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Abstract

Hormones and neurotransmitters are released when secretory granules or synaptic
vesicles fuse with the cell membrane, a process denoted exocytosis. Modern imaging
techniques, in particular total internal reflection fluorescence (TIRF) microscopy, allow
the investigator to monitor secretory granules at the plasma membrane before and when
they undergo exocytosis. However, rigorous statistical approaches for temporal analysis
of such exocytosis data are still lacking. We propose here that statistical methods from
time-to-event (also known as survival) analysis are well suited for the problem. These
methods are typically used in clinical settings when individuals are followed over time to
the occurrence of an event such as death, remission or conception. We model the rate of
exocytosis in response to pulses of stimuli in insulin-secreting pancreatic β-cell from
healthy and diabetic human donors using piecewise-constant hazard modeling. To study
heterogeneity in the granule population we exploit frailty modeling, which describe
unobserved differences in the propensity to exocytosis. In particular, we insert a
discrete frailty in our statistical model to account for the higher rate of exocytosis in an
immediately releasable pool (IRP) of insulin-containing granules. Estimates of
parameters are obtained from maximum-likelihood methods. Since granules within the
same cell are correlated, i.e., the data are clustered, a modified likelihood function is
used for log-likelihood ratio tests in order to perform valid inference. Our approach
allows us for example to estimate the size of the IRP in the cells, and we find that the
IRP is deficient in diabetic cells. This novel application of time-to-event analysis and
frailty modeling should be useful also for the study of other well-defined temporal
events at the cellular level.

Introduction 1

Novel methods for the study of cell biological processes produce unprecedented data to 2

be analyzed. To maximize the information that can be extracted from the experimental 3

results, appropriate and advanced statistical analytical methods should be exploited. 4

Recent microscopy techniques, in particular total internal reflection fluorescence (TIRF) 5

microscopy, have made it possible to visualize single exocytotic events in neurons and 6

endocrine cells [1–8]. Exocytosis is the process during which the lipid membranes of 7

neurotransmitter-filled synaptic vesicles (in neurons), or hormone-containing secretory 8
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granules (in endocrine cells), fuse with the cell membrane, which allows the signalling 9

molecules contained within the granule to escape to the extracellular space [9]. 10

Such imaging data has given deep insight into the molecular and dynamical 11

regulation of exocytosis. However, to our knowledge, these single-granule data have 12

until now been analyzed by counting the (cumulative) number of events over all 13

observed granules and cells, sometimes followed by simple curve fitting [3, 4, 10]. Thus, 14

more rigorous methods for quantification and analysis of imaging data of exocytosis are 15

needed [6]. We propose here that the detailed temporal information contained in this 16

type of data allows for statistical analysis using tools from time-to-event (also known as 17

survival or failure time) analysis. These methods are typically used for clinical or 18

demographic data where individuals are followed until a certain event of interest, such 19

as death, onset of disease, conception, first-time marijuana use, etc. [11–13]. Another 20

common area of their application is reliability engineering where the interest is the time 21

to failure of an instrument or machine. Since the structure in such data is similar to the 22

live cell imaging exocytosis data of interest here, it allows us to apply these 23

well-established statistical methods on completely different biological and temporal 24

scales. 25

Insulin is released from pancreatic β-cells in response to various stimuli, with glucose 26

being the physiologically most important. Disturbed insulin secretion is now recognized 27

as a central player in the development of diabetes, a devastating disease which is 28

reaching epidemic proportions [14, 15]. Glucose is transported into the β-cells where it 29

triggers a complex cascade of events leading to cell depolarization and electrical activity. 30

As a result, voltage-dependent Ca2+ channels open, promoting Ca2+ influx, and the 31

increase in intracellular Ca2+ levels cause exocytosis of insulin-containing secretory 32

granules [16]. Insulin secretion is biphasic in response to a sustained glucose stimulus; a 33

large peak of insulin release is followed by a second phase where insulin is released in 34

distinct pulses [17]. Importantly, biphasic insulin release is disturbed in diabetes [18], 35

which has been suggested to have its origin within the pancreatic β-cells [19], likely 36

because of dysfunctional exocytosis [20–22]. 37

It was early proposed that heterogeneous release propensities of the 38

insulin-containing granules could underlie the biphasic secretion pattern. In this 39

hypothesis a small pool of granules is released to yield the first peak of insulin whereas 40

slower release of other granules produce the second phase of secretion [23]. More recent 41

results in various endocrine cells [24–26] showed that a sustained elevation of 42

intracellular Ca2+ levels could produce a phasic exocytosis pattern as measured by 43

membrane capacitance recordings reflecting whole-cell release. Also, repeated or 44

sustained depolarizations, which promote Ca2+ entry via voltage-dependent Ca2+ 45

channels, triggered phasic capacitance patterns, even when investigated as a function of 46

