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Abstract Bursting is a type of electrical activity seen in many neurons and
endocrine cells where episodes of action potential firing are interspersed by
silent phases. Here we investigate partial synchrony and wave propagation in
a population of square-wave bursters. In particular, by using a prototypical
polynomial bursting model and slow/fast bifurcation analysis, we study why
electrically coupled model bursters typically synchronize very easily, as re-
flected in the tendency for simulated excitation waves to propagate far into
the region of silent cells when an excitation gradient is imposed. Such simu-
lation are inspired by, but do not reproduce, experimentally observed Ca2+

waves in pancreatic islets exposed to a glucose gradient. Our analyses indicate
a possible modification of the model so that the excitation waves stop at the
border between “active” and “silent” cells. We verify this property by simu-
lations using such a modified model for a chain, and for a cubic cluster, of
coupled cells. Furthermore, we show how our one- and two-parameter bifurca-
tion analyses allow us to predict where the simulated waves stop, for both the
original model and the modified version.
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1 Introduction

Synchronization and desynchronization of electrically active cells is of biolog-
ical interest, for example for our understanding of neuronal activity, cardiac
function and pulsatile hormone release. Such synchronization may come about
because of wave propagation across the cell population due to, e.g., electrical
coupling via gap junctions [2, 5, 6].

Many cells exhibit bursting electrical activity where episodes of action
potential firing (active phases) are interspersed by silent phases of quies-
cence. Many biophysical [10, 12, 37] and purely mathematical, e.g. polynomial
[17, 29], models of bursting oscillators (bursters) have been proposed. The lat-
ter ones have the advantage of being analytically tractable. For example, a
thorough bifurcation analysis can be performed [15, 17, 27, 35].

A prototypical example of so-called square-wave bursters consists of pan-
creatic β-cells [34]. The β-cells are electrically coupled in the pancreatic islets,
microorgans forming the endocrine pancreas, and excitation waves have been
observed to propagate across the islets using dyes sensitive to Ca2+ [2, 4, 16,
33, 36] or voltage [16]. These waves were initially suggested to be a means for
active β-cells to recruit otherwise silent cells to release insulin [2]. However,
subsequent studies showed that when an islet is subjected to a glucose gradient
so that a part of the β-cell population of the islet is exposed to glucose levels
above the threshold for activation, whereas the other part of the islet is expe-
riencing glucose concentrations below this threshold level, wave propagation
is observed only in the part of the islet where glucose is above the activation
threshold, and does not propagate into the “silent” region of the islet [5, 33].

Mathematical modeling has been successfully used to study various aspects
of β-cell function in mice [7, 23] and humans [24, 32], including the role of gap
junction coupling in wave propagation [2, 4, 20, 22]. However, simulations
of current mathematical models of electrical activity in β-cells are unable to
reproduce the experimental fact that, in the presence of a glucose gradient,
excitation wave do not propagate into the region of the islets with below-
activation levels of glucose [5, 33]. Further, modeled β-cells tend to synchronize
much more easily than experimentally observed. To improve the simulation
results, unrealistically low coupling strength [11, 25], exaggerated cell-to-cell
heterogeneity [19], or a particular isles-within-islets structure [3] have been
assumed.

Inspired by the partial synchrony observed experimentally in β-cells [5, 33],
in this paper we analyze why square-wave bursters tend to activate very easily
when coupled to an active neighbor, which underlies the fact that simulated
waves propagate into the region of cells that would be silent when uncou-
pled. We study a generic mathematical model [27, 29] with techniques from
slow/fast bifurcation analysis. Our analysis suggest a possible modification of
the model to obtain waves that do not propagate into the “silent” region of the
islets. We confirm this prediction by performing simulations where single cells
are represented by such a modified model, and the cells are coupled with bi-
ologically realistic coupling strengths. Our work does not investigate the role
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of gap junction coupling in modifying the burst period and the underlying
bifurcation structure, which has been studied elsewhere [13–15, 18, 21].

