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Abstract

Hormones and neurotransmitters are released from cells by calcium-regulated
exocytosis, and local coupling between Ca2+ channels (CaVs) and secretory granules
is a key factor determining the exocytosis rate. Here, we devise a methodology based
on Markov chain models that allows us to obtain analytic results for the expected
rate. First, we analyze the property of the secretory complex obtained by coupling
a single granule with one CaV. Then, we extend our results to a more general case
where the granule is coupled with n CaVs. We investigate how the exocytosis rate
is affected by varying the location of granules and CaVs. Moreover, we assume that
the single granule can form complexes with inactivating or non-inactivating CaVs.
We find that increasing the number of CaVs coupled with the granule determines
a much higher rise of the exocytosis rate that, in case of inactivating CaVs, is
more pronounced when the granule is close to CaVs, while, surprisingly, in case of
non-inactivating CaVs, the highest relative increase in rate is obtained when the
granule is far from the CaVs. Finally, we exploit the devised model to investigate
the relation between exocytosis and calcium influx. We find that the quantities are
typically linearly related, as observed experimentally. For the case of inactivating
CaVs, our simulations show a change of the linear relation due to near-complete
inactivation of CaVs.

Introduction

Molecules, e.g. neurotransmitters and proteins, are released from the cell by exocytosis [1].
In this paper we focus on regulated exocytosis in the endocrine cells that release different
kind of hormones regulating various physiological processes [2]. When hormone secretion
is defectively regulated, several diseases may develop. For example, in diabetes, the two
main pancreatic hormones, insulin and glucagon, are not released appropriately for fine-
tuning glucose homeostasis [3, 4]. Therefore it is crucial to achieve a better understanding
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of the main mechanisms underlying hormone exocytosis that determines the control of
different physiological processes.

In most endocrine cells, the hormones are contained in secretory granules that, in
response to a series of cellular mechanisms culminating with an increase in the intracellular
Ca2+ levels, fuse with the cell membrane and release the hormone molecules. The main
mechanisms regulating hormone exocytosis are shared with exocytosis of synaptic vesicles
underlying neurotransmitter release in neurons [1, 5]. The granules contain v-SNARE
proteins that can form the so-called SNARE complexes with t-SNAREs inserted in the
cell membrane [1]. SNARE complexes interact with other proteins, notably Ca2+-sensing
proteins such as synaptotagmins, which trigger exocytosis upon Ca2+ binding. Therefore,
the local Ca2+ concentration at the Ca2+ sensor of the exocytotic machinery is a key factor
determining the probability (rate) of exocytosis of the secretory granule.

Recently, we have devised a detailed model of Ca2+ dynamics and exocytosis for the
glucagon-secreting pancreatic alpha-cells, and showed how exocytosis is dependent on cal-
cium dynamics, in particular, on calcium levels surrounding the Ca2+ channels (CaVs) [6],
the so-called nanodomains [7]. Here, in order to characterize the local interactions be-
tween the single granule and the surrounding CaVs, we will exploit a strategy that is
similar to the methodology devised in our recent paper to describe the large conductance
BK potassium current that is controlled locally by CaVs [8]. We showed that the number
and the type of CaVs coupled with the BK channel affect the electrical activity of neurons
and other excitable cells, such as pancreatic beta-cells and pituitary cells. Therefore, we
will implement mathematical modelling for characterizing the local interactions between
granules and CaVs and, specifically, Markov chain models that could provide important
insight into the exocytosis rate. In particular, by using the Markov chain theory [9], we will
achieve analytic results for the expected rate, and show how coupling different numbers
and types of CaVs with the granule determines different responses.