Ca2+ entry [16, 27, 28]. These patterns were interpreted as the results of depletion of a 47

small immediately releasable pool (IRP) of granules followed by slower release from a 48

larger pool. Various mathematical models of granule pools and exocytosis were 49

developed based on these and similar results, with the scope of reproducing and 50

simulating typical behavior, in order to investigate the underlying biological mechanisms 51

[25, 29–33]. However, the aim of such mathematical models is not to extract information 52

from raw experimental data. For such a task, statistical methods are needed. 53

We propose and show here that survival analysis methods can be advantageously 54

applied to cell biological data to provide statistically sound results on completely 55

different biological and temporal scales than their typical areas of application. In 56

particular, we apply time-to-event analysis to exocytosis data from healthy and diabetic 57

human β-cells to quantify hazards (rates of exocytosis) and heterogeneity. In survival 58

analysis, univariate frailty modeling is a method to take into account unobserved 59

differences in hazards between individuals [13, 34]. In the present context, imaging of 60

PLOS 2/15



the secretory granules can not reveal their release propensity, i.e., whether they belong 61

to the IRP. Based on the biological findings and interpretations cited above, we thus 62

allow for heterogeneity by including frailties in our statistical model. This approach 63

allows us to estimate the size of the IRP directly from single-granule exocytosis data. 64

We estimate that the IRP is smaller in diabetic cells, and that exocytosis is less tightly 65

controlled by depolarizing K+ pulses compared to healthy cells. 66

Materials and Methods 67

Data description 68

Human pancreatic islets were provided by the Nordic Network for Clinical Islet 69

Transplantation (Uppsala, Sweden) with full ethical approval (Regionala 70

Etikprövningsnämden, Uppsala). Islets were dissociated into single cells in 0.0025% 71

trypsin in Ca2+/Mg2+-free cell dissociation buffer (ThermoFisher) for 3-5 minutes and 72

seeded onto polylysine-coated glass coverslips, and cultured in CMRL 1066 medium 73

containing 5.6 mM glucose, 10% fetal calf serum (FCS), and 2 mM L-glutamine, 74

streptomycin (100 µg/ml), penicillin (100 µg/ml). Seeded cells were infected using 75

adenovirus encoding the granule marker NPY-mCherry (Neuropeptide Y fused to the 76

red fluorescent protein mCherry; [5, 35]) and imaged 24-36 hours later. 77

Insulin-containing secretory granules in pancreatic β-cells from 3 healthy (11 cells) and 78

2 diabetic (8 cells) donors were imaged using total internal reflection fluorescence 79

(TIRF) microscopy at a frame rate of 10 Hz, with excitation at 561 nm and emission at 80

590-630 nm. Cells were bathed in (in mM) 138 NaCl, 5.6 KCl, 1.2 MgCl2, 2.6 CaCl2, 10 81

D-glucose and 5 HEPES (pH 7.4 with NaOH), 2 µM forskolin and 200 µM diazoxide. 82

The latter prevents glucose-dependent depolarization by opening ATP-dependent 83

K+-channels. Forskolin, which increases intracellular cyclic-AMP, was routinely 84

included to increase the number of primed granules available for exocytosis. 85

Exocytosis was then evoked by ten 1-second long pulses of local application of high 86

concentrations of K+ (75 mM KCl equimolarly replacing NaCl), interspersed by 87

9-seconds long rest intervals (Fig 1). The K+ pulses depolarize the cellular membrane 88

potential within ∼50 ms (unpublished observation), which opens voltage-dependent 89

Ca2+ channels and the resulting Ca2+ influx triggers exocytosis. The rate of exocytosis 90

is therefore expected to be higher during, compared to between, K+ pulses. All 91

experiments were carried out with constant buffer perifusion at 32 ◦C. Exocytosis 92

events were found manually as sudden disappearance of labeled granules. 93

We considered the granules within a cell as a cluster of statistical units indexed by 94

j = 1, . . . , J . Our data contains J = 19 clusters corresponding to the 19 cells, i.e., the 95

terminology ‘cluster’ refers to a structure in the data: the observations obtained from 96

the granules (the statistical units) in a cell. Cluster j had nj observations, representing 97

the granules in the cell, with index i = 1, . . . , nj . For granule i in cell j we observed 98

either the time of exocytosis, t̃ij , or the censoring time cij , i.e., the last observed time. 99

