
124

MCRapper: Monte-Carlo Rademacher Averages

for Poset Families and Approximate Pattern Mining
∗

LEONARDO PELLEGRINA, Università di Padova, Italy
CYRUS COUSINS, Brown University, USA
FABIO VANDIN, Università di Padova, Italy
MATTEO RIONDATO, Amherst College, USA

“I’m an MC still as honest” — Eminem, Rap God

We presentMCRapper, an algorithm for efficient computation of Monte-Carlo Empirical Rademacher Averages
(MCERA) for families of functions exhibiting poset (e.g., lattice) structure, such as those that arise in many
pattern mining tasks. The MCERA allows us to compute upper bounds to the maximum deviation of sample
means from their expectations, thus it can be used to find both 1. statistically-significant functions (i.e., patterns)
when the available data is seen as a sample from an unknown distribution, and 2. approximations of collections
of high-expectation functions (e.g., frequent patterns) when the available data is a small sample from a large
dataset. This flexibility offered byMCRapper is a big advantage over previously proposed solutions, which
could only achieve one of the two. MCRapper uses upper bounds to the discrepancy of the functions to
efficiently explore and prune the search space, a technique borrowed from pattern mining itself. To show
the practical use of MCRapper, we employ it to develop an algorithm TFP-R for the task of True Frequent
Pattern (TFP) mining, by appropriately computing approximations of the negative and positive borders of the
collection of patterns of interest, which allow an effective pruning of the pattern space and the computation
of strong bounds to the supremum deviation. TFP-R gives guarantees on the probability of including any false
positives (precision) and exhibits higher statistical power (recall) than existing methods offering the same
guarantees. We evaluate MCRapper and TFP-R and show that they outperform the state-of-the-art for their
respective tasks.

CCS Concepts: • Information systems→ Data mining; • Mathematics of computing→ Probabilistic
algorithms; • Theory of computation→ Sketching and sampling.

Additional Key Words and Phrases: Approximation Algorithms, Frequent Patterns, Itemsets, Sampling, Signifi-
cant Patterns, Statistical Testing, Statistical Learning Theory, Subgroup Discovery

ACM Reference Format:
Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato. 2022. MCRapper: Monte-Carlo
Rademacher Averages for Poset Families and Approximate Pattern Mining. ACM Trans. Knowl. Discov. Data.
16, 6, Article 124 (May 2022), 30 pages. https://doi.org/10.1145/3532187

1 INTRODUCTION

Pattern mining is a key sub-area of knowledge discovery from data, with a large number of variants
(from itemsets mining [1] to subgroup discovery [16], to sequential patterns [2], to graphlets [3])
∗A preliminary version of this work [22] appeared in the proceedings of ACM KDD’20.

Authors’ addresses: Leonardo Pellegrina, Dept. of Information Engineering, Università di Padova, Via G. Gradenigo 6/B,
Padova, IT-35131, Italy, pellegri@dei.unipd.it; Cyrus Cousins, Dept. of Computer Science, Brown University, 115 Waterman
St., Providence, RI, 02912, USA, ccousins@cs.brown.edu; Fabio Vandin, Dept. of Information Engineering, Università di
Padova, Via G. Gradenigo 6/B, Padova, IT-35131, Italy, fabio.vandin@unipd.it; Matteo Riondato, Dept. of Computer Science,
Amherst College, AC #2232 Amherst College, Amherst, MA, 01002, USA, mriondato@amherst.edu.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version
of Record was published in ACM Transactions on Knowledge Discovery from Data, https://doi.org/10.1145/3532187.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

HTTPS://ORCID.ORG/0000-0002-6601-5526
HTTPS://ORCID.ORG/0000-0002-1691-0282
HTTPS://ORCID.ORG/0000-0003-2244-2320
HTTPS://ORCID.ORG/0000-0003-2523-4420
https://doi.org/10.1145/3532187
https://orcid.org/0000-0002-6601-5526
https://orcid.org/0000-0002-1691-0282
https://orcid.org/0000-0003-2244-2320
https://orcid.org/0000-0003-2523-4420
https://doi.org/10.1145/3532187

124:2 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

tailored to applications ranging from market basket analysis to spam detection to recommendation
systems. Ingenious algorithms for all variants have been proposed over the years, and pattern
mining is both widely used in practice and an extremely vibrant area of research.
In this work, we are interested in the analysis of samples for pattern mining. There are two

meanings of “sample” in this context, but, as we now argue, they are really two sides of the same
coin, and our methods work for both sides.
The first meaning is sample as a small random sample of a large dataset: since mining patterns

becomes more expensive as the dataset grows, it is reasonable to mine only a small random
sample that fits into the main memory of the machine. Recently, this meaning of sample as
“sample-of-the-dataset” has been used also to enable interactive data exploration using progressive
algorithms for pattern mining [31]. The patterns obtained from the sample are an approximation
of the exact collection, due to the noise introduced by the sampling process. To obtain desirable
probabilistic guarantees, one must study the trade-off between the size of the sample and the quality
of the approximation. Many works have obtained progressively better characterizations of the
trade-off using advanced probabilistic concepts [8, 25, 26, 28, 31, 36]. Recent methods [25, 26, 28,
31] use VC-dimension, pseudodimension, and Rademacher averages [4, 17], key concepts from
statistical learning theory [38] (see also Sect. 2 and Sect. 3.2), because they allow to obtain uniform
(i.e., simultaneous) probabilistic guarantees on the deviations of all sample means (e.g., sample
frequencies, or other measure of interestingness) of all patterns from their expectations (the exact
interestingness of the patterns in the dataset).

The second meaning is sample as a sample from an unknown data generating process: the whole
dataset is seen as a collection of samples from an unknown distribution, and the goal of mining pat-
terns from the available dataset is to gain approximate information (or better, discover knowledge)
about the distribution. This area is known as statistically-sound pattern discovery [14], and there are
many different flavors of it, from significant pattern mining [35] on transactional datasets [15, 23],
sequences [37], or graphs [34], to true frequent itemset mining [27], to, at least in part, contrast
pattern mining [5]. Many works in this area also use concepts from statistical learning theory, such
as empirical VC-dimension [27] or Rademacher averages [23], because, once again, these concepts
allow to get very sharp bounds on the maximum difference between the observed interestingness
on the sample and the unknown interestingness according to the distribution.
The two meanings of “sample” are really two sides of the same coin, because also in the first

case the goal is to approximate an unknown distribution from a sample, thus falling back into the
second case. Despite this similarity, previous contributions have been extremely point-of-view-
specific and pattern-type-specific (e.g., only either for approximating frequent itemsets [25, 26] or
subgroups [29], or sequences [30, 32] from a sample, or for discovering significant patterns [23, 27]).
In part, these limitations are due to the techniques used to study the trade-off between sample size
and quality of the approximation obtained from the sample. Our work instead proposes a unifying
solution for mining approximate collections of patterns from samples, while giving guarantees
on the quality of the approximation: our proposed method can easily be adapted to approximate
collections of frequent itemsets, frequent sequences, true frequent patterns, significant patterns,
and many other tasks, even outside of pattern mining.
At the core of our approach is the 𝑛-Trials Monte-Carlo (Empirical) Rademacher Average (𝑛-

MCERA) [4] (see (4)), which has the flexibility and the power needed to achieve our goals, as it
gives much sharper bounds to the deviation of sample means from their expectations than other
approaches. The main challenges in using the 𝑛-MCERA in practical data analysis algorithms are
two: (1) similar to many other quantities from statistical learning theory, an efficient method is
needed to compute the 𝑛-MCERA, and this method may (and likely should) depend on the family
of functions of interest; and (2) in order to leverage the full power of the deviation bounds that

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:3

use the 𝑛-MCERA, it is important to carefully identify the best family or families of functions to
consider for the specific data analysis task being studied, where “best” should be interpreted from
both a statistical and a computational point of view, therefore tying this second challenge to the
first one.

Contributions. We present MCRapper, an algorithm for the fast computation of the 𝑛-MCERA of
families of functions with a poset structure, which often arise in pattern mining tasks (Sect. 3.1).
• MCRapper is the first algorithm to compute the 𝑛-MCERA efficiently. It achieves this goal
by using sharp upper bounds to the discrepancy of each function in the family (Sect. 4.1) to
quickly prune large parts of the function search space during the exploration necessary to
compute the 𝑛-MCERA, in a branch-and-bound fashion. We also develop a novel sharper
upper bound to the supremum deviation of sample means from their expectations using the
1-MCERA (Thm. 4.7). It holds for any family of functions, and is of independent interest.
• To showcase the practical strength of MCRapper, we develop TFP-R (Sect. 5), a novel algo-
rithm for the extraction of the True Frequent Patterns (TFP) [27]. TFP-R gives probabilistic
guarantees on the quality of its output: with probability at least 1 − 𝛿 (over the choice of the
sample and the randomness used in the algorithm), for user-supplied 𝛿 ∈ (0, 1), the output
is guaranteed to not contain any false positives. That is, TFP-R controls the Family-Wise
Error Rate (FWER) at level 𝛿 while achieving high statistical power, thanks to the use of
the 𝑛-MCERA and of novel variance-aware tail bounds (Thm. 3.5). We also discuss other
applications of MCRapper, to emphasize its flexibility as a general-purpose algorithm.
• We conduct an extensive experimental evaluation of MCRapper and TFP-R on real datasets
(Sect. 6), and compare their performance with that of state-of-the-art algorithms for their
respective tasks.MCRapper, thanks to the 𝑛-MCERA, computes much sharper (i.e, lower) up-
per bounds to the supremum deviation than algorithms using the looser Massart’s lemma [33,
Lemma 26.8]. TFP-R extracts many more TFPs (i.e., has higher statistical power) than existing
algorithms with the same guarantees.

