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Abstract: Electrical activity in neurons and other excitable cells is a result of complex interactions
between the system of ion channels, involving both global coupling (e.g., via voltage or bulk cytosolic
Ca2+concentration) of the channels, and local coupling in ion channel complexes (e.g., via local Ca2+

concentration surrounding Ca2+ channels (CaVs), the so-called Ca2+ nanodomains). We recently
devised a model of large-conductance BKCapotassium currents, and hence BKCa–CaV complexes
controlled locally by CaVs via Ca2+ nanodomains. We showed how different CaV types and
BKCa–CaV stoichiometries affect whole-cell electrical behavior. Ca2+ nanodomains are also important
for triggering exocytosis of hormone-containing granules, and in this regard, we implemented a
strategy to characterize the local interactions between granules and CaVs. In this study, we coupled
electrical and exocytosis models respecting the local effects via Ca2+ nanodomains. By simulating
scenarios with BKCa–CaV complexes with different stoichiometries in pituitary cells, we achieved two
main electrophysiological responses (continuous spiking or bursting) and investigated their effects
on the downstream exocytosis process. By varying the number and distance of CaVs coupled with
the granules, we found that bursting promotes exocytosis with faster rates than spiking. However, by
normalizing to Ca2+ influx, we found that bursting is only slightly more efficient than spiking when
CaVs are far away from granules, whereas no difference in efficiency between bursting and spiking is
observed with close granule-CaV coupling.

Keywords: mathematical modeling; Ca2+ dynamics; ion channel complex; electrical activity; exocytosis

1. Introduction

Mathematical modeling has played an important role in characterizing the electrical properties
of neurons and other excitable cells. In this field, Hodgkin and Huxley were the first to propose a
mathematical model for explaining ionic mechanisms underlying the generation and propagation
of action potentials (APs) giant squid axons [1]. In the Hodgkin–Huxley model and most of its
descendants, the system of ion channels is coupled globally via the membrane potential or the
bulk cytosolic Ca2+ concentration. However, some ion channels are colocalized, implying that the
activity of one channel may affect the other via local control: there is increasing evidence for direct
coupling between certain ion channels and Ca2+ channels (CaVs) forming ion channel complexes [2–4].
A prominent example of ion channel complexes is the BKCa–CaV complex: large-conductance,
Ca2+-activated K+channels (BKCa channels), ubiquitously expressed in excitable cells determining
the electrical behavior [3], form ion channel complexes with CaVs, with a stoichiometry of 1–4 CaVs
per BKCa channel [3,4]. Thus, the whole-cell population of BKCachannels is regulated both by global
coupling, via the membrane potential, and by local coupling, via the Ca2+ nanodomains below the
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mouth of the CaV channels [5–8], where the local Ca2+ concentration reaches the tens of µM that are
required for activating the BKCa channels at physiological voltages [3,9]. Cox [10] derived a Markov
chain (MC) model for characterizing the single BKCa–CaV complex with 1:1 stoichiometry, providing
important insight into the open probability of BKCachannels during depolarizations and action
potentials; for example, showing how inactivation of CaVs directly influence BKCa channel activity.
Recently, by applying MC theory [11], reaction-diffusion models [10] and time scale analysis [12] to a
more realistic BKCa–CaV complex with 1:n stoichiometry, we [13] obtained a mechanistically correct
model of the BKCa current, which respects the local effects of BKCa–CaV coupling, and can be inserted
in Hodgkin–Huxley-type models of whole-cell electrical activity: different CaV types and BKCa–CaV
stoichiometries affect BKCa channel activity and the resulting whole-cell electrical activity in neurons
and other excitable cells. This kind of local-global modeling is similar to previous work on Ca2+

dynamics in cardiac cells [14].
Here, we present a study on how different electrophysiological behaviors determine the

downstream Ca2+-regulated exocytosis process in endocrine cells, by which hormones are released
from cells. In most endocrine cells, hormones are contained in granules that, in response to a
series of cellular mechanisms culminating with an increase in the intracellular Ca2+ levels, fuse
with the cell membrane allowing the release of their content (i.e., hormones) into the extracellular
environment. The main mechanisms regulating hormone exocytosis are shared with exocytosis of
synaptic vesicles underlying neurotransmitter release in neurons [15,16]. Different proteins mediate
the process; in particular, the soluble N-ethylmaleimide sensitive factor attachment receptor proteins
(SNAREs) [17]: SNAP and syntaxin, which are located in the cell membrane and VAMP, also called
synaptobrevin, inserted into the vesicle/granule membrane. The v-SNAREs (v for vesicle) contained in
the granule can form, with t-SNAREs (t for target) inserted in the cell membrane, the so-called SNARE
complex [15], driving fusion of the two membranes, which—in the case of endocrine cells—allows the
hormone molecules contained in the granule to exit the granule and enter the blood stream. SNARE
complexes interact with other proteins, notably, Ca2+-sensing proteins, such as synaptotagmins, which
trigger exocytosis upon Ca2+ binding. Therefore, the local Ca2+ concentration at the Ca2+ sensor of the
exocytotic machinery is a key factor determining the probability (rate) of exocytosis of the secretory
granule [18–20]. Experimental evidence of local coupling between single granules and CaVs showed
that the exocytosis rate of a single granule increases significantly when it is close to CaVs [21]. Recently,
we developed a method [22] for characterizing the local interactions between the single granule and the
surrounding CaVs by exploiting a strategy that is similar to the methodology devised for describing the
BKCa current [13]: using absorbing MC models allows for achieving analytic results for the expected
exocytosis rate of a single granule, showing how coupling different numbers of CaVs at difference
distances with the granule determines different responses.

In the following, we use the devised BKCacurrent model [13] as an example for analyzing the
behavior (i.e., electrical activity) of a biologically realistic and important system (i.e., an endocrine
pituitary cell) composed of units (i.e., ion channels) that interact both globally and locally: varying
the number of CaVs per BKCa–CaV complex results in different electrophysiological responses of
pituitary cells, in particular, continuous spiking and so-called pseudo-plateau bursting, the latter
characterized by few small oscillations riding on a depolarized plateau. Then, we couple electrical
activity and exocytosis by combining the devised models [13,22] in order to investigate how local
BKCa–CaV coupling via continuous spiking or bursting in pituitary cells determine the downstream
exocytotic response, by varying the distance and number of CaVs coupled with the single granules.
In particular, we exploit MC models for describing the local coupling between CaVs and BKCa-channels,
and between CaVs and granules, and stationary approximations for characterizing the local Ca2+ levels,
which allow us to couple electrical activity and exocytosis in a straightforward manner. Moreover,
we reduce model complexity to achieve simplified ordinary differential equation (ODE) models that
respect the local control by CaVs of BKCa channels and granules.
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2. Results

2.1. Whole-Cell Electrical Activity Modeling Respecting Local Control

Local coupling of ion channels is important in determining whole-cell activity. BKCa–CaV
complexes provide an example of ion channel complexes, where the BKCaactivity is influenced
locally by associated CaVs, and differences in stoichiometry of the complex (1–4 CaV channels
per BKCa channel [3,4,23]) can affect not only single channel activity but also whole-cell behavior
significantly [13].