2 A polynomial bursting model

A prototypical mathematical model describing the electrical activity of N
coupled bursting cells on a line in nondimensionalized form is [28, 30] (here
and in the following over-dots indicate time derivatives)

u̇i = f(ui)− wi − g(ci) + gc(ui−1 − 2ui + ui+1),

ẇi =
w∞(ui)− wi

τw(ui)
, (1)

ċi = εH(ui, ci),

where i = 1, ..., N , counts the cells, ε is a constant such that 0 ≤ ε � 1,
while the functions f(ui), g(ci), w∞(ui), τw(ui) and H(ui, ci) have biological
interpretations related to the different ionic currents and their kinetics. The
first equation describes the temporal behavior of the transformed membrane
potential ui of the ith cell, which is electrically coupled to its neighbors as
described by the last term, where gc represent a constant nondimensionalized
gap junction conductance, which we assume equal between all cells. We assume
no-flux boundary conditions, which corresponds to setting (formally) u0 = u1
and uN+1 = uN . Finally, wi and ci are variables controlling fast and slow ion
channel gating, respectively.

By differentiating (1) in t and combining the first two equations of the
model to eliminate wi [27–30], we get the following system for ui and ci,

üi + [F (ui) + 2gc] u̇i + [G(ui, ci) + 2gcui]

−gc(ui+1 + ui−1 + u̇i+1 + u̇i−1) = −εH(ui, ci), (2)

ċi = εH(ui, ci),

where [27, 29]

F (ui) = a
[
(ui − û)2 − η2

]
,

G(ui, ci) = ci + u3i − 3(ui + 1), (3)

H(ui, ci) = β [ui − (ū− bi)]− ci,

are, respectively, second, third and first order polynomials in ui. The param-
eters bi control how active the cells are if uncoupled, and would in the case
of β-cells reflect the glucose concentration sensed by cell i. We can therefore
model a glucose gradient by letting i 7→ bi be a monotone function of i.

Fig. 1 (top panel) shows a simulation of this scenario with a chain of
100 uncoupled cells (gc = 0) and a linear relation bi = 0.012 · i. Note that
activity decreases with increasing bi, and that the last active cell is for i =
24. We then performed simulations with gc = 0.1, which is equivalent to a
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Fig. 1: Waves propagate into the silent region with the Pernarowski model.
Color-coded transformed membrane potentials ui for 100 uncoupled (top, gc =
0) or coupled (bottom, gc = 0.1) cells in an excitation gradient (bi = 0.012 · i).
The last active cell is, respectively, i = 24 and i = 50. Parameters are: û =
0.15, η = 1.7, a = 0.25, β = 4 and ū = −0.954.

physiologically realistic [1, 26, 38] gap junction conductance of γc = 127 pS,
using the transformation resulting from nondimensionalization, gc = γcτ̄n/Cm,
with τ̄n = 4.86 ms (time scale of K+ channel activation) and Cm = 6158 fF
(cell capacitance) [28]. In this case, the last active cell is at i = 50, meaning
that the waves propagate far into the region of cells that are silent in the
absence of coupling (Fig. 1, bottom panel).

2.1 One-parameter bifurcation analysis

We now aim to understand why the waves propagate far into the region of
“silent” cells. Intuitively, an otherwise silent cell is “pulled” into activity when
its neighbor activates. To understand when and why this happens, we start
out by analyzing the single cell model. Then, we investigate how the single-
cell model structure is perturbed when one neighbor is active and the other is
silent, which allows us to predict how far the wave will propagate.
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2.1.1 Uncoupled single-cell bifurcation analysis

In [27], a detailed analysis of the single-cell model, i.e., (2) with gc = bi = 0,
was made. This analysis uses a standard fast-slow approach [31] by setting
ε = 0 and performing a bifurcation analysis of the fast subsystem (u̇, u), i.e.,
the second order differential equation,

ü+ F (u)u̇+G(u; c) = 0, (4)

is analyzed assuming c constant.
The fixed points of the fast subsystem (4) lie along the cubic curveG(u, c) =

0 in the (c, u) plane, denoted the Z-curve (Fig. 2). This curve has a right knee
at the point Kρ = (uρ, cρ) = (1, 5) and a left knee at Kλ = (uλ, cλ) = (−1, 1).
The Z-curve has upper, middle and lower branches ZU , ZM and ZL defined
for u in (uρ,+∞), (uλ, uρ) and (−∞, uλ), respectively. The region between cλ
and cρ is referred to as the region of multiple steady states (of the fast subsys-
tem). With parameters as in Fig. 1, the critical points on ZL, ZM and ZU are
stable, saddles and stable/unstable spirals, respectively. A supercritical Hopf
bifurcation (HB) arises on ZU to the left of the left knee Kλ, giving rise to
a branch of stable periodics that terminates in a homoclinic bifurcation (HC)
on ZM to the right of the left knee.