Methods

CaV channel model

We model the Ca2+ channel by using the 3-state Markov chain of Fig. 1A, where C
corresponds to the closed state, O to the open state and B to the inactivated (blocked)
state of the calcium channel [10]. Then, the CaV model takes values in the state space
S = {C,O,B} and its transition rate or generator matrix MCaV is given by

MCaV =

−α α 0
β −β − δ δ
0 γ −γ

 . (1)

Here, α and β represent the voltage-dependent Ca2+ channel opening rate and closing
rate, respectively, and have the following forms:

α(V ) = α0e
−α1V , (2)

β(V ) = β0e
−β1V . (3)
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Figure 1: Markov chain models for Ca2+ channel (CaV), exocytosis of single
granule and granule-CaV complex. (A) Markov chain model for CaV, where C is
the closed state, O the open state and B the inactivated or blocked state. (B) Markov
chain model for exocytosis of a single granule adjacent to the plasma membrane, where
G0 correspond to the state with no bound Ca2+ ions, G1 with one, G2 with two, and G3

with three. (C) Markov chain model for the approximated exocytosis model where the
dynamics of states G2 and G3 are described by the auxiliary variable G23 using quasi-
steady state approximation for the corresponding ODE model. (D) Markov chain model
for the granule-CaV complex where the granule dynamics are described by the model
shown in panel (C) and the CaV dynamics by the model shown in panel (A).
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The rate for channel inactivation, δ, is Ca2+-dependent, and has the following form

δ = δ0 × [CaCaV ] . (4)

CaCaV is the Ca2+ concentration at the Ca2+ sensor for inactivation, and is given using
reaction-diffusion theory [7, 11, 12] by

CaCaV =
iCamax

8πrCaDCaF
exp

 −rCa√
DCa

k+B [Btotal]

, (5)

where iCamax = ḡCa(V −VCa) is the single-channel Ca2+ current with ḡCa the single-channel
conductance and VCa the reverse potential, and rCa represents the distance of the sensor
for Ca2+-dependent inactivation from the channel pore. Finally, γ is the constant reverse
reactivation rate. Table 1 reports the parameter values for the CaV model defined by
above equations.

The deterministic description of the 3-state Markov Chain model for the CaV channel
is given by the following ODE system

dc

dt
= βo− αc, (6)

do

dt
= αc+ γb− (β + δ)o, (7)

b = 1− c− o = 1− h, (8)

where the italic lowercase letters represent the corresponding state variables of the ODE
model (h represents the fraction of Ca2+ channels not inactivated).

Finally, in order to investigate the relationship between exocytosis and Ca2+ loading,
we compute the total charge entering via the Ca2+ channel at a given step voltage with
time window, ts, as

QCa =

∫ ts

0

o (τ) · iCamaxdτ. (9)

Exocytosis model

We assume a single granule, adjacent to the plasma membrane and primed for exocytosis,
that can be in one of four different states depending on the number of Ca2+ ions bound
to the Ca2+ sensor on the granule, likely synaptotagmin [13]: in G0 with no bound Ca2+

ions, or in G1 with one, or in G2 with two, or in G3 with three bound ions. Once
it is in G3, the granule can fuse with the membrane and release its hormone content,
assuming the final state Y [14, 15]. Therefore, we use a five-state Markov chain model for
describing exocytosis as shown in Fig. 1B, where the model takes values in the state space
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Table 1: Model parameters
CaV model parameters

Parameter Value Unit
α0 0.6 ms−1

α1 −0.1 mV−1

β0 0.2 ms−1

β1 0.0375 mV−1

γ 0.002 ms−1

δ0 0.0025 µM−1 ms−1

Parameters for calculating Ca2+ concentration at different distances
Parameter Value Unit

rCa 7 nm
rG 10, 20, 30, 50 nm
DCa 250 µm2 s−1

F 9.6485 C mol−1

kB 500 µM−1 s−1

Btotal 30 µM
VCa 60 mV
ḡCa 2.8 pS
Cac 0.1 µM
Cab 0.1 µM

Exocytosis model parameters
Parameter Value Unit

kCa 1.85 µM−1 s−1

k− 50 s−1

u 1000 s−1

S = {G0, G1, G2, G3, Y } and its transition rate or generator matrix MG is given by

MG =


−3 kCa 3 kCa 0 0 0
k− −2 kCa − k− 2 kCa 0 0
0 2 k− −kCa − 2 k− kCa 0
0 0 3 k− −u− 3 k− u
0 0 0 0 0