In these data, cij is the time when the experiment ended, and is thus the same for all 100

granules (so-called administrative censoring). Censoring precludes the observation of 101

exocytosis that might have occurred at a later time. Thus, the observed data are the 102

pairs (tij , dij), where tij are the realizations of the observed survival time 103

Tij = min(T̃ij , Cij), and dij is the observed indicator from Dij = I(T̃ij < Cij) that tells 104

whether a granule underwent exocytosis (dij = 1) or was censored (dij = 0). This form 105

of the data is typical for time-to-event data. 106
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Poisson regression modelling 107

For the analysis of the exocytosis data, we proceeded progressively. Poisson regression 108

neglecting heterogeneity was exploited to investigate whether the data can be described 109

with a time-varying, piecewise constant hazard, although biologically unlikely as 110

discussed below. This approach also serves as the basis for the formulation of the frailty 111

model in the next subsection, as well as a reference frame for the results that follow. 112

We assumed that the rate (or hazard function) of exocytosis µ(t) is piecewise 113

constant. The hazard was assumed to be constant during each pulse and during each 114

interval between two consecutive pulses, but it may vary from one pulse to another, and 115

from pulses to intervals between pulses. Model selection led to three parameters, 116

ρ0, ρ1, ρ2, estimating, respectively, the rate during the first pulse, the rate during the 117

other pulses, and the rate between pulses. The model also included a covariate X 118

indicating whether the cell came from a healthy (X = 0) or diabetic donor (X = 1). 119

The effect of diabetes was assumed to be time-varying in a piecewise-constant fashion 120

corresponding to the hazard, i.e., we considered three parameters β0, β1, β2 describing 121

the effects, respectively, during the first pulse, during the following pulses, and between 122

pulses. The hazard function was thus modeled as 123

µ(t|X) =


ρ0e

β0X = eα0+β0X , 0 ≤ t < 1 seconds,

ρ1e
β1X = eα1+β1X , s ≤ t < s+ 1 for some s = 10, 20, 30, . . . seconds,

ρ2e
β2X = eα2+β2X , s+ 1 ≤ t < s+ 10 for some s = 0, 10, 20, . . . seconds,

where αk = log ρk, and k = 0, 1, 2 indicate whether t falls in the first pulse (k = 0), in 124

one of the following pulses (k = 1), or between pulses (k = 2) (Fig 1). In particular, we 125

were interested in the question of whether the rate of exocytosis was different between 126

healthy and diabetic cells, and if this difference was restricted to the first pulse. 127

Since only a small fraction of granules exhibited exocytosis during the experiments, 128

Poisson modeling can be used to describe the data [36]. We used the R [37] function 129

glm to perform the analysis. To get cluster-corrected standard errors and Wald-type 130

confidence intervals (which are calculated from standard errors) for the parameter 131

estimates, we used the robust sandwich estimator (see Eq. 5 below) based on R code by 132

Arai [38]. Cox proportional hazards modeling can also investigate the time-dependent 133

effect of diabetes by including time-varying parameters [12], but the baseline hazard 134

function is estimated nonparametrically. When we applied this model, it gave virtually 135

identical results to the Poisson model for the diabetes effect. 136

Frailty modelling of two pools of granules 137

The interpretation of the selected Poisson model is that for any granule the rate of 138

exocytosis is higher during the first pulse than during the following pulses, for example 139

because of a reduction in the triggering Ca2+ signal as a result of Ca2+ channel 140

inactivation. Such an interpretation is biologically unlikely, since the 9 sec interval 141

between pulses is sufficiently long to allow reactivation of Ca2+ currents [39]. Thus, if 142

anything, the Ca2+ levels should build up from one K+ pulse to the next, which would 143

increase the rate of exocytosis for pulses later in the train. 144

An alternative and widely used explanation is to attribute the greater amount of 145

release in the beginning of the stimulus protocol to an immediately releasable pool 146

(IRP) of granules that have a much higher intrinsic rate of exocytosis than the 147

remaining, non-IRP, granules [21, 23]. Once this pool is empty, exocytosis proceeds at a 148

slower pace. 149

Imaging of the labeled granules can not reveal whether a given granule belongs to 150

the IRP, nor can the size of the IRP be seen from the microscopy images. Statistically, 151
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Fig 1. Stimulation protocol and related model parameters. An indication of
the high-concentration K+ pulses (1 s) interspersed by 9 seconds of rest. The
parameters common to the two statistical models are indicated in black (for the pulses
following the first pulse) and gray (for the rest intervals). The two models have different
parameters for the first pulse. In the Poisson model (red), the baseline rate and effect of
diabetes is allowed to be different during the first pulse compared to subseequent pulses
(black). In the frailty model (blue), the baseline parameters are the same during all the
pulses, but additional parameters (η, π1, π2) describing the frailty distribution are
included. These additional parameters are not restricted to a certain time interval. See
main text for detailed descriptions of the statistical models.