Square-wave bursting occurs [31] when the c-nullcline intersects the Z-
curve on ZM to the left of the HC, as for the cell i = 1 in Fig. 2. The system
moves left along ZL until in reaches Kλ where it rapidly shoots upwards to the
stable periodic of the fast subsystem. Being above the c-nullcline, the system
now moves towards the right along the branch of periodics, which produces
the spikes of the active phase. When the system encounters the HC of the
fast subsystem, the active phase terminates and the system rapidly tends to
the stable fixpoint of the fast subsystem, which has reappeared, to begin the
silent phase of bursting, and repeat the described events. When the c-nullcline
intersects ZL (e.g., cell 60 in Fig. 2), the point of intersection is a stable
fixpoint for the full system (u, u̇, c), so that the cell is silent (in the absence of
coupling). Thus, active and silent cells can be distinguished based on where
their c-nullclines intersect the Z-curve. As it turns out from Fig. 1, top panel,
and confirmed by Fig. 2, right panel, for the uncoupled cells, the first twenty-
four cells are active while the remaining cells (i ≥ 25) are silent.

2.1.2 Single-cell bifurcation analysis in presence of coupling

We now consider the fast subsystem version of (2) for coupled cells. We make
the simplifying assumption that the membrane potentials of the cells neigh-
boring cell i are constant, ui−1 = uH and ui+1 = uL, with uH equal to the
maximum value of the membrane potential during bursting in the presence of
coupling (uH = 1.5), and uL the value of the membrane potential of the lower
SN (uL = −1). The rational is that to investigate whether a silent cell (i)
activates when the excitation wave arrives and activates the neighboring cell
(i − 1), the most depolarized membrane potential of this cell should matter,
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Fig. 2: Bifurcation diagram (black) of the fast subsystem (4), with six differ-
ent c-nullclines superimposed (colored, indicated by ci for the ith cell) corre-
sponding to the cells in Fig. 1. The fix points fall on the cubic Z-curve, which
is divided into its upper (ZU ), middle (ZM ), and lower (ZL) branches, with
right (Kρ) and left (Kλ) knees. A supercritical HB arises on ZU and an HC on
ZM . The black solid and dashed lines indicate stable and unstable equilibrium
points, respectively, while the circles show maxima and minima of the stable
periodics. The right panel shows a zoom on the region near Kλ. Notice that
for i ≥ 25, but not for i ≤ 24, the c-nullcline intersects ZL, and hence, cell
no. 25 is the first silent cell. Parameters as in Fig. 1.

whereas the membrane potential of the silent neighbor (cell no. i + 1 with
ui+1 = uL) may prevent the activation of cell i. These assumptions reduce the
fast subsystem for cell i to

üi + F̃ (ui)u̇i + G̃(ui; c) = 0 (5)

with

F̃ (ui) = F (ui) + 2gc and G̃(ui; c) = G(ui, c) + 2gcui − gc(uH + uL).

Notice that the changes in F̃ and G̃ due to coupling (gc > 0) will modify
the shape of the Z-curve (Fig. 3). For increasing gc, the right knee Kρ moves
down and leftwards, while the left one, Kλ, moves upwards and to the right.
Concerning the number of HB, increasing gc from 0 to 0.05 gives rise to a
second supercritical HB on ZU (not shown), whereas no HBs are present on
the Z-curve for gc = 0.1, 0.2 or 0.5 (Fig. 3).

To understand how coupling changes otherwise silent cells, the location of
Kλ matters. For example, cell no. 40 is silent in the absence of coupling since
its nullcline intersect ZL in this case (Fig. 2), say at (c∗40, u

∗
40). In the presence

of coupling, e.g. gc = 0.1 as in Fig. 1, if the neighboring cell activates so that
u39 ≈ uH even briefly, then cell no. 40 would experience that Kλ moves to the
right of c40. Since the dynamics of u is much faster than of c, the cell would
shoot up and approach ZU , i.e., the cell would activate.
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Fig. 3: Four different bifurcation diagrams of the fast subsystem of the
Pernarowski model (5) for different values of gc. Following ZL from the bot-
tom to the top, we have the bifurcation diagrams for gc = 0, gc = 0.1 (black),
gc = 0.2 and gc = 0.5. Superimposed on the plot is the c-nullcline of the first
silent cell when gc = 0, c25, and another silent cell (c40) discussed in the main
text. Legends as in Fig. 2. For gc = 0 there is a supercritical HB on ZU while
for gc = 0.1, gc = 0.2 and gc = 0.5 there are no HBs.

