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Abstract

Large-conductance Ca2+-dependent K+ (BKCa) channels are important regulators of
electrical activity. These channels colocalize and form ion channel complexes with voltage-
dependent Ca2+ (CaV) channels. Recent stochastic simulations of the BKCa-CaV complex
with 1:1 stoichiometry have given important insight into the local control of BKCa channels by
fluctuating nanodomains of Ca2+. However, such Monte Carlo simulations are computation-
ally expensive, and are therefore not suitable for large-scale simulations of cellular electrical
activity. In this work we extend the stochastic model to more realistic BKCa-CaV complexes
with 1:n stoichiometry, and analyze the single-complex model with Markov chain theory.
From the description of a single BKCa-CaV complex, using arguments based on time-scale
analysis, we derive a concise model of whole-cell BKCa currents, which can readily be ana-
lyzed and inserted into models of cellular electrical activity. We illustrate the usefulness of
our results by inserting our BKCa description into previously published whole-cell models,
and perform simulations of electrical activity in various cell types, which show that BKCa-
CaV stoichiometry can affect whole-cell behavior substantially. Our work provides a simple
formulation for the whole-cell BKCa current that respects local interactions in BKCa-CaV
complexes, and indicates how local-global coupling of ion channels may affect cell behavior.
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Introduction

Mathematical modeling has played an important role in investigations of cellular electrophysiology
at least since the works on neuronal action potential generation of Hodgkin and Huxley (1). In
the Hodgkin-Huxley model and most of its descendants, the system of ion channels is coupled
globally via the membrane potential or the bulk cytosolic Ca2+ concentration. However, some
ion channels are colocalized, implying that the activity of one channel may affect the other via
local control. Electrical activity is thus a result of the complex interactions of local and global
coupling of ion channels. Of note, the standard Hodgkin-Huxley formulation does not take into
account local coupling of channels.
∗corresponding author; e-mail: pedersen@dei.unipd.it
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Large-conductance Ca2+- and voltage-dependent K+ (BKCa, KCa1.1) channels, ubiquitously
found in excitable cells where they shape electrical activity (2), provide an example of such ion
channels, whose activity is influenced locally by associated voltage-gated Ca2+ channels (CaVs).
BKCa channels have a single-channel conductance of ∼100 pS in physiological conditions (3),
and are activated by Ca2+ and transmembrane voltage, which is seen as a Ca2+ dependent left-
shift of the BKCa activation curve (4–6). In neurons (7–10) and vascular myocytes (11), BKCa
channels colocalize with CaVs, which exposes the BKCa channels to the Ca2+ nanodomains below
the mouth of the CaV channels (12–15), where the local Ca2+ concentration reaches the tens of
µM that are required for activating the BKCa channels at physiological voltages (2, 16). There
is increasing evidence for a direct coupling between BKCa and CaV channels, forming BKCa-
CaV ion channel complexes with a stoichiometry of 1-4 CaV channels per BKCa channel (2, 11),
and differences in stoichiometry likely affect channel activity. Intuitively, we expect that more
CaVs per complex would augment the BKCa open probability, both because of higher local Ca2+

concentration when the CaVs open simultaneously, and because of greater probability that at
least one of the CaVs are open at any given time.

Recently, Cox (17) presented a Markov chain model for a BKCa-CaV complex with 1:1 sto-
ichiometry, and performed Monte Carlo simulations that provided important insight into the
open probability of BKCa channels during depolarizations and action potentials, and how e.g. in-
activation of CaVs directly influence BKCa channel activity. Such Monte Carlo simulations are
computationally intensive and explicit mathematical relations between assumptions and conse-
quences are not available. Monte Carlo simulations have also been performed for whole-cell
simulations of electrical activity to investigate the effects of stochastic ion channel kinetics, for
example for Ca2+-sensitive SK and BKCa channels controlled by local Ca2+ dynamics (18, 19).
When stochasticity is not of interest, to speed up simulations, many models of whole-cell elec-
trical activity that include BKCa channels express this current in a simplified way that neglects
local effects due to the BKCa-CaV complexes (20, 21) or use heuristic expressions involving the
whole-cell Ca2+ currents (22, 23), which may not respect the dynamics within BKCa-CaV com-
plexes. Alternatively, diffusion of Ca2+ around a CaV (or a cluster of synchronized CaVs) has
been simulated to investigate e.g. how BK channels inherit properties of the CaVs, and how dis-
tance between channels influence BKCa activity (10). Another frequent approach, which however
neglects local interactions, is to model Ca2+ dynamics in one or more shells beneath the cell
membrane, which then drives BKCa channels (24–26). The computational intensity is increased
in such model since local Ca2+ concentrations resulting from buffering and diffusion must be
simulated in addition to ion channel gating.