The present article extends the conference version [22] in multiple ways, including:
• We give a new algorithm for mining the True Frequent Patterns presented in Sect. 5, so it
computes an even better approximation of this collection of patterns. This new approach
decomposes the problem into obtaining independent approximations of the negative and
positive borders of the collection of patterns of interest. This choice is a better solution to
the second challenge in using the 𝑛-MCERA mentioned above. This decomposition enables
the algorithm to achieve higher power (i.e., return more TFPs) while maintaining the same
probabilistic guarantees on the presence of any false positive in the output.
• We also show a variant of the TFP-mining algorithm that (probabilistically) returns two
collections of patterns, one with perfect precision and one with perfect recall, thus achieving
the best of both worlds.
• We include all the proofs of our theoretical results, after fine tuning their hypotheses and
assumptions, to make our work as general as possible. We add examples and figures to help
the understanding of important concepts.
• We include additional experimental results to study the composition of the error bound as
the number 𝑛 of Monte-Carlo trials, and to show the behavior of the algorithm for different
values of the minimum frequency threshold 𝜃 .

2 RELATEDWORK

Our work applies to both the “small-random-sample-from-large-dataset” and the “dataset-as-a-
sample” settings, so we now discuss the relationship of our work to prior art in both settings. We do

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:4 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

not study the important but different task of output sampling in pattern mining [6, 12]. We focus
on works that use concepts from statistical learning theory: these are the most related to our work,
and most often the state of the art in their areas. More details are available in surveys [14, 25].

The idea of mining a small random sample of a large dataset to speed up the pattern extraction
step was proposed for the case of itemsets by Toivonen [36] shortly after the first algorithm
for the task had been introduced. The trade-off between the sample size and the quality of the
approximation obtained from the sample has been progressively better characterized [8, 25, 26],
with large improvements due to the use of concepts from statistical learning theory. Riondato
and Upfal [25] study the VC-dimension of the itemsets mining task, which results in a worst-case
dataset-dependent but sample- and distribution-agnostic characterization of the trade-off. The major
advantage of using Rademacher averages [17], as we do in MCRapper is that the characterization
is now sample-and-distribution-dependent, which gives much better upper bounds to the maximum
deviation of sample means from their expectations. Rademacher averages were also used by
Riondato and Upfal [26], but they used worst-case upper bounds (based on Massart’s lemma [33,
Lemma 26.2]) to the empirical Rademacher average of the task, resulting in excessively large bounds.
MCRapper instead computes the exact 𝑛-MCERA of the family of interest on the observed sample,
without having to consider the worst case. For other kinds of patterns, Riondato and Vandin [29]
studied the pseudodimension of subgroups, while Santoro et al. [30] and Servan-Schreiber et al.
[32] considered the (empirical) VC-dimension and Rademacher averages for sequential patterns.
MCRapper can be applied in all these cases, and obtains better bounds because it uses the sample-
and-distribution-dependent 𝑛-MCERA, rather than a worst case dataset-dependent bound.

Significant pattern mining considers the dataset as a sample from an unknown distribution. Many
variants and algorithms are described in the survey by Hämäläinen and Webb [14]. We discuss
only the two most related to our work. Riondato and Vandin [27] introduce the problem of finding
the true frequent itemsets, i.e., the itemsets that are frequent w.r.t. the unknown distribution. They
propose a method based on empirical VC-dimension to compute the frequency threshold to use to
obtain a collection of true frequent patterns with no false positives (see also Sect. 5). Our algorithm
TFP-R uses the 𝑛-MCERA, and as we show in Sect. 6, it greatly outperforms the state-of-the-art (a
modified version of the algorithm by Riondato and Upfal [26] for approximate frequent itemsets
mining). Pellegrina et al. [23] use empirical Rademacher averages in their work for significant
pattern mining. As their work uses the bound by Riondato and Upfal [26], the same comments
about the 𝑛-MCERA being a superior approach hold.

Our approach to bounding the supremum deviation by computing the 𝑛-MCERA with efficient
search space exploration techniques is novel, not just in knowledge discovery, as the 𝑛-MCERA has
received scant attention. In fact, the only use of the 𝑛-MCERA predating the conference version
of our paper is the work of De Stefani and Upfal [11], which uses it to control the generalization
error in a sequential and adaptive setting, but do not discuss efficient computation. Subsequently,
Cousins and Riondato [9] presented refined sharp bounds to the supremum deviation that can use
the 𝑛-MCERA, but do not focus on how to compute them efficiently. Pellegrina [21, Ch. 7] proved
self-bounding properties of the 𝑛-MCERA, and used them to obtain sharp variance-dependent
bounds relating the 𝑛-MCERA to the empirical Rademacher average. More recently Cousins et al.
[10] used the 𝑛-MCERA for computing approximations of betweenness centrality in large graphs,
a very different task that has no connection with pattern mining, and for which the computation
of the 𝑛-MCERA is straightfoward. We believe that the lack of attention to the 𝑛-MCERA can be
explained by the fact that there were no efficient algorithms for it, a gap now filled by MCRapper.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:5

Table 1. Most important notation and abbreviations used in the paper.

Symbol Name / Meaning

F , F ⊙ Family of functions, and its range-centralized counterpart (see (12))

X Domain of F
[𝑎, 𝑏] ⊂ R, 𝑐 , 𝑧 Co-domain of F , 𝑐 = |𝑏 − 𝑎 |, 𝑧 = max{|𝑎 |, |𝑏 |}

⪯ Binary relation between functions in F (see (2))

d(𝑓) Set of the descendants of 𝑓 ∈ F (see Sect. 3.1)

𝜇 Probability distribution over the domain X of F
𝑚 Sample size

S Collection of𝑚 i.i.d. samples from X drawn according to 𝜇

D(F ,S, 𝜇) Supremum Deviation (SD) of F on S (see (1))

𝝈 Vector of𝑚 independent Rademacher variables

R̂ (F ,S) Empirical Rademacher Average (ERA) of F on S (see (3))

𝑛 Number of Monte-Carlo trials

R̂
𝑛
𝑚 (F ,S,𝝈)

𝑛-Trials Monte-Carlo Empirical Rademacher Average (𝑛-MCERA) of F on
S using 𝝈 (see (4))

Δ 𝑗 (𝑓), Ψ̃(𝑓), Ψ𝑗 (𝑓)
𝑗-discrepancy of 𝑓 ∈ F on S w.r.t. 𝝈 (see (13)), and upper bounds to it
(see (16))

𝝈+𝑗,𝑖 , 𝝈
−
𝑗,𝑖 Transformed Rademacher variables (see (15))

I Alphabet of items

L Pattern language (see Sect. 3.1)

TFP(𝜃,L) Collection of True Frequent Pattern from L w.r.t. to threshold 𝜃 ∈ [0, 1]
(see (20))

B
− (𝐴), B+ (𝐴) Negative and positive borders of a collection 𝐴 of patterns (see Sect. 5)

3 PRELIMINARIES

We now define the most important concepts and results that we use throughout this work. For the
reader’s convenience, we report the most used notation in Table 1. Let F be a class of real valued
functions from a domain X to the interval [𝑎, 𝑏] ⊂ R. We use 𝑐 to denote |𝑏 − 𝑎 | and 𝑧 to denote
max{|𝑎 |, |𝑏 |}. In this work, we focus on a specific class of families (see Sect. 3.1). In pattern mining
from transactional datasets, X is the set of all possible transactions (or, e.g., sequences). Let 𝜇 be
an unknown probability distribution over X and the sample S = {𝑠1, . . . , 𝑠𝑚} be a bag of𝑚 i.i.d.
random samples from X drawn according to 𝜇. We discussed in Sect. 1 how in the pattern mining
case, the sample may either be the whole dataset (sampled according to an unknown distribution)
or a random sample of a large dataset (more details in Sect. 3.1). For each 𝑓 ∈ F , we define its

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:6 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

empirical sample average (or sample mean) ÊS [𝑓] on S and its expectation E[𝑓] respectively as

Ê
S
[𝑓] � 1

𝑚

∑
𝑠𝑖 ∈S

𝑓 (𝑠𝑖) and E
𝜇
[𝑓] � E

𝜇

[
1
𝑚

∑
𝑠𝑖 ∈S

𝑓 (𝑠𝑖)
]

.

In the pattern mining case, the sample mean is the observed interestingness of a pattern, e.g.,
its frequency (but other measures of interestingness can be modeled as above, as discussed for
subgroups by Riondato and Vandin [29]), while the expectation is the unknown exact interestingness
that we are interested in approximating, that is, either in the large datasets or w.r.t. the unknown
data generating distribution. We are interested in developing tight and fast-to-compute upper
bounds to the supremum deviation (SD) D(F ,S, 𝜇) of F on S between the empirical sample average
and the expectation simultaneously for all 𝑓 ∈ F , defined as

D(F ,S, 𝜇) = sup
𝑓 ∈F

����ÊS [𝑓] − E𝜇 [𝑓]���� . (1)

The supremum deviation allows to quantify how good the estimates obtained from the samples
are. Because 𝜇 is unknown, it is not possible to compute D(F ,S, 𝜇) exactly. We introduce concepts
such as Monte-Carlo Rademacher Average and results to compute such bounds in Sect. 3.2, but
first we elaborate on the specific class of families that we are interested in.

