity color color/infrared infrared color/mono/infrared
Error VS distance quadratic nearly constant nearly constant quadratic
Crosstalk yes no yes no
Visible light sensitivity no no no high for color cam
Infrared light sensitivity high low low high for IR cam
Optimal frame rate (fps) 30 30 13 variable

ple detections for refining the relative pose of multiple
cameras.

OpenPTrack, not only addresses the problem of peo-
ple tracking in a distributed network of RGB-D sensors,
but also proposes the whole pipeline necessary to per-
form the calibration of the sensor network. It extends
state-of-the-art approaches in terms of scalability and
ease of use in multi-camera scenarios, where the prob-
lems caused by occlusion and limited field of view can
be solved.

A comparison table of some popular approaches to
people tracking is reported in Figure 1. This table il-
lustrates the gap that OpenPTrack aims to fill: scalable,
robust, real-time person tracking using affordable off-
the-shelf components and an open source codebase.

3. Supported sensors

The OpenPTrack library estimates people tracking in-
formation from point cloud data containing depth and
intensity information. The intensity information can be
derived from color, grayscale or infrared data, thus al-
lowing to use OpenPTrack with a wide range of existing
and future sensors. For all supported sensors, instruc-
tions for drivers installation and sensor calibration are
provided. In Table 1, we report a comparison between
the sensors currently supported by OpenPTrack.

3.1. Kinect v1
The first generation Microsoft Kinect4 (Kinect v1)

exploits a structured-light sensor for estimating depth
information and a color camera for acquiring color. The
main problems of using networks of Kinect v1 sensors
derive from the high depth estimation errors at far range
and from the crosstalk between sensors, that is the dis-
turbance that is created when more sensors project their

4http://www.xbox.com/it-IT/Xbox360/Accessories/

kinect.

structured pattern to the same scene. Moreover, Kinect
v1 depth estimation highly degrades in presence of ex-
ternal infrared light, e.g., sunlight, thus it is only suited
to be used indoors. OpenPTrack could work also with
Asus Xtion and Primesense Carmine sensors, that are
very similar to Kinect v1, but they are not officially sup-
ported since they are not produced anymore.

3.2. Kinect v2

Kinect v25 estimates depth by exploiting the Time-
of-Flight (ToF) principle [22], i.e., an array of emitters
send out a modulated signal that travels to the measured
point, gets reflected and is received by the CCD of the
sensor. Kinect v2 is probably the best sensor to be used
in multi-camera scenarios since its depth estimation er-
ror is nearly constant up to 10 meters [23] and there is
no crosstalk between multiple sensors. This sensor can
also be used outdoors to track people in the near range
thanks to its low sensitivity to infrared light. As we will
see, OpenPTrack uses Kinect v2 color image at the cali-
bration stage, to exploit its high resolution, while it uses
its infrared image for people detection and tracking, in
order to be invariant to lighting conditions.

3.3. SwissRanger 4500

The Mesa SwissRanger SR45006 is another time-of-
flight sensor, but with lower resolution than Kinect v2.
Other than a depth map, it also provides an infrared
intensity image and a confidence value for every pixel
stating the confidence of depth data. An example of this
kind of data is reported in Figure 2. Even if it has lower
resolution than Kinect v1 and v2, depth data are more
continuous and accurate than for Kinect v1, thanks to
the exploitation of ToF technology. Its sensitivity to ex-
ternal lighting is similar to that of Kinect v2, but it does

5http://www.microsoft.com/en-us/kinectforwindows.
6http://www.mesa-imaging.ch/products/sr4500.
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(a) Depth (b) Intensity (c) Confidence

Figure 2: Data produced by the Mesa SwissRanger SR4500.

suffer from crosstalk problems. However, the possibil-
ity to use heterogeneous sensors with OpenPTrack also
allows to alternate different sensors within the network
in order to reduce the crosstalk between sensors of the
same type.

3.4. Stereo cameras
OpenPTrack works also with data coming from pas-

sive sensors, such as stereo cameras, that are the best
sensors to be used outdoors. The possibility to use
custom-built stereo pairs is provided, in order to allow
the user to choose the resolution and baseline most suit-
able to his needs. For example, tracking could be ex-
tended to farther range than that obtained with the other
supported sensors by choosing a wide baseline for the
stereo pair. At the moment of writing, BlackFly7 Point-
Grey cameras are fully supported for creating custom
stereo cameras, from intrinsic calibration to tracking.