It would therefore be advantageous to have a simple but mechanistically correct model of the
BKCa current, which respects the local effects of BKCa-CaV coupling, and that can be inserted
in Hodgkin-Huxley-type models of whole-cell electrical activity. Such a model would also make
explicit how local effects and stochastic ion channel kinetics are reflected in average, whole-cell
behavior of BKCa channels with the advantage compared to simulations that the dependence
on parameters can be read directly from the formulas of the reduced model. Here we achieve
both these aims. Our approach is similar to analyses of Ca2+-dependent inactivation of Ca2+

channels (27), and local control of ryanodine receptors in dyadic subspaces (28, 29). Impor-
tantly, in the nanodomains controlling BKCa activity, Ca2+ is fast enough to avoid the need for,
e.g., a probability-density approach for handling local Ca2+ dynamics correctly at the whole-cell
level (30). We use the mechanistically correct description of single BKCa-CaV complexes with
1:1 stoichiometry developed by Cox (17) as the natural starting point for constructing a reduced
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model for BKCa-CaV complexes with 1:n stoichiometry to be inserted in whole-cell model of
electrical activity. Our results give insight into the simulations of single BKCa-CaV complexes,
and clarify that it is the local effects of ion channel kinetics rather than stochasticity per se that
determine whole-cell activity.

Methods

BKCa channel model

We describe the BKCa channel with a model of single-channel gating with two states (closed and
open). Figure S1A in the Supporting Material (SM) shows a schematic representation of the
model, where X corresponds to the closed state and Y to the open state. The mathematical
description of BKCa voltage- and calcium-dependent activation is given by

dpY
dt

= −k−pY + k+(1− pY ) (1)

where pY represents the open probability for the BKCa channel, and k− and k+ are the voltage
and calcium-dependent rate constants. As shown in the SM, from relatively mild assumptions
and experimental evidence, we can express these rates as

k− = w−(V )f−(Ca), (2)
k+ = w+(V )f+(Ca), (3)

where Ca denotes the Ca2+ concentration at the BKCa channels. At fixed Ca2+ levels, BKCa
activation is well described by Boltzmann functions (6, 8, 16). Hence, we assume that the voltage-
dependent rate constants, w−, for the transition from the open to closed state, and w+, for the
transition from the closed to open state, have the standard forms

w−(V ) = w−0 e
−wyxV , (4)

w+(V ) = w+
0 e
−wxyV , (5)

where w−0 and w+
0 are voltage-independent.

There is evidence that at fixed V , Ca2+ stabilizes the open state (4), i.e., f− should decrease
with Ca, and that > 1 Ca2+ ion is needed for BKCa activation, which is a sigmoidal function of
the Ca2+ concentration (4, 16). The calcium-dependent relations are therefore modeled by

f−(Ca) = 1− Canyx

K
nyx
yx + Canyx

=
1

1 +
(
Ca
Kyx

)nyx
, (6)

f+(Ca) =
Canxy

K
nxy
xy + Canxy

=
1

1 +
(
Kxy

Ca

)nxy
, (7)

where Kyx and Kxy are the calcium affinities when the channel closes and opens, respectively,
and nyx and nxy are the corresponding Hill coefficients. By using the relationships Eqs. 4–7, we
get the following formulas for the equilibrium open fraction of BKCa channel activation, pY∞ , and
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the corresponding time constant τpY :

pY∞ =
k+

k− + k+
=

1

1− e−
V−V0
S0

, (8)

τpY =
1

k− + k+
=
ewxyV

w+
0

(
1 +

(
Kxy

Ca

)nxy
)

1

1− e−
V−V0
S0

, (9)

where

V0 =

(
log

w−0
w+
0

+ log

(
1 +

(
Kxy

Ca

)nxy
)
− log

(
1 +

(
Ca

Kyx

)nyx
))

S0 , (10)

S0 =
1

wyx − wxy
. (11)

We use global optimization to estimate the model parameters providing the best fit to the
experimental data (17), consisting of BKCa open probabilities and time constants as functions of
voltage, at different Ca2+ concentrations. In particular, we formulate an optimization problem to
minimize the sum of the squared errors between the simulated responses produced by the model
and the corresponding experimental data as

min
θ
J =

∑
j

∑
i

(
pY∞j

(Vi)− p̂Y∞j
(Vi, θ)

)2
+
(
τpY j

(Vi)− τ̂pY j
(Vi, θ)

)2
, (12)

where θ is the set of model parameters, pY∞j
(Vi) and τpY j

(Vi) are the experimental BKCa steady-
state open fraction and corresponding time constant, respectively, at the given voltage Vi for
the j-th experiment (corresponding to a given Ca2+ concentration). p̂Y∞j

(Vi, θ) and τ̂pY j
(Vi, θ)

are the simulated equilibrium open fraction of the BKCa channel and the corresponding time
constant of the model, respectively, at the given Vi for the j-th experiment. For the optimiza-
tion, we use a hybrid Genetic Algorithm (GA) (31) that combines the most well-known type of
evolutionary algorithm with a local gradient-based algorithm (32). We use the function ga from
the MATLABTM (Mathworks, Natick, MA, USA) Global Optimization Toolbox and fmincon
from the MATLABTM Optimization Toolbox as the local algorithm. We repeat the hybrid GA
algorithm several times and select the parameter set that gives the best fitting. Table S1 reports
the optimal model parameters, and Figure S1B-G shows the fits to the data.