 . (10)

where

kCa = k × [CaG] (11)

represents the Ca2+ binding rate with CaG the Ca2+ concentration at the granule sensor
given by equation (5) with r = rG being the distance from the CaV to the Ca2+ sensor
on the granule. In the following, the distance from the CaV to the granule means the
distance from the CaV to the Ca2+ sensor on the granule, which will be of the order of
tens of nm. For comparison, secretory granules have diameters on the order 100-500 nm
[16, 17, 18, 19]. We assume a constant number of Ca2+ sensor molecules, which is therefore
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included in the binding parameter kCa. The parameter k− is the unbinding rate, and u is
the fusion rate. Table 1 reports the parameter values.

The deterministic description of the 5-state Markov Chain model for exocytosis is given
by the following ODE system

dg0
dt

= −3 kCag0 + k−g1, (12)

dg1
dt

= −(2 kCa + k−)g1 + 3 kCag0 + 2 k−g2, (13)

dg2
dt

= −(kCa + 2 k−)g2 + 2 kCag1 + 3 k−g3, (14)

dg3
dt

= −(u+ 3 k−)g3 + kCag2, (15)

y = 1− g0 − g1 − g2 − g3 . (16)

For the above ODE model of equations (12)–(16), we exploit quasi steady-state approx-
imation for state g3, since its dynamics are fastest (the value of u is much higher than
those of the other parameters). Then, by renaming the state variables as

g23 = g2 + g3 , (17)

by setting equation (15) equal to zero yielding

g3 = Ag23 , with A =
kCa

kCa + 3 k− + u
, (18)

and by summing equations (14)-(15), we achieve a single ODE model for describing the
dynamics of state variable g2 and g3 as follows:

dg23
dt

= − (2 k− (1− A) + uA) g23 + 2 kCag1 . (19)

The corresponding Markov chain model takes values in the state space S = {G0, G1, G23, Y }
(see Fig. 1C) and is described by the following generating matrix, MGap :

MGap =


−3 kCa 3 kCa 0 0
k− −2 kCa − k− 2 kCa 0
0 2 k− (1− A) −2 k− (1− A)− uA uA
0 0 0 0

 . (20)

Note that state Y of the Markov chain described by MGap is an absorbing state: the
process can never leave Y after entering it, reflecting that fusion is an irreversible process.
Then MGap can be rewritten as

MGap =

[
D3×3 d3×1

01×3 0

]
. (21)
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where

D3×3 =

−3 kCa 3 kCa 0
k− −2 kCa − k− 2 kCa
0 2 k− (1− A) −2 k− (1− A)− uA

 (22)

describes only the transitions between the transient states G0, G1 and G23, and d =
[0 , 0 , uA]ᵀ is a vector containing the transition intensities from the transient states to the
absorbing state Y . The row vector 0 ∈ R1×3 consists entirely of 0’s since no transitions
from Y to the transient states can occur. The remaining element of the matrix MGap is 0
and gives the transition rate out of the absorbing state.

Using phase-type distribution results for Markov chains [9], we obtain an explicit for-
mula for calculating the expected event rate λY to reach the absorbing state Y , given the
initial probability row vector π for the transient states (π = (πG0 , πG1 , πG23)), as

λY =
1

π (−D−1) 1
(23)

where 1 ∈ R3×1.