we can handle this scenario by introducing a (non-observable) Bernoulli variable Y , 152

where the realization Yij is equal to 1 when granule i of cell j belongs to the IRP and 0 153

otherwise. To allow for different sizes of the IRP in healthy and diabetic cells we 154

assume that the probability P (Y = 1|X) = πX depends on the diabetes-covariate X. 155

Exocytosis of an IRP granule is assumed to occur with a rate that is η times higher 156

than the baseline rate describing non-IRP exocytosis. This assumption is described by a 157

discrete frailty Z, which takes the value η when Y = 1, and Z = 1 otherwise. The 158

resulting frailty model is thus 159

µ(t|X,Z) = Zµ0(t|X), P (Z = η|X) = πX , P (Z = 1|X) = 1− πX . (1)

The baseline hazard µ0 is piecewise constant with rate ρ1e
β1X = eα1+β1X during K+

160

pulses and rate ρ2e
β2X = eα2+β2X between pulses. Thus, β1 and β2 describe effects of 161

diabetes on the rates-of-exocytosis during and between K+ pulses, respectively. Note 162

that in contrast to the Poisson model, the baseline rate is assumed to be identical 163

during the first and the subsequent K+ pulses (Fig 1). 164

In time-to-event analysis, one of the main overall summary measures of interest is
the survival probability S(t) = P (T ≥ t), or, equivalently, the cumulative incidence
probability defined as F (t) = P (T < t) = 1− S(t). S can be estimated in a model-free,
nonparametric way using for example the Kaplan-Meier estimator [11]. For the frailty
model (1), the marginal survival function is given as

S(t|X) = πXe
−ηM0(t|X) + (1− πX)e−M0(t|X),

where M0(t|X) =
∫ t
0
µ0(t|X) is the cumulative baseline hazard [13]. This expression is a 165

mixture of the survival functions of an IRP granule and a non-IRP granule, weighted by 166

their respective probability to be observed. 167

We construct the likelihood function under the working independence assumption 168

[40, 41]. This means that for the time being we ignore the clustered structure of the 169

data caused by the correlation between granules within the same cell. Following the 170

work of Yu & Peng [41] on cure models, a particular type of discrete frailty model with 171

η = 0, we then integrate the frailty out to obtain a marginal likelihood function. The 172

resulting marginal independence log-likelihood, lI , gives valid maximum likelihood 173
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estimate (MLE) θ̂I of the parameter vector θ, but the inverse of the observed Hessian of 174

the independence log-likelihood, Ĥ−1, does not yield valid estimates of e.g. standard 175

errors [40, 42]. Thus, in order to construct confidence intervals or perform inferential 176

tests, corrections must be introduced. 177

Under the independence assumption, the log-likelihood, conditional on the frailty Z, 178

is given as the sum of the individual contributions, 179

˜̀
I(θ|tij , dij , Xij , Zij) =

J∑
j=1

nj∑
i=1

˜̀
ij(θ|tij , dij , Xij , Zij), (2)

with
˜̀
ij = log

[
µ(tij |Xij , Zij)

dije−M(tij |Xij ,Zij)
]
,

where M is the cumulative hazard function,

M(t|X,Z) =

∫ t

0

µ(s|X,Z)ds = Z

∫ t

0

µ0(s|X)ds = ZM0(t|X),

and M0 the cumulative baseline hazard. Since Z is unobservable, it must be integrated 180

out of the log-likelihood (2) to obtain the MLE. This procedure yields the marginal 181

(unconditional on Z) independence log-likelihood 182

`I(θ|tij , dij , Xij) =

J∑
j=1

nj∑
i=1

`ij(θ|tij , dij , Xij), (3)

where 183

`ij(θ|tij ,dij , Xij) =

log
[
µ0(tij |Xij)

dij
(
πXij

ηdije−ηM0(tij |Xij) + (1− πXij
)e−M0(tij |Xij)

)] (4)

is found by averaging the likelihood function with respect to Z [13]. Given the data, `I 184

can then be maximized to yield the MLE θ̂I . 185

A commonly used approach to correct for clustering is to estimate the 186

variance-covariance matrix using the so-called robust or sandwich estimator [40] 187

