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Part 4A – Error Sources and Accuracy
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GNSS Error Sources
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• Idealized pseudo-range measurements reflect the distance and clock offsets 

𝑝 = 𝜌 + 𝑐(𝑑𝑡rcv − 𝑑𝑡sat)

• Real measurements include numerous contributions, part of which are 

included in more elaborate measurement models

• An “error” occurs, if a contribution is not (rigorously) considered in the 
model, e.g.

➢ Difference between broadcast ephemerides and real satellite orbit/clock 

➢ Difference between real and modelled tropospheric delay

➢ Higher-order ionospheric delays not compensated by a dual-frequency combination

➢ Receiver noise and multipath

• Some parameters can be adjusted (leaving only an estimation error)

➢ Receiver clock offset

➢ Wet troposphere delay 

When is an “Error” an Error?
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GNSS Measurement Model

Measurement  =  Geometric distance satellite–receiver ( 𝒓 − 𝒓GNSS )

+ receiver clock offset (𝛿𝑡)

– satellite clock offset (𝛿𝑡GNSS)

+ tropospheric delay (𝑇)

+ ionospheric delay (𝐼)

+ internal delays / biases (𝑏)

+ noise and multipath errors (ε)

𝑝
𝜆𝜙 = 𝒓 − 𝒓GNSS + 𝑐 ⋅ (𝛿𝑡 − 𝛿𝑡GNSS) + 𝑁𝜆

+ 𝑇 ± 𝐼 + 𝑏 + 𝜀

+ carrier phase ambiguity (𝑁λ)



ESA Academy | Slide  142Navigation Training Course 2023 ESA Academy | Slide  142

GNSS Satellite Position Error

• Contribution to pseudorange error
➢ radial up to 100%

➢ tangential/normal up to 25%

• Broadcast Ephemerides 
➢ few m (3D)

➢ PR error 0.5 m rms (incl. clock)

• Precise ephemerides
➢ 2 cm (3D, IGS rapid)

RT

N

<14°

Misra/Enge, 2006



ESA Academy | Slide  143Navigation Training Course 2023 ESA Academy | Slide  143

GNSS Clock Offset Error

• Broadcast ephemerides
➢ Mean drift and offset are known and predictable

➢ Stochastic variation depend on clock type 
(Cs has larger scatter than Rb/H)

➢ Deviation from clock polynomial 0.5-2 ns (0.2-0.6 m PR error)

• Precise ephemerides
➢ Clock uncertainty few 10s ps

(3-10 mm) 

➢ 0.1-10 cm interpolation error 
depending on grid (30 s to 15 min)
and clock stability
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Tropospheric Delay Error

• Vertical delay
➢ ~2.4m (at sea level)

➢ Uncertainty 
0.3m (dry) + 0.8m (wet)

• Pronounced elevation dependence
➢ m(E)~1/sin(E) (10x at 5°!)

• Error
➢ 5-10 cm offline modeling error

➢ 0.5-5 m real-time error
(lack of meteo data)

Misra/Enge, 2006
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Ionospheric Delay Error

• Error of vertical delay
➢ Klobuchar model: up to 50% 

(1-10s m at L1)

➢ Dual-frequency: <1cm 

• Weak elevation dependence 
(e.g. ~3x at 5°!) due to 
high altitude of electron 
density maximum

(P.Misra & P.Enge, GPS)
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Measurement Noise

• Depends on signal quality (C/N0)
➢ Antenna

➢ Elevation

• Depends on receiver design
➢ Tracking loops (tolerable dynamics)

➢ Correlation (e.g., narrow correlator, semi-codeless) 

➢ Smoothing

• Pseudorange
➢ C/A-code 0.1–3m (0.1–1% of chip length)

➢ Semi-codeless P(Y)-code 0.1–1m (~1% of chip length)

➢ Galileo: down to 2 cm (E5 AltBOC signal)

• Carrier phase
➢ 0.5–3.0 mm (~1% of wavelength)
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Measurement Noise (Example)
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Multipath Errors

• Pseudorange errors in case of strong reflections
➢ C/A-code  50-100 m

➢ C/A-code with narrow correlator 5-10 m

➢ P-code 5-10 m

• Typical pseudorange errors
➢ 1-5 m

• Phase errors
➢ Maximum /4 (5-6 cm)