3.1 Poset families and patterns

A partially-ordered set, or poset is a pair (𝐴, ⪯) where 𝐴 is a set and ⪯ (“precedes”) is a binary
relation between elements of 𝐴 that is reflexive, anti-symmetric, and transitive. Examples of posets
include the case 𝐴 = N with the obvious “less-than-or-equal-to” (≤) relation, and the powerset of a
set of elements with the “subset-or-equal” (⊆) relation. For any element 𝑦 ∈ 𝐴, we call an element
𝑤 ∈ 𝐴, 𝑤 ≠ 𝑦 a descendant of 𝑦 (and call 𝑦 an ancestor of 𝑤) if 𝑦 ⪯ 𝑤 . Additionally, if 𝑦 ⪯ 𝑤 and
there is no 𝑞 ∈ 𝐴, 𝑞 ≠ 𝑦, 𝑞 ≠ 𝑤 such that 𝑦 ⪯ 𝑞 ⪯ 𝑤 , then we say that𝑤 is a child of 𝑦 and that 𝑦 is
a parent of𝑤 . For example, the set {0, 2} is a parent of the set {0, 2, 5} and an ancestor of the set
{0, 1, 2, 7}, when considering 𝐴 to be all possible subsets of integers and the ⊆ relation.
In this work we are interested in posets where 𝐴 is a family F of functions as discussed, and the

relation ⪯ is the following: for any 𝑓 , 𝑔 ∈ F

𝑓 ⪯ 𝑔 iff

{
𝑓 (𝑥) ≥ 𝑔(𝑥) for every 𝑥 ∈ X s.t. 𝑓 (𝑥) ≥ 0
𝑓 (𝑥) ≤ 𝑔(𝑥) for every 𝑥 ∈ X s.t. 𝑓 (𝑥) < 0

. (2)

This very general but slightly complicated requirement often collapses to much simpler ones in
practical cases, as we discuss below. We aim for generality, as our goal is to develop a unifying
approach for many pattern mining tasks, for both meanings of “sample”, as discussed in Sect. 1. For
now, consider for example that requiring |𝑓 (𝑥) | ≥ |𝑔(𝑥) | for every 𝑥 ∈ X is a specialization of the
above more general requirement (see also Fig. 1). The condition in (2) is also different from (but not
contrasting) anti-monotonicity, which would require 𝑓 (𝑥) ≥ 𝑔(𝑥) for every 𝑥 ∈ X. In particular, for
both anti-monotonicity and the condition in (2) to hold, it must be 𝑔(𝑥) = 𝑓 (𝑥) whenever 𝑓 (𝑥) ≤ 0.
We assume to have access to a blackbox function children that, given any function 𝑓 ∈ F , returns
the list of children of 𝑓 according to ⪯, and to a blackbox function minimals that, given F , returns
the minimal elements w.r.t. ⪯, i.e., all the functions 𝑓 ∈ F without any parents. We refer to families
that satisfy these conditions as poset families, even if the conditions are more about the relation ⪯
than about the family F . We now discuss how poset families arise in many pattern mining tasks.

In pattern mining, it is assumed to have a languageL containing the patterns of potential interest.
For example, in itemsets mining [1], L is the set of all possible itemsets, i.e., all non-empty subsets

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:7

0
x

f(x)

Fig. 1. A graphical explanation of the condition in (2) for functions 𝑓 and 𝑔 from X = R+. For the function 𝑓

shown, the graph of 𝑔 can be anywhere in the shaded areas (which continue to either +∞ or −∞).

of an alphabet I of items, while in sequential pattern mining [2], L is the set of sequences, and in
subgroup discovery [16], L is set by the user as the set of potentially-interesting conditions on the
descriptive features. In all these cases, for each pattern 𝑃 ∈ L, it is possible to define a function 𝑓𝑃
from the domain X, which is the set of all possible transactions, i.e., elementary components of the
dataset or of the sample, to an appropriate co-domain [𝑎, 𝑏], such that 𝑓𝑃 (𝑥) denotes the “value”
of the pattern 𝑃 on the transaction 𝑥 . For example, for itemsets mining, X is all the subsets of I
(i.e., all possible transactions), and 𝑓𝑃 maps X to {0, 1} so that 𝑓𝑃 (𝑥) = 1 iff 𝑃 ⊆ 𝑥 and 0 otherwise.
A consequence of this definition is that ÊS [𝑓𝑃] is the frequency of 𝑃 in S, i.e., the fraction of
transactions of S that contain the pattern 𝑃 . A more complex (due to the nature of the patterns) but
similar definition would hold for sequential patterns. For the case of high-utility itemset mining [13],
the value of 𝑓𝑃 (𝑥) would be the utility of 𝑃 in the transaction 𝑥 . Thus, in pattern mining, the family
F is the set of the functions 𝑓𝑃 for every pattern 𝑃 ∈ L. Similar reasoning also applies to patterns
on graphs, such as graphlets [3].

Now that we have defined the set that we are interested in, let’s comment on the relation ⪯ that,
together with the set, forms the poset. In the itemsets case, for any two patterns 𝑃 ′ and 𝑃 ′′ ∈ L,
i.e., for any two functions 𝑓 = 𝑓𝑃 ′ and 𝑔 = 𝑓𝑃 ′′ ∈ F , it holds 𝑓 ⪯ 𝑔 iff 𝑃 ′ ⊆ 𝑃 ′′. For sequences, the
subsequence relation ⊑ defines ⪯ instead. In all pattern mining tasks, the only minimal element of
F w.r.t. ⪯ is the pattern ∅. Our assumption to have access to the blackboxes children andminimals

is therefore very reasonable, because computing these collections is extremely straightforward in
all the pattern mining cases we just mentioned and many others.

3.2 Rademacher Averages

Here we present Rademacher averages [4, 17] and related results at the core of statistical learning
theory [38]. Our presentation uses the most recent and sharper bounds, and we also introduce new
ones (Thm. 3.5, and later Thm. 4.7) that may be of independent interest. For an introduction to
statistical learning theory and more details about Rademacher averages, we refer the interested
reader to the textbook by Shalev-Shwartz and Ben-David [33]. In this section we consider a generic
family F from X to [𝑎, 𝑏], not necessarily a poset family.
A key quantity to study the supremum deviation (SD) from (1) is the empirical Rademacher

average (ERA) R̂ (F ,S) of F on S [4, 17], defined as follows. Let 𝝈 = ⟨𝜎1, . . . , 𝜎𝑚⟩ be a collection
of𝑚 i.i.d. Rademacher random variables, i.e., each taking value in {−1, 1} with equal probability.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:8 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

The ERA of F on S is the quantity

R̂ (F ,S) � E
𝝈

[
sup
𝑓 ∈F

1
𝑚

𝑚∑
𝑖=1

𝜎𝑖 𝑓 (𝑠𝑖)
]

. (3)

Computing the ERA R̂ (F ,S) exactly is often intractable, due to the expectation over 2𝑚 possible
assignments for 𝝈 , and the need to compute a supremum for each of these assignments, which
precludesmany standard techniques for computing expectations. Bounds to the SD are then obtained
through efficiently-computable upper bounds to the ERA. Massart’s lemma [33, Lemma 26.2] gives
a deterministic upper bound to the ERA that is often very loose. Monte-Carlo estimation allows to
obtain an often sharper probabilistic upper bound to the ERA. For 𝑛 ≥ 1, let 𝝈 ∈ {−1, 1}𝑛×𝑚 be a
𝑛×𝑚 matrix of i.i.d. Rademacher random variables. The 𝑛-Trials Monte-Carlo Empirical Rademacher
Average (𝑛-MCERA) R̂𝑛𝑚 (F ,S,𝝈) of F on S using 𝝈 is [4]

R̂
𝑛
𝑚 (F ,S,𝝈) �

1
𝑛

𝑛∑
𝑗=1

sup
𝑓 ∈F

1
𝑚

∑
𝑠𝑖 ∈S

𝝈 𝑗,𝑖 𝑓 (𝑠𝑖) . (4)

The 𝑛-MCERA allows to obtain probabilistic upper bounds to the SD as follows. In Sect. 4.3 we also
show a novel improved bound for the special case 𝑛 = 1 (Thm. 4.7).

Theorem 3.1. Let 𝜂 ∈ (0, 1). For ease of notation let

R̃ � R̂
𝑛
𝑚 (F ,S,𝝈) + 2𝑧

√
ln 4

𝜂

2𝑛𝑚
. (5)

With probability at least 1 − 𝜂 over the choice of S and 𝝈 , it holds

D(F ,S, 𝜇) ≤ 2R̃ +

√
𝑐 (4𝑚R̃ + 𝑐 ln 4

𝜂
) ln 4

𝜂

𝑚
+
𝑐 ln 4

𝜂

𝑚
+ 𝑐

√
ln 4

𝜂

2𝑚
. (6)

Before proving Thm. 3.1 we need to introduce some technical results.

Theorem 3.2 (McDiarmid’s ineqality [19]). LetY ⊆ Rℓ , and let 𝑔 : Y → R be a function such
that, for each 𝑖 , 1 ≤ 𝑖 ≤ ℓ , there is a nonnegative constant 𝑐𝑖 such that:

sup
𝑥1,...,𝑥ℓ ,
𝑥 ′𝑖 ∈X

|𝑔(𝑥1, . . . , 𝑥ℓ) − 𝑔(𝑥1, . . . , 𝑥𝑖−1, 𝑥
′
𝑖 , 𝑥𝑖+1, . . . , 𝑥ℓ) | ≤ 𝑐𝑖 . (7)

Let 𝑥1, . . . , 𝑥ℓ be ℓ independent random variables taking value in Rℓ such that ⟨𝑥1, . . . , 𝑥ℓ⟩ ∈ Y. Then
it holds

Pr
(
𝑔(𝑥1, . . . , 𝑥ℓ) − E

𝜇
[𝑔] > 𝑡

)
≤ 𝑒−2𝑡2/𝐶 ,

where 𝐶 =
∑ℓ

𝑖=1 𝑐
2
𝑖 .

The following result is an application of McDiarmid’s inequality to the 𝑛-MCERA, with constants
𝑐𝑖 = 2𝑧/𝑛𝑚.

Lemma 3.3. Let 𝜂 ∈ (0, 1). Then, with probability at least 1 − 𝜂 over the choice of 𝝈 , it holds

R̂ (F ,S) = E
𝝈

[
R̂
𝑛
𝑚 (F ,S,𝝈)

]
≤ R̂

𝑛
𝑚 (F ,S,𝝈) + 2𝑧

√
ln 1

𝜂

2𝑛𝑚
.

