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Abstract

Understanding how heterogeneous cellular responses emerge from cell-to-cell
variations in expression and function of subcellular components is of general
interest. Here, we focus on human insulin-secreting beta-cells, which are be-
lieved to constitute a population in which heterogeneity is of physiological
importance. We exploit recent single-cell electrophysiological data that allow
biologically realistic population modeling of human beta-cells that accounts
for cellular heterogeneity and correlation between ion channel parameters.
To investigate how ion channels influence the dynamics of our updated math-
ematical model of human pancreatic beta-cells, we explore several machine
learning techniques to determine which model parameters are important for
determining the qualitative patterns of electrical activity of the model cells.
As expected, K+ channels promote absence of activity, but once a cell is
active, they increase the likelihood of having action potential firing. HERG
channels were of great importance for determining cell behavior in most of
the investigated scenarios. Fast bursting is influenced by the time scales
of ion channel activation and, interestingly, by the type of Ca2+ channels
coupled to BK channels in BK-CaV complexes. Slow, metabolically driven
oscillations are promoted mostly by K(ATP) channels. In summary, com-
bining population modelling with machine learning analysis provides insight
into the model and generates new hypotheses to be investigated both exper-
imentally, via simulations and through mathematical analysis.
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1. Introduction

Biological heterogeneity is a fundamental fact, which is well recognized
and thought to underlie, e.g., robustness and flexibility of biological systems
[1, 2]. Nonetheless, most mathematical modeling of cellular dynamics choose
a “typical” set (or a few sets) of parameters representing an “average” cell
(cells), see e.g. [3–5]. The robustness of the model can then be investigated,
e.g., by performing bifurcation analyses of the model with respect to a few
number of parameters thought to be important [4–7].

However, many recent models of cellular electrophysiology contain a
large number of parameters that preclude a traditional bifurcation anal-
ysis, and therefore it has been suggested to vary the parameters randomly
by extracting them from an experimentally well-described distribution [8–
13]. Moreover, cells may co-regulate different mechanistic components such
as ion channels to obtain or maintain a certain behavior, which mathemat-
ically correspond to parameters being correlated within the cell population
[14–19].

If the model and its parameters are realistic, the analysis of its behavior
for different combinations of parameters then provide insight into the mech-
anistic control of cellular dynamics. Such insight can be obtained by direct
exploration of parameter space, as has been done for models of neurons
[8, 9], cardiac cells [10], pituitary cells [20] and mouse beta-cells [12]. Fur-
ther understanding can be obtained with statistical analyses of the simula-
tion results. For example, Sobie and colleagues [21, 22] investigated how the
duration of the cardiac action potential depends on parameters by perform-
ing multivariate linear regression. Montefusco et al. [13] used multinomial
logistic regression to investigate which ion currents determine the responses
within the very heterogeneous pancreatic alpha-cell population under differ-
ent conditions. Machine learning provides an alternative toolbox and could
provide further insight in addition to the results obtained from the statistical
methods described above [11, 23, 24].

Here we explore several machine learning techniques and population
modeling based on high-quality single-cell electrophysiological data [25] to
investigate how different ion channels influence the dynamics of an updated
model of human pancreatic beta-cells. Pancreatic beta-cells release insulin
in response to glucose following a cascade of events culminating with elec-
trical activity, calcium influx and exocytosis of insulin containing granules
[26, 27]. The heterogeneity of the beta-cell population is well established
and believed to contribute to the refined glucose-sensing capabilities of the
endocrine pancreas [28–33]. Mathematical modeling of electrical activity
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in mouse beta-cells has a 40-year long history [34–36], and within the last
decade electrical activity in human beta-cells has been modeled [37–41].
Mathematical models of exocytosis and cellular insulin release have also
been developed over several decades [42–47]. However, a systematic investi-
gation of the contributions of the different ion currents and their dynamics
to causing and shaping electrical activity in human beta-cells is still lacking.