R = Ĥ−1V̂ Ĥ−1, V̂ =
∑
j

Uj(θ̂I)Uj(θ̂I)
′, (5)

where

Uj(θ) =
∑
i

Uij(θ) =
∑
i

∂

∂θ
`ij(θ|tij , dij , Xij)

is the score contribution from cluster j. From R, robust standard errors for θ̂I , SEθ̂I , 188

and correct Wald-type 95% confidence intervals, θ̂I ± 1.96SEθ̂I , can be obtained. 189

However, Wald tests are not reliable for testing null hypothesis with parameters on the 190

boundary of the parameter space (e.g., πX = 0). Further, Wald-type inference can be 191

difficult to interpret when covariates are highly correlated, and inference based on the 192

likelihood ratio is preferable in finite samples [40]. 193

In order to calculate valid likelihood-based confidence intervals, and perform 194

likelihood ratio tests, Chandler & Bate [40] proposed to adjust the independence 195

likelihood in order to obtain an adjusted log-likelihood function `A that has the same 196

MLE as `I , but has the ‘correct’ observed Hessian ĤA, i.e., the sandwich estimator in 197
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(5) is obtained as the inverse of the observed Hessian, ĤA = −R−1. This can be 198

obtained by defining [40] 199

`A(θ) = `I
(
C(θ − θ̂I) + θ̂I

)
, (6)

where θ̂I maximizes `I , and C = N−1NA with N ′N = Ĥ and N ′ANA = ĤA = −R−1. 200

The matrix square-roots N and NA are conveniently constructed from the spectral 201

decompositions of Ĥ and −R−1 [40]. Likelihood ratio tests, e.g. of the null hypothesis 202

that a given parameter is equal to zero, say θk = 0, can then be performed by 203

comparing quantiles of the χ2
1 distribution to the log likelihood ratio statistics 204

ΛA = 2(`A(θ̂I)− `A(θ̃)), where θ̃ maximizes `A under the constraint θk = 0. When 205

performing tests against a null hypothesis with parameters on the boundary of the 206

parameter space, e.g., testing π0 = 0 or π1 = 0, ΛA is compared to the quantiles of the 207

mixture distribution (χ2
0 + χ2

1)/2 [43]. This amounts to performing a one-sided test. 208

As recommended by Chandler & Bate [40], we chose a reparameterization that led to 209

symmetric log-likelihoods, as verified by the symmetry of the estimated confidence 210

intervals. In particular, we estimated the parameter vector 211

θ = (α1, α2, β2, η̃, π̃0, π̃1) = (log ρ1, log ρ2, β2, log η,
√
π0,
√
π1), and calculated 212

confidence intervals and performed log likelihood ratio tests for θ based on `A. For ease 213

of interpretations, inferential results are presented for the original parameters using the 214

inverse transformations of point and interval estimates. Calculations were performed in 215

R [37]. Optimization of `I was done using the nlminb function. Numerical 216

approximations to Ĥ and Ûj were found using the hessian and grad functions from 217

the numDeriv R package [44]. Spectral decompositions were obtained using the eigen 218

R function. 219

Results 220

Time-varying, piecewise-constant hazard Poisson analysis 221

As explained in the Methods, we assume a piecewise constant hazard 222

µ(t|X) =


ρ0e

β0X = eα0+β0X , 0 ≤ t < 1 seconds,

ρ1e
β1X = eα1+β1X , s ≤ t < s+ 1 for some s = 10, 20, 30, . . . seconds,

ρ2e
β2X = eα2+β2X , s+ 1 ≤ t < s+ 10 for some s = 0, 10, 20, . . . seconds,

where ρk and βk model baseline hazards and effects of diabetes, respectively, and the 223

subscripts k = 0, 1, 2 refer to, respectively, the first pulse, the following pulses and the 224

intervals between pulses. In the Poisson formulation, the parameters αk = log(ρk) and 225

βk, k = 0, 1, 2 are estimated. However, to facilitate the interpretation of the baseline 226

rates, inferential results are reported for ρk and βk, k = 0, 1, 2. 227

The estimated rate related to the first pulse (ρ̂0 = 0.176 s−1) was found to be 228

significantly greater (about 14-fold) than the estimate related to the other pulses 229

(ρ̂1 = 0.0013 s−1; p < 10−11). As expected, the estimated rate between pulses 230