The following result gives a probabilistic upper bound to the supremum deviation using the RA
and the ERA [20, Thm. 3.11].

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:9

Theorem 3.4. Let 𝜂 ∈ (0, 1). Then, with probability at least 1 − 𝜂 over the choice of S, it holds

D(F ,S, 𝜇) ≤ 2R̂ (F ,S) +

√
𝑐

(
4𝑚R̂ (F ,S) + 𝑐 ln 3

𝜂

)
ln 3

𝜂

𝑚
+
𝑐 ln 3

𝜂

𝑚
+ 𝑐

√
ln 3

𝜂

2𝑚
.1 (8)

We can now prove Thm. 3.1.

Proof of Thm. 3.1. Through Lemma 3.3 (using 𝜂 there equal to 𝜂/4), Thm. 3.4 (using 𝜂 there
equal to 3𝜂/4), and an application of the union bound. □

Sharper upper bounds to D(F ,S, 𝜇) than the ones presented in Thm. 3.1 can be obtained with
the 𝑛-MCERA when more information about F is available, as we now show in Thm. 3.5. We use
this result for a specific pattern mining task in Sect. 5.

Theorem 3.5. Let 𝑣 be an upper bound to the variance of every function in F , and let 𝜂 ∈ (0, 1).
Define the following quantities

𝜌 � R
𝑛
𝑚 (F ,S,𝝈) + 2𝑧

√
ln 4

𝜂

2𝑛𝑚
, (9)

𝑟 � 𝜌 + 1
2𝑚

©«
√
𝑐

(
4𝑚𝜌 + 𝑐 ln

4
𝜂

)
ln

4
𝜂
+ 𝑐 ln

4
𝜂

ª®¬ ,
𝜀 � 2𝑟 +

√
2 ln 4

𝜂
(𝑣 + 4𝑐𝑟)
𝑚

+
𝑐 ln 4

𝜂

3𝑚
. (10)

Then, with probability at least 1 − 𝜂 over the choice of S and 𝝈 , it holds

D(F ,S, 𝜇) ≤ 𝜀 .

We need the following technical results to show Thm. 3.5.

Theorem 3.6 (Symmetrization ineqality [17]). For any family F it holds

E
S

[
sup
𝑓 ∈F

(
Ê
S
[𝑓] − E

𝜇
[𝑓]

)
− 2R̂(F ,S)

]
≤ 0 .

Theorem 3.7 ([7, Thm. 2.3]). Let 𝑍 = sup𝑓 ∈F

(
ÊS [𝑓] − E𝜇 [𝑓]

)
. Let 𝛾 ∈ (0, 1). Then, with proba-

bility at least 1 − 𝛾 over the choice of S, it holds

𝑍 ≤ E
𝜇
[𝑍] +

√
2 ln 1

𝛾

(
𝑣 + 2𝑐 E𝜇 [𝑍]

)
𝑚

+
𝑐 ln 1

𝛾

3𝑚
. (11)

Proof of Thm. 3.5. Consider the events E1 � 𝜌 ≥ R̂ (F ,S), and

E2 � 𝐸𝜇 [R̂ (F ,S)] ≤ R̂ (F ,S) + 1
2𝑚

©«
√
𝑐

(
4𝑚𝜌 + 𝑐 ln

4
𝜂

)
ln

4
𝜂
+ 𝑐 ln

4
𝜂

ª®¬ .

From Lemma 3.3, we know that E1 holds with probability at least 1 − 𝜂/4 over the choice of S and
𝝈 . E2 is guaranteed to with probability at least 1 − 𝜂/4 over the choice of S [20, (generalization
1Slightly sharper bounds are possible at the expense of an increased complexity of the terms.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:10 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

of) Thm. 3.11]. Define the event E3 as the event in (11) for 𝛾 = 𝜂/4 and the event E4 as the event
in (11) for 𝛾 = 𝜂/4 and for F = −F . Theorem 3.7 tells us that events E3 and E4 hold each with
probability at least 1 − 𝜂/4 over the choice of S. Thus, it follows from the union bound that the
event E = E1 ∩ E2 ∩ E3 ∩ E4 holds with probability at least 1−𝜂 over the choice of S and 𝝈 . Assume
for the rest of the proof that the event E holds.

Because E holds, it must be 𝑟 ≥ E𝜇 [R̂(F ,S)]. From this result and Thm. 3.6 we obtain

E
𝜇

[
sup
𝑓 ∈F

(
Ê
S
[𝑓] − E

𝜇
[𝑓]

)]
≤ 2E

𝜇
[R̂(F ,S)] ≤ 2𝑟 .

From here, and again because E, by plugging 2𝑟 in place of 𝐸 [𝑍] into (11) (for 𝛾 = 𝜂/4), we obtain
that sup𝑓 ∈F

(
ÊS [𝑓] − E𝜇 [𝑓]

)
≤ 𝜀. To show that it also holds

sup
𝑓 ∈F

(
E
𝜇
[𝑓] − Ê

S
[𝑓]

)
≤ 𝜀,

which allows us to conclude that D(F ,S, 𝜇) ≤ 𝜀, we repeat the reasoning above for −F and use
the fact that R̂(F ,S) = R̂(−F ,S), which is immediate from the definition, thus

𝜌 ≥ R̂(−F ,S) and 𝑟 ≥ 𝐸𝜇 [R̂(−F ,S)] and 𝜀 ≥ D(−F ,S) = sup
𝑓 ∈F

(
Ê
S
[𝑓] − E

𝜇
[𝑓]

)
. □

The bounds in Thms. 3.1 and 3.5 depend on 𝑧. This dependence can be alleviated as follows. Let
F ⊙ denote the range-centralized family of functions obtained by shifting every function in F by
𝑎 + 𝑐/2, i.e.,

F ⊙ =

{
𝑔 : 𝑔(𝑥) = 𝑓 (𝑥) − 𝑎 − 𝑐

2
for 𝑥 ∈ X and 𝑓 ∈ F

}
. (12)

We can use R̂𝑛𝑚 (F ⊙,S,𝝈) in place of R̂𝑛𝑚 (F ,S,𝝈) in the above theorems. The results still hold for
D(F ,S, 𝜇) because the SD is invariant to shifting, but the bounds to the SD improve since the
corresponding 𝑧 for the range-centralized family is 𝑐/2, which is smaller than the one for F . Cousins
and Riondato [9] recently introduced refined bounds that make use of empirical centralization,
rather than range centralization as we do here.

While we have not considered the improved bounds mentioned above and in Section 2 for ease
of presentation, our algorithms can make use of them in place of Thm. 3.5, and can also benefit of
any future result in probabilistic tail bounds for the SD that employ the Rademacher average.

4 MCRAPPER

We now describe and analyze our algorithm MCRapper to efficiently compute the 𝑛-MCERA
(see (4)) for a family F with a binary relation ⪯ satisfying (2) (i.e., a poset family) and the blackbox
functions children and minimals described in Sect. 3.1.

4.1 Discrepancy bounds

For 𝑗 ∈ {1, . . . , 𝑛}, we denote as the 𝑗-discrepancy Δ 𝑗 (𝑓) of 𝑓 ∈ F on S w.r.t. 𝝈 the quantity

Δ 𝑗 (𝑓) �
∑
𝑠𝑖 ∈S

𝝈 𝑗,𝑖 𝑓 (𝑠𝑖) . (13)

The 𝑗-discrepancy is not an anti-monotonic function, in the sense that it does not necessarily hold
that Δ 𝑗 (𝑓) ≥ Δ 𝑗 (𝑔) for every descendant 𝑔 of 𝑓 ∈ F . As an example, consider 𝑓 being the constant
1 and 𝑔 being the constant 0, then, for some choice of 𝝈 , Δ 𝑗 (𝑓) is negative, while Δ 𝑗 (𝑔) is always 0.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:11

Clearly, it holds

R̂
𝑛
𝑚 (F ,S,𝝈) =

1
𝑛𝑚

𝑛∑
𝑗=1

sup
𝑓 ∈F

Δ 𝑗 (𝑓) . (14)

A naïve computation of the 𝑛-MCERA would require enumerating all the functions in F and
computing their 𝑗-discrepancies, 1 ≤ 𝑗 ≤ 𝑛, in order to find each of the 𝑛 suprema. We now
present novel easy-to-compute upper bounds Ψ̃(𝑓) and Ψ𝑗 (𝑓) to Δ 𝑗 (𝑓) such that Ψ̃(𝑓) ≥ Δ 𝑗 (𝑔) and
Ψ𝑗 (𝑓) ≥ Δ 𝑗 (𝑔) for every 𝑔 ∈ d(𝑓), where d(𝑓) denote the set of the descendants of 𝑓 w.r.t. ⪯. This
key property (which is a generalization of anti-monotonicity to poset families) allows us to derive
efficient algorithms for computing the 𝑛-MCERA exactly without enumerating all the functions in
F . Such algorithms take a branch-and-bound approach using the upper bounds to Δ 𝑗 (𝑓) to prune
large portions of the search space (see Sect. 4.2).

For every 𝑗 ∈ {1, . . . , 𝑛} and 𝑖 ∈ {1, . . . ,𝑚}, let

𝝈+𝑗,𝑖 �

{
1 if 𝝈 𝑗,𝑖 = 1,
0 otherwise

and 𝝈−𝑗,𝑖 �

{
1 if 𝝈 𝑗,𝑖 = −1
0 otherwise

(15)

and for every 𝑓 ∈ F and 𝑥 ∈ X, define the functions
𝑓 + (𝑥) � max{𝑓 (𝑥), 0} and 𝑓 − (𝑥) � min{𝑓 (𝑥), 0} .