2. Methods

2.1. Human beta-cell mathematical model

We used an updated version of our previous model of human-cells [39]
that includes the description of BK-CaV complexes [41]. The model is com-
posed of a metabolic component [48] that drives a model of electrical ac-
tivity [37, 39, 41], which was developed from electrophysiological data from
human beta-cells [49–52]. In brief, the glycolytic enzyme phosphofructok-
inase (PFK) can generate metabolic oscillations due to positive feedback
by its product fructobisphosphate (FBP). In the glycolytic submodel, FBP
is the output that is transformed into ATP, which provides the link with
the electrophysiological submodel since ATP closes ATP-sensitive potassium
K(ATP)-channels. This permits other currents to depolarize the cell, which
leads to opening of voltage-gated Ca2+ and Na+ channels (CaVs and NaVs,
respectively) that cause action potentials (APs). The APs are ended by
voltage- and calcium-sensitive K+ currents through Kv, SK, BK and HERG
potassium channels that open as the cell depolarizes during the APs. Equa-
tions are given in the Supplementary Material.

2.2. Simulated population of human beta-cells

The model was used to simulate a population of beta-cells by gener-
ating random values for ion channel conductances and time scales. For a
given cell, some of the parameters were extracted from probabilistic distri-
butions estimated from real electrophysiological data from human beta-cells
from donors without diabetes [25] (Fig. S1 in the Supplementary Material),
whereas others non-measured parameters were generated randomly as ex-
plained in the next subsection.

The measures from [25] used to extract parameters directly from esti-
mated distributions are: whole-cell capacitance, sodium channel conduc-
tance, early calcium conductance and late calcium conductance. The ex-
perimental histograms of each of these quantities were fitted by parametric
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distributions, taking into consideration correlation between the electrophys-
iological parameters, as reported in the Supplementary Material (Figs. S1
and S2).

Calcium channel conductances (L- and P/Q-type) are calculated from
the extracted early and late calcium conductances, respectively. Considering
that late calcium conductance reflects almost only P/Q contribution [25],
the P/Q-type CaV conductance is calculated as 90% of the late calcium
conductance. L-type CaV conductance is taken as 75% of the early calcium
conductance as the latter reflects mixed contributions between L- and P/Q-
type Ca2+ channels. All conductances are converted from pS to nS and
normalized by the extracted membrane capacitance.

2.2.1. Randomization of non-measured parameters

The remaining non-measured parameters were generated randomly based
on the assumption that non-measured parameters have a variability that is
comparable to the variability of the measured parameters. More precisely,
the non-measured parameters that have been randomized are the maximal
whole-cell conductances gSK , gBK , gKv, gKATP , gHERG, gleak, gCaT and the
time scales τmBK , τmKv0, τmHERG, τhHERG, τhNa, τhCaL, τhCaT . However,
since no real cell measurements on time scales are available in the exploited
data, these parameters were extracted from a uniform distribution on the
interval [0.9τ̄X , 1.1τ̄X ], where τ̄X denotes the default model value of the time
scale τX . The following description of the methods therefore only refers to
the non-measured channel conductances.

Our method takes the assumption that, in a single cell, the various
whole-cell conductances have similar variability from their default model
values. The first step consists in calculating the ratios between the param-
eters extracted from the experimentally estimated distributions and their
corresponding default values in the single cell model. The next step is to
find the maximum and minimum of these ratios to assess the variation range
for each of the measured parameters. The same variation range is then used
for the non-measured parameters, which is obtained by extracting a realiza-
tion of a uniformly distributed random variable in this range for each of the
parameters to randomize. The value of the parameter, for this cell, is then
obtained as the product of the default parameter value and the realization
of the uniform random variable.

This algorithm generates randomized parameters that follow lognormal
distributions and are highly correlated (Figs. S3). They are also highly
correlated with the measured parameters.
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2.2.2. Cellular activity simulation

Using the estimation and randomization methods described above, 2000
sets of random electrophysiological parameters are obtained, representing
a population of virtual cells. Each set is used to perform a simulation of
cellular electrical activity with and without the metabolic subsystem. These
two different conditions will be used to infer on how the different parameters
control the cellular electrical behaviour. The subset of parameters in com-
mon between conditions with and without the metabolic system, e.g., ion
channel conductances and timescales, are identical for the two conditions.
However, the virtual cell populations are not equal due to the absence or
presence of oscillatory metabolism.