A model of pituitary cells has been used to study the role of BKCa channels in the generation of
so-called plateau bursting, which consists of a few small oscillations riding on a depolarized plateau,
and is important for secretion [24,25]. In the original model [26] the BKCa current was modeled as a
purely voltage-dependent current, neglecting Ca2+ dependency. In [13], we substituted this simplified
representation of the BKCa current with a concise model that respects the local effects of BKCa–CaV
coupling and can be inserted in the Hodgkin–Huxley-type model of electrical activity of pituitary
cells (see Methods, Equation (6)). For characterizing the whole-cell BKCa current IBK, the state of
every single BKCa channel does not need to be known; it is sufficient to determine the BKCa open
probability p(n)Y over time, where the superscript n indicates the number of CaVs coupled with the
single BKCachannel, and IBK in Equation (6) has the the following form:

IBK = gBK p(n)Y (V −VK) . (1)

2.1.1. BKCa–CaV Complex with 1:1 Stoichiometry

In the case of BKCa–CaV complex with 1:1 stoichiometry, in order to compute p(1)Y , we devised
a 6-state MC model obtained by coupling a 2-state model for the BKCa channel (Figure 1A), whose
parameters are set by fitting the available experimental data [10] (see Methods and Figure 1B) and a
3-state model for the CaV channel (Figure S1C). By assuming the corresponding 6-state ODE model and
using time-scale analysis (in particular, CaV inactivation is slow compared to other processes), we split
the model in two submodels, one including states with non-inactivated CaV (green box in Figure 1C)
and the other with inactivated CaV (blue box in Figure 1C). Moreover, the submodel describing the
BKCachannel activation in BKCa–CaV complex with non-inactivated CaV, denoted with m(1)

BK, can be
described by one ODE of Equation (13) (see Methods)—a quasi-steady state approximation. The BKCa

channels in BKCa–CaV complexes exhibit inactivation because of inactivation of the associated CaVs,
and with approximately identical dynamics, as found in experiments [27] and Monte Carlo simulations
(see Figure 1; [10]). Then, the open probability for BKCa–CaV complex with 1:1 stoichiometry, p(1)Y , can
be expressed as

p(1)Y = m(1)
BKh , (2)

with m(1)
BK given by Equation (13) and h represents the inactivation function of the CaVs (see Methods).

We make a further simplification assuming instantaneous CaV activation, since in many whole-cell
models (e.g., [26,28–30]), the Ca2+ currents are assumed to activate instantaneously: in this case,
i.e., instantaneous CaV activation, mCaV = mCaV,∞, where mCaV and mCaV,∞ represent CaV activation

variable and its steady-state, respectively (see Equations (8) and (9)); m(1)
BK is given by Equation (13)

with the approximations defined by Equations (16) and (17); and h = 1− b with b by Equation (10)
(see Methods).
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Figure 1. Modeling of BKCa–CaV complex with 1:1 stoichiometry. (A) Schematic representation
of the BKCamodel, where X and Y indicate the closed and open states of the BKCa channel. (B) Fit
to the experimental data [10] of the 2-state model of panel A: steady-state BKCa open probabilities
versus voltage at different Ca2+concentrations (different markers for different Ca2+ levels as indicated
in the legend) and the corresponding fit obtained by the model (dashed lines) (upper left plot); time
constants (in ms) versus voltage data at given Ca2+concentrations (see legend in each plot), and the
corresponding model fits (dashed lines). (C) Scheme indicating the six states of the devised MC model
for BKCa–CaV complex with 1:1 stoichiometry. CX, OX and BX correspond to the closed state for
the BKCa channel (X) coupled with the closed (C), open (O) and inactivated (B) states for the CaV,
respectively, and CY, OY and BY correspond to the open state for the BKCa channel (Y) coupled with the
closed (C), open (O) and inactivated (B) states for the CaV, respectively. The green box indicates states
with non-inactivated CaV, whereas the blue box highlights states with inactivated CaV. (D) Simulated
open probabilities, in response to three different voltage steps, from −80 mV to −20 (left), 0 (middle)
and 20 mV (right), for BKCa channels controlled by CaVs in complexes with 1:1 stoichiometry, obtained
from different models: the original 70-state Markov chain model (gray; [10]); the 6-state Markov
chain model (shown in panel C—black); the ODE model corresponding to the 6-state model (blue;

Equation (12)); the simplified Hodgkin–Huxley-type model, p(1)Y = m(1)
BKh, where m(1)

BK is given by
Equations (13)–(15) (dashed red) and the corresponding model assuming instantaneous activation

mCaV = mCaV,∞ with m(1)
BK defined by Equation (13) with the approximations of Equations (16) and (17)

(dash-dotted green). (E–H) Simulated BKCa currents in response to the different voltage steps (from
−80 mV to from −40 mV to 40 mV in 20 mV increments for 20 ms and then back to −80 mV) obtained
from the different models as in D. In D–H the average of one-thousand Monte Carlo simulations for
each MC models is shown.
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As performed in [13], we compared the devised 6-state MC model of the BK–CaV complex with
the first stochastic model of the gating of this complex devised by Cox [10], obtained by coupling
the 10-state MC model for the BKCachannel with a 7-state MC model for the CaV channel (see
Methods and Figure S1), resulting in a 70-state MC model. The simulated open probabilities were
very similar for both the models in response to different voltage steps, from −80 mV to −20, 0
and 20 mV (compare the dotted gray curve (70-state MC model) with the dash-dotted black one
(6-state MC model)). Moreover, the open probability obtained by the 6-state ODE model (the solid
blue curve) approximates well, the average fraction of open channels calculated from Monte Carlo
simulations of the corresponding 6-state MC model, and the open-probability expression m(1)

BKh of
Equation (2) (dashed red curve). Additionally, the further simplification assuming instantaneous
CaV activation (dash-dotted green curve; m(1)

BK given by Equation (13) with the approximations of
Equations (16) and (17)) approximates the full system decently, except for the initial phase before CaV
activation reaches equilibrium. Finally, Figure 1E–H shows how the simplified BKCa models reproduce,
satisfactorily, the whole-cell BKCa currents IBK for each step in voltage (IBK defined by Equation (1) with
n = 1, where gBK = NBK ḡBK, with ḡBK = 100 pF [31] the single-channel conductance and NBK = 1000
the number of BKCa channels): the simplified 6-state Markov chain model (black plots in Figure 1F–H)
and the corresponding 6-state ODE model (blue plots in Figure 1F) approximate the 70-state Markov
chain model current very well (Figure 1E; [10]); the simplified Hodgkin–Huxley-type model current
for the BKCachannel with p(1)Y = m(1)

BKh (Equation (2); red plots in Figure 1G), and the corresponding

model assuming instantaneous activation of the CaV currents (m(1)
BK given by Equation (13) with the

approximations of Equations (16) and (17); green plots in Figure 1H) also work very well.