CaV channel model

We describe the calcium channel dynamics with the following model (27):

dc

dt
= βo− αc, (13)

do

dt
= αc+ γb− (β + δ)o, (14)

b = 1− c− o = 1− h, (15)

where c corresponds to the closed state, o to the open state and b to the inactivated (blocked) state
of the calcium channel; h represents the fraction of Ca2+channels not inactivated, δ the rate for
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channel inactivation and γ the reverse reactivation rate; α and β represent the voltage-dependent
Ca2+ channel opening rate and closing rate, respectively, and have the following forms

α(V ) = α0e
−α1V , (16)

β(V ) = ρ
(
β0e
−β1V + α0e

−α1V
)
. (17)

As shown in (27), the processes of activation and inactivation can be approximately separated
in time, since activation is much faster than inactivation. In particular, we achieve the following
model for the activation variable, mCaV ,

dmCaV

dt
=
mCaV,∞ −mCaV

τCaV
(18)

where

mCaV,∞ =
α

α+ β
, τCaV =

1

α+ β
, (19)

and the following equation for inactivation

db

dt
= mCaV,∞δ − (mCaV,∞δ + γ)b. (20)

As for the BKCa channel, we use a global optimization method to optimize the parameters
of Eqs. 16 and 17 to fit the experimental data presented by Cox (17), i.e., peak open prob-
abilities and time constants as functions of voltage. For the values of γ = 0.0020 ms−1 and
δ = 0.0025 µM−1 ms−1 ×[CaCaV ], we use those reported by Cox (17). CaCaV is the Ca2+ con-
centration at the internal mouth of the channel and defined by Eq. S1 in the SM with r = 7 nm,
representing the distance of the sensor for Ca2+-dependent inactivation from the channel pore.
Note that the relation given by Eq. 17 allows scaling of the amount of channel activation at high
voltage values according to the experiments (i.e., not all the calcium channels are open even for
high voltages). Table S1 reports the optimal parameters for the CaV activation model.

BKCa-CaV complex with 1:1 and 1:n stoichiometries

Combining the models for BKCa and CaV channels, we obtain the models of the 1:1 (see Re-
sults and Sections “Model of the 1:1 BKCa-CaV complex” and “Time-scale analysis and model
simplifications” in the SM) and 1:n BKCa-CaV complexes (see Results and Section “Model for
BKCa activation in complexes with k non-inactivated CaVs and its approximation” in the SM).
Ca2+ levels sensed by the BKCa channel were assumed to reach steady-state immediately after
CaV opening or closure (17), and the steady-state Ca2+ concentration Cao resulting from influx
through a single CaV was calculated by an explicit formula (see Eq. S1 in the SM), assuming
that CaV and BKCa channels are r = 13 nm apart (2, 9). At V = 0 mV, Cao ≈ 19 µM (see
Section “Model of the 1:1 BKCa-CaV complex” and Table S2 in the SM for further details). In
the case of >1 CaV per complex, the linear buffer approximation (33) was used to summarize
Ca2+ levels when more than one CaV is open. We note that k+c ≈ 0 (see Section “Model of the
1:1 BKCa-CaV complex” and Table S1 in the SM) since the background Ca2+ concentration Cac
is much below the levels needed for BKCa activation at physiological voltages (2). Thus, a BKCa
channel opens only when a CaV in the complex is open. This approximation is used widely in
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our derivations, and is supported by the fact that Ca2+ influx via CaVs is needed to open BKCa
channels (34), and that the submembrane Ca2+ concentration of some hundreds of nM that a
BKCa in a complex without open CaVs would sense is too low to activate BKCa channels at
physiological voltages (2, 17).

We refer to the SM for details on mathematical analysis of the time to first BKCa channel
opening using phase-type distributions (35) (see Section “Model of the 1:1 BKCa-CaV complex”
in the SM), and timescale analysis used for model reduction borrowing ideas from enzyme kinet-
ics (36) (Sections “Time-scale analysis and model simplifications” and “Model for BKCa activation
in complexes with k non-inactivated CaVs and its approximation” in the SM), as well as for details
on the whole-cell models investigated (Section “Whole-cell models” in the SM).

Availability of models and computer code

MATLAB code containing the files for generating the results presented in the main text and
Supporting Material is provided as an additional Supporting File S1.

Results

A simple Markov chain model of the BKCa-CaV complex

Cox (17) presented a stochastic model of a single CaV2.1 (P/Q-type) controlling a BKCa channel
(α subunits only) via local Ca2+. The channels were located 13 nm apart, corresponding to
physical coupling (2, 9). The CaV was described by a 7-state Markov chain, and when the Ca2+

channel opened or closed, the local Ca2+ level was assumed to reach equilibrium instantaneously,
in accordance with simulations of Ca2+ diffusion (12, 13, 17). The calculated local Ca2+ con-
centration was then assumed to drive a 10-state Markov chain model of the BKCa channel, and
Monte Carlo simulations were performed.