(ρ̂2 = 0.0003 s−1) was significantly lower (about 6-fold) than the rate during stimuli, 231

reflecting that exocytosis mainly occur when Ca2+ channels open in response to the 232

depolarizing K+ pulses. Interestingly, diabetes had no statistically significant effect on 233

the hazard during pulses, though there was a tendency towards a reduced rate (∼75% 234

reduction) of exocytosis during the first pulse in diabetic cells (p = 0.157, β̂0 = −1.48, 235

exp(β̂0) = 0.23). This reduced rate was however poorly estimated as reflected by the 236

large confidence interval. On the contrary, between pulses the rate of exocytosis was 2-3 237

fold higher in diabetic cells than in healthy cells (p = 0.060, β̂2 = 0.98, exp(β̂2) = 2.66). 238

We note that all the tests, except for β1, (erroneously) show significance if clustering is 239
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Table 1. Estimated parameters using Poisson modeling.

Parameter estimate 95% CI p-value p-value (no clustering)

ρ0 0.0176 (0.0040, 0.0781) < 10−11 < 10−11

ρ1 0.0013 (0.0004, 0.0040)
ρ2 0.0003 (0.0001, 0.0005) 0.006 < 10−5

β0 -1.48 (-3.54, 0.57) 0.157 0.046
β1 -0.09 (-1.81 1.62) 0.914 0.858
β2 0.98 (-0.04, 2.01) 0.060 0.0006

Wald-type 95% confidence intervals (CI) and p-values are based on the sandwich
estimator R and t-tests. For βk, the p-values refer to the null-hypotheses βk = 0. For ρ0
and ρ2, the p-values refer to the null-hypotheses ρ0 = ρ1 and ρ2 = ρ1, respectively. The
last column shows naive p-values ignoring clustering.

ignored. In summary, whereas healthy cells showed a prominent peak of exocytosis in 240

response to the first pulse followed by bursts of release synchronized with the 241

stimulating pulses, exocytosis occurred less well controlled by the stimuli in diabetic 242

cells, as seen from nonparametric estimates of the cumulative incidence functions (Fig 2, 243

black curves). These results correspond well to clinical characteristics of diabetes, where 244

biphasic insulin secretion is disturbed [18]. 245

Frailty modeling of granule heterogeneity 246

The model presented in the previous subsection assume that all granules follow the 247

same hazard function describing the rate of exocytosis. The obtained results suggest 248

that this hazard declines from the first to subsequent stimulus pulses, and thus, that the 249

peak of secretion is caused by a decrease in the rate of exocytosis. Alternatively, the 250

peak of secretion is often attributed to a distinct immediately releasable pool (IRP) of 251

granules that undergo exocytosis more rapidly that the non-IRP granules. 252

To account for a heterogeneous granule population, we introduced a discrete frailty 253

variable Z that modeled the probability (πX) of a granule to belong to the IRP and the 254

fold-increase in exocytosis rate in the IRP via the parameter η. The size of the IRP is 255

hence described by πX , which was allowed to vary between healthy and diabetic cells. 256

As described in the Methods, Z is a non-observable variable since we cannot a priori 257

identify the granules that belong to the IRP. 258

In order to estimate the parameters in the model, we integrate Z out to obtain the 259

marginal independence likelihood function `I , which is then maximized. The resulting 260

maximum likelihood estimates of the parameters are reported in Table 2. The Hessian 261

of the independence likelihood function `I does not provide valid estimates for standard 262

errors since it neglects the clustered structure of the data caused by the correlation 263

between granules within the same cell. In order to perform valid inference, we adjust `I 264

to obtain the adjusted likelihood function `A, which permits us to construct confidence 265

intervals from the log-likelihood statistics, and to perform ordinary log-likelihood ratio 266

tests taking clustering into consideration [40] (Table 2). 267

In contrast to the Poisson model, we assumed that the rate of exocytosis, for a given 268

granule (conditional on the frailty Z), was different during, compared to between, K+
269

pulses, but that the hazard was independent of the pulse number, i.e., ρ0 = ρ1 (Fig 1). 270

Based on the Poisson model, and after performing model selection in the frailty 271

formulation, we assumed that diabetes did not influence the rate of exocytosis during 272

pulses, i.e., β1 = 0. However, diabetes was allowed to have an effect on the rate of 273

exocytosis between pulses. As shown in Fig 2, the model provides a good overall fit to 274
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Fig 2. Estimated cumulative incidence probabilities. The curves represent the
estimated probabilities of an exocytotic event before time t (the cumulative incidence)
for a given granule in healthy (upper panel, full curves) or diabetic (lower panel, dashed
curves) β-cells. The black curves are obtained from model-free, non-parametric
Kaplan-Meier estimates, which, for comparison, are shown in both panels. Steps in
these curves correspond to exocytotic events. For the frailty model we show the
marginal estimate (blue), and the estimates conditional on the frailty, Z = η (IRP
granules; red; scaled by πX) or Z = 1 (non-IRP granules; green; scaled by 1− πX). The
gray vertical lines indicate the K+ pulses.