This mechanism is shown from another point of view in the phase-plane
plots in Fig. 4 for the fast subsystem (5). Before the wave arrives, cell no. i
and its two neighbors are all silent, i.e., the coupling term is zero (which can
be obtained by setting gc = 0 in (5)), and the system is located at the left,
stable fix point, say (u∗0, 0), which depends on the c-value of cell i, ci (Fig. 4a,b,
square). When the wave arrives (modeled by gc > 0 in (5)), cell i follows the
curve in the phase plane with initial value (u∗0, 0) with virtually no change
in ci. The cell will remain silent if the lower equilibrium persists (Fig. 4c),
whereas cell i will activate and approach the right equilibrium at u ≈ 2 if, for
a certain fixed ci, a saddle-node bifurcation occurs as the coupling strength
is raised from gc = 0 so that the left equilibrium and the saddle disappear
(Fig. 4d).

2.1.3 Two-parameters bifurcation analysis in the presence of coupling

From the above considerations it emerges that it is the location, in the absence
of coupling, of the “silent cell” intersection between ZL and the specific c-
nullcline, say (c∗i , u

∗
i ), compared to the location of the fast-subsystem saddle-

node bifurcation (SN) occurring atKλ, with coupling, that determines whether
cell i is activated for a certain coupling strength gc. If c∗i is to the right of Kλ

for a given gc, then cell i will remain silent, otherwise it will become active
and contribute to wave propagation.

We therefore constructed a two-parameters bifurcation diagram for the fast
subsystem (5) with c and gc as parameters (Fig. 5). In particular we plot the
curve of the SN points, which confirms that the left SN (Kλ) moves to the
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Fig. 4: Phase plane for the Pernarowski model (5) with c = 1.4 (panels (a) and
(c)) or c = 1.1 ((b) and (d)), in the absence (gc = 0; (a) and (b)) or presence
(gc = 0.1; (c) and (d)) of coupling. Stable fix points are represented with red
squares and the unstable equilibria with red circles. The green (respectively,
blue) lines depict the stable (respectively, unstable) manifolds of the saddle
node points. The black lines show the trajectories with initial conditions equal
to the stable fix point in the absence of coupling.

right as gc increases, whereas Kρ moves to the left. We performed simulations
as in Fig. 1 for different coupling strengths, and extracted, for the first cell
that remained silent for a given value of gc, the c-value in the absence of
coupling (denoted c∗), corresponding to c∗i in the reasoning above. We then
plotted (c∗, gc) for each of the simulations (Fig. 5). These points fell very close
to the SN curve, which confirmed that the location of the SN predicts how far
into the silent region the wave will propagate, since cells that do not activate
(right-most cells in Fig. 1), for a given gc value, have higher c values (in the
absence of coupling) than the extracted points c∗ values and, hence, the c
coordinate of the SN.

Since the SN moves to the right as gc increases, this analysis indicate why
waves always proceed substantially into the silent region. This holds true for
any single-cell model where the silent phase terminates in a SN of a Z-shaped
curve, which is the case for, to our knowledge, all published β-cell models.
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Fig. 5: Two-parameters bifurcation diagram for (c, gc). The dashed red curve
shows the location of SN points, whereas the blue circles indicate the first
silent cell in simulations as in Fig. 1 for increasing values of gc. The right
panel is a zoom of the left panel.

3 The modified Pernarowski model

We speculated that it would be possible to avoid waves propagating into the
silent region if the silent phase ended in another bifurcation than the SN at the
left knee. One possibility could be that, for c decreasing, the fixed points on
ZL lost stability due to the presence of a subcritical HB on ZL, which would
terminate the silent phase.