Granule-CaV complex model with 1:1 and 1:n stoichiometries

1:1 stoichiometry

By coupling the CaV and exocytosis models, we obtain the 12-state Markov chain model
of Fig. 1D. The model takes values in the state space

S = {CG0, OG0, BG0, CG1, OG1, BG1, CG23, OG23, BG23, CY,OY,BY },

and its transition matrix, DG:CaV , is as follows:

DG:CaV 9×9 =

MCaV − 3 diag (kCac , kCao , kCac) 3 diag (kCac , kCao , kCac) 03×3

diag (k−, k−, k−) MCaV − diag (2kCac + k−, 2kCao + k−, 2kCac + k−) 2 diag (kCac , kCao , kCac)
03×3 2 k− diag ((1− Ac) , (1− Ao) , (1− Ac)) MCaV − diag (2 k− (1− Ac) + uAc, 2 k− (1− Ao) + uAo, 2 k− (1− Ac) + uAc)


(24)

where MCaV is defined by equation (1), kCac (Ac) by equation (11) (equation (18)) with
CaG = Cac, i.e. the concentration at the granule when the associated CaV is closed
(or inactivated, i.e. Cac = Cab), and kCao (Ao) by equation (11) (equation (18)) with
CaG = Cao, i.e., the concentration at the granule when the associated CaV is open,
computed by equation (5). Then, the expected exocytosis rate for the single granule, λY1 ,
can be estimated by using equation (23), assuming initially the granule in state G0 and
the CaV closed, i.e the complex in the state CG0 (π = (1,01×8)), as

λY1 =
1

π
(
−DG:CaV

−1
)

1
(25)

where 1 ∈ R9×1.
We also consider the particular case with non-inactivating CaV (i.e. the Ca2+ channel

can be only in C or in O). In this case, MCaV ∈ R2×2 and is defined by equation (1) with
δ = γ = 0, and then DG:CaV , given by equation (24), belongs to R6×6.
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1:n stoichiometry

In the following, we assume the case where the granule is coupled with more than one
CaV. In particular, by considering k Ca2+ channels, we have a Markov chain model with
nS =

∑k
i=0 (k + 1− i) = k2

2
+ 3k

2
+ 1 possible states describing the k CaVs. In particular,

the CaVs model takes values in the state space S = {Ck−i−jOiBj} with j ∈ {0, . . . , k}
and i ∈ {0, . . . , k − j}, and its generating matrix, MkCaV , is given by

MkCaV nS×nS
=



M0(k+1)×(k+1)

01×k
δ diag (1, . . . , k)

0 · · · · · · · · · · · · · · · 0

0k×1 γIk
. . . . . . 0 · · · · · · · · · · · · ...

0
. . . . . . . . . 0 . . . · · · · · · ...

... · · · 0 0(k+1−j)×1 j γI(k+1−j) Mj(k+1−j)×(k+1−j)

01×(k−j)
δ diag (1, . . . , k − j) 0 · · · ...

... · · · · · · · · · 0
. . . . . . . . . 0

... · · · · · · · · · · · · 0
. . . . . . δ

... · · · · · · · · · · · · · · · 0 kγ Mk1×1


(26)

where

M0(k+1)×(k+1)
=



−kα kα 0 · · · · · · · · · · · · · · · 0

β
. . . . . . 0 · · · · · · · · · · · · ...

0
. . . . . . . . . 0 · · · · · · · · · ...

... · · · 0 (i− 1)β − (k − (i− 1))α− (i− 1) (β + δ) (k − (i− 1))α 0 · · · ...

... · · · · · · · · · 0
. . . . . . . . . 0

... · · · · · · · · · · · · 0
. . . . . . α

0 · · · · · · · · · · · · · · · 0 kβ −k (β + δ)


,

(27)

and

Mj(k+1−j)×(k+1−j)
=



− (k − j)α− jγ (k − j)α 0 · · · · · · · · · · · · · · · 0

β
. . . . . . 0 · · · · · · · · · · · · ...

0
. . . . . . . . . 0 · · · · · · · · · ...

... · · · 0 (i− 1)β − (k − (i− 1)− j)α− (i− 1) (β + δ)− jγ (k − (i− 1)− j)α 0 · · · ...

... · · · · · · · · · 0
. . . . . . . . . 0

... · · · · · · · · · · · · 0
. . . . . . α

0 · · · · · · · · · · · · · · · 0 (k − j) β − (k − j) (β + δ)− jγ


.