2.1.2. BKCa–CaV Complex with 1:n Stoichiometry

In the case of more than one CaV per BKCa channel, the linear buffer approximation is used to
compute the Ca2+ profile from n channels by superimposing n nanodomains found for single, isolated
CaVs. Then, the MC model of Figure 1C can be extended to a model with 3× n× 2 states. However,
as discussed previously, we assumed that, on a fast timescale, the fraction h of non-inactivated CaVs is
constant, and note that the BKCa channel closes rapidly when all CaVs in the complex are inactivated.
Hence, for the case of 1:n BKCa–CaV stoichiometry, we split the system according to the number k of
non-inactivated CaVs: the BKCa activation can be described on a fast time scale by the Markov chain
model of Figure 2A with 2× (k + 1) states. As for the case of 1:1 stoichiometry, the dynamics of the
BKCa open probability in complexes with k non-inactivated CaVs can be approximated by a single
ODE (see m(k)

BK defined by (26)). Then, the open probability of the BKCa channel coupled with n CaVs,

p(n)Y , can be estimated by taking into account that the probability of k non-inactivated CaVs being

present in a complex with n CaVs, (n
k)h

k(1− h)n−k. Then, p(n)Y can be expressed as

p(n)Y =
n

∑
k=1

(
n
k

)
hk(1− h)n−km(k)

BK . (3)

As performed in [13], we compared the simulated open probabilities obtained from the different
models in response to a voltage step from −80 to 0 mV, and the results reported in Figure 2C show
how the different ODE models exploited for computing m(k)

BK in Equation (3) (blue curve, m(k)
BK by

Equation (18); red curve, m(k)
BK by Equation (26); green curve, m(k)

BK by Equation (26) with instantaneous
CaV activation defined by Equations (28) and (29)) effectively approximate the Monte Carlo simulations
of the full Markov Chain model with 3× n× 2 states (black curve).
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The whole-cell BKCa current defined by Equation (1), with p(n)Y given by (3), involves the reduced

model n ODEs (Equation 26) for the activation variables m(k)
BK with k = 1, . . . , n. Note that if the n CaVs

do not inactivate, Equation (1) reduces to

IBK = gBKm(n)
BK (V −VK) , (4)

which involves one ODE (Equation 26) for m(n)
BK .

Figure 2D–F shows the simulated whole-cell BKCacurrents IBK for the case of 1:4 BKCa–CaV
stoichiometry (defined by Equation (1), where gBK = NBK ḡBK, with ḡBK = 100 pF [31] as in the
previous section, while NBK is lower and equal to 700 in order to reproduce the experimental data;
i.e., the maximum amplitude values reported in [10,32]) obtained from the different ODE models
(exploited for computing m(k)

BK) in response to different voltage steps and compared with the simulated
BKCacurrents obtained from 3× 4× 2 MC model (n = 4). In all the cases, the different ODE models
for characterizing m(k)

BK (Equation (18) (blue curves), Equation (26) (red curves) and Equation (26) with
Equations (28) and (29) (green curves)) approximate very well the Monte Carlo simulations (black
curve) obtained from the 3× 4× 2 MC model.

2.1.3. Concise Whole-Cell Modeling Respecting Local Control

The Hodgkin–Huxley-type model of the BKCa current defined by Equation (1), that allows us to
take into account the local interactions in BKCa–CaV complexes, can be exploited to investigate how
the stoichiometry of the complex affects whole-cell electrical behavior of pituitary cells.

In the case of BKCa–CaV complexes with 1:1 stoichiometry, spiking electrical activity is observed as
shown in Figure 2G, since insufficient BKCa current is generated. The different plots in Figure 2G (upper,
middle and lower) correspond to different ODE models used for computing the open probability of
the single complex p(1)Y defined in Equation (1) for n = 1: The 4-state ODE model (BX and BY are

not considered since CaV does not inactivate) with p(1)Y defined by Equation (12) and with pBY = 0

(upper). The single ODE model for m(1)
BK defined by Equation (13) with CaV kinetics leading to

p(1)Y = m(1)
BK (Equation (2) since h = 1) (middle), with simplifications for m(1)

BK of Equation (13) assuming
instantaneous CaV activation by Equations (16) and (17) (lower).

In contrast, in the case of BKCa–CaV complexes with 1:n stoichiometry with n > 1, plateau
bursting appears with the number of small oscillations per burst depending on the number of CaVs
per BKCa–CaV complex, as shown in Figure 2H,I for n = 2 and n = 4, respectively. The different plots
in Figure 2H,I (upper, middle and lower) correspond to the different ODE models used for computing
m(n)

BK , and hence, the resulting IBK of Equation (4)—m(n)
BK , given by Equation (18) (upper blue plots) by

solving the complete ODE model of 2 (k + 1) equations; m(n)
BK , given by single ODE of Equation (26)

(middle curves); m(n)
BK , given by Equation (26) with Equations (28) and (29) by assuming instantaneous

CaV activation, mCaV = mCaV,∞ (lower curves).

Although the quantitative behavior is independent of the approximation for m(n)
BK , minor

qualitative differences are present. The approximation given by Equation (26) reproduces very well,
the behavior obtained from the complete ODE model for the activation of the BKCa channel surrounded
by n non-inactivated CaVs defined by Equation (18) (Figure 2G–I, upper and middle panels), whereas
the further simplification given by Equations (28) and (29) produces smaller and more spikes per burst
(lower panels). Nonetheless, considering parameter uncertainties and experimental variations, even
Equations (28) and (29) produce reliable results.
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Figure 2. Multiple CaVs per BKCa–CaV complex: from local to whole-cell behavior. (A) Markov chain
(MC) model for complexes with k non-inactivated CaVs. (B) Steady-state BKCa activation functions,

m(k)
BK (upper plot), and time-constants, τ

(k)
BK (lower), for BKCa channels in complexes with k = 1 (cyan),

2 (green) or 4 (red) CaVs, given from 1-ODE by (26) (solid) and from the simplification assuming
mCaV = mCaV,∞ by Equations (28) and (29) (dashed). The gray dashed curve shows the CaV activation

function mCaV,∞, for comparison. (C) Simulated BKCa open probabilities, p(4)Y , for the case of 1:4
BKCa–CaV stoichiometry, in response to a voltage step from –80 mV to 0 mV, obtained from the MC
model of 3× 4× 2 states (black), from the 2 (k + 1) ODEs describing the states in panel A coupled to

CaV inactivation (p(4)Y defined by Equation (3) with m(k)
BK given by Equation (18)—solid blue), from the

reduced ODE model considering CaV activation kinetics (p(4)Y by Equation (3) with m(k)
BK given from

1-ODE by (26)— dashed red), and from the simplification assuming mCaV = mCaV,∞ (Equation (26) for

m(k)
BK with Equations (28) and (29)—dash-dotted green). (D–F) Simulated whole-cell BKCa currents, IBK ,

defined by Equation (1) in response to the different voltage steps (as in Figure 1E–H) obtained from

the different ODE models used for characterizing m(k)
BK , as in (C): m(k)

BK given by Equation (18) (blue

curves in panel D); m(k)
BK given by Equation (26) (red curves in panel E); m(k)