We set out to simplify the description of the 7× 10-state Markov chain model of the BKCa-
CaV complex. This was achieved by assuming a 3-state model for CaV (27) with states closed
(C), open (O), or inactivated (B, for "blocked") (see Methods). Parameters were adjusted to
reproduce traces from Cox (17). The BKCa channel was represented by a model with only 2
states, closed (X) or open (Y ) (see Methods). The transitions between states were supposed to
depend on voltage and local Ca2+, which was assumed to reach equilibrium instantaneously, and
depend on voltage via the single-channel Ca2+current (17). Parameters describing BKCa kinetics
were fitted to data from Cox (17). Combining these two models, we obtain a 6-state model of
the BKCa-CaV complex (Figure 1A) that shows behavior similar to the 70-state model used by
Cox (17) (Figure 1BC). Our simplified BKCa model does not describe details of single-channel
kinetics, which is not our scope here, but reproduces satisfactorily activation curves and times
(Figure S1), as well as whole-cell currents (Figures S4 and S5), thus making it appropriate for
analysis of whole-cell BKCa activity.

Time to first opening

Interestingly, Cox (17) found that not all simulated BKCa channels open during 20 ms depolar-
izations or imposed action potentials. We now study the time to the first opening of the BKCa
channel during a depolarization, which mathematically corresponds to the first time the Markov
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Figure 1: A 6-state model of the BKCa-CaV complex with 1:1 stoichiometry and its
simplification. (A) Scheme indicating the 6 states and voltage-dependent transitions. C, O,
and B refer respectively to closed, open, and inactivated states of the CaV, whereas X and Y
indicate the closed and open states of the BKCa channel. The subscripts o and c on the horizon-
tal transition rates indicate dependence on the Ca2+ concentration below an open, respectively
closed, Ca2+ channel. At physiological voltages, the transition to a state with an open BKCa
channel occurs virtually only when the CaV is open (k+c ≈ 0). The green box indicates states with
non-inactivated CaVs, whereas the blue box highlights states with inactivated CaVs. The tran-
sitions between the colored boxes are slow compared to transitions within boxes. (B) Simulated
CaV open probabilities in response to a voltage step from -80 mV to 0 mV, obtained from the
7-state Markov chain model (gray; (17)), the 3-state Markov chain model C,O,B (black; (27)),
the ODE model corresponding to the 3-state model (Eqs. 13–15; blue), and the corresponding
model assuming instantaneous activation mCaV = mCaV,∞ (Eq. 20; dash-dotted green). (C)
Simulated open probabilities, in response to a voltage step from -80 mV to 0 mV, for BKCa chan-
nels controlled by CaVs in complexes with 1:1 stoichiometry, obtained from the original 70-state
Markov chain model (gray; (17)), the 6-state Markov chain model (panel A; black), the ODE
model corresponding to the 6-state model (Eqs. S6–S11; blue), the simplified Hodgkin-Huxley-
type model (Eq. 25; dashed red), and the corresponding model assuming instantaneous activation
mCaV = mCaV,∞ (dash-dotted green; see main text). In panels B and C, 1000 realizations were
simulated for the Markov chain models, and the average of these Monte Carlo simulations are
shown.

7



Chain Z corresponding to Figure 1A visits one of the states CY,OY or BY starting from state
CX. We denote the time to first opening TCX,Y , which is a random variable. Simulations show
that eventually all BKCa channels open, and that the probability of channel opening before a
given time t, P (TCX,T < t), shows biphasic behavior (Figure S2). Taking advantage of the fact
that transitions from CX to CY , and from BX to BY have virtually zero probability (BKCa
channels open only if the CaV is open), we obtain explicit formulas for the average time to
first opening E(TCX,Y ) and, more generally, for the distribution function P (TCX,Y < t) using
phase-type distribution results for Markov Chains (35) (see Section “Time to first opening and
phase-type distributions” in the SM),

E(TCX,Y ) =
1

α
+

1

k+o
+

1

k+o

(
β

α
+
δ

γ

)
, (21)

P (TCX,Y < t) = 1−
∑

ψ∈{C,O,B}

(exp(tQ))CX,ψX , (22)

where Q is the sub-transition rate matrix of Z corresponding to states {CX,OX,BX}. Thus,
the average time to first opening is inversely related to the opening rates of the CaV and BKCa,
and to the rate of reactivation following inactivation of the CaV. The involvement of these two
processes explains the biphasic behavior, since escape from inactivation is much slower than
channel opening. Eq. 22 states that P (TCX,Y < t) is 1 minus the probability of not having left
{CX,OX,BX} before t, and makes it explicit that ∼15% of BKCa channels do not open during
a 20 ms depolarization (17), since P (TCX,Y < 20 ms) ≈ 85% with our parameters (Figure S2).

A concise deterministic model of cellular BKCa activity derived from multiscale
principles

1:1 stoichiometry

For Hodgkin-Huxley-type whole-cell simulations, we do not need to know the state of each single
BKCa channel, but it suffices to follow the BKCa open probability pY over time, since in the
presence of many channels the whole-cell BKCa current is IBK = gBKpY (V − VK), where gBK is
the maximal whole-cell BKCa conductance and VK is the K+ reversal potential.

The time evolution of the probability distribution of the Markov chain Z corresponding to
the 6-state model in Figure 1A can be described by a system of 5 ordinary differential equations
(ODEs) because the probabilities sum to 1. Denote, for ψ ∈ {C,O,B} and ξ ∈ {X,Y }, the state
probabilities pψξ(t) = P

(
Z(t) = ψξ

)
. Then pY (t) = pCY (t) + pOY (t) + pBY (t). As shown in

Figure 1C, the average fraction of open channels calculated from Monte Carlo simulations of the
Markov chain is well approximated by pY obtained from the ODE system.