(28)

and Mk1×1 = −kγ.
Then, by coupling the CaVs and exocytosis models, we obtain a 4nS-state Markov chain

model. The model takes values in the state space S = {Ck−i−jOiBjGl, . . . , Ck−i−jOiBjG23,
Ck−i−jOiBjY }, with j ∈ {0, . . . , k}, i ∈ {0, . . . , k − j} and l ∈ {0, 1}, and its transition
matrix, DG:kCaV , can be written as

DG:kCaV 3nS×3nS
=


MkCaV −KCa1 KCa1 0nS×nS

k− InS
MkCaV −KCa2 − k− InS

KCa2

0nS×nS
2 k− (InS

−DA) MkCaV − 2 k− (InS
−DA)− uDA


(29)
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where

KCa1nS×nS
=



3 kCac 0
0 3 kCao diag (1, . . . , k)

. . .

3 kCac 0
0 3 kCao diag (1, . . . , k − j)

. . .

3 kCac


,

(30)

KCa2nS×nS
=



2 kCac 0
0 2 kCao diag (1, . . . , k)

. . .

2 kCac 0
0 2 kCao diag (1, . . . , k − j)

. . .

2 kCac


,

(31)

DAnS×nS
=



Ac 0
0 Ao diag (1, . . . , k)

. . .

Ac 0
0 Ao diag (1, . . . , k − j)

. . .

Ac


.

(32)

Then, the expected exocytosis rate for the single granule coupled with k CaVs, λYk ,
can be estimated by using equation (23), assuming initially the granule in state G0 and
the k CaVs closed, i.e., the complex is initially in state CkG0 (π =

(
1,01×(3nS−1)

)
, which

yields

λYk =
1

π
(
−DG:kCaV

−1
)
1

(33)

where 1 ∈ R3nS×1.
For the particular case with non-inactivating CaVs channels, MkCaV = M0 by equa-

tions (26) and (27) with δ = γ = 0, and then, DG:kCaV , given by equation (29), belongs
to R3(k+1)×3(k+1).

In order to compare the rate for a granule coupled with different number k of CaVs,
we define the relative rate, ρλk , as

ρλk =
λYk
λYn

(34)
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with k = 1, . . . , n. Moreover, in order to compare the rate at different distances from the
granule to CaVs, we define the relative distance rate, ρλd , as

ρλd =
λYd
λYdmin

(35)

where λYd is the rate computed at a given distance rG and λYdmin
the rate computed at

rG = 10 nm.

Results and Discussion

We analyze the behavior of the devised exocytosis model where the single granule is coupled
with k Ca2+ channels by using phase-type distribution results for Markov chains [9] (see
Methods). First, we assume that a granule is coupled with one CaV and, then, we extend
the results to a more general case with k CaVs. Moreover, we consider for both the cases (1
or k CaVs) that the granule forms complexes with inactivating or non-inactivating CaVs.
This scenario reflects e.g. what it is observed in pancreatic beta-cells where the two main
high voltage-activated Ca2+ channels, the L- and P/Q-type Ca2+ channels, are examples
of inactivating and non-inactivating CaVs, respectively [20].

Granule coupled with one inactivating (or non-inactivating) CaV

Fig. 2A shows the expected exocytosis rate, λY1 computed by equation (25), for a granule at
different distances from an inactivating CaV channel. Independently of the distance to the
CaV, the exocytosis rate has a bell-shaped relation to voltage, as seen experimentally [21,
22, 20]. The same holds true in the case of non-inactivating CaV (Fig. 2B). As the
distance between the granule and the Ca2+ channel increases, the expected rate decreases
substantially and nonlinearly (for instance, in Fig. 2A, compare the red and blu lines for
rG = 20 nm, and rG = 10 nm, respectively). This is clearer from Fig. 2C, showing the
relative distance rate ρλd defined by equation (35) for different values of rG. Note that
increasing the distance by a factor of two corresponds to a more than five-fold reduction
of the exocytosis rate (the relative ratio is less than 0.2, see the red plot in Fig. 2C). This
steep dependence of the distance to the channel is because the calcium levels drop rapidly,
moving away from the channel [7, 23].