BK given by Equation (26)
with assumptions of Equations (28) and (29) (green curves in panel F). Panels C–F show the average of
one-thousand Monte Carlo simulations for the MC model of 3× 4× 2 states (black). (G–I) Simulated
electrical activity in a model of lactotrophs [26] with 1:n BKCa–CaV complexes, and with n = 1 (G),

n = 2 (H) or n = 4 (I). IBK is described by Equation (4), where m(n)
BK is modeled by Equation (18) (upper

plots), Equation (26) (middle) and Equation (26) with assumptions of Equations (28) and (29) (lower).
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2.2. Coupling Electrical Activity with Exocytosis

We investigated how cellular electrical activity regulates the downstream exocytosis process.
We modeled the single granule containing the hormones released from the cell by Ca2+-regulated
exocytosis process with the 5-state MC model of Figure 3A: the granule can be in one of four states
depending on the number of Ca2+ ions bound to the Ca2+sensor on the granule (states Gi, with
i = 0, . . . 3, representing the number of Ca2+ ions bound to the granule sensor) before fusing with
the membrane and releasing its hormone content (state Y) (see Methods for more details). The Ca2+

concentration at the granule sensor, CaCaV (rG) given by Equation (7) with r = rG being the distance
from the CaV pore to the Ca2+ sensor on the granule, drives the exocytosis MC model, allowing the
granule to modify its state through the Markov chain from G0 to Y and undergo exocytosis.

In the following, in order to characterize the local interactions between granules and CaVs,
we analyzed the property of the secretory complex obtained by coupling a single granule with one or
more CaVs: we coupled the granule, described by the 5-state MC model of Figure 3A, with n CaVs,
each one described by the 3-state MC model of Figure S1A, and obtained the (5× n× 3)-state MC
model, as developed in [22]. For the electrical activity model in pituitary cells defined by Equation (6),
CaVs do not inactivate, and the exocytosis can be described by the 5 (n + 1)-state MC model shown
in Figure 3C. Using this model, the granule state depends on the CaVs states. In particular, for the
case with one CaV, the Ca2+ concentration at the granule sensor needed for triggering exocytosis,
is equal to a basal level (Cac) when the CaV is closed or inactivated, and is equal to CaCaV (rG)

defined by Equation (7) when the CaVs is open; for a more general case with n CaVs, the linear buffer
approximation [7] is used to summarize Ca2+ levels at the granule sensor when more than one CaV
is open, as performed for BKCa–CaV complex. In [22], we used phase-type distribution results for
Markov chains [11] for estimating the expected exocytosis rate (the release probability) of a single
granule. We found that the distance rG is a major factor in determining the exocytosis rate, as recently
demonstrated and quantified explicitly [21]. Furthermore, and in agreement with the experiments [21],
the results showed that increasing the number of CaVs coupled with the granule determines a much
higher rise of the exocytosis rate, which in the case of inactivating CaVs is more pronounced when
the granule is close to CaVs (about 10 nm), whereas for non-inactivating CaVs the highest relative
increase in rate is obtained when the granule is far from CaVs (about 50 nm), suggesting that it is
not necessary that the granule is very close to CaVs for triggering exocytosis. However, in [22] we
did not take into account the coupling between electrical activity and exocytosis, assuming constant
values for the membrane potential. Here, the Ca2+dynamics, and hence, the CaVs states, are driven
by the electrophysiological behavior, which depends on the local interactions between CaVs and
BKCa channels, as shown in the previous section. In particular, we studied how the two typical
electrophysiological behaviors (spiking or bursting), observed in pituitary cells due to different local
coupling between CaVs and BKCachannels, determine the granule release by varying the number and
the distance of CaVs coupled with the granules.
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Figure 3. Models for exocytosis of single granule and granule-CaV complex. (A) The 5-state model for
exocytosis of a single granule adjacent to the plasma membrane, where G0 corresponds to the state
with no bound Ca2+ ions, G1 to one, G2 to two and G3 to three. (B) Model of the granule-CaV complex
where the granule is described by the model shown in panel A and the CaV by the model shown in
Figure S1A. (C) Model of the granule coupled with n non-inactivating CaVs, where the granule is
described by the model shown in panel A and the CaV by a single-channel gating with two states,
closed, C, and open, O.
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Spiking versus Bursting on Evoking Exocytosis

Figure 4A–D shows the time evolution of the exocytosis probability of a single granule coupled
with different numbers of CaVs placed at difference distances. In each panel, for the granule coupled
with n CaVs placed at fixed distance rG, we assumed that CaVs dynamics are driven by continuous
spiking in the form of Figure 2G (upper plot) or bursting, as in Figure 2H (upper plot). When the CaVs
are close to the granule (see Figure 4A,B for rG = 10 and 20 nm, respectively), the bursting pattern
(dash-dotted lines) evokes release at a higher rate than the spiking pattern (solid lines) for a reduced
number of CaVs coupled to the granule (the blue and magenta lines for n = 1 and 2, respectively),
while this difference in the rate decreases when the number of CaVs increases (see the cyan and black
lines for n = 4 and 8, respectively). When the CaV are far from the granule (see Figure 4C,D for
rG = 50 and 100 nm, respectively), bursting promotes exocytosis with faster rates than spiking even for
a higher number of CaVs coupled to the granule. This difference in secretion rate between spiking and
bursting is mainly due to larger amount of Ca2+ entering during bursting, which becomes negligible
when the number of CaVs is high and close to the granule. In this scenario, the Ca2+concentrations at
the exocytotic machinery are in saturation regimes for both the electrical patterns.

Therefore, in order to evaluate the exocytotic machinery performance with the same Ca2+ entry,
we analyzed the exocytosis probability with respect to the total Ca2+ influx, QCa. Figure 4E–H shows
the granule release probability versus QCa for the same cases simulated in Figure 4A–D. From this
analysis, it is seems that the efficiency in evoking exocytosis between spiking and bursting is similar.
This finding is also confirmed by fitting the simulated responses using an exponential function fe

defined as
fe = 1− e−q QCa , (5)