Although the reduction to 5 ODEs for the description of the BKCa-CaV complexes is already
a substantial reduction compared to Monte Carlo simulations, we wish to obtain an expression
for the BKCa current of Hodgkin-Huxley form. Such a simplification provides further insight into
the regulation of BKCa activity by CaVs, and provides the base for concise handling of BKCa-CaV
complexes with 1:n stoichiometry.

We performed detailed time-scale analysis (see Section “Time-scale analysis and model sim-
plifications” in the SM) based on the fact that re- and inactivation of CaVs are slower than
(de-)activation. Thus, on a fast time scale, the average fraction of non-inactivated CaVs, h =
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1 − (pBX + pBY ), is assumed to be constant, and the model splits into two submodels with
respectively 4 and 2 states (indicated by green and blue in Figure 1A).

In the system of ODEs describing the state probabilities of the corresponding reduced 4-state
Markov chain (green in Figure 1A), it turns out that the dynamics of state CY is the fastest
since CaV kinetics and BKCa-channel closure, when the CaV is closed, are faster reactions than
BKCa gating in the presence of an open CaV (see Figure S3). Assuming quasi steady-state for
CY , we derive a single ODE describing the gating variable mBK , which models the fraction of
open BKCa channels in complexes with non-inactivated CaV (see Section “Model simplification”
in the SM),

dmBK

dt
=
mBK,∞ −mBK

τBK
, (23)

with steady-state and time constant given by

mBK,∞ =
mCaV k

+
o (α+ β + k−c )

(k+o + k−o )(k
−
c + α) + βk−c

,

τBK =
α+ β + k−c

(k+o + k−o )(k
−
c + α) + βk−c

.

(24)

Here, mCaV is defined by Eq. 18 and denotes the activation variable for the CaV in the complex,
which is routinely characterized in patch clamp experiments and included in models of electri-
cal activity via the time-constant, τCaV , and the steady-state activation function, mCaV,∞ (see
Eq. 19). From these quantities, α = mCaV,∞/τCaV and β = 1/τCaV − α can be calculated. Note
that Eq. 24 makes it explicit how mBK,∞ inherits properties of the associated Ca2+ channel type,
as has been found experimentally (10, 37).

Now, since BKCa channels close rapidly in complexes with inactivated CaVs (blue in Fig-
ure 1A), we have pY ≈ mBKh. Thus, the BKCa current is approximated by the standard
Hodgkin-Huxley expression

IBK = gBKmBKh(V − VK), (25)

where mBK is given by Eq. 23, and h is the inactivation function of the CaVs (see Eqs. 15
and 20). As shown in Figure 1C, the open-probability expression mBKh approximates the Monte
Carlo simulations very well. From Eq. 25 it is evident that the BKCa channels in BKCa-CaV
complexes exhibit inactivation because of inactivation of the associated CaVs, and with approxi-
mately identical dynamics, as found in experiments (8) and Monte Carlo simulations (Figure 1;
(17)).

In many whole-cell models (e.g. (20–23)), the Ca2+ currents are assumed to activate instanta-
neously, which precludes calculation of α and β. Implicitly, such models assume that CaV gating
is infinitely faster than the kinetics of other channels in the model. In our setting, this assumption
corresponds to investigating the BKCa-CaV model defined by Eqs. 23–25 in the limit α, β →∞.
This leads to τBK ≈ 1/[k−c −mCaV,∞(k−c − k+o − k−o )] and mBK,∞ = k+o mCaV,∞τBK , which are
completely defined from BKCa kinetics and mCaV,∞. In combination with Eqs. 23 and 25, this
model approximates the full system decently, except for the initial phase before CaV activation
reaches equilibrium (Figure 1C, green). For whole-cell models neglecting CaV activation kinetics,
this initial-phase error should be of no more concern that the error in the Ca2+ current resulting
from the steady-state assumption for CaV activation (Figure 1B, green).
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Complexes with multiple Ca2+ channels

As mentioned, a BKCa channel can bind up to 4 CaVs (2, 11). We extend our model to incorporate
such cases, assuming that the n CaVs are all located 13 nm from the BKCa channel (2, 9, 17).
Near the CaVs, the linear buffer approximation (33) holds, and the Ca2+ profile from n channels
can be calculated by superimposing n nanodomains found for single, isolated CaVs.

One could in principle extend the Markov chain model in Figure 1A to a model with 3×n×2
states. We take another approach to keep the model tractable. As discussed in the previous
section, CaV inactivation is slow compared to other processes. We therefore assume that on a
fast timescale, the fraction h of non-inactivated CaVs is constant, and note that the BKCa channel
closes rapidly when all CaVs in the complex are inactivated.