➢ Typical 0.5-1 cm

• Obvious from signal strength variations
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User Equivalent Range Error (UERE)

• Combines contributions of measurement and modelling errors

• Signal in Space Range Error (SISRE)

➢ Space/control-segment related errors
(satellite clock and ephemeris, biases)

• User Equipment Error (UEE)

➢ Noise & Multipath

➢ Propagation (modeling of atmospheric delays)

• For statistically independent errors

𝜎UERE = 𝜎SISRE
2 + 𝜎UEE

2
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Signal-In-Space Range Error
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UERE Examples

UERE Contribution
Standard 

Positioning
Service

Geodetic
Positioning

Satellite clock & 
ephemerides

0.5 m 0.05 m

Atmospheric
delay modeling

1-20 m 0.01 m

Noise and multipath 1-5 m 0.01 m

Total 2-7 m 0.05 m

Just order of 
magnitude!
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Impact of Measurement Errors on Positioning

Number of measurements

• Statistical errors average 

• Systematic errors remain!



n/
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Impact of Measurement Errors on Positioning

Geometry (distribution of line-of-sight directions)

Unfavorable:
positioning error can grow largly

Favorable:
positioning error ~ range-error
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Dilution of Precision (DOP)

Small volume, large DOP

Large volume small DOP

σ(pos) = DOP·UERE

Error of 
individual range
measurement

Statistical 
position

error

Geometry
factor

DOP   Dilution of Precision
UERE  User Equivalent Range Error

• Ratio of RMS position and range measurement error  

• Depends only on geometry and number of measurements

• Horizontal (HDOP), vertical (VDOP), timing (TDOP) 
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Accuracy of the Least-Squares Solution

Least-squares solution is a linear function of the observations

Δ𝒙 = (𝑨𝑇𝑨)−1𝑨𝑇Δ𝒛

with

Δ𝒙 = (Δ𝒓 ; Δ 𝑐𝛿𝑡)

𝑨 =
−𝐞1

𝑇 +1
⋮ ⋮

−𝐞𝑛
𝑇 +1

Δ𝒛 = 𝒛 − 𝒈(𝒙)

Position & clock correction

Partial derivatives (design matrix, geometry matrix)

Difference measured-modeled observations
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Accuracy of the Least-Squares Solution

Result

• Least-Squares Solution is unbiased

• Cov Δ𝒙 = (𝑨𝑇𝑨)−1 ⋅ 𝜎UERE
2

Δ𝒙 = (𝑨𝑇𝑨)−1(𝑨𝑇Δ𝒛)

random measurement
errors (uncorrelated)

randomly distributed
position & clock errors

(correlated)

E(𝐳) = ǉ𝐳

Var(𝑧𝑖) = 𝜎UERE
2

E 𝐱 =?
Cov 𝐱 =?
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𝑨𝑇𝑨 −1 =

1.0 0 0.0 0.0
0.0 1.0 0.0 0.0
0.0 0.0 14.6 11.2
0.0 0.0 11.2 8.7

Example of DOP Computation

Satellite #1: zenith (E=90°)

Satellites #2-5:  E=45° and
A=45°, 315°,225°, 135°

E

N

0°

45°
EDOP = NDOP = 1.0

VDOP = 3.8, TDOP = 3.0

PDOP = 4.1

„Skyplot“

1

23

4 5

𝑨 =

0.0 0.0 −1.00 +1.0
−0.5 −0.5 −0.71 +1.0
+0.5 −0.5 −0.71 +1.0
+0.5 +0.5 −0.71 +1.0
−0.5 +0.5 −0.71 +1.0

Why so 
bad?



ESA Academy | Slide  158Navigation Training Course 2023 ESA Academy | Slide  158

Notes

• DOP computation depends only on line-of-sight directions

• Measurement and modeling errors (ephemerides, clock 
offsets, atmosphere, multipath, noise) have no impact on 
the DOP and need not be known for DOP predictions

• Simple models of the GNSS orbits (e.g., almanac) are 
sufficient for DOP analyses
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Satellite Visibility and DOP

GPS Satellites >10° at Redu

Trimble 

(www.gnssplanning.com)
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DOP Map

https://glonass-iac.ru/en/user_performance/#pdop
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DOP, UERE and Individual Errors

(P.Misra & P.Enge, 2006)

• DOP and UERE are 
statistical values

• They don’t tell us 
about individual errors
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Single Point Positioning Results (Dual-Frequ.)