The Pernarowski model for a single cell can be modified in such a way to
have two HBs with different stability of the emerging periodics. In particular
we wish to have a first supercritical HB on ZU to the left of the left knee, Kλ,
and a second subcritical HB on ZL to the right of the left knee. This can be
done changing the degree of F (u) and generalizing G(u, c) in the Pernarowski
model. Let

S(u) = a
[
(u− û)6 − η6

]
,

T (u, c) = c+ u3 − h(u+ 1), (6)

where S and T correspond to F and G, so that the model becomes

ü+ S(u)u̇+ T (u, c) = −εH(u, c), ċ = εH(u, c). (7)

As for the fast subsystem (4), the fixed points of the fast subsystem

ü+ S(u)u̇+ T (u; c) = 0, (8)

lie along the curve T = 0, which is a cubic in the (c, u) plane that we denote the
ζ-curve. It is composed of upper, middle and lower branches denoted ζU , ζM
and ζL as for the Z-curve.

A fixed point is a Hopf point if the Jacobian matrix of (8) evaluated at
that point has a simple pair of purely imaginary eigenvalues, that is, when the
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Fig. 6: Left: Bifurcation diagram of the fast subsystem (8). A supercritical
HB arises on ζU and a subcritical one on ζL. Green solid line indicate stable
equilibrium points while the dashed red line unstable ones. Six c nullclines,
corresponding to an excitation gradient, are shown. To facilitate comparison
between the Pernarowski model and the modified version, we chose the same
values of bi = 0.012 · i as in Fig. 1. Right: The membrane potential of the first
cell in time for the modified Pernarowski model (7).

determinant of the matrix is positive and the trace is zero, which yield

T (u; c) = 0,

Tu(u; c) = 3u2 − h > 0, (9)

S(u) = 0.

Despite S being a sixth order polynomial in u, it has only two real roots, the
same as for F in the Pernarowski model, u± = û ± η. The stability of the
periodic orbits emanating from the Hopf point u+ is determined by the sign
of (compare with [27])

aHB+ = 18aη4
(
−8ηû− 3η2 − 5û2 +

5h

3

)
,

and at the HB point u− by the sign of

aHB− = 18aη4
(

8ηû− 3η2 − 5û2 +
5h

3

)
.

Based on these consideration we choose the following set of parameters,

û = 0.3, η = 1.6, a = 0.025, β = 4, h = 2.7, ū = −0.954, (10)

and construct the bifurcation diagram of the fast subsystem (8) (Fig. 6, left).
As desired, a supercritical HB (UHB) arises on ζU to the left of the left knee,
and a subcritical one (LHB) arise on ζL to the right of the left knee, and the
system (7) exhibits square-wave bursting (Fig. 6, right).
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Let us consider a model for a chain of coupled cells with an excitation
gradient (modeled via bi) as in Section 2,

üi + [S(ui) + 2gc] u̇i + [T (ui, c) + 2gcui]

− gc(ui+1 + ui−1 + u̇i+1 + u̇i−1) = −εH(ui, c),

ċi = εH(ui, ci). (11)

Due to the excitation gradient, for gc = 0 the last active cell is at i = 55
(Fig. 7, top). This corresponds to the fact that the intersection between the
c-nullcline and the lower branch of the ζ-curve (ζL) occurs to the right of LHB
for i > 55, whereas the intersection lies on ζM , or on ζL to the left of LHB,
otherwise (Fig. 6, left). In contrast to Fig. 1, with coupling (gc = 0.1) the wave
does not propagate far into the “silent” region, but stops approximately at the
border between the active and silent regions at cell i = 59 (Fig. 7, bottom).
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Fig. 7: Simulations with the modified model in an excitation gradient. Top: 100
uncoupled cells, gc = 0, were simulated and the last active cell is for i = 55.
Bottom: For 100 coupled cells, gc = 0.1, the last active cell is for i = 59. u
is the membrane potential, t time and i the cell counter. bi = 0.012 · i as in
Figs. 1 and 6.
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3.1 One-parameter bifurcation analysis

To better understand why the wave propagation behaves differently in the
Pernarowski model and our modified version, we proceed as in Section 2.1.2.
We consider the membrane potential ui of cell no. i, and assume that the
membrane potentials of the neighbor cells are constant, ui−1 = uH and ui+1 =
uL, with uH = 1.559 the action potential peak value, and uL = −1.3 the
membrane potential value at LHB. These assumptions yield the fast subsystem
version of (11) in the form

üi + S̃(ui)u̇i + T̃ (ui; c) = 0 (12)

with

S̃(ui) = S(ui) + 2gc and T̃ (ui; c) = T (ui; c) + 2gcui − gc(uH + uL).