Consider a BKCa-CaV complex with k ∈ {1, . . . , n} non-inactivated CaVs. Neglecting inacti-
vated CaVs, since they do not contribute to BKCa activation, such a complex can be described on
the fast time scale by a Markov chain model with 2× (k+ 1) states (Figure 2A). As for the case
of 1:1 stoichiometry, we can approximate the dynamics of the BKCa open probability by a single
ODE (see Section “Model for BKCa activation in complexes with k non-inactivated CaVs and its
approximation” in the SM). Denote this open probability by m(k)

BK , and note that m(1)
BK = mBK

in Eq. 23. Then
dm

(k)
BK

dt
=
m

(k)
BK,∞ −m

(k)
BK

τ
(k)
BK

, (26)

where m(k)
BK,∞ and τ (k)BK are explicit functions of V , directly or via the local Ca2+ concentration

(see Eq. S36 in the SM). The probability that k non-inactivated CaVs are present in a complex
with n CaVs is

(
n
k

)
hk(1− h)n−k, and the whole-cell BKCa current is approximated by

IBK = gBK

n∑
k=1

(
n

k

)
hk(1− h)n−km(k)

BK(V − VK), (27)

which involves n ODEs (Eq. 26) for the activations variables m(k)
BK , and 1 ODE for h (h = 1− b,

where b is given by Eq. 20). As shown in Figure 2C, this expression provides a good approximation
to the results from Monte Carlo simulations of the full Markov Chain. Note that if the CaVs do
not inactivate, Eq. 27 reduces to

IBK = gBKm
(n)
BK(V − VK). (28)

We can now easily investigate how different stoichiometries of the BKCa-CaV complexes in-
fluence, e.g., activation of the BKCa channels. As expected, we find that the activation curve is
shifted upwards as the number of CaVs per complex increase (Figure 2B, upper). Interestingly,
a left-shift of the activation curve is seen when n increases. For example, with n = 4 CaVs per
BKCa channel, BKCa activation is half-maximal at V ≈ −14 mV, compared to V ≈ −5 mV when
n = 1, and half-maximal CaV activation at V ≈ −12 mV. This result is due to the fact that
the probability of at least one CaV being open is greater with more channels in the complex.
For higher voltages, the single channel current decreases and the CaV open probability increases,
with the result that, at strongly positive voltages, BKCa activation decays more gradually at
n = 1 than for higher n. This difference is because the local Ca2+ level obtained with a single
open CaV is insufficient for complete BKCa activation, and therefore the presence of more CaVs
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Figure 2: Multiple CaVs per BKCa-CaV complex. (A) Markov chain model for complexes
with k non-inactivated CaVs. (B) Steady-state BKCa activation functions (upper) and time-
constants (lower) for BKCa channels in complexes with 1 (cyan), 2 (green) or 4 (red) CaVs given
from Eq. 26 (see Eq. S36 in the SM for the details; solid) or from the approximation defined
by Eq. 29 (dashed). The grey dashed curve shows the CaV activation function mCaV,∞, for
comparison. (C) Simulated BKCa open probabilities in response to a voltage step from -80
mV to 0 mV, obtained from Monte Carlo simulations of the Markov model of n inactivating
independent CaVs controlling a BKCa channel (black), from the ODE model of all states in
panel A coupled to CaV inactivation (Eqs. S19–S25 and Eq. 27; solid blue), from the reduced
ODE model considering CaV activation kinetics (Eqs. 26 and 27; dashed red), and from the
simplification assuming mCaV = mCaV,∞ (Eqs. 29 and 27; dash-dotted green).

per complex becomes advantageous, since the CaVs may open simultaneously, leading to higher
local Ca2+ levels. This interpretation also underlies the finding that BKCa activation is faster
with higher n at positive voltages (Figure 2B, lower).

As mentioned above, many whole-cell models assume instantaneous activation of CaVs. This
assumption implies that vertical transitions in Figure 2A are in quasi-equilibrium, and hence that
e.g. pCiOk−iY =

(
k
i

)
(1−mCaV,∞)k−imi

CaV,∞pY , with notation as for the case of 1:1 stoichiometry.

Then, m(k)
BK follows Eq. 26 with

τ
(k)
BK =

[ k∑
i=1

(
k

i

)
(1−mCaV,∞)k−imi

CaV,∞(k+oi + k−oi)

+ (1−mCaV,∞)kk−c

]−1
,

m
(k)
BK,∞ =

[ k∑
i=1

(
k

i

)
(1−mCaV,∞)k−imi

CaV,∞k
+
oi

]
τ
(k)
BK .

(29)

This simplified expression provides decent fits to activation functions (Figure 2B, upper) and
simulated currents (Figure 2C), and – in our experience – yields reliable results in whole-cell
simulations for cells with relatively slow action potential dynamics, as shown below, in spite of a
slight underestimation of τ (k)BK at negative voltages (Figure 2B, lower).

Whole-cell simulations of electrical activity shaped by BKCa-CaV complexes

We now illustrate the type of whole-cell modeling that can be performed readily with our Hodgkin-
Huxley-type model of the BKCa current controlled locally by CaVs in BKCa-CaV complexes.
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BKCa-CaV stoichiometry controls fAHP in a neuronal model

It is well established that in many neurons BKCa channels play an important role in action
potential (AP) repolarization and fast after-hyperpolarization (fAHP), i.e., the undershoot seen
after an AP (2, 38), which are important, e.g., for controlling firing frequency and transmitter
release. We here adapt a model of AP generation and fAHP in hypothalamic neurosecretory
cells (20) to investigate how BKCa-CaV complexes influence fAHP. In the original model, CaVs
are assumed not to inactivate and to activate instantaneously. We modified the model to include
CaV activation dynamics with time constant τCaV = 1.25 ms (37, 39), and inserted our whole-cell
BKCa model (Eq. 28) in place of the original representation of BKCa currents.