with the aim to estimate the parameter q, whose value can provide insight into the efficiency in evoking
granule release (a high value of q means high efficiency). Figure 5A shows the trend of q with respect
to the distance rG of the granule from different numbers of coupled CaVs (different colors) for the two
electrical patterns, spiking (solid lines) and bursting (dash-dotted lines). When the granule is close to
CaVs, independently of their number, bursting and spiking have a similar effect on exocytosis, whereas,
when the granule is far from CaVs, in the case of few CaVs (one or two), bursting is slightly more
efficient than spiking. For all the cases, the fitting approximates the simulated data well, as shown for
two cases in Figure 5B: the upper plot, reporting the simulated exocytosis probabilities of a granule at
distance rG = 20 nm from four CaVs for spiking and bursting patterns, and the corresponding fitting
shows how there is no virtually difference between the two electrical patterns in evoking exocytosis; the
lower plot, displaying the simulated exocytosis probabilities of a granule at distance rG = 100 nm from
two CaVs for spiking and bursting patterns and the corresponding fitting, shows how there is a small
difference between spiking and bursting, with the latter resulting more efficient in granule release.
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Figure 4. Probability of exocytosis for single granule coupled with n CaVs driven by spiking or
bursting. (A–D). Probability of exocytosis versus time for the granule at fixed distances rG from n CaVs
(n = 1 (blue curves), n = 2 (magenta curves), n = 4 (cyan curves) and n = 8 (black curves), driven by
spiking (solid lines) or bursting (dash-dotted lines)): rG = 10 nm (A); rG = 20 nm (B); rG = 50 nm
(C); rG = 100 nm (D). (E–H) Probability of exocytosis versus total Ca2+ influx, QCa (computed by
integrating Ca2+ current over the time), for panels (A–D) respectively. Each panel shows the average of
one-thousand Monte Carlo simulations, which were performed for the MC exocytosis model.
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Figure 5. Fitting to the simulated exocytosis probabilities. (A) Trend (in logarithmic scale) of q
parameter of function fe defined by Equation (5) with respect to the distance rG of the granule from
n CaVs (n = 1 (blue curves), n = 2 (magenta curves), n = 4 (cyan curves) and n = 8 (black curves)),
driven by spiking (solid lines) or bursting (dash-dotted lines). Note that for each estimate the 95%
confidence interval is very limited. (B) Fit to the to the simulated exocytosis probabilities versus QCa

for the granule at rG = 20 from four CaVs (upper plot) and for the granule at rG = 100 from two CaVs.
The simulated responses are the averages of one-thousand Monte Carlo simulations.

3. Discussion

In this paper, we show the role of mathematical modeling as an important tool for investigating
excitable cells with focus on ion Ca2+channels and their local interactions with BKCa potassium
channels in influencing electrical activity of pituitary cells and with hormone-containing granules
determining the granule release by exocytosis process. Therefore, whole-cell models have to be
consistent with the local mechanisms operating at molecular levels, and hence, we show how to exploit
all the available information in a coherent and structural way by using mathematical modeling in
order to handle the complexity of cellular electrophysiology.

In order to handle the local interactions in BKCa–CaV complexes with 1:n stoichiometry, we used
a stochastic model based on Markov chain theory (of 3× n× 2 states; see Figure 2), as a starting point
for analyzing the single complex dynamics. However, the fluctuations resulting from stochastic gating
kinetics observed at the molecular level tend to become negligible as a system’s size approaches the
whole-cell scale, where, for describing the electrical behavior, it is not necessary to know the state
of each single complex, but it is sufficient to know the open probability of BKCa channel population.
Therefore, we used the corresponding deterministic model, and by exploiting time-scale analysis
and quasi-steady state approximation, we achieved a concise, deterministic Hodgkin–Huxley-type
model of BKCa currents defined by Equations (1) and (3). This approach allowed us not only to reduce
model complexity and computational costs of the stochastic model, but also to achieve an explicit
interpretation of the parameters and their effects on whole-cell behavior through the direct read of
the formula of the simplified deterministic model: We showed that increasing the number of CaVs
coupled with BKCa channel determines a left shift of the BKCa activation curve, since the probability of
at least one CaV being open is greater with more channels in the complex (see Equations (28) and (29)
assuming instantaneous activation of CaVs). We also derived in [13] an analytic expression for the time
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to first opening of a BKCa channel, providing theoretical insight into stochastic simulation results. Then,
the concise Hodgkin–Huxley-type model of whole-cell BKCa currents, that allows taking into account
local control by CaVs in BKCa–CaV complexes, can be inserted into models of cellular electrical activity,
showing, in particular, how different BKCa–CaV stoichiometries cause different electrophysiological
responses, including continuous spiking and bursting in pituitary cells. In [13], we also showed how
BKCa–CaV stoichiometry controls the fast after-hyperpolarization (fAHP) in a model of hypothalamic
neurosecretory cells; i.e., the undershoot seen after an action potential controlling firing frequency
and transmitter release [3,33]. Moreover, coupling BKCa channels with different CaV types affects
electrical activity differently in human pancreatic beta-cells, and further insight into the control
by CaVs of BKCachannels, whose block stimulates insulin secretion in human [34] and mouse [35]
beta-cells, may lead to a better understanding of beta-cell function and how it becomes disturbed
in diabetes. Furthermore, this approach should be relatively straightforward to apply to other ion
channel complexes; e.g., the CaV3–Kv4 complex [2].

Recently, we [22] exploited the methodology devised for modeling the BKCa currents for handling
the local interactions between granules and CaVs, and specifically, by using phase-type distribution
results for Markov chains [11], we obtained analytic results for the expected exocytosis rate of a
granule coupled with different numbers of CaVs placed at different distances. We also exploited
a quasi-steady state approximation for the corresponding ODE model of the 5-state MC model for
exocytosis of a single granule adjacent to the plasma membrane, as shown in Figure 3A, in order to
reduce the model complexity, especially in the case of the granule coupled with n CaVs. However,
in this case, the quasi-stead approximation only works for the final state of the chain (i.e., state G3),
before the granule can fuse with the cell membrane (i.e., state Y), since its dynamics are the fastest.
The sequence of the different states of the MC for the granule before fusing, according to the number of
Ca2+ ions bound to the Ca2+ sensor on the granule, allows us to reproduce the delayed exocytosis with
respect to a raise in the calcium concentration, as observed by flash-release experiments [36–38], and in
this study, we used the complete MC models of Figure 3 for describing granule exocytosis. Hence,
by modeling the local Ca2+ dynamics, we coupled exocytosis and electrical models with the aim to
investigate how the two main electrophysiological behaviors in pituitary cells, continuous spiking
and bursting, affect the downstream exocytosis process. From our results, we found that, surprisingly,
bursting is only slightly more efficient than spiking, and only when CaVs are few and far from the
granule. These differences to previous findings [25] can be explained by the fact that bursting has
an important role in the resupply of the primed granule pool, which depends on the global, rather
than local, Ca2+ concentration. Indeed, as experimentally observed [39], global Ca2+ concentration
(i.e., the bulk cytosolic Ca2+ concentration) is higher during bursting than spiking. We did not model
the resupply, since we assumed that the granule was already primed for exocytosis.