GPS Galileo

Why is Galileo 
better?
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Take Home Messages

• Measurement and modeling errors

➢ GNSS ephemerides and clocks (well known in postprocessing)

➢ Troposphere (well modeled) und ionosphere (eliminated with 2-frequ.)

➢ Multipath and noise (depends on receiver quality)

➢ UERE ~2-7m

• Dilution of Precision

➢ Diagonal elements of (normalized) covariance matrix

➢ Depends on distribution and number of observed satellites

o Typical PDOP~1-3 for full constellation

o High PDOPs (10++) may occur in case of unfavorable visibility („urban canyon“) 

➢ VDOP ~2·HDOP

• Resulting single-point positioning accuracy ~2-15m



Pseudorange Equation

𝜌𝑗 = 𝑥𝑗 − 𝑥𝑢
2
+ 𝑦𝑗 − 𝑦𝑢

2
+ 𝑧𝑗 − 𝑧𝑢

2
+ 𝑐𝑡𝑢

= 𝑓 𝑥𝑢, 𝑦𝑢, 𝑧𝑢, 𝑡𝑢



Pseudorange Equation

𝑥𝑢 = ො𝑥𝑢 + Δ𝑥𝑢
𝑦𝑢 = ො𝑦𝑢 + Δ𝑦𝑢
𝑧𝑢 = Ƹ𝑧𝑢 + Δ𝑧𝑢
𝑡𝑢 = Ƹ𝑡𝑢 + Δ𝑡𝑢

𝜌𝑗 = 𝑥𝑗 − 𝑥𝑢
2
+ 𝑦𝑗 − 𝑦𝑢

2
+ 𝑧𝑗 − 𝑧𝑢

2
+ 𝑐𝑡𝑢

= 𝑓 𝑥𝑢, 𝑦𝑢, 𝑧𝑢, 𝑡𝑢



Pseudorange Partial Derivatives

𝜕𝑓 ො𝑥𝑢, ො𝑦𝑢, Ƹ𝑧𝑢, Ƹ𝑡𝑢
𝜕 ො𝑥𝑢

= −
𝑥𝑗 − ො𝑥𝑢

Ƹ𝑟𝑗

𝜕𝑓 ො𝑥𝑢, ො𝑦𝑢, Ƹ𝑧𝑢, Ƹ𝑡𝑢
𝜕 ො𝑦𝑢

= −
𝑦𝑗 − ො𝑦𝑢

Ƹ𝑟𝑗

𝜕𝑓 ො𝑥𝑢, ො𝑦𝑢, Ƹ𝑧𝑢, Ƹ𝑡𝑢
𝜕 Ƹ𝑧𝑢

= −
𝑧𝑗 − Ƹ𝑧𝑢

Ƹ𝑟𝑗

𝜕𝑓 ො𝑥𝑢, ො𝑦𝑢, Ƹ𝑧𝑢, Ƹ𝑡𝑢
𝜕 Ƹ𝑡𝑢

= 𝑐



Linearized Pseudorange Equation

ො𝜌𝑗 − 𝜌𝑗 =
𝑥𝑗 − ො𝑥𝑢

Ƹ𝑟𝑗
Δ𝑥𝑢 +

𝑦𝑗 − ො𝑦𝑢

Ƹ𝑟𝑗
Δ𝑦𝑢 +

𝑧𝑗 − Ƹ𝑧𝑢

Ƹ𝑟𝑗
Δ𝑧𝑢 − 𝑐𝑡𝑢



Linearized Pseudorange Equation

ො𝜌𝑗 − 𝜌𝑗 =
𝑥𝑗 − ො𝑥𝑢

Ƹ𝑟𝑗
Δ𝑥𝑢 +

𝑦𝑗 − ො𝑦𝑢

Ƹ𝑟𝑗
Δ𝑦𝑢 +

𝑧𝑗 − Ƹ𝑧𝑢