2.3. Activity classification

Simulated beta-cell membrane potential traces were classified into four
classes (silent, depolarized, spiking, bursting) based on the pattern of elec-
trical activity. A fifth class named ‘Other’ was added for simulations with
metabolic oscillations where peculiar behaviours – much different from any
of the above – arose. An overview of the classification algorithm is given in
Fig. S4.

Silent cells are the ones in which electrical activity does not exceed
−40 mV. Depolarized cells’ membrane potential is similar to the silent cells
potential in shape except that it remains stable or almost stable (oscillations
lower than 10 mV peak-to-peak) at a value above -40 mV. Spiking cells fire
action potentials (with height >10 mV) constantly during the simulation
period.

When metabolism is not simulated, cellular activity is classified as (rapid)
bursting if the membrane potential oscillates multiple times above the repo-
larization threshold before going back below the threshold. When metabolism
is oscillatory, cells may show a much slower bursting pattern driven by oscil-
lations in K(ATP) channel conductance. During the period when K(ATP)
channels conductance is low the membrane potential fires action potentials,
while it remains hyperpolarized close to the resting potential when the chan-
nel conductance is higher in value.

The classification algorithm has been implemented in MATLAB R2021a
(The MathWorks, Inc.) and returns a label containing the activity class of
the analyzed cell, which is saved together with the cell’s parameters. Details
and are given in the Supplementary Material with example traces and their
classification, see Figs. S5 and S6.
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2.4. Machine learning analysis

The next step was to analyse the classified simulation results in order to
investigate the contributions of the electrophysiological parameters on the
cells’ electrical behaviour.

First, the cell population was split into a modelling set of 75% and a
validation set of 25% of the simulated cells. The modelling set was used for
training and testing the classifiers described in the following, i.e., to obtain
insight into the role of the electrophysiological parameters. During model
building, this subset was further divided in training and test sets keeping
70% of the modelling set as training set and the remaining 30% as test
set. The validation set was completely ignored during model construction
and was used to verify that the obtained model was able to predict the
classes of completely unseen data with high accuracy as measured by the
area under the ROC curve (AUC), which we interpret as the model being a
good representation of the data, and hence that the conclusions drawn from
it are reliable.

The data analysis of each case was performed in three steps. All cells
were separated into active and silent cells, where the active cells are all the
cells that are not silent as defined above, i.e., depolarized, spiking or bursting
(but also ‘Other’ in simulations with metabolic oscillations), and the ma-
chine learning classifiers described in the following were trained to classify
the cells into these two subgroups. Similarly, active cells were divided into
depolarized and oscillating (spiking, bursting or ‘Other’) cells and classifica-
tion was performed. Finally, oscillating cells were analyzed by considering
spiking versus bursting cells (‘Others’ were neglected here as they cannot be
reduced to any of the two behaviours).

All analyses were performed using R/RStudio software [53, 54] on cen-
tered and scaled data.

2.4.1. Logistic regression

The data was analyzed by logistic regression with an automatic feature
selection method based on elastic net regularization [55] to recognize case-
by-case the most relevant features, including possible feature interactions,
i.e., the products of parameters, in determining the cellular activity. The R
package glmnet [56] was used to perform the elastic net penalized logistic
regression, which has two tuning parameters to be optimized: α and λ.
The glmnet package tune automatically the λ parameter using k-fold cross-
validation for a given value of α. This procedure is repeated on a grid of
α-values to find the optimal value of α. Further details of the implementation
as well as detailed results are given in the Supplementary Material.
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2.4.2. Decision trees

Decision tree analyses were performed in R using the package rpart [57].
Trees are built taking into consideration a user-defined complexity parameter
cp, which controls the minimum improvement in terms of misclassification
error at each node, so fixing a target complexity is therefore a stopping
criteria to the tree’s expansion. Low values of cp can lead to overfitting
while higher values could reduce the classification capabilities of the tree.