4. Network calibration

In order to fuse people detections coming from every
sensor, all camera poses must be accurately known with
respect to a common reference frame. In OpenPTrack,
the calibration of the camera network consists of three
stages, as depicted in Figure 3. At first, the RGB-D
sensors must be intrinsically calibrated; then, the cam-
era poses within the network are estimated by means of
a checkerboard; finally, these poses are refined by ex-
ploiting people detections coming from all sensors.

4.1. Intrinsic calibration of the sensors
Intrinsic calibration consists in estimating focal

length, optical center and distortion coefficients of the
cameras composing the RGB-D sensors. If a sensor is
composed of multiple cameras, also the relative pose
between them must be calibrated. This calibration is
separately performed for every sensor and OpenPTrack
provides standard procedures to estimate the needed

7http://www.ptgrey.com/blackfly-usb3-vision-cameras.

parameters by imaging a checkerboard from multiple
viewpoints8.

4.2. Real-time extrinsic calibration with a checker-
board

Unlike intrinsic calibration, extrinsic calibration in-
volves all sensors at once, since it consists in acquiring
images from all sensors while moving a checkerboard
within the tracking space and in performing a global op-
timization of the camera and checkerboard poses. This
procedure relies on ROS communication and network-
ing capabilities, can be executed in little time and pro-
vides feedback in real time about the calibration status.
In particular, once the network of computers and sensors
is set up9, the user is requested to move a checkerboard
in front of the cameras. When the checkerboard is seen
by a pair of cameras, the relative pose between the two
is estimated in real time and the resulting reference axes
are drawn within the ROS visualizer, as shown in Fig-
ure 4a. Then, every time a new camera sees the checker-
board at the same time of one of the already calibrated
cameras, the new camera pose is estimated and added
to visualization. After all cameras have been calibrated,
the user is requested to place the checkerboard on the
ground, as in Figure 4b. With this operation, the posi-
tion of the ground plane with respect to each camera is
calibrated.

The size of the checkerboard can be specified via con-
figuration file. In the examples reported in this work, we
used a 5x6 checkerboard with squares of 0.12 meters,
that is usually recognized at distances up to 6 meters
from cameras with VGA resolution, e.g. Kinect v1. The
field of view overlap that is needed for two cameras to
see the checkerboard can vary according to the checker-
board distance and its orientation with respect to both
cameras, thus having real-time feedback of the calibra-
tion in the visualizer is very important for the user.

4.2.1. Optimization
The camera poses are optimized together with the

checkerboard poses in a bundle adjustment fashion rely-
ing on the calibration toolkit10 [24] package and
the Ceres Solver library [25] Since more than two cam-
eras can see the checkerboard and more frames are col-
lected over time, many constraints can be added to this

8Instructions on how to perform intrinsic calibration of the
supported sensors are reported here: https://github.com/

OpenPTrack/open_ptrack/wiki/Intrinsic-Calibration.
9All computers of the network must be time-synchronized.

10https://github.com/iaslab-unipd/calibration_

toolkit.
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Figure 3: Calibration workflow in OpenPTrack. Three stages can be identified: Intrinsic calibration, extrinsic calibration and calibration refinement
with people detections.

optimization problem. In particular, let B be a checker-
board with reference frame B and let BB be the set of its
corners (in the checkerboard’s coordinate system). Let
also C = {C1,C2 . . .CN} be the set of cameras.
According to the above notation, and supposing we have
already performed K acquisition steps, we can easily
enumerate the constraints the acquired data impose:

1. The pose of every camera (WCn, n = 1 . . .N), with
respect to the world reference frame W, must be
the same at each step k.

2. The pose of the checkerboard with respect to the
world reference frame at step k, namelyWBk, must
be kept constant.

We can therefore design our error function e as

e =

K∑
k=1

 1
σ2

cam

N∑
n=1

unk · ecam(WCn,
WBk)

 , (1)

where ecam(·) is the error we can compute on the image
data, while σcam is a normalization factor. unk is instead
an indicator function: it is equal to 1 if at step k camera
Cn sees the checkerboard B, otherwise it is equal to 0.

The error ecam is computed as the reprojection error
of the checkerboard corners onto the image. For each
corner b ∈ B we call b̂ the corner extracted from the
image in pixel coordinates. The reprojection error of

the corners can be computed as

ecam(WC,WB) =
∑
b∈B

∥∥∥reprC(Cb) − b̂
∥∥∥2
, (2)

where reprC(·) is the reprojection function that returns
the pixel coordinates of a 3D point using camera C in-
trinsic parameters. Further details about the optimiza-
tion algorithm can be found in [24].