For our aims, we used steady-state reaction-diffusion equations for characterizing Ca2+ levels,
in particular, for calculating calcium concentrations at ion channel BKCa–CaV complexes and at
granules, as performed in previous works: Cox [10] found that, for computing Ca2+ levels at a
BKCa channel coupled with one CaV, steady-state solutions of reaction-diffusion equations solved by
CalC approximate the numerical solutions of these equations well, and we confirmed these results
in [13], assuming more realistic cases with BKCa channel coupled with n CaVs. In order to get a
deeper description of the Ca2+ levels, we can exploit compartmental modeling, as performed in our
previous work [40], where we characterized the intracellular Ca2+ dynamics in glucagon-secreting
pancreatic alpha-cells. Compartmental modeling allows us to couple electrical activity and exocytosis,
providing a deeper knowledge of the relative contributions of the various sub-cellular compartments
(Ca2+ nanodomains, sub-membrane compartment, bulk cytosol and endoplasmic reticulum) involved
in exocytosis.
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4. Methods

4.1. Electrophysiological Model of Pituitary cells

The original model of pituitary cells [26] included a single Ca2+ current (ICa), a delayed-rectifier
K+ current (IK), a Ca2+-gated SK current (ISK) and a leak current (Ileak), in addition to the BKCa

current which was modeled as a purely voltage-dependent current, neglecting Ca2+ dependency.
We substituted this simplified representation of the BKCa current with our concise BKCa model
controlled by CaVs in complexes. Then, the dynamics of membrane potential V are described by the
following ODE:

C
dV
dt

= −(ICa + IK + ISK + IBK + Ileak), (6)

where C is the membrane capacitance and IBK is defined by Equation (4) since CaVs do not inactivate.
All the other currents are modeled as in [26]. In order to achieve a Hodgkin–Huxley-type model of
BKCa currents (Equation (4)) that take into account local control in BKCa–CaV complexes with different
stoichiometries, we first devised a model of a single-channel gating for the BKCa channel and then we
coupled the model with different number of CaVs, each one described by a standard 3-state model,
which can be reduced to two states, since CaVs do not inactivate, as reported in the following.

4.1.1. BKCa Channel Modeling

For describing the BKCachannel, we used a single-channel gating with two states, as shown in
Figure 1A, where X corresponds to the closed state and Y to the open state. The dynamics of the
channel are determined by voltage and calcium-dependent rates, k−, and k+, describing the transition
from the open to close state and from close to open state, respectively. By assuming that, for fixed
Ca2+ concentration (Ca), BKCa activity is described by a Boltzmann function [9,27,41] and that the
slope parameter of the Boltzmann function is independent of Ca, a reasonable assumption for Ca2+

concentrations above 1 µM [10,41,42], as expected in BKCa–CaV complexes [3,10], in [13], we showed
that k− and k+ can be expressed as a product of voltage and Ca2+ -dependent terms (w−(V) and w+(V)

are the voltage dependent rates, f−(Ca) and f+(Ca) the Ca2+-dependent rates; then, k− = w− f−,
k+ = w+ f+; see [13] for mathematical expressions). Figure 1B shows the fitting to the experimental
data [10], consisting of BKCa open probabilities and time constants as functions of voltage, at different
Ca2+ concentrations, by using for k− and k+—the optimal parameters estimated in [13].

We also reproduced the dynamics of a more complex model for describing the BKCachannel
proposed by Cox’s lab [10,42]. They assumed that each alpha subunit (four subunits overall), four of
which compose the tetrameric structure of the channel [43], has a single Ca2+ binding site and a single
voltage sensor, and through simplifications, they obtained a 10-state model, where each state can have
from zero to four bound Ca2+ ions and be open or closed. As shown in [10], the 10-state model is able to
reproduce the characteristics and dynamics of the BKCa channel by fitting BKCa open probabilities and
time constants as functions of voltage, at different Ca2+ concentrations. Note that, although the model
is complex, it represents an empirical model: individual rate constants are not likely correspond to any
real calcium binding events or movements of the channel’s voltage sensors, since real BKCacontains
at least three Ca2+ binding sites (a low and two high-affinity calcium binding sites) [43–45] and four
voltage sensor per subunit [46].

4.1.2. CaV Modeling

We described CaV by using the 3-state ODE model of Figure S1A (see Equations in [13]), where
C corresponds to the closed state, O to the open state and B to the inactivated (blocked) state of the
calcium channel [47]. α and β represent the voltage-dependent Ca2+ channel opening rate and closing
rate, respectively, and have the forms as in [47]; γ is a constant reverse reactivation rate and δ represents
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the Ca2+-dependent rate for channel inactivation, which is determined by the Ca2+ concentration at
the Ca2+ sensor, CaCaV (r), having the following form by using reaction-diffusion theory [7,10,48]:

CaCaV (r) =
iCamax

8πrDCaF
exp

 −r√
DCa

k+B [Btotal ]

 . (7)

r represents the distance of the sensor from the channel pore (in this case r = 7 nm) and
iCamax = ḡCa(V − VCa) is the single-channel Ca2+ current with ḡCa the single-channel conductance
and VCa the Ca2+ reversal potential. The formula defined by Equation (7), called excess buffer
approximation (EBA), is based on the assumption that the buffer is unsaturable [48], while another
common formula, called rapid buffer approximation (RBA), is valid for buffers that are saturated
near an open channel and have Ca2+ binding kinetics that are rapid relative to Ca2+diffusion [49,50].
Here, we used EBA, as was done by Cox in his work [10], from which we took the data for our
study. Cox found that EBA well approximates the solutions of reaction-diffusion equations solved
by the simulation software CalC [51] for computing Ca2+ levels at BKCa channel with the buffer
conditions specified in his work, and we confirmed these results in [13] with more realistic cases with
BK channel coupled with n CaVs. Note that for the single-channel Ca2+ current iCamax , we use the same
formalism used by Cox (Ohm’s law), although the use of the Goldman–Hodgkin–Katz equation may
be more appropriate.

As shown in [47], the processes of activation and inactivation can be approximately separated in
time, since activation is much faster than inactivation. In particular, we achieve the following model
for the CaV activation variable, mCaV ,

dmCaV
dt

=
mCaV,∞ −mCaV

τm
, (8)

where

mCaV,∞ =
α

α + β
, τm =

1
α + β

, (9)

and the following equation for inactivation

db
dt

= mCaV,∞δ− (mCaV,∞δ + γ)b. (10)

Therefore, assuming instantaneous activation, mCaV = mCaV,∞, the 3-state system can be
approximated by 1-state ODE model described by Equation (10). Note that we define with h the
CaV inactivation function, representing the fraction of Ca2+ channels not inactivated, h = o + c, where
o and c represent the state variables of 3-state system of Figure S1A. For 1-state model, h = 1− b,
with b given by Equation (10).

We also reproduced a more complex model for describing CaVs, proposed by Cox [10], based
on the model of Boland and Bean [52], where the channel is described by a 7-state Markov chain
(Figure S1B), with the states Ci (i = 0, . . . , 4) used for representing the movements of four voltage
sensors. Here, the transitions labeled α and β represent the movements of four voltage sensors and are
voltage-dependent, having the forms as in [47]. When all four subunits have moved to an activated
position, i.e., the channel is in state C4, the complex can undergo a final voltage-independent step to
the open state O with a constant rate ε; ζ represents the reverse rate from O to C4. The inactivation rate
δ and the reverse reactivation rate γ have the form as for the 3-state model.