Complexity has been hand-tuned case by case to obtain reasonable trees
starting from the value cp = 0.01. The unbalance in some of the datasets
could in fact lead to splits that only separated a single cell from the others,
which is a clear sign of overfitting and led to higher misclassification errors in
the test and left-out datasets. The opposite problem could also arise so that
in some cases (mostly when dealing with the “oscillating cells” datasets) the
resulting tree was too simple with a single split, and hence the complexity
value had to be lowered to enhance the classification performances. All the
cp values are around 0.01 in the 0.005−0.03 range. Maximum tree depth has
been set to 30 but this value was never reached (all the resulting trees had
depth ≤ 7). This solution has been preferred over other (semi-)automatic
pruning approaches since, in many cases, they resulted in uninformative
trees for the oscillating cells subgroups that simply identified a single cell
as belonging to the least frequent class and all the others as belonging to
the most frequent one, which might be correct in terms of low error in the
training and test sets but completely failed when considering the validation
data untouched during model construction.

The classification trees should be read as follows. Starting from the top
(the “root” of the tree) and for a given cell (set of parameters), if the shown
condition is fulfilled (“yes”) the cell is sent to the left, otherwise it is sent
to the right. This is repeated until the cell reaches the final, lowest row
(containing the “leaves” of the tree), where the prediction of the class (e.g.,
Active/Silent) of the cell is done. For each node of the tree, the rows indicate
the predicted class, the fraction, for the two classes, of cells in the training
set that reached the node, and the percentage of all cells in the training set
that reached the node, respectively. The fraction of cells in the two classes
can be interpreted as the probabilities that a cell that reached a certain
node, e.g., a leave, belongs to the corresponding class. The predictions of
the nodes are color coded with intensity reflecting the predicted probability
of belonging to the predicted class.
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2.4.3. Random Forests

Random forests were used specifically with the intent to determine the
importance of the various physiological parameters in the activity classifi-
cation process. The implementation has been done in R using the random-
Forest package [58].

For all the datasets the number of trees nTree was set to 2000. No limit
to the trees size has been given to the randomForest function so by default
they grow to their maximum depth possible. Pruning is not required because
overfitting is avoided by the random sampling of the features. The number
of parameters randomly sampled at each split to grow the trees was tuned
using 4-10 fold cross validation.

By default randomForest calculates variable importance based on two
indices: the Mean Decrease Accuracy and the Mean Decrease Gini index.
The first one operates on the classification error on the Out-Of-Bag data for
each tree and expresses how much accuracy the model loses by excluding a
certain variable. The more accuracy suffers from removing a variable, i.e.,
the higher this index is, the more important that variable is. The second
measure is the decrease in node impurities resulting from splitting with a
certain variable, averaged over all the trees, with impurity represented by
the Gini index. It is a measure of how much each variable contributes to the
node homogeneity in the random forest. The higher its value, the higher the
importance of the variable. Importance plots (see Supplementary Material)
show that both indices agree on the most important features (usually the
first 5-10) even if there are minor differences in the importance order among
them. Importance of the least important variables can differ quite a lot
between the two methods, but since the importance plots are L shaped, the
differences in importance of these variables is negligible most of the times.

3. Results

We simulated heterogeneous populations of human beta-cells as explained
in the Methods and in greater details in the Supplementary Material. The
results were analyzed with logistic regression models, classification trees and
random forests. A summary of the results are provided in this section (Ta-
ble 1). Detailed results are presented for All Cells without the metabolic
oscillator in Fig. 1, and for all cases in Figs. S7-S12 in the Supplementary
Material. The performances of the classifiers for the different scenarios, as
measured by the AUC metric, are presented in Table 2.
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3.1. Which parameters cause electrical activity?
Our random forest analyses indicated that the maximal whole-cell con-

ductance of the HERG K+ channels was consistently among the most im-
portant parameters for distinguishing silent from active cells (Table 1 and
Fig. 1C). This observation was confirmed by logistic regression (Fig. 1A),
where it was found that an increase in ghERG reduces the probability of a
cell being active, in agreement with the fact that HERG channels carry an
outward K+ current. The decision trees further confirmed these observa-
tions, as ghERG was located near the root of the tree (Figs. 1B and S10)
and promoted the absence of cellular activity. These results agree with the
findings by Rosati et al. [50] who found that inhibition of HERG channels
increase insulin release from human islets.