This optimization step is repeated at constant time in-
tervals during the calibration phase and its results are
used to update the visualizer in real time.

4.2.2. Extrinsic calibration results
When all cameras have been calibrated, the user is

prompted to save the results. At this point, a tree con-
taining the relative transformations between the cam-
eras is produced. Moreover, the first transformation
of the tree is the one connecting the ground reference
frame (world) with the first calibrated camera.

This calibration procedure has been made generic so
as to work with heterogeneous sensors. At the time of
writing, all sensors reported in Section 3 can be cali-
brated together in the same OpenPTrack network.

Unlike Kinects, the SR4500 sensor is not coupled
with a color camera. Since the basis of our extrinsic
calibration method is an algorithm which finds checker-
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(a) Pairwise calibration (b) Ground plane calibration

Figure 4: Screenshots from the real-time extrinsic calibration procedure provided with OpenPTrack.

boards within color/grayscale images11, we use Swiss-
Ranger intensity images for calibration in the same way
we use Kinect color images. In order for the checker-
boards to be detected on those intensity images, we per-
form a proper histogram equalization of the intensity
values and an image upsampling to fit the minimum im-
age resolution expected by the checkerboard finding al-
gorithm.

In Figure 5, color images from three Kinects v1
and equalized intensity images from three SR4500 are
shown, together with the output of our extrinsic calibra-
tion procedure visualized as reference frames of every
sensor with respect to the ground reference frame.

In Figure 6, we propose a qualitative evaluation of
two pairwise calibrations. In Figure 6a, the point clouds
obtained by two Kinects v1 are shown when referred
to a common reference frame obtained with calibration.
The two Kinects were observing the scene with a differ-
ence in the point of view of about 120◦. The accuracy
in the point clouds alignment can be better appreciated
if looking at the person’s legs. In Figure 6b, instead,
we report in false colors the point cloud obtained with
a SwissRanger and, in RGB, the point cloud obtained
with a Kinect v1. It can be noticed how our procedure
allows to align data coming from these two different
sensors. However, since every sensor has a different in-
trinsic distortion in estimating the depth, better results
could be obtained if taking into account a correction of
the depth maps as described in [26].

4.2.3. Multi-frame ground plane estimation
As stated in Section 4.2, the ground plane equation

and the world reference frame are determined by posi-
tioning a checkerboard on the floor after that all cam-

11findChessboardCorners method in OpenCV.

eras have been calibrated. However, when the checker-
board is placed on the floor but far from every camera,
the results could be not satisfactory: in particular, the
estimated ground plane could present a non-negligible
rotation with respect to the real one. In many cases,
printing a bigger checkerboard is not a viable solution
to overcome this issue. Instead, we developed a further
procedure, optional in OpenPTrack, that adds new con-
straints to the optimization cost function. In particular,
the user is requested to place the checkerboard in dif-
ferent positions on the ground plane and the algorithm
then imposes that all the detected checkerboards lie on
the same plane by adding new geometrical constraints
to the cost function. In fact, if we fix the plane π on
which a checkerboard can move, the checkerboard pose
can be defined by a 2D transform PB2 with respect to the
reference frame of plane π, namely P. This transform
consists in two translations (tx, ty) and a 2D rotation θ.

So, let define a plane by means of its reference frame
WP, such that the x- and y-axes are on the plane and the
z-axis is its normal. The pose of a checkerboard lying
on π at step k can be written as

WBk = WP · PB2k, (3)

where the 2D transform PB2k is wrapped into a 3D one
to perform the matrix multiplication

PB2k =


cos(θ) − sin(θ) 0 tx

sin(θ) cos(θ) 0 ty
0 0 1 0
0 0 0 1

 . (4)

It is then possible to refine both the plane and the
checkerboard pose in the optimization by substituting
(3) into (1).
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Figure 5: Extrinsic calibration results for a network composed of three Kinects v1 (images on the left) and three SwissRangers SR4500 (images on
the right).