Figure S1C shows the fitting to the data [10] (the red circles in the plots; i.e., the mean values of
peak open probabilities (upper plot) and time constants (lower plot)) of the 3-state ODE model (the
blue curves) and 7-state Markov chain (the gray curves), both satisfactorily reproducing activation



Int. J. Mol. Sci. 2019, 20, 6057 16 of 23

curves and times. For the 3-state ODE model, we used the estimated parameters reported in [13].
Moreover, Figure S1D shows the simulated CaV open probabilities in response to three different
voltage steps from −80 mV to −20 (left), 0 (middle) and 20 mV (right), obtained from the 7-state
Markov chain model (gray curves), the 3-state ODE model (blue curves) and the corresponding 3-state
Markov chain model (dash-dotted black curves), and the 1-state ODE model defined by Equation (10)
assuming instantaneous activation mCaV = mCaV,∞ (green curves). The CaV open probabilities for
the 3-state ODE model and the corresponding 3-state MC model in response to the different voltage
steps approximate the 7-state MC model very well. Note that in response to voltage step from −80 to
−20 mV (see left plot in Figure S1D), the 7-state MC model shows an initial delay for the CaV open
probability (see dash-dotted gray plot) due to an overestimation of the time constant of the model
(compare the gray dash-dotted curve with the red data in the lower plot in Figure 1C for V = −20 mV).
Finally, Figure S1F–H shows the whole-cell CaV currents of the different models with different step
voltages (Figure S1E). The whole-cell CaV current is defined by using the Hodgkin–Huxley formalism:

ICaV = NCaV ḡCamCaVhCaV (V −VCa) , (11)

where NCaV = 1000 is the number of CaV channels, each one characterized by a single channel
conductance ḡCa (ḡCa = 2.8 pS as in [53] for CaV2.1). mCaV and hCaV are, respectively, the activation
and inactivation variables of the channel: for the 3-state ODE model, mCaVhCaV = o, where o is the state
variable corresponding to the open state of the channel; for the simplified 1-state ODE model, assuming
instantaneous activation of the CaV currents, mCaV = mCaV,∞ by Equation (9) and hCaV = 1− b by
solving the single ODE model defined by Equation (10); for the 7-state MC model, mCaVhCaV = pO,
where pO represents the probability to be in state O for the MC of Figure S1B. As for the CaV open
probabilities, the 3-state ODE model current approximates the 7-state Markov chain model current very
well for each step voltage (Figure S1F,G). Additionally, the further simplification for the 3-state ODE
model assuming instantaneous activation of the CaV currents (green plots in Figure S1H) provides a
good approximation of the Monte Carlo simulations.

4.1.3. BKCa Channel Open Probability for BKCa–CaV Complex with 1:1 Stoichiometry

First, we coupled the 2-state model devised for the BKCachannel with the 3-state model for CaV,
resulting in a 6-state MC model for achieving a concise model of whole-cell BK current (Equation (1))
that respects the local effects of BKCa–CaV coupling. Figure 1C shows a cartoon of the model of the
devised BKCa–CaV complex with 1:1 stoichiometry: CX, OX and BX correspond to the closed state
for the BKCa channel (X) coupled with the closed (C), open (O) and inactivated (B) states for the CaV,
respectively, and CY, OY and BY correspond to the open state for the BKCa channel (Y) coupled with
the closed (C), open (O) and inactivated (B) states for the CaV, respectively. The parameters k−c and k−o
(k+c and k+o ) are functions of the calcium concentration at the BKCa channel when the associated CaV is
closed, Cac, or inactivated, Cab (i.e., Cac = Cab), and to the calcium concentration at the BKCa channel
when the CaV is open, Cao. In particular, the Ca2+ levels sensed by the BKCa channel are assumed
to reach steady-state immediately after CaV closure or opening [10]; in this case, Cac is set equal to
0.2 µM (background Ca2+ concentration) and Cao is given by Equation (7) with r = 13 nm representing
the distance between CaV and BKCa channels [3,10]. At V = 0 mV, Cao ≈ 19 µM. Note that k+c ≈ 0,
since the background Ca2+ concentration Cac is much below the levels needed for BKCa activation
at physiological voltages; i.e., the probability of BKCa opening when the CaV is closed is practically
zero: this approximation is supported by the fact that Ca2+ influx via CaVs is needed to open BKCa

channels [54], and that the sub-membrane Ca2+ concentration of some hundreds of nM that a BKCa

in a complex without open CaVs would sense, is too low to activate BKCa channels at physiological
voltages [3,10].

Next, we evaluated the dynamics of the deterministic ODE model corresponding to the 6-state
MC model. The model is described by the state-variables pZ, with Z ∈ {CX, CY, OX, OY, BX, BY},
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representing the probabilities of the complex to be in one of the six states of the model. Then, the BKCa

open probability, p(1)Y , is given as

p(1)Y = pCY + pOY + pBY . (12)

The 6-state ODE model characterizing p(1)Y (which can be described by a system of five ODEs
because the probabilities sum to 1) can be further simplified by applying timescale analysis. Indeed,
the inactivation and reactivation of CaV are slower than (de-)activation; thus, on a fast timescale,
the fraction of non-inactivated CaVs (h = 1− (pBX + pBY)) is assumed to be constant, and the model
can be split into two submodels with, respectively, four and two states (indicated by green and blue
boxes in Figure 1C). Moreover, the 4-state ODE model of the corresponding reduced 4-state MC (green
box in Figure 2C) describing the BKCachannel activation in BKCa–CaV complex with non-inactivated
CaV can be further simplified. Indeed, by exploiting quasi-steady state approximation, we obtained a
1-ODE model for describing the BKCa activation, denoted with m(1)

BK (m(1)
BK = pCY + pOY):

dm(1)
BK

dt
= mCaVk+o −

(k+o + k−o )(k−c + α) + βk−c
α + β + k−c

mBK =
m(1)

BK,∞ −m(1)
BK

τ
(1)
BK

, (13)

with steady-state and time constant given by

τ
(1)
BK =

α + β + k−c
(k+o + k−o )(k−c + α) + βk−c

, (14)

m(1)
BK,∞ = mCaV k+o τ

(1)
BK . (15)

The CaV activation variable mCaV is routinely characterized in patch clamp experiments and
included in models of electrical activity via the time-constant, τCaV , and the steady-state activation
function, mCaV,∞ (see Equation (9)). From these quantities, α = mCaV,∞/τCaV and β = 1/τCaV − α can
be calculated. Note that Equation (15) makes it explicit how mBK,∞ inherits properties of the associated
Ca2+ channel type, as has been found experimentally [55,56].

In many whole-cell models (e.g., [26,28–30]), the Ca2+ currents are assumed to activate
instantaneously, which precludes calculation of α and β. Implicitly, such models assume that CaV
gating is infinitely faster than the kinetics of other channels in the model. In our setting, this
assumption corresponds to investigating the BKCa–CaV model defined by Equations (13)–(15) in
the limits α, β→ ∞. In this case Equations (14) and (15) become

τ
(1)
BK ≈ 1

k−c −mCaV,∞(k−c − k+o − k−o )
, (16)

m(1)
BK,∞ ≈ mCaV,∞ k+o τ

(1)
BK , (17)

which are completely defined from BKCa kinetics and mCaV,∞.

By coupling the BKCachannel activation m(1)
BK defined by Equation (13) with CaV inactivation

function h, we achieved the BKCaopen probability p(1)Y of Equation (2) for BKCa–CaV complex with
1:1 stoichiometry.