the data. 275

Our results (Table 2) concerning the estimated frailty parameter π̂0 suggest that the 276

size of the IRP in healthy β-cells is significantly greater that zero (p = 0.022) and 277

amounts to ∼2.6% of the docked granules. Note that if clustering is (erroneously) 278

neglected, the significance of the test becomes extremely high (p < 10−7). In contrast, 279

in diabetic β-cells, the estimated IRP size, as measured by π̂1, is only ∼1.0% of the 280

docked granules, almost significantly different from zero (p = 0.052, 95% C.I. 281

(0.00003,0.035)). Again, if clustering is neglected the difference becomes (erroneously) 282

highly significant (p = 0.008). Thus, we reiterate that in order to perform correct 283

inference, clustering must be taken into account. 284
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IRP granules have a ∼500-fold higher rate of exoytosis (η̂ = 499.5, p < 10−4) 285

compared to non-IRP granules, i.e., the rate-of-exocytosis during pulses was estimated 286

to ρ̂1 = 0.0012 s−1 in non-IRP granules and to η̂ρ̂1 = 0.5837 s−1 in IRP granules. The 287

estimated between-pulse rate in healthy cells ρ̂2 = 0.00014 s−1 was ∼8 times lower than 288

ρ̂1 (p = 0.0005). Note that these estimates compare well with the Poisson model results 289

reported in Table 1. Interestingly, and in line with the Poisson modeling, exocytosis 290

between pulses was estimated to occur at a higher rate in diabetic cells 291

(ρ̂2e
β̂2 = 6.0 · 10−4 s−1 in diabetic cells vs. ρ̂2 = 1.4 · 10−4 s−1 in healthy cells, 292

p = 0.038). As typically seen for covariate effects [13], the effect of diabetes on the 293

between-pulse hazard was estimated to be greater in the frailty formulation compared to 294

the Poisson model without frailty. 295

Table 2. Estimated parameters using frailty modeling.

Parameter MLE 95% CI p-value p-value (no clustering)

ρ1 0.00117 (0.00079, 0.00174)
ρ2 0.00014 (0.00011, 0.00019) 0.0005 4 · 10−7

β2 1.43 (0.98, 1.84) 0.038 0.0002
η 499.5 (321.7, 773.4) < 0.0001 < 10−7

π0 0.026 (0.013, 0.044) 0.022 < 10−7

π1 0.010 (0.00003, 0.035) 0.052 0.008

Maximum likelihood estimates (MLE) are based on the independence likelihood
function `I . The 95% confidence intervals (CI) and tests of hypotheses are based on the
log likelihood ratio statistic ΛA obtained from the adjusted log-likelihood function `A.
For ρ2, the p-value refers to the null hypothesis ρ1 = ρ2. The last column shows
p-values based on log likelihood ratio test using `I ignoring clustering.

Discussion 296

The aim of this paper was to present a novel application of a well-established statistical 297

methodology to modern cell biological data obtained with live cell imaging. To the best 298

of our knowledge, a rigorous and statistically sound method for the analysis of 299

exocytosis data obtained by TIRF microscopy has been lacking. 300

The presented method can take into account unobserved heterogeneity by the 301

inclusion of frailties, here exemplified by a discrete frailty representing the IRP. In 302

addition, observed covariates, here whether a cell came from a healthy or diabetic donor, 303

can be included for example in a proportional hazards formulation. We envisage that 304

our approach to the study of exocytosis with the use of flexible survival modeling [12] 305

can be extended to include more complicated, time-dependent covariates [45], such as 306

for example Ca2+ concentrations [46, 47] or protein levels [5, 7, 48] at the granules. 307