(a) Point clouds from two Kinects v1 (b) Point clouds from a Kinect v1 and a SwissRanger

Figure 6: Point cloud alignment based on extrinsic calibration obtained with OpenPTrack.
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4.3. Calibration refinement with people detections

The network calibration procedure described in Sec-
tion 4.2 estimates camera poses by exploiting the inten-
sity images (color or infrared) of the sensors. However,
people position in the tracking space is extracted from
sensors depth (point cloud) data. For this reason, for
tracking to work well, point clouds generated by each
sensor should result as aligned as possible after cali-
bration, otherwise the same person seen from different
sensors could produce two different tracks, thus gener-
ating a splitting. To refine the calibration estimated in
Section 4.2 so as to reflect a good alignment of sensors
point clouds, we developed a novel procedure that, as-
suming that only one person is walking within the track-
ing space, exploits people detection trajectories coming
from all the sensors and align them one to another. The
input of this algorithm is then composed of trajectories
Di like those represented in Figure 7a, where different
colors mean that they come from different sensors. A
timestamp is also associated to each of those points.
These trajectories are referred to the same reference
frame according to the calibration results obtained with
the procedure in Section 4.2. The main assumption of
the refinement algorithm is that different points with the
same timestamp should ideally coincide because only
one person is present.

To exploit this constraint, we implemented the algo-
rithm reported here below.

Algorithm 1 Calibration refinement
Input: D← (Di)

1: for i← 1,Nsensors do
2: RTi ← I4x4
3: Dw

i ←WarpInTime(Di)
4: end for
5: icp maxDt ← icp maxD
6: for i← 1,Niter do
7: ave cloudw ← AverageCloud(Dw)
8: (RT,Dw)← ICPToAveCloud(RT,Dw, ave cloudw, icp maxDt)
9: icp maxDt ← icp maxDt/2

10: end for
11: D← Transform(D,RT)
12: ave cloudp ← ProjectToGround(ave cloudw)
13: RT← ICPToAveCloud(RT,D, ave cloudp, icp maxD)

Remembering that the world reference frame is on
the floor and that Z is the normal to the ground plane,
WarpInTime is a method that warps detection trajecto-
ries so as to substitute the Z coordinate with the time
coordinate. The trajectories before and after this warp-
ing process can be seen in Figure 7a and Figure 9a, re-
spectively. This preliminary step allows to impose the
time-position constraint by globally aligning these point
clouds extended in the time dimension. Without this

(a) Before (b) After

Figure 7: People detections from all sensors (a) before and (b) after
the calibration refinement procedure.

(a) Before (b) After

Figure 8: Side view: people detections from all sensors (a) before and
(b) after the calibration refinement procedure.

step, a global alignment of detection point clouds would
not consider time, thus trying to align also detections
close in space but very distant in time.

As a reference cloud for aligning all detection clouds,
an average of the different trajectories is computed in
the X − Y − time space. This is done by the Average-
Cloud method, while the alignment is performed with
the Iterative Closest Point (ICP) [27] algorithm in ICP-
ToAveCloud.

The alignment is iteratively repeated Niter times (four
by default) while decreasing the maximum distance al-
lowed between corresponding points, so that the regis-
tration is refined in more steps.

The Transform method applies the estimated trans-
formation to a detection cloud, while the Project-
ToGround method computes a projection of a point
cloud on a given plane, the ground plane in this case.
These methods are exploited because a final alignment
is performed only in the X − Y − Z space starting from
the alignment obtained until that point. This step ensure
that the detection point clouds are correctly aligned also
along the Z dimension.

In Figure 9b, the effect of the alignment in the X −
Y − time space can be appreciated. A clear improve-
ment with respect to Figure 9a is visible because one
trajectory was quite off before the alignment. The de-
tection trajectories in X − Y − Z space aligned accord-
ing to the estimated final transformation are visualized
in Figure 7b and Figure 8b from a top view and a side
view, respectively. Some of the differences before and
after the refinement are highlighted in red.
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(a) Before (b) After

Figure 9: People detections warped in time (a) before and (b) after the
calibration refinement procedure.

Figure 10: Example of camera network composed by three Kinect v1
and three SR4500. Sensors are directly connected to distributed PCs
which perform people detection. Then, detections are sent through the
network and read/used by the PC running the tracking algorithm.

5. Distributed people detection

OpenPTrack allows to perform people tracking
within a camera network by distributing people detec-
tion and centralizing the tracking process, as proposed
in [28]. As depicted in Figure 10, the sensors are di-
rectly attached to a computer which analyzes the data
stream and performs people detection. Only the detec-
tions are sent through the network, in order to be fused
at the tracking level after being referred to a common
reference frame by means of calibration data.