Similarly to the HERG channels, increased K(ATP) channel conduc-
tance was found to reduce the probability of a cell showing activity. This
fact is confirmed by the well-known role of these channels in beta-cell biology,
which makes them a target of widely used anti-diabetic drugs that reduce
K(ATP)-channel activity [59]. Other K+ channels (Kv, SK and BK chan-
nels) appear to play no prominent role in controlling activation of human
beta-cells, probably because they do not activate until the cell membrane is
depolarized and Ca2+ flows into the cell.

Calcium and sodium channels tended to promote activation as expected
due to the inward currents that they carry. In the absence of a metabolic
oscillator, P/Q-type Ca2+ channels were among the most important parame-
ters according to the random forest, and were found to increase the probabil-
ity of observing electrical activity. With oscillatory metabolism, conflicting
results were found for P/Q-type Ca2+ channels, which were found to pro-
mote activity according to the logistic models, whereas the decision trees
found the opposite effect of P/Q-type Ca2+ channels. However, it should be
noted that the tree had a substantially lower predictive ability as measured
by the AUC (Table 2). Control simulations (Fig. 2) showed that increased
gCaPQ lowers the number of silent cells, confirming the prediction based on
logistic regression. T- and L-type Ca2+ channels were found to promote
electrical activity, and in the presence of metabolism L-type Ca2+ channels
were among the most influential according to the random forest results.

Leak channels also played an important role. We found that they pro-
mote activation according to both the decision trees and logistic regression.
Finally, time constants and the configuration of BK-CaV complexes do not
appear to influence the onset of electrical activity.

Overall, in our model presence or absence of electrical activity is con-
trolled mainly by a balance between hyperpolarizing K(ATP) and HERG
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currents and depolarizing leak, Na+ and Ca2+ currents.

3.2. Which parameters cause oscillations rather than depolarization?

HERG, Kv, and, in the presence of metabolism, K(ATP) channel con-
ductances were the most important parameters according to the random
forests, and they consistently augment the probability of oscillatory electri-
cal activity rather than permanent depolarization, which can be explained
by their repolarizing effect once the cell has been activated. For the simula-
tions without metabolic oscillations, Ca2+-sensitive SK channels also played
an important role in causing membrane oscillations, consistent with the fact
that they activate when the cell is depolarized, Ca2+ channels open and
Ca2+ enters the cell. These channels have less effect in the presence of
metabolic oscillations. Somewhat surprisingly, in our analyses BK channels
have no influence on whether active cells oscillate or remain depolarized, but
coupling of BK channels to T-type, rather than to L- or P/Q-type, Ca2+

channels was found to promote oscillatory behavior.
L-type Ca2+ channel conductance was among the most important pa-

rameters related to inward currents, and it tended – maybe unexpectedly –
to promote depolarization, although in the absence of oscillatory metabolism
the tree analysis predicted that increasing gCaL raised the likelihood of ob-
taining oscillations. In the presence of metabolism, the decision tree found
that gNa promotes oscillations, whereas leak currents promote steady depo-
larization. The random forest analysis indicated that in this case gNa was
the second most important parameter. The effect of P/Q Ca2+ channels
was less clear since it was found to depend on the value of gCaL, and more-
over the prediction depends non-monotonuously on gCaPQ for some values
of gCaL. Notably, the AUC for the decision tree was substantially lower than
the AUC of the logistic model (Table 2), and control simulations (Fig. 2)
suggested that indeed increased gCaPQ promote depolarization although the
effect is less marked than in the absence of metabolism.

Overall, K+ currents promoted oscillatory behavior of active cells due
to their hyperpolarizing effect. Inward currents on the other hand increased
the probability of a cell being depolarized, with some exceptions in the case
of metabolic oscillations.