Further extensions could take into consideration spatial information in addition to the 308

temporal data [49]. The current formulation can also readily handle more complex 309

censoring patterns than the pattern considered here, such as for example experiments 310

interrupted at different times. Further, the method is not limited to the study of 311

exocytosis or to endocrine cells; TIRF imaging of exocytotic events of e.g. synaptic 312

vesicles [8] or GLUT4 vesicles in fat or muscle cells [50, 51], or of individual endocytotic 313

events [50, 52], produce data similar to the dataset analyzed here. Moreover, the 314

statistical methodology was here applied to data from TIRF imaging, but it is suitable 315

for analyzing well-defined temporal cellular events recorded with any other imaging 316

technique. 317
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It is a well-known fact in the statistical literature [40, 42], but often not considered 318

in biology, that ignoring clustering typically leads to underestimation of standard errors, 319

and thus to small ‘naive’ p-values. Our example shows clearly this effect, which is due 320

to the correlation between granules in the same cell: some cells are inherently ‘highly 321

responding’, meaning that the granules in such a cell readily undergo exocytosis, while 322

other cells are not. Ignoring this fact, would lead, for example, to rejecting the null 323

hypotheses π1 = 0 (Table 2) or, in the Poisson formulation, β0 = 0 (Table 1). Taking 324

into account the clustered structure of the data yields more cautious conclusions. 325

Our study also highlights how different statistical models can explain the data, but 326

with different biological interpretations. The Poisson formulation assumed that all 327

granules in a cell behave similarly, but that the rate of exocytosis is higher during the 328

first pulse compared to the subsequent pulses. In contrast, the frailty model assumes 329

that the rate of exocytosis for a given granule is the same in all pulses, but that the 330

granule population is heterogeneous, since some granules belong to the IRP and have 331

higher exocytosis rate. The latter model respects better various biological results 332

regarding exocytosis in β-cells. Thus, for this kind of studies of complex cell biological 333

questions, a close interaction between biologists and statisticians is needed in order to 334

formulate a biologically correct model, which then serves as the basis for performing 335

statistical inference with results that are both biologically reasonable and statistically 336

sound. 337

Our application of the frailty model to human β-cells estimated that the IRP 338

constitutes 2-3% of the docked granules in healthy cells, but only approximately half as 339

many in diabetic cells. In diabetic cells, we were unable to conclude whether an IRP is 340

present; the estimate of π1 was borderline significant (p = 0.052). Further studies 341

should investigate this aspect further. Based on a cell capacitance of ∼10 pF [53], an 342

absolute membrane capacitance of 10 fF/µm2, and assuming a density of ∼0.8 docked 343

granule per µm2 membrane [54], the number of docked granules can be estimated to be 344

∼800/cell. Hence, we estimate that the IRP contains ∼20 granules in healthy cells, and 345

around 10 granules in diabetic cells. The estimate in healthy cells corresponds well to 346

the estimate of the IRP in unstimulated mouse β-cells [55]. 347

The formulation of the model assumed piecewise constant baseline hazard. This 348

formulation allowed us to perform explicit maximum-likelihood estimation, and to 349

quantify the rate of exocytosis during and between pulses. As expected, we found that 350

the rate of exocytosis was higher during pulses, compared to during the interval 351

between pulses where Ca2+ channels are closed. This suggests that in healthy β-cells a 352

close coupling between Ca2+ channels and insulin granules guarantees tight control of 353

synchronized secretion. Interestingly, between pulses the rate of exocytosis was 354

significantly higher in diabetic cells, as was the total amount of exocytosis during the 355

experiments (Fig 2). This asynchronous release may correspond to basal insulin 356

secretion, which is increased in diabetic mouse models [22], and even in early phases of 357

human diabetes [56, 57], in agreement with our findings. The higher between-pulse rate 358

might be explained by a looser coupling between Ca2+ channels and insulin granules in 359

diabetic cells [22], so that residual Ca2+ remaining after the end of the K+ pulse and 360

closure of Ca2+ channels triggers unsynchronized exocytosis. Such a scenario would 361

require that the Ca2+ affinity for exocytosis is higher in the granules located away from 362

the Ca2+ channels [58]. 363

In summary, we have shown how to adapt time-to-event analysis to the study of 364

TIRF imaging data of exocytosis in human β-cells. This powerful statistical 365

methodology allows quantifying several biologically interesting parameters, such as rates 366

of exocytosis, probabilities of an event in a certain time interval, and the size of the IRP, 367

in healthy and diabetic β-cells. In this context, rigorous statistical tests taking into 368

consideration the clustered structure of the data are needed to reflect the correlation 369
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between granules within the same cell. This makes it possible to correctly investigate 370

hypotheses of disturbances in diseased cells. We believe the presented approach, which 371

should be seen as a starting point for future extensions, could be generally applicable to 372

analysis of a range of cell biological data with well-defined temporal events, also in the 373

presence of more complicated covariates and censoring patterns. 374
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