5.1. Choice of ground plane for people detection
The people detection algorithms implemented in

OpenPTrack rely on the ground plane assumption.
Thus, the ground plane equation has to be estimated
at startup. This plane can be extracted from point

(a) (b) (c)

Figure 11: Automatic ground plane estimation: (a) sample point
cloud, (b) output of the multi-plane segmentation, (c) output of the
automatic ground plane selection (in red the chosen plane).

cloud data by finding all the planes by means of
the OrganizedMultiPlaneSegmentation algorithm
[29] in the Point Cloud Library and then by choos-
ing, among them, the one that is fairly horizontal and
placed under any other plane. As an alternative to the
automatic selection, the user can manually select the
ground by clicking on three point cloud points (man-
ual selection), or he can select the ground plane among
those produced by an automatic multi plane segmenta-
tion (semi-automatic selection). In Figure 11a, a sample
point cloud is shown, while in Figure 11b the planes re-
sulting from the segmentation are shown with different
colors. Finally, the plane selected by the automatic pro-
cedure is highlighted in red in Figure 11c.

It is worth noting that all cameras within a network
share the same ground plane equation and that this can
be derived from calibration, without the need for esti-
mating it separately for every sensor. However, there
are scenarios where the ground plane estimate obtained
with calibration is more accurate than the one obtained
from analyzing the point cloud and some other scenar-
ios where the opposite is true. Thus, in OpenPTrack, we
implemented a heuristic approach that is more likely to
provide the best estimate in every scenario:

1. the ground plane equation is estimated from point
cloud data

2. the ground plane equation is also estimated from
calibration data

3. if the ground estimated from the point cloud is not
valid or it is too distant from the plane derived from
calibration, the latter is kept as valid

4. if the ground estimated from the point cloud is
close to the one derived from calibration, the for-
mer is used. In fact, the ground estimated with cal-
ibration could be less precise than that obtained di-
rectly with detection from the point cloud because
the former suffers from the problem of error prop-
agation in the camera poses.
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5.2. People detection in color and infrared images
In OpenPTrack, algorithms for people detection in

color, infrared and disparity images are used, depend-
ing on the sensor. As a first step, a depth-based clus-
tering similar to the one proposed in [1] is always ap-
plied on point cloud data in order to determine clusters
of points candidate to contain a person. The main differ-
ence with [1] is that, in OpenPTrack, people detection is
performed in the ground plane reference frame instead
than in the sensor reference frame, thus improving de-
tection performance when the sensor is tilted.

For Kinect v1 and stereo cameras, that can produce
color images, a HOG-based people detector [1] is then
applied to these images in correspondence of the clus-
ters extracted from the point cloud. Since Kinect v2 and
SR4500 provide infrared images, the HOG-based peo-
ple detector is applied to these images because they are
invariant to visible lighting. For improving gradient es-
timation and thus HOG descriptors, the image contrast
is enhanced with a histogram equalization algorithm.
The choice of exploiting infrared images for people de-
tection makes tracking work even with poor or no illu-
mination.

It is also worth mentioning that, for SR4500, the point
cloud points associated to low confidence values are fil-
tered out before applying our depth-based clustering al-
gorithm, since they are likely to be due to noise. In
Figure 12, some people detection results obtained on
SR4500 data are reported. As we will see in more de-
tail in Section 8, even if SR4500 has considerably lower
resolution than Kinect v1, our software allows to obtain
comparable results.

5.3. People detection in disparity images
Kinect v1’s infrared images cannot be used for people

detection because of the dotted pattern that is projected
all over the image. Thus, for making tracking work in
every lighting condition also with this sensor, a people
detection algorithm working on disparity images is also
exploited, while the algorithm on color images is auto-
matically disabled if lighting is not good. In summary,
for Kinect v1:

• the depth-based clustering proposed in [1] is ap-
plied on point cloud data;

• if the mean luminance of the image is over a thresh-
old, the HOG-based people detector [1] is applied
to the RGB image at the clusters position;

• then, an Adaboost classifier based on Haar features
extracted from the disparity map [3] is applied to
the clusters resulting from the previous steps.

This pipeline allows to exploit both RGB and depth in-
formation for obtaining the best results when the color
image is good, while using only depth data if the color
image is too dark.

5.4. 3D background subtraction for static scenes
By default, OpenPTrack does not assume the back-

ground to be static to perform people detection, thus
it works even if some objects in the workspace are
moved while performing tracking. However, since
background subtraction can improve people detection
for static scenes, we also implemented this feature, that
can be enabled via a configuration parameter. If this is
the case, the background is learned by every detection
node at system start-up or when this feature is enabled
and then used to remove background points from the
sensors point clouds. In particular, all point clouds ac-
quired in the background learning stage are used to fill
a PCL octree structure, that allows to efficiently retain
the foreground points from new point clouds, so that
people detection is performed only on the foreground.