4.1.4. BKCa Channel Open Probability for BKCa–CaV Complex with 1:n Stoichiometry

BKCa channels can form ion complexes with more than one CaV with a stoichiometry of 1–4 CaVs
channels per BKCa channel, as experimentally observed [3,4,23]. Here, we introduce a concise but
mechanistically correct model of single BKCa–CaV complexes with 1:n stoichiometry developed in [13]
to be inserted into a whole-cell model of electrical activity.
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We extend the 6-state MC model for the complex with 1:1 stoichiometry to incorporate different
stoichiometries assuming that n CaVs are all located 13 nm from the BKCa channel [3,10,57]: In this case,
the linear buffer approximation is used to compute the Ca2+ profile from n channels by superimposing
n nanodomains found for single, isolated CaVs. Then, the MC model of Figure 1C can be extended
to a model with 3× n × 2 states. However, as discussed in the previous section, we assume that,
on a fast timescale, the fraction h of non-inactivated CaVs is constant, and note that the BKCa channel
closes rapidly when all CaVs in the complex are inactivated. Hence, for the case of 1:n BKCa–CaV
stoichiometry, we split the system according to the number k of non-inactivated CaVs: the BKCa

activation can be described on fast time scale by the Markov chain model of Figure 2A with 2× (k + 1)
states, where Ck−iOiX and Ck−iOiY correspond to the states with k − i closed and i open CaVs,
with i = 0, . . . , k, coupled with the closed (X) and open (Y) BKCa channels, respectively. As for the
case of 1:1 stoichiometry, the dynamics of the BKCa open probability can be approximated by a single
ODE. In particular, we start from the complete ODE system describing the BKCa channel coupled
with k non-inactivated CaVs of Figure 2A: the model consists of 2 (k + 1) ODEs characterizing the
state variables pCk−iOiX and pCk−iOiY, corresponding to the probability of having k − i closed and i
open CaVs, with i = 0, . . . , k, coupled with the closed (X) and open (Y) BKCa channels, respectively.
The activation of the BKCa surrounded by k non-inactivated CaVs, denoted with m(k)

BK, is then

m(k)
BK = pCkY +

k−1

∑
i=1

pCk−iOiY + pOkY , (18)

By taking into account that

pCkX = (1−mCaV)
k − pCkY (19)

pCk−iOiX =

(
k
i

)
(1−mCaV)

k−i mi
CaV − pCk−iOiY, i = 1, . . . , k− 1 (20)

pOkX = mk
CaV − pOkY (21)

and renaming the state variables as follows

pY0 = pCkY (22)

pY1 = pCk−1OY + pY0 (23)

...

pYi = pCk−iOiY + pYi−1 (24)

...

m(k)
BK = pYk = pOkY + pYk−1 , (25)

the ODE system is reduced from 2(k + 1) to (k + 1) equations.
Moreover, assuming the quasi-steady state approximation for pYi , with i = 0, . . . , k− 1, the ODE

system of (k + 1) equations is reduced to the following single ODE, describing the dynamics of the
BKCa activation with k non-inactivated CaVs:

dm(k)
BK

dt
=

m(k)
BK,∞ −m(k)

BK

τ
(k)
BK

, (26)

where m(k)
BK,∞ and τ

(k)
BK are explicit functions of V, directly or via the local Ca2+ concentration (see

Equation (S36) in the Supporting Material of [13]).
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By assuming instantaneous activation of CaVs, the model defined by Equation (26) can be further
simplified. Indeed, in this case (i.e., mCaV = mCaV,∞) the vertical transitions in Figure 2A are in
quasi-equilibrium, and then

pCk−iOiY =

(
k
i

)
(1−mCaV,∞)k−imi

CaV,∞ pY, i = 0, . . . , k, (27)

and m(k)
BK follows Equation (26) with

τ
(k)
BK =

[ k

∑
i=1

(
k
i

)
(1−mCaV,∞)k−imi

CaV,∞(k+oi
+ k−oi

) + (1−mCaV,∞)kk−c

]−1

, (28)

m(k)
BK,∞ =

[ k

∑
i=1

(
k
i

)
(1−mCaV,∞)k−imi

CaV,∞k+oi

]
τ
(k)
BK . (29)

By taking into account that the probability that k non-inactivated CaVs are present in a complex
with n CaVs is (n

k)h
k(1− h)n−k, we obtain Equation (3) to describe the BKCachannel open probability

for BKCa–CaV complex with 1:n stoichiometry.

4.2. Exocytosis Model

We modeled the single granule, adjacent to the plasma membrane and primed for exocytosis,
as performed in [22], by the Markov chain shown in Figure 3A. The granule can be in one of four
different states depending on the number of Ca2+ ions bound to the Ca2+ sensor on the granule,
likely synaptotagmin [58]: in G0 with no bound Ca2+ ions, in G1 with one, in G2 with two or in G3

with three bound ions. Once it is in G3, the granule can fuse with the membrane and release its
hormone content, assuming the final state Y [25,59]. Therefore, the model takes values in the state
space S = {G0, G1, G2, G3, Y} and its transition rate or generator matrix MG is given by

MG =


−3 kCa 3 kCa 0 0 0

k− −2 kCa − k− 2 kCa 0 0
0 2 k− −kCa − 2 k− kCa 0
0 0 3 k− −u− 3 k− u
0 0 0 0 0

 , (30)

where
kCa = k+ × [CaCaV (rG)] (31)

represents the Ca2+ binding rate, with CaCaV (rG), the Ca2+ concentration at the granule sensor, given
by Equation (7) with r = rG being the distance from the CaV to the Ca2+ sensor on the granule. In this
paper, the distance from the CaV to the granule means the distance from the CaV to the Ca2+ sensor
on the granule, which will be of the order of tens of nm. For comparison, secretory granules have
diameters on the order 100–500 nm [60–63]. We assumed a constant number of Ca2+ sensor molecules,
which was, therefore, included in the binding parameter kCa. The parameter k− was the unbinding rate,
and u was the fusion rate. The values for k−, k+ and u were equal to those used in [22]. Note that, since
G3 dynamics are fastest (the value of u is much higher than those of the other parameters), the 5-state
MC model can be reduced to a 4-state MC model, where the dynamics of states G2 and G3 can be
described by an auxiliary variable G23, using quasi-steady state approximation for the corresponding
ODE model, as performed in [22]. Here, we exploit the complete sequence of the 5-state MC model in
order to reproduce the delayed exocytosis with respect to a raise in the Ca2+ concentration, as observed
by flash-release experiments [36–38], although the 4-state MC model does not modify the results
substantially. Instead, a further state-reduction can significantly modify the exocytosis probability.
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By coupling the 5-state exocytosis model with the 3-state model of Figure S1A for CaV, we obtained
the 15-state MC model of Figure 3B. For the general case, where the granule is coupled with n CaVs,
we obtain a (5× n× 3)-state MC model (see [22] for model details and mathematical description).
For the electrical activity model in pituitary cells described by Equation (6), CaVs do not inactivate,
and then, each CaV can be described by single-channel gating with two states, closed, C, and open, O,
and the granule release by 5 (n + 1)-state MC model, as shown in Figure 3C.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/23/6057/,
Figure S1: CaV modeling.
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