Our results suggest that more than one CaV channel is needed in the BKCa-CaV complex to
develop fAHP that is reduced by BKCa-channel blockers (Figure 3A). The difference between 1:1
and 1:n BKCa-CaV stoichiometry is not a simple result of more BKCa conductance. Increasing
the BKCa conductance 4-fold in the case of 1:1 stoichiometry, much more than the difference
between the activation functions m(1)

BK,∞ and m(4)
BK,∞ (Figure 2B), leads to less fAHP than for 1:4

stoichiometry (Figure 3A, insert). Thus, differences in BKCa activation kinetics and the shapes
of activation functions (Figure 2B) play a non-trivial role in shaping APs.

Different CaV types affect electrical activity differently in a model of human β-cell
electrophysiology

In our recent model of electrical activity in human β-cells (22, 23), we modeled the BKCa-
current heuristically. The BKCa open probability was proportional to the whole-cell Ca2+ current,
and this expression was found to reasonably reproduce published data (40) regarding the BKCa
activation function and the effects of BKCa block on AP firing (22).

We now assume that the BKCa channels form complexes with either T-, L-, or P/Q-type CaVs
(22, 40), and vary the BKCa-CaV stoichiometry. As explained in greater details in the SM, the
different types of CaV differ with respect to activation and inactivation properties, and whole-
cell conductance (22, 23). The resulting BKCa model is then fit to experimental I-V data (40)
(Figure S7), and inserted in the whole-cell model. T-type CaVs inactivate rapidly (22, 40), and
do not activate much BKCa current during the relatively broad action potentials. For this reason,
simulated BKCa block results in almost no increase in AP height (Figure 3B), in contrast to
experiments (40).

In human β-cells, L-type Ca2+ channels show inactivation on a time-scale comparable to the
duration of an AP (22, 40). When coupled to BKCa channels in the model, good fits to the
BKCa I-V activation curve are obtained, but for different values of the maximal whole-cell BKCa
conductance gBK (Figure S7). In simulations of electrical activity, BKCa currents controlled by
L-type CaVs reduce AP height, independently of the number of CaVs per complex (Figure 3C).

BKCa-CaV complexes with P/Q-type Ca2+ channels, which activate at very depolarized po-
tentials and show very slow inactivation in human β-cells (22, 40), lead to BKCa currents that
activate at slightly more depolarized potentials than in experiments, except for the case of 1:4
BKCa-CaV stoichiometry (Figure S7). Simulated application of a BKCa channel antagonist in-
creases AP height ∼15 mV, in good correspondence with experiments. Assuming fewer CaVs per
complex, leads to poorer fit of the I-V curve and to less difference between APs obtained with
operating and blocked BKCa channels (Figure 3D).

We conclude that AP firing is affected differently by BKCa currents depending on the CaV type
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Figure 3: Whole-cell simulations. (A) Simulated AP in a neuronal model (20) with 1:n
stoichiometry BKCa-CaV complexes with n = 1 (cyan), n = 2 (green) or n = 4 (red). The
whole-cell BKCa current is described by Eq. 28 (i.e. BKCa coupled with non-inactivating CaVs),
where the BKCa activation, m(n)

BK , is modeled by Eq. 26 (see Eq. S36 in the SM for the details)
and gBK = 1 mS cm −2. The blue curve shows the case of BKCa block (gBK = 0 mS cm −2), and
the trace in black displays the result with n = 1, gBK = 4 mS cm −2. The insert shows a zoom on
the fAHP. (B-D) Simulated APs in a model of human β-cells (22) with BKCa channels located
in complexes with n T-type (B), L-type (C), or P/Q-type (D) CaVs, with n = 1, 2 or 4. The
whole-cell BKCa current is described by Eq. 27 (with inactivating T- and L-type CaVs) or Eq. 28
(with non-inactivating P/Q-type CaVs), where m(n)

BK is modeled by Eq. 29. Color coding as in
panel A. (E-G) Simulated activity in a model of lactotrophs (21) with 1:n BKCa-CaV complexes
with n = 1 (E), n = 2 (F), or n = 4 (G). The whole-cell BKCa current is described by Eq. 28,
where m(n)

BK is modeled by the complete BKCa model with 2×(n+1) states (Figure 2A) described
using Eqs. S19–S25 (upper traces), by Eq. 26 (middle traces), and by Eq. 29 (lower traces).
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controlling BKCa activity, due to differences in activation and inactivation properties. Since BKCa
block stimulates insulin secretion in human (40) and mouse (41) β-cells, a better understanding
of the interaction between different types of CaVs and BKCa channels may provide novel insight
into insulin release in health and disease.