6. Light-weight tracking algorithm

The tracking node is a centralized algorithm which
receives detections from all over the network and per-
forms data association every time a new set of detec-
tions arrives.

In [1], this is done as a maximization of a joint like-
lihood composed by three terms: motion, color appear-
ance and people detection confidence. For evaluating
color appearance, a person classifier for every target is
learned online by using features extracted from the color
histogram of the target and by choosing as negative ex-
amples also the other detections inside the image. Thus,
the tracker receives from the detection nodes the appear-
ance information of every detection together with its po-
sition information and runs a classifier update by means
of the Online Adaboost algorithm [1] for every possible
detection-track association.

When dealing with a low number of cameras in the
network, the bandwidth necessary to transfer appear-
ance information to the tracking node and the time to
update the appearance classifiers are negligible, but,
when the network is composed of dozens of cameras,
they could lead to bandwidth saturation or high com-
putational burden since the number of people and of
detection messages to be processed could be consider-
ably higher. Since, with OpenPTrack, we were target-
ing a light-weight tracking algorithm that could handle
as many cameras as possible, we removed the appear-
ance term from the joint likelihood proposed in [1], so

11



(a) (b) (c) (d)

Figure 12: People detection results on SR4500 infrared intensity images.

that only motion information and people detection con-
fidence are used.

In particular, as motion term, we compute the Maha-
lanobis distance between track i and detection j as

Di, j
M = z̃T

k (i, j) · S−1
k (i) · z̃k(i, j) (5)

where Sk(i) is the covariance matrix of track i provided
by a filter and z̃k(i, j) is the residual vector between mea-
surement vector based on detection j and output predic-
tion vector for track i:

z̃k(i, j) = zk(i, j) − ẑk|k−1(i). (6)

The values we compare with the Mahalanobis dis-
tance represent people positions and velocities in
ground plane coordinates. Given a track i and a detec-
tion j, the measurement vector zk(i, j) is composed by
the position of detection j and the velocity that track i
would have if detection j were associated to it.

An Unscented Kalman Filter is exploited to predict
people positions and velocities along the two ground
plane axes (x, y). As people motion model we chose a
constant velocity model because it is good at managing
full occlusions, as described in [30]. Given that the Ma-
halanobis distance for multinormal distributions is dis-
tributed as a chi-square [31], we use this distribution for
defining a gating function for the possible associations.

People detection confidence is used for defining a
policy for initializing, updating and removing tracks, as
in [1].

As a future work, we envision to compute also com-
pact yet effective signatures of people, similar to those
in [32], which could allow for better data association
while preserving the scalability properties of the sys-
tem.

7. Ease of use and real-time feedback

One of the main focus points when designing
OpenPTrack was ease of use and configuration also for

non-expert users. For this reason, we developed a cal-
ibration procedure that provides real time feedback to
the users and automatically distributes calibration files
over the network. Moreover, all detection and track-
ing parameters can be changed in real time while the
system is running by exploiting ROS Graphic User In-
terfaces implemented in the dynamic reconfigure12

package, as shown in Figure 13.
All tracking data, such as tracks ID, position, height

and confidence, are also sent via UDP as JSON-
formatted messages, thus being ready to be exploited
by web-based applications. A moving average filtering
node is also implemented and applied to the tracking
output in order to let the user choose the desired track-
ing frame rate and the amount of smoothing in people
trajectories.

A fundamental step for multi-sensor calibration and
tracking to work is the time synchronization of the net-
work, that is not yet automated, but it is foreseen as a
future work by exploiting the Network Time Protocol
(NTP13).

8. Experiments

So far, the OpenPTrack library has been used in real
world scenarios for tracking people within networks
composed of up to ten sensors. In Figure 14, an exam-
ple of tracking output from a single Kinect v1 camera is
reported: on the left, the tracks of four people are drawn
with different colors, while, on the right, people detec-
tion results are shown for the current frame. It is worth
noting that these results refer to a scenario where the
cameras were four meters high and considerably tilted.
Moreover, the background was very cluttered, but our
combination of RGB and depth algorithms allowed to
obtain robust detection results.

12http://wiki.ros.org/dynamic_reconfigure.
13http://www.ntp.org.
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(a) Detection GUI (b) Tracker GUI

Figure 13: Examples of Graphic User Interfaces for real time parameter selection for the detection and tracking nodes.

Figure 14: People tracking results: tracks reported with different col-
ors on the left, detections at the current frame on the right.

In Figure 15a, the position of three people seen from
two Kinect v1 are reported, while, in Figure 15b, we
visualize the tracks produced by our algorithm when
tracking two people from three Kinect v1 with overlap-
ping field of views. Color images are reported on the
left as a reference.