Solving the equation S̃(ui) = 0 we get the analytical expression of the two
HB points as was made for one cell, ũ± = û± η̃, with η̃ = (η6−2gc/a)1/6. Thus
the LHB, which terminates the silent phase, moves (slightly) to the left as gc
increases, in contrast to the SN terminating the silent phase in the original
model, which moved to the right (Fig. 5).

In Fig. 8, the bifurcation diagram of the fast subsystem (12) is plotted
for different values of gc. The ζ-curve change similarly to the Z-curve as gc
increases; the right knee moves in down-left direction while the left knee moves
upwards and to the right. For gc = 0 and gc = 0.1 there are two HBs (a
supercritical one on ζU and an subcritical one on ζL), whereas for gc = 0.2
only the HB on ζU is present, and finally for gc = 0.5 no HB remains.
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Fig. 8: Four bifurcation diagrams of the fast subsystem of modified
Pernarowski model (12) for different values of gc. Looking at ζL from the
bottom to the top we have the bifurcation diagrams for gc = 0, gc = 0.1,
gc = 0.2 and gc = 0.5. Superimposed on the plot is the c-nullcline of the first
silent cell when gc = 0, c56.
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left panel.

3.2 Two-parameters bifurcation analysis

As for the Pernarowski model (5), we constructed the two-parameter bifur-
cation diagram for the modified model (12) with c and gc as bifurcation pa-
rameters (Fig. 9). As for the original model, the SN at the left knee moves
to the right as gc increases, but – more important – for low gc values, the
LHB moves to the left as gc increases, until the LHB branch disappears in a
Bogdanov-Takens bifurcation at gc ≈ 0.19. Since the silent phase ends at the
LHB, the prediction is that the wave should stop earlier with low to moderate
coupling compared to the case without coupling. Direct simulations confirm
this prediction for gc = 0.05 where the last active cell is no. 54, whereas the
last active cell is no. 55 with gc = 0 (Fig. 7, upper). For higher values of gc it
is the SN that ends the silent phase, and the waves are predicted to proceed
into the silent region as for the Pernarowski model. However, the simulated
waves proceed further than predicted from the SN curve (Fig. 9).

To understand why the location of the SN bifurcation fails to predict ex-
actly where the waves stop, we construct phase planes for the fast subsystem
of the modified model (12). In Fig. 10 we investigate the case gc = 0.2 for two
c-values where the saddle node exists, i.e., c-values to the right of the SN (red,
dashed curve in Fig. 9). For c = 1.7, the scenario is as expected: the left, stable
equilibrium exists also when the cells are coupled, and the trajectory start-
ing from the location of the left fix point in the absence of coupling (square
in Fig. 10a) approaches this left equilibrium also in the presence of coupling
(Fig. 10c), meaning that the cell would remain silent should the wave arrive
and activate its neighbor. In contrast, for c = 1.5 the stable left equilibrium
exists also in the presence of coupling, but now the location of the equilibrium
in the absence of coupling (square in Fig. 10b) falls to the left of the stable
manifold of the saddle node so that the trajectory escapes and approaches the
right equilibrium (Fig. 10d), i.e., the cell activates and contributes to wave
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Fig. 10: Phase plane for the modified Pernarowski model (12) with c = 1.7
(panels (a) and (c)) or c = 1.5 ((b) and (d)), in the absence (gc = 0; (a)
and (b)) or presence (gc = 0.2; (c) and (d)) of coupling. Stable fix points
are represented with red squares and the unstable equilibria with red circles.
The green (respectively, blue) lines depict the stable (respectively, unstable)
manifolds of the saddle node points. The black lines show the trajectories with
initial conditions equal to the stable fix point in the absence of coupling.

propagation. Thus, the fact that the stable left equilibrium exists does not
suffice to keep the cell silent; it depends on whether the left equilibrium in the
absence of coupling falls outside the separatrix, which wraps tightly around
the left equilibrium in the modified model (Fig. 10) compared to the origi-
nal Pernarowski model (Fig. 4). These considerations explain why the waves
propagate further than predicted by the SN curve (Fig. 9).