3.3. Which parameters cause fast bursting?

Fast bursting has a period of a few seconds and consists of a few small
oscillations occurring on a depolarized plateau [37, 39, 49]. It is believed
to be of physiological relevance since bursting has been proposed to cause
more hormone release than simple action potential firing [60, 61].
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ALL CELLS ACTIVE CELLS OSCILLATING CELLS
(silent vs active) (depol. vs oscillating) (spiking vs bursting)

Metabolism No Yes No Yes No Yes

3
Osc Osc

Cm
4 13

3
Act Act

Na Osc
6 7 2

3
Act Dep Dep

CaL Act Osc Dep Bur Spk
4 1 3 3 3 3

3
Act Act

CaT Spk
8 6 8

3
Act Act Dep

CaPQ Act Sil Dep/Osc
2 5 8 7

3
Sil Sil Osc Bur

KATP Sil Sil Osc Bur
5 4 1 1

3
Sil Sil Osc Osc Spk

HERG Sil Sil Osc Spk
1 2 1 8 1

3
Sil Sil Osc Osc

Kv Osc Spk
9 8 2 5 4

3
Act Osc

SK
7 7

3BK

3
Act Act Spk

leak Act Act Dep
3 3 4 7

3
Spk

τmKv0 Spk
5

3
Act Bur

τmHERG
14 14

3τhHERG

3
Dep

τhNa
19

3
Osc Dep

τhCaL
15 20

3
Act

τhCaT
18

3
Act-T,PQ Osc-T

Coupling Spk-T
17 5 2

3
Spk

nCaV s Osc
13 15

Table 1: Effects of each parameter on the cellular activity grouped by subgroups (All, Ac-
tive, Oscillating, respectively) and absence/presence of metabolism. Parameters cause the
cells to be active/silent (Act/Sil), depolarized/oscillating (Dep/Osc), or spiking/bursting
(Spk/Bur), respectively. Blue rows indicate logistic regression results while the red ones
refer to the decision tree analyses. The numbers in black are the importance ranks ac-
cording to random forests. Only parameters found by logistic regression or decision trees
are reported, and interaction terms are not shown for logistic regression. Complete results
including statistically significant interaction terms for the logistic models can be found in
the Supplementary Material.

11



gCaL * gleak

gNa * gKATP

gNa * gCaPQ

tau hCaT

gleak

gKATP

gHERG

gKv

gCaT

gCaPQ

gCaL

gNa

1e−120 1e−74 1e−28 1e+18 1e+64
Odds Ratios

all cells

gCaPQ < 0.017

gHERG >= 0.045

gleak < 0.0024

gHERG >= 0.13

gleak < 0.011

gKATP >= 0.015

gHERG >= 0.16

gleak < 0.0063

gCaPQ < 0.067

yes no

1

2

4

8

9

18

36 37 19 5

3

6

7

14

28

56 57 29 15

gCaPQ < 0.017

gHERG >= 0.045

gleak < 0.0024

gHERG >= 0.13

gleak < 0.011

gKATP >= 0.015

gHERG >= 0.16

gleak < 0.0063

gCaPQ < 0.067

active
.12  .88
100%

active
.26  .74

25%

silent
.51  .49

11%

silent
.85  .15

3%

active
.37  .63

8%

silent
.69  .31

2%

silent
.94  .06

2%

active
.12  .87

1%

active
.23  .77

5%

active
.06  .94

14%

active
.07  .93

75%

silent
.50  .50

1%

active
.06  .94

74%

active
.15  .85

12%

silent
.60  .40

2%

silent
.91  .09

1%

active
.22  .78

1%

active
.07  .93

10%

active
.04  .96

62%

yes no

1

2

4

8

9

18

36 37 19 5

3

6

7

14

28

56 57 29 15

All

tau_hHERG
tau_hCaT
tau_mKv0
tau_hCaL
coupling3
tau_mBK
coupling2
tau_hNa
tau_mHERG
nCaVs
Cm
gKv
gBK
gCaT
gNa
gSK
gCaL
gKATP
gleak
gCaPQ
gHERG