8.1. Quantitative evaluation of calibration refinement
The extrinsic calibration algorithm in OpenPTrack al-

lows to calibrate networks of sensors in few seconds and
visualize the calibration progress in real time. In Fig-
ure 16, we report the camera poses obtained with the
algorithm described in Section 4.2 for a network com-
posed of ten sensors: seven Kinect v1, two SR4500 and
a stereo pair.

In Figure 17 and 18, we report another experiment on
the calibration refinement method. It can be easily no-
ticed that the detection point clouds are more correctly
aligned after the refinement and that all the detections
lie on the same plane.

(a) Three people tracked with two
Kinect v1.

(b) Two people tracked
with three Kinect v1 four
meters high.

Figure 15: Some tracking results obtained with the OpenPTrack soft-
ware.

Figure 16: Calibration results with ten sensors: seven Kinect v1, two
SR4500 and one stereo pair.
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(a) Before (b) After

Figure 17: People detections from all sensors in Figure 16 (a) before
and (b) after the calibration refinement procedure.

(a) Before (b) After

Figure 18: People detections from all sensors in Figure 16 (a) before
and (b) after the calibration refinement procedure.

For a quantitative evaluation of refinement results,
we measured the average distance between all detection
clouds and the average cloud (introduced in algorithm
1). As reported in Figure 18, this error decreased of two
to four times by applying the refinement. This test is re-
ported for both the detection trajectories in Figure 7 (A)
and in Figure 17 (B).

8.2. Evaluation of people tracking with different sen-
sors

As reported in Section 3, OpenPTrack allows to use
different types of sensors. For comparing them in terms
of tracking capabilities, we performed tracking with
Kinect v1, Kinect v2 and SR4500 on three videos14 with

14These videos are not available for download at the moment of
writing, but they could be released at this page afterwards: http:

Figure 19: Mean error from average detection cloud before and after
calibration refinement computed for the detection trajectories in Fig-
ure 7 (A) and in Figure 17 (B). They refer to the network illustrated in
Figure 16.

Table 2: Tracking evaluation for Crowd video.
MOTA MOTP FP FN ID Sw.

Kinect v2 60.98% 79.67% 9.3% 29.5% 9
Kinect v1 44.21% 75.53% 1.0% 54.2% 18
SR4500 49.48% 76.67% 8.7% 40.4% 25
Kinect v2 [1] 61.56% 80.45% 7.2% 30.7% 22
Kinect v1 [1] 41.22% 75.22% 2.5% 55.6% 27

Table 3: Tracking evaluation for Distance video.
MOTA MOTP FP FN ID Sw.

Kinect v2 89.67% 73.86% 3.2% 7.1% 0
Kinect v1 54.54% 71.14% 1.6% 43.5% 4
SR4500 64.10% 78.50% 1.2% 34.5% 1
Kinect v2 [1] 89.20% 75.27% 2.3% 8.5% 0
Kinect v1 [1] 40.96% 71.94% 2.7% 56.0% 5

different challenges: Crowd features seven people ran-
domly moving in the range 1 − 9m; in Distance, two
people linearly move up to 10m of distance from the
sensor; finally, in Occlusions, two people walk in the
range 1 − 8m while being heavily occluded by back-
ground objects.

Quantitative tracking results on these videos are re-
ported in Table 2, 3 and 4 where the CLEAR MOT met-
rics [33] is used to evaluate accuracy and precision. We
also reported the results obtained with Kinect v1 and v2
by exploiting the method in [1], which uses also color
information for data association.

From these data, it can be clearly stated the supe-
riority of Kinect v2 with respect to the other sensors
in detecting people since the rate of false negatives is
considerably lower. Unlike Kinect v1, Kinect v2 does
not present quantization in depth estimation, thus point
clouds are better shaped also at a distance. With respect
to SR4500, Kinect v2 takes advantage of the higher
depth resolution. Since with Kinect v2 people are more
continuously detected, they are also better tracked, thus
explaining a lower number of identity (ID) switches.
The performance of Kinect v1 and SR4500 is similar,
with a little advantage for SR4500 thanks to its better
precision (and no quantization error) in depth estima-

//www.dei.unipd.it/~munaro/research.html.

Table 4: Tracking evaluation for Occlusions video.
MOTA MOTP FP FN ID Sw.

