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Abstract

Dysfunctional insulin secretion from pancreatic β-cells plays a major role
in the development of diabetes. The intravenous glucose tolerance test
(IVGTT) is a widely used clinical test to assess beta-cell function. The anal-
ysis of IVGTT data is conveniently performed using mathematical models,
which need to be fairly simple to enable parameter identifiability (minimal
models), but should at the same time have sound biological foundation at the
cellular level. Using mathematical analysis and model reduction, we show
here that our recent mathematical model of insulin secretory granule dy-
namics in β-cells provides mechanistic underpinning for our minimal model
of pancreatic insulin secretion during an IVGTT.
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Introduction

The glucose-lowering hormone insulin is secreted from pancreatic β-cells in
response to elevated glucose levels. It is now widely accepted that insufficient
insulin secretion plays a major role in the pathogenesis of the metabolic
disease diabetes [1], characterized by elevated plasma glucose levels, which
leads to severe complications.

The intravenous glucose tolerance test (IVGTT) is a commonly used
clinical approach to study beta-cell function. The technique consists of the
injection of a glucose bolus and frequent sampling of plasma glucose and
insulin or C-peptide concentrations. Often, the acute insulin response (AIR)
calculated as the area under the insulin curve during the first 10 minutes af-
ter the glucose bolus is taken as a measure of β-cell function [2], but the AIR
does also reflect hepatic extraction of insulin. C-peptide is secreted equimo-
larly with insulin, and has the benefit that in contrast to insulin it is not
cleared in the liver, and thus, C-peptide data directly reflects secretion from
β-cells whereas insulin samples only carry information of the combination of
secretion and hepatic extraction.

Minimal models are useful tools for the study of IVGTT data by esti-
mating parameters from model fitting to the observed data [3–5], and can
provide a fuller picture of β-cell function than the AIR index, in particular
when based on C-peptide measurements [5, 6]. These models must be fairly
simple to allow parameter identification, but should at the same time reflect
truthfully the underlying biology down to the cellular events underlying in-
sulin secretion. That is, the models should be minimal in the sense that
further reduction would make the model nonphysiological and/or prevent
and accurate description of the data.

One way to make the coupling between events at different physiological
levels consists in the use of multiscale modelling. We have previously used
[7] such an approach to get insight in the mechanistic interpretation of pa-
rameters in models of insulin secretion during the oral glucose tolerance test
(OGTT) [8–11], and in a minimal oral model [12] of glucagon-like peptide 1
(GLP-1) action on secretion [13].

For this purpose, appropriate cellular models built from a mechanistic de-
scription of well-defined subcellular events must be analysed and simplified.
Inspired by the earlier phenomenological model by Grodsky [14], we devel-
oped a mathematical model of insulin granule dynamics that incorporated
cell-to-cell heterogeneity in the glucose threshold for cell activation and se-
cretion [15]. By analysing this model with a multiscale approach, we showed
that the cell-activation threshold distribution underlies the fact that the pan-
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creas senses not only the glucose concentration but also its rate-of-change,
so-called derivative control, in OGTT secretion models [7]. In addition, our
mechanistic model was recently suggested as the core of a bio-inspired arti-
ficial pancreas [16], further underlining the need for a thorough multiscale
understanding of the cellular model.

Here we follow the multiscale strategy to investigate how the various dy-
namical steps of our mechanistic model [15] relates to the minimal model
description of IVGTT insulin secretion [5]. We find that the IVGTT model
can be derived from the cellular model, and in particular that derivative con-
trol is negligible during an IVGTT. Our work has some similarities to previ-
ous studies [3, 17] that used the early phenomenological model by Grodsky
[14] to investigate IVGTT secretion models, but with the advantage that
our mechanistic model [15] is based on experimental data establishing the
activation threshold distribution at the cellular level [18].