Bursting behavior depends on BKCa-CaV stoichiometry in a model of pituitary cells

In pituitary cells BKCa channels have been found to be intimately involved in the genesis of so-
called plateau bursting, which consists of a few small oscillations riding on a depolarized plateau,
and is important for secretion (42, 43). We now investigate how BKCa-CaV properties affect
such bursting activity in a model of electrical activity in pituitary lactotrophs (21). In this model
a single Ca2+-channel type is present, which is assumed to activate instantaneously and not to
inactivate. The BKCa current was modeled as a purely voltage-dependent current, neglecting
Ca2+ dependency (21). In place of this simplified representation, we substitute our concise BKCa
model controlled by CaVs in complexes.

With 1:1 stoichiometry, spiking electrical activity is observed, since insufficient BKCa current
is generated (Figure 3E). In contrast, with more than one CaV per complex, plateau bursting
appears with the number of small oscillations per burst depending on the number of CaVs per
BKCa-CaV complex (Figure 3FG). Although the quantitative behavior is independent of the
approximation for m(n)

BK , minor qualitative differences are present. The approximation given
by Eq. 26 reproduces very well the behavior obtained from the complete model for the BKCa-
CaV complex (Figure 3FG, upper and middle panels), whereas the further simplification given
by Eq. 29 produces smaller and more spikes per burst. Nonetheless, considering parameter
uncertainties and experimental variations, even Eq. 29 produces reliable results.

Discussion

Models of cellular electrical activity typically do not consider local control in ion channel com-
plexes. This fact is probably to a large extent because of the large computational costs of detailed
simulations of Markov chain models (17) or reaction-diffusion models (10) that consider single
complexes. In contrast, in the field of Ca2+ modeling, global procedures that respect local mech-
anisms have been presented (28–30).

We here applied similar methods to the BKCa-CaV complex to obtain Hodgkin-Huxley repre-
sentations of the BKCa current that correctly take local control into account. Importantly, in our
approach the effects of ion channel colocalization are handled via a deterministic model represen-
tation by averaging the stochastic dynamics in single ion channel complexes appropriately. Our
timescale analysis allowed us to handle scenarios with more than one CaV per BKCa-CaV com-
plex, thus providing important insight into the role of channel stoichiometry. Treating such cases
via direct stochastic simulations of the BKCa and CaV simulations would be computationally
cumbersome, and would not provide the same kind of analytical understanding. For example,
we found explicit expressions for the time to first opening of a BKCa channel, thus providing
theoretical insight into simulation results (17). Our findings also highlighted that n > 1 CaV
per complex left-shifts the BKCa activation curve, since the presence of more CaVs increase the
probability that at least one CaV is open and activate the associated BKCa channel.

We illustrated the usefulness of our theoretical results by applying the concise representations
of BKCa currents to previously published whole-cell models of electrical activity. We chose a model
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of neuronal APs that has previously been used to investigate how BKCa channels contribute to
fast after-hyperpolarization (fAHP) (20). The simulations based on our BKCa-CaV model suggest
that the kinetics of BKCa activation, which depends on the number associated CaVs (Figure 2),
influence fAHP generation. It would be interesting to investigate experimentally whether defect
BKCa-CaV coupling underlies disturbances in fAHP generation, as predicted by the model. In
Xenopus motor nerve terminals, BKCa-CaV coupling differs between the release face and the non-
synaptic surface of varicosities (44), which in the light of our simulations may indicate spatial
heterogeneity with respect to e.g. fAHP.

We went on to investigate how the activation and inactivation properties of specific types
of Ca2+ channels assumed to be present in BKCa-CaV complexes influence whole-cell electrical
activity in a model of human β-cells (22). Since both coupling of BKCa channels to L- and P/Q-
type CaVs, and different stoichiometries of the complexes, allow for simulations comparable to
experiments, our findings do not allow us to conclude on the structure of BKCa-CaV complexes
in human β-cells. Further insight into the control by CaVs of BKCa channels, which are involved
in regulation of insulin release (40, 41), may lead to a better understanding of β-cell function and
how it becomes disturbed in diabetes.

Finally, a model of pituitary cells (21) was used to study the role of BKCa channels in the
generation of plateau bursting, which is important for secretion of pituitary hormones (42). We
found that a reduced number of CaVs per complex, for example because of disturbed BKCa-CaV
coupling, may abolish bursting activity. Our simulations showed that even the simplification
given by Eq. 29 provided reliable results (Figure 3E-G). Similar conclusions hold for the β-cell
model (see Figure S7). Interestingly, this was not the case in the neuronal model (20) (Figure S6),
likely because of the shorter neuronal AP being more sensitive to the kinetics of BKCa activation.

A general strategy to distinguish between different configurations of the BKCa-CaV complex
could be to, first, estimate the maximal whole-cell BKCa conductance, for example by depolariza-
tions to highly positive voltages to activate BKCa channels independently of CaV activity (16),
and, then, to fit I-V curves obtained from voltage-clamp depolarizations (37, 40) using the ex-
pressions presented here.

In summary, we have presented a concise Hodgkin-Huxley-type model of BKCa currents that
take into account local control in BKCa-CaV complexes with different stoichiometries. Our model
should be useful for whole-cell simulations of electrical activity in neurons and other excitable
cells. The approach should be relatively straight-forward to apply to other ion channel complexes,
e.g., the Cav3-Kv4 complex (45).
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