It holds 𝑓 + (𝑥) ≥ 0 and 𝑓 − (𝑥) ≤ 0 for every 𝑓 ∈ F and 𝑥 ∈ X. For every 𝑗 ∈ {1, . . . , 𝑛} and 𝑓 ∈ F ,
define

Ψ̃(𝑓) �
∑
𝑠𝑖 ∈S
|𝑓 (𝑠𝑖) | and Ψ𝑗 (𝑓) �

∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖 𝑓
+ (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖 𝑓
− (𝑠𝑖) . (16)

Computationally, these quantities are extremely straightforward to obtain. Both Ψ̃(𝑓) and Ψ𝑗 (𝑓)
are upper bounds to Δ 𝑗 (𝑓) and to Δ 𝑗 (𝑔) for every 𝑔 ∈ d(𝑓).

Theorem 4.1. For any 𝑓 ∈ F and 𝑗 ∈ {1, . . . , 𝑛}, it holds

max
{
Δ 𝑗 (𝑔) : 𝑔 ∈ d(𝑓) ∪ {𝑓 }

}
≤ Ψ𝑗 (𝑓) ≤ Ψ̃(𝑓) .

Proof. It is immediate from the definitions of Ψ̃(𝑓) and Ψ𝑗 (𝑓) in (16) that Ψ𝑗 (𝑓) ≤ Ψ̃(𝑓), so we
can focus on Ψ𝑗 (𝑓). We start by showing that Δ 𝑗 (𝑓) ≤ Ψ𝑗 (𝑓). It holds

Δ 𝑗 (𝑓) =∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖 𝑓
+ (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖 𝑓
− (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖 𝑓
+ (𝑠𝑖) +

∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖 𝑓
− (𝑠𝑖)

≤
∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖 𝑓
+ (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖 𝑓
− (𝑠𝑖) = Ψ𝑗 (𝑓)

where the inequality comes from the fact that
∑

𝑠𝑖 ∈S 𝝈
−
𝑗,𝑖 𝑓
+ (𝑠𝑖) ≥ 0, and

∑
𝑠𝑖 ∈S 𝝈

+
𝑗,𝑖 𝑓
− (𝑠𝑖) ≤ 0.

To prove that Δ 𝑗 (𝑔) ≤ Ψ𝑗 (𝑓) for every 𝑔 ∈ d(𝑓), it is sufficient to show that Ψ𝑗 (𝑔) ≤ Ψ𝑗 (𝑓) holds
for every such 𝑔, since we just showed that Δ 𝑗 (𝑔) ≤ Ψ𝑗 (𝑔) is true for any 𝑔 ∈ F . It holds 𝑓 ⪯ 𝑔, so
from the definition of the relation ⪯ in (2), we get

Ψ𝑗 (𝑔) =
∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖𝑔
+ (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖𝑔
− (𝑠𝑖)

≤
∑
𝑠𝑖 ∈S

𝝈+𝑗,𝑖 𝑓
+ (𝑠𝑖) −

∑
𝑠𝑖 ∈S

𝝈−𝑗,𝑖 𝑓
− (𝑠𝑖) = Ψ𝑗 (𝑓)

which completes our proof. □

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:12 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

The bounds we derived in this section are deterministic. An interesting direction for future
research is how to obtain sharper probabilistic bounds.

4.2 Algorithms

We now use the discrepancy bounds Ψ̃(·) and Ψ𝑗 (·) from Sect. 4.1 in our algorithm MCRapper for
computing the exact 𝑛-MCERA. As the real problem is usually not to only compute the 𝑛-MCERA
but to actually compute an upper bound to the SD, our description of MCRapper includes this final
step. By including this step we can also fairly compareMCRapper with existing algorithms that
use deterministic bounds to the ERA to compute an upper bound to the SD (see also Sect. 6).
MCRapper offers probabilistic guarantees on the quality of the bound to the SD it computes

(proof deferred to after the presentation).
Theorem 4.2. Let 𝛿 ∈ (0, 1). With probability at least 1− 𝛿 over the choice of S and of 𝝈 , the value

𝜀 returned by MCRapper is such that D(F ,S, 𝜇) ≤ 𝜀.

The pseudocode of MCRapper is presented in Alg. 1. The division in functions is useful for
reusing parts of the algorithm in later sections (e.g., Alg. 3). After having sampled the 𝑛 ×𝑚 matrix
𝝈 of i.i.d. Rademacher random variables (line 1), the algorithm calls the function getSupDevBound
with appropriate parameters, which in turn calls the function getNMCERA, the real heart of the
algorithm. This function computes the 𝑛-MCERA R̂

𝑛
𝑚 (F ,S,𝝈) by exploring and pruning the search

space (i.e., F) according to the order of the elements in the priority queue𝑄 (line 8). One possibility
is to explore the space in Breadth-First-Search order (so 𝑄 is just a FIFO queue), while another is to
use the upper bound Ψ̃(𝑓) as the priority, with the top element in the queue being the one with
maximum priority among those in the queue. Other orders are possible, but we assume that the
order is such that all parents of a function are explored before the function, which is reasonable to
ensure maximum pruning, and is satisfied by the two mentioned orders. We assume that the priority
queue also has a method delete(𝑒) to delete an element 𝑒 in the queue. This requirement could be
avoided with some additional book-keeping, but it simplifies the presentation of the algorithm.
The algorithm maintains in the variables 𝜈 𝑗 , 𝑗 ∈ {1, . . . , 𝑛}, the currently best available lower

bound to the quantity sup𝑓 ∈F Δ 𝑗 (𝑓) (see (14)). Initially, these variables are all set to −𝑧𝑚, the
lowest possible value of a discrepancy (line 9). MCRapper also maintains a dictionary J (line 10),
initially empty, whose keys will be elements of F and the values are subsets of {1, . . . , 𝑛}. The value
associated to a key 𝑓 in the dictionary is a superset of the set of values 𝑗 ∈ {1, . . . , 𝑛} for which
Ψ̃(𝑓) ≥ 𝜈𝑖 , i.e., for which 𝑓 or one of its descendants may be the function attaining the supremum
𝑗-discrepancy among all the functions in F (see (14)). A function and all its descendants are pruned
when this set is the empty set. The set of keys of the dictionary J is, at all times, the set of all
and only the functions in F that have ever been added to 𝑄 . The last data structure is the set 𝐻
(line 11), initially empty, which will contain pruned elements of F , in order to avoid visiting either
them or their descendants.

MCRapper populates𝑄 and J by inserting into them the minimal elements of F w.r.t. ⪯ (line 12),
using the set {1, . . . , 𝑛} as the value for each of these keys in the dictionary J . It then enters a
loop that keeps iterating as long as there are elements in 𝑄 (line 15). The top element 𝑓 of 𝑄 is
extracted at the beginning of each iteration (line 16). A set 𝑌 , initially empty, is created to maintain
a superset of the set of values 𝑗 ∈ {1, . . . , 𝑛} for which a child of 𝑓 may be the function attaining
the supremum 𝑗-discrepancy among all the functions in F (see (14)). The algorithm then iterates
over the elements 𝑗 ∈ J [𝑓] s.t. Ψ̃(𝑓) is greater than 𝜈 𝑗 (line 18). The elements for which Ψ̃(𝑓) < 𝑣 𝑗
can be ignored because 𝑓 and its descendants can not attain the supremum of the 𝑗-discrepancy in
this case, thanks to Thm. 4.1. Computing Ψ̃(𝑓) is straightforward and can be done even faster if
one keeps a frequent-pattern tree or a similar data structure to avoid having to scan S all the times,

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:13

Algorithm 1:MCRapper
Input: Poset family F , sample S of size𝑚, 𝛿 ∈ (0, 1), 𝑛 ≥ 1
Output: Upper bound to D(F ,S, 𝜇) with probability ≥ 1 − 𝛿 .

1 𝝈 ← draw(𝑚, 𝑛)
2 𝜀 ← getSupDevBound(F , S, 𝛿 , 𝝈)
3 return 𝜀

4 Function getSupDevBound(F , S, 𝛿 , 𝝈):
5 R̃← getNMCERA(F , S, 𝝈) + 2𝑧

√
ln(4/𝛿)

2𝑛𝑚
6 return r.h.s. of (6) using 𝜂 = 𝛿

7 Function getNMCERA(F , S, 𝝈):
8 𝑄 ← empty priority queue
9 foreach 𝑗 ∈ {1, . . . , 𝑛} do 𝜈 𝑗 ← −𝑧𝑚

10 J ← empty dictionary from F to subsets of {1, . . . , 𝑛}
11 𝐻 ← ∅
12 foreach 𝑓 ∈ minimals(F) do
13 𝑄 .push(𝑓)
14 J [𝑓] ← {1, . . . , 𝑛}
15 while 𝑄 is not empty do
16 𝑓 ← 𝑄 .pop()
17 𝑌 ← ∅
18 foreach 𝑗 ∈ J [𝑓] s.t. Ψ̃(𝑓) ≥ 𝜈 𝑗 do
19 if Ψ𝑗 (𝑓) ≥ 𝜈 𝑗 then
20 𝜈 𝑗 ← max{𝜈 𝑗 ,Δ 𝑗 (𝑓)}
21 𝑌 ← 𝑌 ∪ { 𝑗}
22 foreach 𝑔 ∈ children(𝑓) \ 𝐻 do
23 if 𝑔 ∈ J then 𝑁 ← J[𝑔] ∩ 𝑌 else 𝑁 ← 𝑌

24 if 𝑁 = ∅ then
25 𝐻 ← 𝐻 ∪ {𝑔}
26 if 𝑔 ∈ J then 𝑄 .delete(𝑔)
27 else
28 if 𝑔 ∉ J then 𝑄 .push(𝑔)
29 J [𝑔] ← 𝑁