Minimal modeling

The minimal model of insulin secretion during an IVGTT proposed by Tof-
folo et al. [5] describes the dynamics of a pool of releasable insulin (X) refilled
by a delayed process (Y ) in response to a given glucose profile (G) as follows:

dX

dt
= Y −mX, X(0) = X0, (1a)

d Y

dt
= α(max{0, β(G− h)} − Y ), Y (0) = 0, (1b)

where secretion occurs with rate

SR = mX + SRb. (2)

Here, m is the rate constant of secretion, α determines the delay in Y , β sets
the slope of the glucose-dependence of Y , h is the corresponding off-set below
which only basal secretion is active, and SRb is the basal rate of secretion,
assumed to be glucose-independent.

Cellular modeling

The mechanistic model [15] describes the dynamics of granule pools in a het-
erogeneous β-cell population as outlined in Fig. 1. Granules are assumed to
be mobilized to a pool of granules docked to the plasma membrane (D) from

2



Figure 1: Overview of the mechanistic model. See main text for details.

which they become primed and enter a readily releasable pool (RRP). (Note
that the pool D corresponds to the pool denoted ’intermediate pool’ in the
original publication [15]). In response to calcium influx the RRP granules
undergo exocytosis, i.e. the granule and cell membrane fuse, and subse-
quently release insulin. Based on Ca2+ imaging results [18], we assumed
that cells activate at different glucose concentrations. Above their respective
thresholds the Ca2+ concentration [19], and therefore also the rate of granule
exocytosis and insulin release, is assumed not to depend on the glucose con-
centration. Hence, the total pancreatic RRP is heterogeneous in the sense
that only the granules residing in active cells will fuse and release insulin
(filled circles in Fig. 1). We denote this fraction of the total RRP by H.

In contrast to the original model formulation [15], we assume that mobi-
lization occurs with no delay with rate

M∞(G) = c
Gn

Gn +Kn
M

+M0. (3)

The delay in mobilization is not needed to reproduce the characteristic bipha-
sic profile in response to a step in glucose concentration. Indeed, in [15] we
had to use a very short delay in M in order to reproduce the data from
O’Connor et al. [20], further justifying the assumption of removing the delay
in M .

The docked pool develops according to

dD

dt
= M∞(G)− (r + p+)D + p−RRP, (4)

where r is the rate constant for reinternalization, p+ is the rate constant for
priming, and p− is the corresponding constant describing ’unpriming’, i.e., a
process where granules loose that release capacity.

The granule in the entire RRP (RRP ) and in the part of RRP in active
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cells (H) follow [7]

dRRP

dt
= p+D − p−RRP − fH, (5)

dH

dt
= p+DΦ(G)− (p− + f)H + h

dG

dt
, (6)

where f is the fusion rate, h = ∂H
∂G , and Φ(G) describes the fraction of cells

with activity threshold below G. This fraction is given by Φ(G) = 0 for G
below the basal glucose concentration Gb, and [7]

Φ(G) =
(G−Gb)

3

(KΦ −Gb)3 + (G−Gb)3
, for G > Gb. (7)

The pool of fused granules F follows

dF

dt
= fH −mF, (8)

where m is the rate constant of insulin release. Finally, the secretion rate is
given by

SR = mF + SRb. (9)

Reconciling models on different scales

We are interested in comparing the two expressions for the secretion rate,
Eq. 2 for the minimal model, and Eq. 9 for the mechanistic model during
an IVGTT. Inspection reveals readily that we need to relate F to X. In the
following this coupling is done by approximating F by a variable X̃ with
kinetics similar to that of X.

First we note that the last term in Eq. 6 describes derivative control,
i.e., secretion does not only depend on the glucose level, but also on its rate-
of-change. This fact is important during oral and meal tolerance tests and
included in several oral minimal secretion models [8, 10]. However, during
an IVGTT the glucose concentration decreases monotonically (Fig. 2A) in
contrast to the rising glucose level during the first phase of an oral test.

We have previously argued that in our mechanistic model derivative con-
trol is negligible when dG/dt is negative [7]. For the IVGTT this claim is
further supported by a more careful analysis as follows.