4 Cubic cluster of cells

Until now we have considered a line of coupled cells. Pancreatic islets are
three-dimensional structures, so we simulate a 8 × 8 × 8 cell cluster to verify
that the differences, with respect to wave stop, between Pernarowski’s model
and the modified version introduced in this paper carry over to this case.
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When the single cells were represented by Pernarowski’s model, and an
excitation gradient was imposed by setting bi = 0.05 · (1 + i) for all 64 cells
in slice i = 1, . . . , 8, only the first four slices are active while the last ones are
silent in the uncoupled case gc = 0 (Fig. 11a). In contrast, with gc = 0.1, all
the cells of the cube became active (Fig. 11b), i.e., the wave did not stop.

Similar simulations were performed for the modified model with bi = 0.4 +
0.05·(1+i). For uncoupled cells, the first four slices of cells are active while the
remaining ones are not (Fig. 11c). For coupled cells (gc = 0.1), the waves do
not proceed beyond the fourth slice (Fig. 11d). Thus, for the modified version
of Pernarowski’s model, we have that also for a cube of coupled β-cells, the
wave stops at the border between silent and active cells, as seen in experiments.
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Fig. 11: Cluster of 8 × 8 × 8 β-cells modelled by Pernarowski’s model (2)
(panels (a) and (b)), or our modified version (11) ((c) and (d)), in the absence
(gc = 0; (a) and (c)) or presence (gc = 0.1; (b) and (d)) of gap junction
coupling. Each panel shows the membrane potential for a cell in each of the
eight slices (i = 1, . . . , 8) of the cube vs. time t. Within each slice, the activity
is synchronized.

5 Discussion

Mathematical modeling is increasingly used to study phenomena such as wave
propagation and synchrony in biological ensembles. Previously published mod-
els of bursting β-cells have successfully given insight into cellular mechanisms,



16 Iulia Martina Bulai, Morten Gram Pedersen

and to some extent into the behavior of the population of electrically coupled
cells in pancreatic islet. However, to the best of our knowledge, all existing
models tend to synchronize too easily compared to biological results. In par-
ticular, the experimentally observed wave stop at the border between “silent”
and “active” cells in islets exposed to a glucose gradient [5, 33], for the particu-
lar case of β-cell can only be reproduced in simulations by imposing unrealistic
assumptions regarding islet organization, coupling strength, or cellular hetero-
geneity [3, 5, 11, 19, 25].

Inspired by the example of pancreatic β-cells, we set out to study synchro-
nization and wave properties of general coupled square-wave bursters. Using
fast-slow bifurcation analysis, we clarified why waves tend to propagate too far
into the silent region as shown in our simulations (Fig. 1). We showed that the
left saddle-node bifurcation (SN) moves to right in the presence of coupling,
and that the location of this bifurcation predicts where the simulated waves
stop (Fig. 5). Since square-wave bursting models have in common that the
silent phase is terminated as the system reaches the SN bifurcation, this result
(i) explains why they fail in reproducing the wave behavior in islets exposed to
an excitation gradient, and (ii) suggests that the models should end the silent
phase in another way in order to reproduce this experimental behavior.

We modified the Pernarowski model to get a Hopf bifurcation (HB) of the
lower branch of the ζ-curve, so that the silent phase terminates due to this HB
(Fig. 6), and showed that with realistic coupling strength, and in the absence
of cellular or coupling heterogeneity, this modified model produces waves that
stop at the border between active and silent cells, both in 1D (Fig. 7) and 3D
(Fig. 11) lattice configurations.

The bifurcation analysis of the modified model led to an underestimate of
how far the waves would propagate (Fig. 9). We showed that this modest error
was due to the way the separatrix wraps tightly around the left equilibrium
in this model (Fig. 10).

We analyzed a prototypical model with only one slow and two fast vari-
ables. Of interest, it has been found that a more complicated so-called phantom
burster model with two slow (and two fast) variables, of which one variable is
much slower than the other, can have a Hopf bifurcation on the lower branch
when the slowest variable is used as a bifurcation parameter in the three-
dimensional fast subsystem [8]. In [9] we have investigated the criteria for
obtaining the scenario by studying a “phantom” version of the Pernarowski
model, which should help in obtaining the correct geometrical structure of
future biophysical models.

Although our model analysis was inspired by data and models of pancreatic
β-cells, we do not claim that our modified model with lower Hopf bifurcation
is the correct or only way to improve current β-cell models. Rather, our aim
was to show how slow-fast analysis can be used to predict wave block in a
general population of square-wave bursters.
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