30 return 1
𝑛𝑚

∑𝑛
𝑗=1 𝜈 𝑗

but we do not discuss this case for ease of presentation. For each value 𝑗 that satisfies the condition
on line 18, the algorithm computes Δ 𝑗 (𝑓) and updates 𝜈 𝑗 to this value if larger than the current
value of 𝜈 𝑗 (line 20), to maintain the invariant that 𝜈 𝑗 stores the highest value of 𝑗-discrepancy seen
so far (this invariant, together with the one maintained by the pruning strategy, is at the basis of
the correctness of MCRapper, see the proof of Lemma 4.3). Finally, 𝑗 is added to the set 𝑌 (line 21),
as it may still be the case that a descendant of 𝑓 has 𝑗-discrepancy higher than 𝜈 𝑗 . The algorithm
then iterates over the children of 𝑓 that have not been pruned, i.e., those not in 𝐻 (line 22). If the
child 𝑔 is such that there is a key 𝑔 in J (because before 𝑓 we visited another parent of 𝑔), then let
𝑁 be J [𝑔] ∩ 𝑌 , otherwise, let 𝑁 be 𝑌 . The set 𝑁 is a superset of the indices 𝑗 s.t. 𝑔 may attain the
supremum 𝑗-discrepancy. Indeed, for a value 𝑗 to have this property, it is necessary that Ψ𝑗 (𝑓) ≥ 𝜈 𝑗

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:14 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

for every parent 𝑓 of 𝑗 (where the value of 𝜈 𝑗 in this expression is the one that 𝜈 𝑗 had when 𝑓 was
visited). If 𝑁 = ∅, then 𝑔 and all its descendants can be pruned, which is achieved by adding 𝑔 to 𝐻
(line 25) and removing 𝑔 from 𝑄 if it is a key J (line 26). When 𝑁 ≠ ∅, first 𝑔 is added to 𝑄 (with
the appropriate priority depending on the ordering of 𝑄) if it did not belong to J yet (line 28),
and then J [𝑔] is set to 𝑁 (line 29). This operation completes the current loop iteration starting at
line 15.
Once 𝑄 is empty, the loop ends and the function getNMCERA returns the sum of the values 𝜈 𝑗

divided by 𝑛 ·𝑚. The returned value is summed to an appropriate term to obtain R̃ (line 5), which
is used to compute the return value 𝜀 of the function getSupDevBound using (6) with 𝜂 = 𝛿 (line 6).
This value 𝜀 is returned byMCRapper when it terminates (line 2).

The following result is at the core of the correctness of MCRapper.

Lemma 4.3. getNMCERA(F , S, 𝝈) returns the value R̂𝑛𝑚 (F ,S,𝝈).

Proof. For 𝑗 ∈ {1, . . . , 𝑛}, let ℎ 𝑗 be any of the functions attaining the supremum in sup𝑓 ∈𝑓 Δ 𝑗 (𝑓).
We need to show that the algorithm updates 𝜈 𝑗 on line 20 of Alg. 1 using Δ 𝑗 (ℎ 𝑗) at some point
during its execution. We focus on a single 𝑗 , as the proof is the same for any value of 𝑗 .
It is evident from the description of the algorithm that 𝜈 𝑗 is always only set to values of Δ 𝑗 (𝑔),

and since ℎ 𝑗 has the maximum of these values, 𝜈 𝑗 will be, at any point in the execution of the
algorithm less than or equal to Δ 𝑗 (ℎ 𝑗). Let’s call this fact F1. Thus, if the algorithm ever hits line 20
with 𝑓 = ℎ 𝑗 , then we can be sure that the value stored in 𝜈 𝑗 will be Δ 𝑗 (ℎ 𝑗), and this variable will
never take an higher value. From fact F1 and Thm. 4.1 we also have that at any point in time it
must be 𝜈 𝑗 ≤ Ψ𝑗 (ℎ 𝑗) ≤ Ψ̃(ℎ 𝑗), so the conditions on lines 19 and 18 are definitively satisfied, so the
question is now whether 𝑗 ∈ J [ℎ 𝑗] and whether there is an iteration of the while loop of line 15
for which 𝑓 = ℎ 𝑗 .
It holds from Thm. 4.1 that it must be Δ 𝑗 (ℎ 𝑗) ≤ Ψ𝑗 (𝑔) ≤ Ψ̃(𝑔) for every ancestor 𝑔 of ℎ 𝑗 . From

this fact and from fact F1 then it holds that at any point in time it must hold 𝜈 𝑗Ψ𝑗 (𝑔) ≤ Ψ̃(𝑔) for
every such ancestor 𝑔 of ℎ 𝑗 . Thus, the value 𝑗 is always added to the set 𝑌 at every iteration of the
while loop of line 15 for which 𝑓 is an ancestor of ℎ 𝑗 . Let’s call this fact F2. Thus, as long as no
ancestor of ℎ 𝑗 is pruned or ℎ 𝑗 itself is pruned, 𝑗 is guaranteed to be in J [ℎ 𝑗]. But from fact F2 and
from the fact that 𝑗 belongs to J [𝑓] for all the ancestors of ℎ 𝑗 that are in minimals(𝑓) (line 14),
then 𝑗 must belong to the set 𝑁 computed on line 23 for all ancestors of ℎ 𝑗 , thus 𝑁 is never empty
and therefore no ancestor of ℎ 𝑗 is ever pruned and neither is 𝑓 and we are guaranteed that ℎ 𝑗 is
added to𝑄 on line 28 when the first of its parents is visited. Thus, there is an iteration of the while
loop of line 15 that has 𝑓 = ℎ 𝑗 , and because of what we discussed above, then it will be the case
that 𝜈 𝑗 = Δ 𝑗 (ℎ 𝑗) and our proof is complete. □

The proof of Thm. 4.2 is then just an application of Lemma 4.3 and Thm. 3.1 (with 𝜂 = 𝛿), as the
value 𝜀 returned by MCRapper is computed according to (6).

4.2.1 Limiting the exploration of the search space. Despite the very efficient pruning strategy made
possible by the upper bounds to the 𝑗-discrepancy, MCRapper may still need to explore a large
fraction of the search space, with negative impact on the running time. We now present a “hybrid”
approach that limits this exploration, while still ensuring the guarantees from Thm. 4.2.

Let 𝛽 be any positive value and define

G(S, 𝛽) �
{
𝑓 ∈ F :

1
𝑚

𝑚∑
𝑖=1
(𝑓 (𝑠𝑖))2 ≥ 𝛽

}
,

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:15

and K(S, 𝛽) = F \ G(S, 𝛽). In the case of itemsets mining, G(S, 𝛽) would be the set of frequent
itemsets w.r.t. 𝛽 ∈ [0, 1], as (𝑓 (𝑠𝑖))2 = 𝑓 (𝑠𝑖) in this case.
The following result is a consequence of Hoeffding’s inequality and a union bound over 𝑛 ·
|K(S, 𝛽) | events.

Lemma 4.4. Let 𝜂 ∈ (0, 1). Then, with probability at least 1 − 𝜂 over the choice of 𝝈 , it holds that
simultaneously for every 𝑗 ∈ {1, . . . , 𝑛},

R̂
1
𝑚 (K(S, 𝛽),S,𝝈 𝑗) ≤

√√
2𝛽 log

(
𝑛 |K (S,𝛽) |

𝜂

)
𝑚

. (17)

The following is an immediate consequence of the above and the definition of 𝑛-MCERA.

Theorem 4.5. Let 𝜂 ∈ (0, 1). Then with probability ≥ 1 − 𝜂 over the choice of 𝝈 , it holds

R̂
𝑛
𝑚 (F ,S,𝝈) =

1
𝑛

𝑛∑
𝑗=1

max
{
R̂

1
𝑚 (G(S, 𝛽),S,𝝈 𝑗), R̂1

𝑚 (K(S, 𝛽),S,𝝈 𝑗)
}

≤ 1
𝑛

𝑛∑
𝑗=1

max

R̂
1
𝑚 (G(S, 𝛽),S,𝝈 𝑗),

√√
2𝛽 log

(
𝑛 |K (S,𝛽) |

𝜂

)
𝑚

 .

The result of Thm. 4.5 is especially useful in situations when it is possible to compute efficiently
reasonable upper bounds on the cardinality of K(S, 𝛽), possibly using information from S (but
not 𝝈). For the case of pattern mining, these bounds are often easy to obtain: e.g., in the case of
itemsets, it holds |K(S, 𝛽) | ≤ ∑

𝑠𝑖 ∈S 2 |𝑠𝑖 | , where |𝑠𝑖 | is the number of items in the transaction 𝑠𝑖 . It
may be possible to derive much stricter bounds at the expense of complexity in their computation
and their presentation. For these reasons, we do not further explore such approaches, but it could
be an interesting direction for future work, possibly with other applications.
Combining these observations with MCRapper may lead to a significant speed-up thanks to

the fact that MCRapper would be exploring only (a subset of) G(S, 𝛽) instead of (a subset of) the
entire search space F , at the cost of computing an upper bound to R̂

𝑛
𝑚 (F ,S,𝝈 𝑗), rather than its

exact value (the upper bound can still be used for computing an upper bound to the SD). We study
this trade-off, which is governed by the choice of 𝛽 , experimentally in Sect. 6.3.
We now describe this variantMCRapper-H of MCRapper, presented in Alg. 2.MCRapper-H

accepts in input the same parameters of MCRapper, but also the parameters 𝛽 and 𝛾 < 𝛿 , which
controls the confidence of the probabilistic bound from Thm. 4.5. After having drawn 𝝈 ,MCRapper-
H computes the upper bound to |K(S, 𝛽) | (line 3), and calls the function getNMCERA(G(S, 𝛽), S,
𝝈) (line 2), slightly modified w.r.t. the one on line 30 of Alg. 1 so it returns the set of 𝑛 values
{𝜈1, . . . , 𝜈𝑛} instead of their average. Then,MCRapper-H computes R̃ using the r.h.s. of (17) and
returns the bound to the SD obtained from the r.h.s. of (6) with 𝜂 = 𝛿 − 𝛾 .
The correctness of MCRapper-H, i.e., the fact that it offers the same properties asMCRapper

from Thm. 4.2, follows from Thms. 3.1, 4.2 and 4.5, and an application of the union bound.
Once again, considering the 𝑛-MCERA R̂

𝑛
𝑚 (F ⊙,S,𝝈) of the centralized family F ⊙ in place of

that of F allow us to use smaller constants when computing bounds to the SD D(F ,S, 𝜇) (see end
of Sect. 3.2). The following is a variant of Thm. 4.5 for bounding R̂𝑛𝑚 (F ⊙,S,𝝈), and can be used in
place of Thm. 4.5 inMCRapper-H.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:16 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

Theorem 4.6. Let 𝜂 ∈ (0, 1). Then with probability ≥ 1 − 𝜂 over the choice of 𝝈 , it holds

R̂
𝑛
𝑚

(
F ⊙,S,𝝈

)
≤ 1
𝑛

𝑛∑
𝑗=1

max

R̂
1
𝑚 (G(S, 𝛽),S,𝝈 𝑗),

√√
2𝛽 log

(
𝑛 |K (S,𝛽) |

𝜂

)
𝑚

− 1
𝑛

𝑛∑
𝑗=1

1
𝑚

∑
𝑠𝑖 ∈S

𝝈 𝑗,𝑖

(
𝑎 + 𝑐

2

)
.