0 10 20 30 40 50
MeanDecreaseAccuracy

coupling2
coupling3
nCaVs
tau_mHERG
tau_mKv0
gBK
tau_hCaL
gKv
tau_hHERG
Cm
tau_hCaT
tau_mBK
gCaT
tau_hNa
gSK
gNa
gCaL
gKATP
gCaPQ
gleak
gHERG

0 10 20 30 40
MeanDecreaseGini

all

Figure 1: Graphical representation of the results for All Cells without the metabolic os-
cillations. A: Odds Ratio plot for the logistic regression analysis. Terms with asterisks
are interaction terms involving the two parameters. Odds ratios greater than one (blue)
indicate that larger values of the parameter increases the probability of cells being active.
B : The obtained tree. For a description of how to read the tree, see Section 2.4.2 in the
Methods and Section 5 in the Supplementary Material. C : Random Forest variable impor-
tance plots. The parameters are ordered so that the uppermost is the most important for
classification by the given forest. See Section 2.4.3 in the Methods for further description.
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Figure 1: Graphical representation of the results for All Cells without the metabolic
oscillations. A: Odds Ratio plot for the logistic regression analysis. Terms with asterisks
are interaction terms involving the two parameters. Odds ratios greater than one (blue)
indicate that larger values of the parameter increases the probability of cells being active.
For further details on Odds ratios, see Section 5 in the Supplementary Material. B : The
obtained tree. For a description of how to read the tree, see Section 2.4.2 in the Methods
and Section 5 in the Supplementary Material. C : Random Forest variable importance
plots. The parameters are ordered so that the uppermost is the most important for
classification by the given forest. See Section 2.4.3 in the Methods for further description.
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NO METABOLISM WITH METABOLISM

ALL CELLS 0.96 0.98

LOGISTIC
REGRESSIONACTIVE 0.97 0.94

OSCILLATING 0.75 0.99

ALL CELLS 0.78 0.76

TREESACTIVE 0.90 0.86

OSCILLATING 0.72 0.77

ALL CELLS 0.90 0.93

FORESTACTIVE 0.96 0.92

OSCILLATING 0.82 0.92

Table 2: AUC values obtained on the test set for each method in the various scenarios.

In the absence of metabolic oscillations, HERG conductance was the
most important parameter and promoted spiking electrical activity rather
than bursting, in agreement with previous studies showing that bursting can
occur in the model when ghERG is reduced [62]. Similar effects were found
for Kv potassium currents, again in agreement with previous results [37, 39].
L-type Ca2+ channels were found to increase the probability of observing
bursting, whereas no other inward currents were found to be of importance
for controlling fast bursting vs. spiking.

In contrast to the analysis of the other data subsets, the time constants
of gating variables showed up among the important parameters. In addi-
tion, the interaction between BK-channels and the different types of Ca2+

channels was found to have an important control on the appearance of burst-
ing versus spiking electrical activity in the case of local randomization. In
particular, the presence of complexes of BK and T-type Ca2+ channels was
found by the decision tree to increase the probability of observing spiking
electrical activity, compared to the baseline of complexes with L-type Ca2+

channels.
These results suggest that the detailed, dynamic and nonlinear interac-

tion between the different currents underlie fast bursting. Indeed, it has been
suggested that this kind of electrical activity is a manifestation of so-called
mixed-mode oscillations [62], which are well-known to depend critically of
the dynamic details of model variables [63].
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Figure 2: Control simulations showing that P/Q Ca2+ channels promote cellular activity.
For each scenario without (left panel) or with (right panel) metabolism, 10 cells from
each class were randomly extracted and simulations were performed for these 40 cells by
varying the value of gPQ along the grid of values shown in the figure. The white space in
the right panel corresponds to cells classified as “Other”.

3.4. Which parameters cause slow bursting?

Slow bursting is qualitatively different from fast bursting. It has a period
of several minutes [39] and is believed to be driven by the slow oscillations in
metabolism, which create periodic surges of ATP that act to close K(ATP)
channels [39, 64]. The pattern is generally composed of active phases with
action potential firing separated by silent phases of hyperpolarization [39].