The glucose concentration during an IVGTT is approximately given as
a decreasing exponential (Fig. 2A)

G(t) = Gb + (Gmax −Gb) exp(−t/τ), t > 0, (10)
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where Gb is the basal glucose concentration, Gmax is the maximal glucose
concentration reached shortly after the delivery of glucose bolus at time
t = 0, and τ ≈ 30 minutes is a time-constant describing the decay of the
glucose concentration. Equivalently, we can describe the glucose profile by

dG

dt
= −G−Gb

τ
, G(0) = Gmax. (11)

The fraction of the RRP with glucose threshold equal to g is h(g) =
∂H
∂G |G=g, and for g < G it is described by [7, 15]

d h(g)

dt
= p+Dφ(g)− (p− + f)h(g), (12)

where φ(g) = dΦ
dG |G=g. The time-constant for this equation is 1/(p− + f),

which is of the order of seconds because of rapid fusion, much faster than
the other kinetic processes in the model as well as the glucose time-scale τ .
Thus, Eq. 12 is in a quasi steady-state, which yields

h(g) ≈ p+Dφ(g)

p− + f
. (13)

By integration, we obtain immediately

H(G) ≈ p+DΦ(G)

p− + f
. (14)

Thus, the last two terms in Eq. 6 can now be compared, which reveals∣∣h(G)dGdt
∣∣

(p− + f)H(G)
≈ φ(G)

Φ(G)
× (G−Gb)/τ

(p− + f)

=
3(KΦ −Gb)

3/(G−Gb)

(KΦ −Gb)3 + (G−Gb)3
× (G−Gb)/τ

(p− + f)

≤ 3

(p− + f)τ

� 1.

(15)

Thus, derivative control is negligible in Eq. 6. A quasi-steady state analysis
of Eq. 6 then yields Eq. 14, confirming the consistency of the argumenta-
tion. Intuitively, the lack of derivative control is because of the decreasing
glucose concentration, which causes h(G) to be near-empty since the cells
with threshold G have been active through out the IVGTT.
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Figure 2: A: Mean average plasma glucose profile in a cohort of 204 healthy
subjects during an IVGTT. B: The fused pool F as a function of time (full,
grey cruve) and the approximation X̃ (dashed, black curve) in response to
the glucose profile in panel A. Parameters are r = 0.08 min−1, p+ = 0.003
min−1, p− = 0.01 min−1, f = 6.2 min−1, m = 0.62 min−1, KM = 10 mM,
n = 4, c = 200 µg/min, M0 = 14 µg/min, KΦ = 7.22 mM. C: The steady-
state mobilization rate Ỹ∞(G) (full curve) is compared to the linear function
Yb + β(G − h) with h = Gb = 5 mM. The vertical grey lines indicate the
basal and maximal glucose level from panel A. D: The parameter α̃ = ρ(G)
controlling delay in Ỹ as a function of G. The vertical grey lines indicate
the basal and maximal glucose level from panel A.
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If we assume quasi-steady state also for the RRP in cells with threshold
above G, we obtain from Eq. 5 and the approximation for H in Eq. 14

RRP =
p+(p− + [1− Φ(G)]f)

p−(p− + f)
D. (16)

Our model can then be expressed as

dD

dt
=
M∞(G)/ρ(G)−D

1/ρ(G)
, ρ(G) = r + p+ Φ(G)f

p− + f
,

d F

dt
= f

p+DΦ(G)

p− + f
−mF.

(17)

Define

X̃ = F, (18)

Ỹ =
fp+Φ(G)

p− + f
D. (19)

Then

d X̃

dt
= Ỹ −mX̃, (20a)

d Ỹ

dt
= α̃(Ỹ∞(G)− Ỹ ) (20b)

SR = mX̃, (20c)

with α̃ = ρ(G) and

Ỹ∞(G) =
fp+Φ(G)

p− + f
× M∞(G)

ρ(G)
. (21)

Note the analogy between the models in Eqs. 1 and Eqs. 20.
The initial condition for Ỹ is Ỹ = 0, since Φ(Gb) = 0. When G rises to

Gmax rapidly after the glucose bolus, a part of the RRP equal to H(Gmax)
fuses rapidly and enters F within seconds. Thus, the initial condition for
X̃ = F is

X̃(0) = X̃0 := H(Gmax) =
p+Φ(Gmax)D(0)

p− + f
. (22)

Fig. 2B shows a typical pattern of the pool F and its approximation X̃, which
shows excellent correspondence. The asymptotic function for mobilization
Ỹ∞(G) is plotted in Fig. 2C together with the corresponding linear function
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max{0, β(G − h)} from Eq. 1b. Note the good correspondence over most
of the glucose range attained during an IVGTT (indicated by vertical grey
lines).