We perform a similar analysis for the case where a granule is coupled with a non-
inactivating CaV (Fig. 2B). We note an increase about of two orders of magnitudes for
the exocytosis rate compared to the case with a granule coupled with an inactivating
CaV (see Figs. 2A-B): the exocytosis proceeds more rapidly since the triggering Ca2+

signal is increased due to non-inactivation of Ca2+ currents [24]. Also in this case the
degree of decrease for the rate is much higher than the relative increase for the distance
(Fig. 2D). However, the benefit in terms of ρλd by reducing the distance is slightly less
than that obtained with inactivating CaV (compare Figs. 2C and 2D): for the case with
inactivating CaV, it seems that moving away from the channel, ρλd decreases more due to
the inactivation of CaV that determines a further drop of calcium levels.
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Figure 2: Expected exocytosis rate for single granule coupled with one (inacti-
vating or non-inactivating) CaV. (A-B) Expected exocytosis rate λY1 for the granule
at different distances rG from one inactivating (A) or non-inactivating (B) CaV: rG = 10
nm (blue curves), rG = 20 nm (red), rG = 30 nm (green) and rG = 50 nm (magenta).
Note the different scales on the y-axes. The insert in panel B is a zoom on the lower,
left part of the figure for comparison with panel A. (C-D) Relative rate ρλd computed at
different distances (rG = 20 nm (red), rG = 30 nm (green) and rG = 50 nm (magenta)) of
the granule from the inactivating (C) or not-inactivating (D) CaV, and compared to the
case with rG = 10 nm.
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Granule coupled with k inactivating (or not-inactivating) CaVs

Figs. 3A-D show the expected exocytosis rate λYk computed by equation (33), for a granule
coupled with different numbers of inactivating CaVs, and at fixed distances between the
granule and the CaVs. It is clear that increasing the number of CaVs coupled with the
granule determines a rise of the exocytosis rate. Moreover, as the number of CaVs coupled
with the granule increases, the rise in the rate is more pronounced when the distance of
the granule from the CaVs is small. This is evident by considering the relative rate ρλk
defined by equation (34) (Fig. 3E). For instance, consider the cyan curves computed for
k = 4 with different types of lines denoting the different distances of the granule from the
CaVs. In this case the number of CaVs decreases by a factor of 2 (from 8 to 4) while the
exocytosis rate drops more than three fold for rG = 20 nm (dashed cyan line, ρλk < 0.3,
for V > −10 mV) and more than five fold for rG = 10 nm (solid cyan line, ρλk < 0.2, for
V > −10 mV).

As done for the case with one CaV, we performed the same analysis with k non-
inactivating CaVs coupled with the granule (see Figs. 3F-I). Also in this case, it is clear
that increasing the number of CaVs determines a rise of the exocytosis rate for the granule.
Surprisingly and in contrast with the case with inactivating CaVs, as the number of non-
inactivating CaVs increases, the relative rise in exocytosis rate is much higher at larger
distances from the CaVs, as shown in Fig. 3J reporting the relative rate ρλk . In case the
number of CaVs is reduced from 8 to 4, the exocytosis rate decreases by 2-2.5 fold when
the granule is nearby the CaVs (see the solid cyan curve for rG = 10 nm, 0.4 < ρλk < 0.5
with −20 mV < V < 40 mV), while it goes down five fold when the granule is far from
CaVs (see the dotted cyan curve for rG = 50 nm, 0.2 < ρλk < 0.3 with −20 mV < V < 40
mV). It seems that when the granule is surrounded by more non-inactivating CaVs, it is
not necessary that the granule is very close to the CaVs for triggering exocytosis.