Ƹ𝑟𝑗
Δ𝑧𝑢 − 𝑐𝑡𝑢

Δ𝜌𝑗 = ො𝜌𝑗 − 𝜌𝑗

𝑎𝑥𝑗 =
𝑥𝑗 − ො𝑥𝑢

Ƹ𝑟𝑗

𝑎𝑦𝑗 =
𝑦𝑗 − ො𝑦𝑢

Ƹ𝑟𝑗

𝑎𝑧𝑗 =
𝑧𝑗 − Ƹ𝑧𝑢

Ƹ𝑟𝑗

Δ𝜌𝑗 = 𝑎𝑥𝑗Δ𝑥𝑢 + 𝑎𝑦𝑗Δ𝑦𝑢 + 𝑎𝑧𝑗Δ𝑧𝑢 − 𝑐𝑡𝑢



Pseudorange Matrix Equation

Δ𝜌1 = 𝑎𝑥1Δ𝑥𝑢 + 𝑎𝑦1Δ𝑦𝑢 + 𝑎𝑧1Δ𝑧𝑢 − 𝑐Δ𝑡𝑢

Δ𝜌2 = 𝑎𝑥2Δ𝑥𝑢 + 𝑎𝑦2Δ𝑦𝑢 + 𝑎𝑧2Δ𝑧𝑢 − 𝑐Δ𝑡𝑢

⋮

Δ𝜌𝑛 = 𝑎𝑥𝑛Δ𝑥𝑢 + 𝑎𝑦𝑛Δ𝑦𝑢 + 𝑎𝑧𝑛Δ𝑧𝑢 − 𝑐Δ𝑡𝑢



Pseudorange Matrix Equation

𝑯 =

𝑎𝑥1 𝑎𝑦1 𝑎𝑧1 1

𝑎𝑥2 𝑎𝑦2 𝑎𝑧2 1

⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛 𝑎𝑥𝑛 𝑎𝑥𝑛 1

Δ𝝆 =

Δ𝜌1
Δ𝜌2
⋮

Δ𝜌𝑛

Δ𝒙 =

Δ𝑥𝑢
Δ𝑦𝑢
Δ𝑧𝑢
−cΔ𝑡𝑢

Δ𝜌1 = 𝑎𝑥1Δ𝑥𝑢 + 𝑎𝑦1Δ𝑦𝑢 + 𝑎𝑧1Δ𝑧𝑢 − 𝑐Δ𝑡𝑢

Δ𝜌2 = 𝑎𝑥2Δ𝑥𝑢 + 𝑎𝑦2Δ𝑦𝑢 + 𝑎𝑧2Δ𝑧𝑢 − 𝑐Δ𝑡𝑢

⋮

Δ𝜌𝑛 = 𝑎𝑥𝑛Δ𝑥𝑢 + 𝑎𝑦𝑛Δ𝑦𝑢 + 𝑎𝑧𝑛Δ𝑧𝑢 − 𝑐Δ𝑡𝑢

Δ𝝆 = 𝑯 𝛥𝒙



Least Squares Theory 

𝒚 = 𝑯 𝒙 + 𝒏

• 𝒙 vector of M unknown parameters

• 𝒚 vector of N noisy measurements

• 𝒏 vector of the measurement errors

The maximum likelihood estimate of 𝒙, denoted by ෝ𝒙, is:

ෝ𝒙 = argmax
𝒙

𝑝(𝒚|𝒙)



Least Squares Theory 

𝒚 = 𝑯 𝒙 + 𝒏

• If 𝑛𝑖 for 𝑖 = 1,…𝑛 are independent with distribution 𝑁(0, 𝜎2) then:

ෝ𝒙 = argmax
𝒙

1

2𝜋𝜎 𝑁/2
𝑒
−

1
2𝜎2

𝒚−𝑯𝒙 2

= argmin
𝒙

𝒚 −𝑯𝒙 2



Least Squares Solution  

𝒚 = 𝑯 𝒙 + 𝒏

• Solution can be found by setting to 0 the derivative of 𝒚 − 𝑯𝒙 2 with 
respect to ෝ𝒙:

𝑑

𝑑ෝ𝒙
𝒚 − 𝑯𝒙 2 = 2𝑯𝑇𝑯ෝ𝒙 − 2𝑯𝑇𝒚 = 0

ෝ𝒙 = 𝑯𝑇𝑯 −1𝑯𝑇𝒚



Weighted Least Squares 

𝒚 = 𝑯 𝒙 + 𝒏

• If 𝑛𝑖 for 𝑖 = 1,…𝑛 are Gaussian distributed with zero mean but not 
necessarily with the same variance or independent, then:

ෝ𝒙 = argmax
𝒙

1

2𝜋 𝑁/2 𝑹𝒏
1/2

𝑒−
1
2
𝒚−𝑯𝒙 𝑇𝑹𝒏

−1 𝒚−𝑯𝒙

= argmin
𝒙

𝒚 − 𝑯𝒙 𝑇𝑹𝒏
−1 𝒚 − 𝑯𝒙



Weighted Least Squares 

𝒚 = 𝑯 𝒙 + 𝒏

• If 𝑛𝑖 for 𝑖 = 1,…𝑛 are Gaussian distributed with zero mean but not 
necessarily with the same variance or independent, then:

ෝ𝒙 = 𝑯𝑇𝑹𝒏
−1𝑯 −1𝑯𝑇𝑹𝒏

−1𝒚

ෝ𝒙 = argmax
𝒙

1

2𝜋 𝑁/2 𝑹𝒏
1/2

𝑒−
1
2
𝒚−𝑯𝒙 𝑇𝑹𝒏

−1 𝒚−𝑯𝒙

= argmin
𝒙

𝒚 − 𝑯𝒙 𝑇𝑹𝒏
−1 𝒚 − 𝑯𝒙



Position Solution

Δ𝝆 = 𝑯 𝛥𝒙 + 𝒏

𝛥𝒙 = 𝑯𝑇𝑯 −1𝑯𝑇Δ𝝆

𝑯 =

𝑎𝑥1 𝑎𝑦1 𝑎𝑧1 1

𝑎𝑥2 𝑎𝑦2 𝑎𝑧2 1

⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛 𝑎𝑥𝑛 𝑎𝑥𝑛 1

Δ𝝆 =

Δ𝜌1
Δ𝜌2
⋮

Δ𝜌𝑛

Δ𝒙 =

Δ𝑥𝑢
Δ𝑦𝑢
Δ𝑧𝑢
−cΔ𝑡𝑢



Iterative Least Squares

• Iterative approach: 

1. Start with an initial estimate ො𝑥𝑢, ෝ𝑦𝑢, Ƹ𝑧𝑢 , Ƹ𝑡𝑢

2. Compute the deviations Δො𝑥𝑢, Δ ො𝑦𝑢, Δ Ƹ𝑧𝑢, Δ Ƹ𝑡𝑢 through Least Square 

3. Get the new estimate

4. Restart from 1 until convergence 



Error Propagation 

𝛥𝒙 = 𝑯𝑇𝑯 −1𝑯𝑇Δ𝝆

𝑑𝒙 = 𝑯𝑇𝑯 −1𝑯𝑇𝑑𝝆

• Pseudorange errors 𝑑𝝆 leads to a solution error 𝑑𝒙 of:



Error Statistics 

cov(𝑑𝒙) = 𝑬 𝑑𝒙 𝑑𝒙𝑻

𝑑𝒙 = 𝑯𝑇𝑯 −1𝑯𝑇𝑑𝝆

= 𝑯𝑇𝑯 −1 𝑯𝑇cov 𝑑𝝆 𝑯 𝑯𝑇𝑯 −1

• If 𝑑𝜌𝑖 for 𝑖 = 1,…𝑛 are i.i.d. with std 𝜎𝑈𝐸𝑅𝐸 then cov 𝑑𝝆 = 𝜎𝑈𝐸𝑅𝐸
2 𝑰n and:

cov(𝑑𝒙) = 𝑯𝑇𝑯 −1𝜎𝑈𝐸𝑅𝐸
2



Dilution Of Precision (DOP)

• The components of the matrix 𝑯𝑇𝑯 −1 quantify how pseudorange
errors translate into components of the covariance of 𝑑𝒙

cov(𝑑𝒙) = 𝑯𝑇𝑯 −1𝜎𝑈𝐸𝑅𝐸
2



Dilution Of Precision (DOP)

• The components of the matrix 𝑯𝑇𝑯 −1 quantify how pseudorange
errors translate into components of the covariance of 𝑑𝒙



Dilution Of Precision (DOP)