The minimal model in Eqs. 1 has a constant delay 1/α whereas the delay
1/α̃ in Eq. 20 depends on G. However, α̃ is nearly constant (Fig. 2C) since
r is an order of magnitude greater than p+, justifying the minimal model
assumption of constant delay. With the parameters used here, we find that
the delay 1/α̃ is of the order of 12 minutes, in reasonable agreement with
Toffolo et al. [5], who found a delay of approximately 15 minutes.

Discussion

The biology underlying insulin secretion during an IVGTT or an OGTT is
obviously the same, while the minimal secretion models, although similar,
are not identical. We have here shown that our model description of the cel-
lular events underlying glucose-stimulated insulin secretion [15] simplifies to
our IVGTT minimal model [5] when the β-cells respond to a IVGTT glucose
profile. Similarly, in our previous work [7] we showed that the β-cell model
[15] reduces to our OGTT minimal secretion model [8] when subjected to a
typical glucose stimulus seen during an OGTT. Thus, depending on the clin-
ical setting, a single mechanistic β-cell model simplify to either the IVGTT
or the OGTT minimal secretion models needed for parameter identifiability
in tests of β-cell function. This fact justifies on one hand the differences
between the two minimal models that represent the same underlying biology
but under different conditions, and on the other hand highlights why the two
minimal models have a structural similarity.

We found that the delay parameter α̃ is nearly constant and, surpris-
ingly, approximately equal to the reinternalization rate r. The parameter
α reflects the time needed for the docked pool D to respond to changes in
D (see Eq. 17), and when granule movement to and from the membrane is
substantial, this time-constant is mainly controlled by the reinternalization
rate. A recent study using TIRF imaging experiments has indeed suggested
such frequent movement [21].

The minimal model parameter X0 corresponds to the amount of the RRP
that is released when glucose increases to Gmax (Eq. 22), and the first-phase
index Φ1 = X0/(Gmax−Gb) is hence related to the function h = ∂H/∂G. For
the OGTT minimal model, we found a similar relation between the dynamic
index ΦD and the function h, again reflecting that the two minimal models
share similarities because they are reflecting the same underlying biology.
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Finally, the parameter β in Eq. 1 is approximately equal to dỸ∞(G)/dG
(see Fig. 2C). Using that f � p− and ρ(G) ≈ r, we find that

β ≈ dỸ∞(G)

dG
≈ p+

r

d

dG
[Φ(G)M∞(G)] . (23)

Hence, the second phase index Φ2 = β reflects the combined effect of mobi-
lization, cell recruitment and the strength of priming versus reinternalization,
i.e., the net effect of the processes that lead to an increased amount of readily
releasable insulin.

Our cellular model describes the dynamics of secretory granule pools, but
does not include time-varying signals that might contribute to the secretory
profiles [20]. In particular, the model does not consider Ca2+ dynamics,
which is known to have complex temporal patterns with a first phase of
raised cytosolic Ca2+ concentrations followed by oscillations [22]. It is most
likely that both granule pool dynamics and Ca2+ patterns contribute to the
typical biphasic secretion patterns seen after a rapid rise in glucose [23],
such as following the glucose bolus in the IVGTT, as well as other secretion
profiles. It will be interesting to investigate the relative contribution of
Ca2+ vs. granule pool dynamics to IVGTT and OGTT insulin secretion
profiles following the multiscale ideas presented in [7] and in the present
manuscript. Moreover, to obtain deeper insight in the cellular control of
clinically relevant secretion patterns, it might be favourable to add another
layer to the multiscale approach by using mathematical models, preferably
based on data from human β-cells, of glucose control of electrical activity
[24], and of Ca2+ and exocytosis [25].
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