Proof. From the definition of 𝑛-MCERA and of F ⊙ , it holds

R̂
𝑛
𝑚

(
F ⊙,S,𝝈

)
=

1
𝑛

𝑛∑
𝑗=1

sup
𝑓 ∈F

1
𝑚

∑
𝑠𝑖 ∈S

𝝈 𝑗,𝑖

(
𝑓 (𝑠𝑖) − 𝑎 −

𝑐

2

)
=

1
𝑛

𝑛∑
𝑗=1

sup
𝑓 ∈F

{
1
𝑚

(∑
𝑠𝑖 ∈S

𝝈 𝑗,𝑖 𝑓 (𝑠𝑖) −
∑
𝑠𝑖 ∈S

𝝈 𝑗,𝑖

(
𝑎 + 𝑐

2

))}
=

1
𝑛

𝑛∑
𝑗=1

{
sup
𝑓 ∈F

{
1
𝑚

∑
𝑠𝑖 ∈S

𝝈 𝑗,𝑖 𝑓 (𝑠𝑖)
}
− 1
𝑚

∑
𝑠𝑖 ∈S

𝝈 𝑗,𝑖

(
𝑎 + 𝑐

2

)}
= R̂

𝑛
𝑚 (F ,S,𝝈) −

1
𝑛

𝑛∑
𝑗=1

1
𝑚

∑
𝑠𝑖 ∈S

𝝈 𝑗,𝑖

(
𝑎 + 𝑐

2

)
.

The thesis then follows by applying Thm. 4.5 to the r.h.s. □

Algorithm 2:MCRapper-H
Input: Poset family F , sample S of size𝑚, 𝛿 ∈ (0, 1), 𝛽 ∈ [0, 𝑧2], 𝛾 ∈ (0, 𝛿)
Output: Upper bound to D(F ,S, 𝜇) with prob. ≥ 1 − 𝛿 .

1 𝝈 ← draw(𝑚, 𝑛)
2 {𝑣1, . . . , 𝑣𝑛} ← getNMCERA(G(S, 𝛽), S, 𝝈) // Modified w.r.t. Alg. 1. See text.

3 𝜔 ← upper bound to |K(S, 𝛽) |

4 R̃← 1
𝑛

∑𝑛
𝑗=1 max

 𝑣𝑗

𝑚
,

√
2𝛽 log

(
𝑛𝜔
𝛾

)
𝑚

 + 2𝑧

√
ln

(
4

𝛿−𝛾

)
2𝑛𝑚

5 return r.h.s. of (6) using 𝜂 = 𝛿 − 𝛾

It is not necessary to choose 𝛽 a-priori, as long as it is chosen without using any information
that depends on 𝝈 . In situations where deciding 𝛽 a-priori is not easy, one may define instead, for a
given value of 𝑘 set by the user, the quantity 𝛽𝑘 defined as

𝛽𝑘 � min {𝛽 : |G(S, 𝛽) | ≤ 𝑘} .

When the queue𝑄 (line 8 of Alg. 1) is sorted by decreasing value of
∑𝑛

𝑖=1 (𝑓 (𝑠𝑖))2, the value 𝑘 is the
maximum number of nodes the branch-and-bound search in getNMCERAmay enumerate. Obtaining
more refined bounds than Thm. 4.5 is an interesting research direction.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:17

4.3 Improved bounds for 𝑛 = 1
For the special case of 𝑛 = 1, it is possible to derive a better bound to the SD than the one presented
in Thm. 3.1. This result is new and of independent interest because it holds for any family F .

Theorem 4.7. Let 𝜂 ∈ (0, 1). With probability at least 1−𝜂 over the choice of S and 𝜎 , it holds that

D(F ,S, 𝜇) ≤ 2R̂1
𝑚

(
F ⊙,S,𝝈

)
+ 3𝑐

√
ln 2

𝜂

2𝑚
. (18)

Proof. Consider the event

E1 � sup
𝑔∈F⊙

(
Ê
S
[𝑔] − E

𝜇
[𝑔]

)
≤ 2R̂1

𝑚 (F ⊙,S,𝝈) + 3𝑐

√
ln 2

𝜂

2𝑚
. (19)

We now show that this event holds with probability at least 1 − 𝜂/2 over the choices of S and 𝝈 ,
and then we use this fact to obtain the thesis with some additional steps.
Using linearity of expectation and the fact that the 𝑛-MCERA is an unbiased estimator for the

ERA (i.e., its expectation is the ERA), we can rewrite the symmetrization inequality (Thm. 3.6) as

E
S,𝝈

[
sup
𝑔∈F⊙

(
Ê
S
[𝑔] − E

𝜇
[𝑔]

)
− 2R̂1

𝑚 (F ⊙,S,𝝈)
]
≤ 0 .

The argument of the (outer) expectation on the l.h.s. can be seen as a function ℎ of the𝑚 pairs of
r.v.’s (𝝈1,1, 𝑠1), . . . , (𝝈1,𝑚, 𝑠𝑚). Fix any possible assignment 𝑣 ′ of values to these pairs. Consider now
a second assignment 𝑣 ′′ obtained from 𝑣 ′ by changing the value of any of the pairs with any other
value in {−1, 1} × X. We want to show that it holds |ℎ(𝑣 ′) − ℎ(𝑣 ′′) | ≤ 3𝑐/𝑚.

We separately handle the SD and the 1-MCERA, as both depend on the values of the assignment
of values to the pairs. The SD does not depend on 𝝈1, ·, and in the argument of the supremum,
changing any 𝑠 𝑗 impacts a single summand of the empirical mean ÊS [𝑔], with maximal change
when 𝑔(𝑠 𝑗) goes from −𝑐/2 to 𝑐/2 (or vice versa), thus the SD itself changes by no more than 𝑐/𝑚.

We now consider the 1-MCERA, and assume that the pair changing value is (𝝈1, 𝑗 , 𝑠 𝑗). Then the
only term of the 1-MCERA sum that changes is the 𝑗-th term. If only the first component of the
pair changes value (i.e., 𝝈1, 𝑗 goes from 1 to −1 or vice versa, i.e., from 𝝈1, 𝑗 to −𝝈1, 𝑗), then the 𝑗-th
term in the 1-MCERA sum cannot change by more than 𝑐 , because it holds 𝝈1, 𝑗𝑔(𝑠 𝑗) ∈ [−𝑐/2, 𝑐/2],
thus −𝝈1, 𝑗𝑔(𝑠 𝑗) also belongs to this interval, and it must be |𝝈1, 𝑗𝑔(𝑠 𝑗) − (−𝝈1, 𝑗𝑔(𝑠 𝑗)) | ≤ 𝑐 . If only
the second component of the pair changes value (i.e., 𝑠 𝑗 changes value to 𝑠 𝑗), then the 𝑗-th term in
the 1-MCERA sum cannot change by more than 𝑐 , because each function 𝑔 ∈ F ⊙ goes from X to
[−𝑐/2, 𝑐/2], and it must be |𝝈1, 𝑗𝑔(𝑠 𝑗) − 𝝈𝑖, 𝑗𝑔(𝑠 𝑗) | ≤ 𝑐 . Consider now the final case where both 𝝈1, 𝑗
and 𝑠 𝑗 change value. We have once again |𝝈1, 𝑗𝑔(𝑠 𝑗) − (−𝝈1, 𝑗𝑔(𝑠 𝑗)) | ≤ 𝑐 .
By adding the maximum change in the SD (i.e., 𝑐/𝑚) and the maximum change in twice the

1-MCERA (i.e., 2𝑐/𝑚), we can conclude that function ℎ satisfies the requirements of McDiarmid’s
inequality (Thm. 3.2) with constants 3𝑐/𝑚, and obtain that event E1 from (19) holds with probability
at least 1 − 𝜂/2.

Let −F ⊙ represent the family of functions containing −𝑔 for each 𝑔 ∈ F ⊙ . Consider the event

E2 � sup
𝑔∈−F⊙

(
Ê
S
[𝑔] − E

𝜇
[𝑔]

)
≤ 2R̂1

𝑚 (−F ⊙,S,−𝝈) + 3𝑐

√
ln 2

𝜂

2𝑚
.

Following the same steps as for E1, we have that E2 holds with probability at least 1 − 𝜂/2, as the
fact that we are considering R̂

1
𝑚 (−F ⊙,S,−𝝈) rather than R̂

1
𝑚 (−F ⊙,S,𝝈) is not influential.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:18 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

It is easy to see that R̂1
𝑚 (−F ⊙,S,−𝝈) = R̂

1
𝑚 (F ⊙,S,𝝈), and that

sup
𝑔∈−F⊙

(
Ê
S
[𝑔] − E

𝜇
[𝑔]

)
= sup

𝑔∈F⊙

(
E
𝜇
[𝑔] − Ê

S
[𝑔]

)
.