K(ATP)-channels were found to be the main parameter distinguishing
slow bursting from spiking in the presence of oscillatory metabolism. When
ḡKATP is relatively large, the K(ATP) current keeps the cell hyperpolarized
during the phase when ATP levels are low. In contrast, with low ḡKATP the
changes in ATP levels cause fluctuations in K(ATP) current of insufficient
magnitude to switch off electrical activity. Since all cells in this data sub-
set have oscillatory electrical activity by definition, this means that action
potentials fire continuously, producing spiking electrical activity.

The second-most important parameter was L-type Ca2+ channel con-
ductance, which promoted spiking activity by causing action potentials also
when ATP levels are low. A similar mechanism can explain the fact that
T-type Ca2+and leak currents were found by logistic regression to increase
the probability of having spiking rather than bursting.
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4. Discussion

In the present work, we have provided a first analysis of electrical activ-
ity in heterogeneous human beta-cells using a combination of mechanistic
population modeling and various machine learning methods. Our analysis
revealed both expected results as well as novel findings that merit further
investigation.

In most of the cases, the dynamics of the gating variables, as modelled
via the time constants τX , did not influence the results much, which to a
large degree justifies the typical approach of population modeling that varies
maximal channel conductances only [9, 12, 13, 20]. However, fast bursting
appears to be influenced by the dynamic behavior of the gating variables.
Indeed, we [62] recently showed that fast bursting in the human beta-cell
model can be understood from slow-fast analysis, folded singularities and
singular Hopf bifurcation, which are highly sensitive to the time-scales of
the involved parameters.

Interestingly, the Random Forest analysis revealed that the type of CaV
in the BK-CaV complexes is of great importance for triggering and determin-
ing the type of oscillating electrical activity (spiking or rapid bursting). The
results suggested that coupling of BK channels with T-type Ca2+ channels
promote oscillations rather than steady depolarization, and spiking rather
than bursting, compared to coupling with L- or P/Q-type CaVs. This pro-
vides an example of how machine learning analyses can provide a result
to be understood with further mathematical analysis of the model such as
slow-fast analysis [62].

Somewhat surprisingly, the BK conductance did not appear as a highly
important parameter in any of the analyses, suggesting that this parame-
ter is not important for determining the qualitative pattern. We performed
additional simulations that confirmed these findings (Fig. S13). Experimen-
tally, it was found that BK channels are involved in controlling AP ampli-
tude [51], and this was reproduced in simulations [37]. A limitation of the
present study is that we did not investigate how quantitative characteristics
of electrical activity, such as action potential amplitude, spike frequency or
the number of spikes per burst, are controlled by model parameters. Fu-
ture studies could investigate these issues, e.g., following the work of Sobie
[21]. Such an approach also addresses drawbacks of our our labelling algo-
rithm, which uses continuous characteristics to map the simulated cells into
discrete classes, and thus has inherent difficulties in “gray zones” between
classes. For example, some cells labeled as spikers have action potentials of
long duration, and their patterns are similar to cases of fast bursting with
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very small and few small-amplitude oscillations (Fig. S5). The difficulties of
distinguishing spiking from bursting likely underlie the relatively low per-
formance of the machine learning classifiers on the set of “oscillating cells”
in the case with no metabolism (Table 2).

For some of simulated datasets, the results regarding L- and P/Q-type
Ca2+ channels obtained from logistic regression were in contrast to the re-
sults obtained with the corresponding decision tree. We believe this fact
showcases the need for applying several analytical methodologies to the syn-
thetic cell population as different methods can reveal different aspects of the
nonlinear interactions between parameters in the model. Such discrepancies
indicate “where to look”, i.e., which parameters control model behavior non-
trivially in some parts of parameter space where methods from dynamical
systems theory can be applied (“how to look”) [12].

Overall, combining population modelling with machine learning analysis
provides insight into the model - and thus into human beta-cell physiology -
that can not be obtained by traditional population-averaged modelling. The
approach generates new hypotheses to be investigated both experimentally,
via simulations and through mathematical analysis. Finally, we encourage
that electrophysiological studies are published at the single-cell level as in the
dataset exploited here [25] in order to generate biologically realistic in silico
cell populations, which take into account realistic parameter correlation.
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