Relationship between Ca2+ influx and exocytosis

To investigate the relationship between exocytosis and Ca2+ loading, we consider a set
of scenarios where the granule is coupled with different number of non-inactivating or
inactivating CaVs, placed very close (10 nm) or far (100 nm) from the granule. Fig. 4A
shows the calcium current at V = 0 mV, for different numbers of non-inactivating CaVs,
while Fig. 4B shows the corresponding cases with inactivating CaVs. In the latter, it
is evident how the calcium influx drops after few tens of ms due to the inactivation of
the CaVs. Figs. 4C and D show the probability of exocytosis pY (pY = P (S (t) = Y ))
vs. the integral of the Ca2+ current, QCa, defined by equation (9), for the granule placed
close to the CaV cluster, for different numbers of CaVs (rG = 10 nm). For the case of
non-inactivating CaVs (Fig. 4C), pY raises linearly with QCa, with slope that increases
with the number of CaVs, and then saturates due to the depletion of the granule pool as
pY approaches 1 (see also ref. [25]). For inactivating CaVs, we note a change of the slope
of the linearity between pY and QCa that is not only due to depletion (when y ≥ 0.5) but
also to near-complete inactivation of CaVs, in particular after 50 ms (Fig. 4D). Figs. 4E
and F show pY vs. QCa when the granule is placed far from CaVs (rG = 100 nm). Due to
the distance to CaVs, the calcium concentration at the granule increases only modestly,
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panel A. (E), (J) Relative rate ρλk obtained from the granule coupled with k inactivating/not-
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and hence a greater calcium influx QCa is needed to allow the granule to move through the
Markov Chain from N0 to Y and undergo exocytosis. This causes an evident initial delay
for the granule to be released, resulting in an initial convex relation between pY and QCa.
After this initial phase, for the case of non-inactivating CaVs (Fig. 4E), pY raises linearly
with QCa with slope depending on the number of CaVs. For higher QCa the slope of pY
slightly decreases in the case with k = 8 CaVs reflecting slight depletion of the granule
pool (pY ≈ 0.5 at QCa = 500 fF). For inactivating CaVs (Fig. 4F), as for the case with
rG = 10 nm, we note a change of the linearity between pY and QCa that is due to CaV
inactivation.

Conclusions

In this paper we devise a strategy that allows us to characterize the local interactions
between granules and CaVs. The methodology is similar to our approach for modelling
the local effect of CaVs on whole-cell BK currents [8]. We develop Markov chain models
describing the dynamics of a single granule coupled with one or more inactivating (or
non-inactivating) Ca2+ channels, and use phase-type distribution results [9] for estimating
the expected exocytosis rate.

We investigate how the release probability of a granule can be affected by varying the
number of CaVs and the distance of the (Ca2+ sensor of the) granule from CaVs. In
particular, from our analysis, we find that the distance between the granule and CaVs
is a major factor in determining the exocytosis rate, as we recently demonstrated and
quantified explicitly [23]. Further and in agreement with experiments [23], the simulations
presented here show that the increase of the number of CaVs coupled with the granule
determines a much higher rise of the exocytosis rate, which in the case of inactivating
CaVs is more pronounced when the granule is close to CaVs (≈ 10 nm), whereas for non-
inactivating CaVs the highest relative increase in rate is obtained when the CaVs are far
from CaVs (≈ 50 nm).

We also study the relationship between Ca2+ influx and exocytosis. The results of the
devised exocytosis model confirm that the granule secretion is generally linearly related
to the integral of Ca2+current, as experimentally observed [26, 27, 28, 29, 30, 31] and
theoretically justified [25]. Surprisingly, for the case of inactivating CaVs, our analysis
shows a change of the linear relation between pY andQCa due to near-complete inactivation
of CaV. This fact is due to the rather complex exocytosis model where the efficacy of Ca2+

influx in triggering exocytosis depends on the number of active CaVs, as clearly seen in
the case of non-inactivating CaVs (Figs. 4C and 4E), because of multiple steps of Ca2+

bindings before exocytosis. During inactivation the effective number of CaVs declines,
which has a similar effect as reducing the number of CaVs, and hence the slope of the
relation between exocytosis and QCa decreases. This finding reinforces the notion that
a concave relation between exocytosis and Ca2+ influx does not necessarily reflect pool
depletion [32] and provide a new example of such as scenario.
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