• The components of the matrix 𝑯𝑇𝑯 −1 quantify how pseudorange
errors translate into components of the covariance of 𝑑𝒙



Galileo DOP Values
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Doppler Effect 

• 𝑓𝑅 is the received frequency

• 𝑓𝑇 is the transmitted frequency 

• 𝐯𝑟 is the satellite to user relative velocity

• 𝒂 user to the satellite unit vector

• 𝑐 is the speed of light 
Max Δf ≈ 4 KHz for static user and GPS L1

𝑓𝑅 = 𝑓𝑇 1 −
𝐯𝑟 ⋅ 𝒂𝑗

𝑐



Doppler Measurements  

𝑓𝑅𝑗 = 𝑓𝑇𝑗 1 −
𝐯𝑗 − ሶ𝒖 ⋅ 𝒂𝑗

𝑐



Doppler Measurements  

𝑓𝑅𝑗 = 𝑓𝑇𝑗 1 −
𝐯𝑗 − ሶ𝒖 ⋅ 𝒂𝑗

𝑐

𝑓𝑅𝑗 = 𝑓𝑗 1 + ሶ𝑡𝑢



Doppler Measurements  

• 𝐯𝑗 = 𝑣𝑥𝑗 , 𝑣𝑦𝑗 , 𝑣𝑧𝑗

• 𝒂𝒋 = 𝑎𝑥𝑗 , 𝑎𝑦𝑗 , 𝑎𝑧𝑗

• ሶ𝒖 = ሶ𝑥𝑢, ሶ𝑦𝑢, ሶ𝑧𝑢



Doppler Measurements  

• 𝐯𝑗 = 𝑣𝑥𝑗 , 𝑣𝑦𝑗 , 𝑣𝑧𝑗

• 𝒂𝒋 = 𝑎𝑥𝑗 , 𝑎𝑦𝑗 , 𝑎𝑧𝑗

• ሶ𝒖 = ሶ𝑥𝑢, ሶ𝑦𝑢, ሶ𝑧𝑢 𝑓𝑗

𝑓𝑇𝑗
≈ 1



Velocity Solution

𝒅 = 𝑯 𝒈 + 𝒏

𝒈 = 𝑯𝑇𝑯 −1𝑯𝑇𝒅

𝑯 =

𝑎𝑥1 𝑎𝑦1 𝑎𝑧1 1

𝑎𝑥2 𝑎𝑦2 𝑎𝑧2 1

⋮ ⋮ ⋮ ⋮
𝑎𝑥𝑛 𝑎𝑥𝑛 𝑎𝑥𝑛 1

𝒅 =

𝑑1
𝑑2
⋮
𝑑𝑛

𝒈 =

ሶ𝑥𝑢
ሶ𝑥𝑢
ሶ𝑥𝑢

−c ሶ𝑡𝑢



Error Statistics and DOP 

• If 𝑑𝑖 for 𝑖 = 1,…𝑛 are i.i.d. with std 𝜎𝑑 then:

cov(𝒈) = 𝑯𝑇𝑯 −1𝜎𝑑
2



Pseudorange Measurement 

𝜌 = 𝑟 + 𝑐 𝑑𝑡𝑢 − 𝑑𝑡𝑠 + 𝑇 + 𝛼𝑓𝑆𝑇𝐸𝐶 + 𝐾𝑃,𝑢 − 𝐾𝑃,𝑠 +𝑀 + 𝜖𝑢

• 𝑟 is the geometric range between the satellite and receiver antenna phase centres at 
emission and reception time, respectively 

• 𝑑𝑡𝑢 and 𝑑𝑡𝑠 are the receiver and satellite clock offsets from the GNSS time scale, including 
the relativistic satellite clock correction

• 𝑇 is the tropospheric delay, which is non-dispersive

• 𝛼𝑓𝑆𝑇𝐸𝐶 is a frequency-dependent ionospheric delay term, where 𝛼𝑓 is the conversion 
factor between the integrated electron density along the ray path 𝑆𝑇𝐸𝐶, and the signal 
delay at frequency 𝑓

• 𝐾𝑃,𝑢 and 𝐾𝑃,𝑠 are the receiver and satellite instrumental delays

• 𝑀 represents the effect of multipath

• 𝜖𝑢 is the receiver estimation noise



Pseudorange Measurement 