Kinect v2 48.14% 75.41% 6.2% 45.3% 6
Kinect v1 31.98% 72.84% 0.4% 67.1% 6
SR4500 30.42% 72.96% 4.1% 63.9% 11
Kinect v2 [1] 41.78% 75.57% 6.2% 51.8% 4
Kinect v1 [1] 12.20% 64.11% 2.0% 85.5% 6

14



(a) Crowd - K1 (b) Crowd - K2

(c) Distance - K1 (d) Distance - K2

(e) Occlusions - K1 (f) Occlusions - K2

Figure 20: Sample tracking results with Kinect v1 and v2 for the three
test videos. For every track, its ID and the distance from the sensor is
reported.

tion.
In Figure 20, we compare screenshots of tracking re-

sults obtained with Kinect v1 and v2 on the three test
videos. This qualitative comparison confirms that the
main difference between Kinect v1 and v2 is in detect-
ing people at far range. As shown in Figure 20d, the
high precision in Kinect v2 point clouds allowed to track
a person at more than 9.5m and very close to the back-
ground.

From the comparison with [1], it can be noticed that
OpenPTrack behaves in a similar way, even if not ex-
ploiting color information for data association. Some-
times, it also detects more people, probably because,
in OpenPTrack, people detection is performed in the
ground plane reference frame instead than in the sensor
reference frame, thus improving detection performance
when the sensor is tilted.

9. Applications

The OpenPTrack library has also been validated in
three real world scenarios. The first was in March
2014 in Los Angeles, where three Kinect v1 and three
SR4500 were mounted on top of a 8x6x4 meters indoor

(a) (b)

(c)

Figure 21: Applications in (a) culture, (b) art and (c) ed-
ucation based on OpenPTrack tracking software (images from
http://openptrack.org).

pavilion and used for cooperative people tracking by
the UCLA Interpretive Media Laboratory. The track-
ing output drove an interactive digital mural application
showing images of the Los Angeles State Historic Park,
which were selected and manipulated based on peo-
ple’s real-time position within the pavilion (Figure 21a).
OpenPTrack calibration procedure enabled to easily cal-
ibrate this complex network in one minute with real time
visualization of the calibration results and without the
need for storing data to be processed offline. For this
installation, one Kinect v1 and one SR4500 were con-
nected to each of three PCs used for people detection.
These PCs were fanless industrial PCs with Intel i7-
3612QM @ 2.10GHz CPU. The detection frame rate
was of about 30 fps for Kinect and 13 fps for SR5400.
However, the SR4500 frame rate was limited by the ex-
posure time chosen in order to have better depth esti-
mates. The same OpenPTrack network was also used
for Whorl15(Figure 21b), an artistic installation show-
ing flowers blooming and moving according to people
position within the pavilion.

Subsequent installations in May and June 2014 at In-
diana University’s Rogers Elementary School and the
UCLA Lab School tested OpenPTrack for enabling el-
ementary school students to control a science simula-

15http://openptrack.org/2014/10/

whorl-made-with-openptrack.
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tion based on their body position and movement (Fig-
ure 21c), as part of the NSF-supported Science through
Technology Enhanced Play (STEP) research project.
The childrens’ motion controlled on-screen avatars as
they explored an embodied simulation of states of mat-
ter. These deployments provided practical experience
in parameter adjustment for children (80-100 cm tall),
calibration by end-users, and how to best support third-
party applications using the data in the future. For the
same purpose, in February 2015, OpenPTrack has been
extensively tested for one month in the ten sensors con-
figuration shown in Figure 16, which was composed of
seven Kinect v1, two SR4500 and one stereo camera.

10. Conclusions

We introduced the main features of OpenPTrack, an
open source project for scalable people tracking in het-
erogeneous networks of 3D sensors. It features a real-
time, easy to use, and precise multi-camera calibration
process that also exploits people detections for refin-
ing camera poses and modules for people detection in
color, infrared and disparity images, in order to allow
for tracking in every light condition. Furthermore, its
light-weight tracking algorithm is able to fuse data com-
ing from many sensors. A strong focus of this project
is on the usability of the software by non-expert users
since many users of this system are developers of appli-
cations based on the tracking output.

The reported experiments showed that a considerable
improvement is obtained with the proposed calibration
refinement method. We also compared the sensors sup-
ported by OpenPTrack in terms of accuracy and pre-
cision for people tracking in three different scenarios,
showing the supremacy of Microsoft Kinect v2 over the
other sensors. Finally, we saw how OpenPTrack is al-
ready used in a number of installations that exploit up
to ten sensors for estimating motion of adults or kids for
arts, education and culture applications.
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