Thus we can rewrite E2 as

E2 = sup
𝑔∈F⊙

(
E
𝜇
[𝑔] − Ê

S
[𝑔]

)
≤ 2R̂1

𝑚 (F ⊙,S,𝝈) + 3𝑐

√
ln 2

𝜂

2𝑚
.

From the union bound, we have that E1 and E2 hold simultaneously with probability at least 1 − 𝜂,
i.e., the following event holds with probability at least 1 − 𝜂

D(F ⊙,S, 𝜇) ≤ 2R̂1
𝑚 (F ⊙,S,𝝈) + 3𝑐

√
ln 2

𝜂

2𝑚
.

The thesis then follows from the fact D(F ,S, 𝜇) = D(F ⊙,S, 𝜇). □

The advantage of (18) over (6) (with 𝑛 = 1) is in the smaller “tail bounds” terms that arise thanks
to a single application of a probabilistic tail bound, rather than three such applications. To use this
result in MCRapper, line 2 must be replaced with

𝜀 ← getNMCERA(F , S, 𝝈) + 3𝑐

√
ln 2

𝛿

2𝑚
;

so the upper bound to the SD is computed according to (18). The same guarantees as in Thm. 4.2
hold for this modified algorithm.

5 APPLICATIONS

To showcase MCRapper’s practical strengths, we now discuss applications to various pattern
mining tasks. The value 𝜀 computed byMCRapper can be used, for example, to obtain, from a small
random sample S of a large dataset, a high-quality approximation of the collection of frequent
itemsets in the dataset w.r.t. a frequency threshold 𝜃 ∈ (0, 1), by quickly mining the small sample
at frequency 𝜃 − 𝜀/2 [25]. Also, it can be used in the algorithm by Pellegrina et al. [23] to achieve
statistical power in significant pattern mining, or in the progressive algorithm by Servan-Schreiber
et al. [32] to enable even more accurate interactive data exploration. Essentially any of the tasks
we mentioned in Sect. 1 and 2 would benefit from the improved bound to the SD computed by
MCRapper. To support this claim, we discuss in depth one specific application.

Mining True Frequent Patterns. We now show how to useMCRapper together with sharp variance-
aware bounds to the SD (Thm. 3.5) for the specific application of identifying the True Frequent
Patterns (TFPs) [27]. The original work considered the problem only for itemsets, but we solve
the problem for a generic poset family F of functions with a relation ⪯ that, in addition to (2),
also satisfies anti-monotonicity, i.e., we require that for any 𝑓 , 𝑔 ∈ F such that 𝑓 ⪯ 𝑔, it also holds
𝑓 (𝑥) ≥ 𝑔(𝑥) for any 𝑥 ∈ X. This condition is more restrictive than the one in (2), but it is satisfied
by many pattern classes. For ease for presentation we assume, w.l.o.g., that the functions in F
map the domain X to [0, 1]. We also assume that the projection of F on the bag S (i.e., on the
dataset) is finite, that is, the set of |S|-dimensional vectors {⟨𝑓 (𝑠1), . . . , 𝑓 (𝑠 |S |)⟩, 𝑓 ∈ F } is finite.
This condition is satisfied in most practical applications.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:19

The task of TFP mining is, given a pattern language L (i.e., a function family with the properties
discussed above) and a threshold 𝜃 ∈ [0, 1], to output the set

TFP (𝜃,L) �
{
𝑓 ∈ L : E

𝜇
[𝑓] ≥ 𝜃

}
. (20)

Computing TFP (𝜃,L) exactly requires to know E𝜇 [𝑓] for every 𝑓 ∈ L; since this assumption
is unrealistic, it is only possible to compute an approximation of TFP (𝜃,L) using information
available from a random bag S of𝑚 i.i.d. samples from 𝜇. In this work, mimicking the guaran-
tees given in significant pattern mining [14] and in multiple hypothesis testing settings, we are
interested in approximations that are a subset of TFP(𝜃,L), i.e., we do not want false positives in
our approximation, but we accept false negatives. Due to the randomness in the generation of S,
no algorithm can guarantee to compute a (non-trivial) subset of TFP(𝜃,L) from every possible S.
Thus, one has to accept that there is a probability over the choice of S and other random choices
made by the algorithm to obtain a set of patterns that is not a subset of TFP(𝜃,L). We now present
an algorithm TFP-R with the following guarantee (proof presented after the description of the
algorithm).

Theorem 5.1. Given L, S, 𝜃 ∈ [0, 1], 𝛿−, 𝛿+ ∈ (0, 1), and a number 𝑛 ≥ 1 of Monte-Carlo trials,
TFP-R returns a set T such that

Pr
S,𝝈
(T ⊆ TFP(𝜃,L)) ≥ 1 − (𝛿− + 𝛿+),

where the probability is over the choice of both S and the randomness in TFP-R, i.e., an 𝑛 ×𝑚 matrix
of i.i.d. Rademacher variables 𝝈 .

Here is the intuition for TFP-R. For any set 𝐴 ⊆ L such that, for any 𝑓 ∈ 𝐴, all ancestors of 𝑓
also belong to𝐴, the negative border B− (𝐴) of𝐴 is the set containing every function 𝑓 ∈ L \𝐴 such
that every parent w.r.t. ⪯ of 𝑓 belongs to 𝐴, and the positive border B+ (𝐴) of 𝐴 is the set containing
every function 𝑓 ∈ 𝐴 such that no child of 𝑓 belongs to 𝐴 [18].
If we can compute 𝜀𝑢, 𝜀ℓ ∈ (0, 1) such that, for every 𝑓 ∈ B

− (TFP(𝜃,L)), it holds 𝜃 − 𝜀ℓ ≤
ÊS [𝑓] ≤ 𝜃 + 𝜀𝑢 , then, by the anti-monotonicity property, we can be sure that any 𝑔 ∈ L such that
ÊS [𝑔] ≥ 𝜃 + 𝜀𝑢 belongs to TFP(𝜃,L).
This guarantee will naturally be probabilistic, for the reasons we already discussed. Since

B
− (TFP(𝜃,L)) is unknown, TFP-R approximates it by progressively, by refining a superset B̂−

of it, starting from L. The cardinality of the superset B̂− directly impacts the value 𝜀𝑢 defined above.
In order to limit the cardinality of B̂−, TFP-Rmaintains a superset B̂+ approximating B+ (TFP(𝜃,L)),
refined progressively as well. The correctness of TFP-R is based on the fact that at every point in
the execution, it holds B− (TFP(𝜃,L)) ⊆ B̂−, as we show in the proof of Thm. 5.1.

The pseudocode of TFP-R is presented in Alg. 3.We assume to have a function getVarianceBound
that, given two quantities 𝜅 and 𝜆, with 𝜅 < 𝜆, returns an upper bound to the variance of every
function 𝑓 ∈ L with 𝜅 ≤ E𝜇 [𝑓] ≤ 𝜆. This assumption is reasonable: in the general case, Popoviciu’s
inequality tells us that any random variable taking values in [𝑎, 𝑏] has variance at most (𝑏 − 𝑎)2/4,
while much better bounds can be obtained in specific cases, e.g., when the functions in F only take
value in {0, 1} (as is the case for itemsets and many other patterns), then a strict upper bound is

getVarianceBound(𝜅, 𝜆) �

𝜆(1 − 𝜆) if 𝜆 ≤ 1

2
𝜅 (1 − 𝜅) if 𝜅 ≥ 1

2
1
4 otherwise.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:20 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

Algorithm 3: TFP-R
Input: Poset family L, sample S of size𝑚, 𝜃 ∈ [0, 1], 𝛿−, 𝛿+ ∈ (0, 1), 𝑛 ≥ 1.
Output: A set T of patterns with the properties described in Thm. 5.1.

1 𝝈 ← draw(𝑚, 𝑛)
2 T ← ∅
3 B̂− ← L
4 B̂+ ← L
5 𝑣− ← getVarianceBound(0, 𝜃)
6 𝑣+ ← getVarianceBound(𝜃 ,1)
7 repeat
8 𝜀𝑢 ← getSupDevBoundVar(B̂−, S, 𝛿−, 𝝈 , 𝑣−)
9 𝜀ℓ ← getSupDevBoundVar(B̂+, S, 𝛿+, 𝝈 , 𝑣+)

10 T ← T ∪ {𝑓 ∈ B̂+ : ÊS [𝑓] > 𝜃 + 𝜀𝑢}
11 H ← {𝑓 ∈ H : ÊS [𝑓] ∈ [𝜃 − 𝜀ℓ , 𝜃 + 𝜀𝑢)}
12 B̂−prev ← B̂−

13 B̂− ←H ∪ B− (T ∪ H)
14 B̂+prev ← B̂+

15 B̂+ ←H ∪ B+ (T)
16 𝑧 ← min{ÊS [𝑓] : 𝑓 ∈ B̂−}
17 𝑧 ← max{ÊS [𝑓] : 𝑓 ∈ B̂+}
18 𝑣− ← getVarianceBound(𝑧 − 𝜀𝑢 , 𝜃)
19 𝑣+ ← getVarianceBound(𝜃 ,𝑧 + 𝜀ℓ)
20 until B̂+ = B̂+prev and B̂− = B̂−prev
21 return T

The algorithm first draws the matrix 𝝈 (line 1) and initializes T to the empty set (line 2). Patterns are
added to T throughout the execution of the algorithm, and T is returned in output at the end. The
algorithm then initializes the sets B̂− and B̂+ toL (lines 3-4). It also initializes the scalar 𝑣− and 𝑣+ to
be, respectively an upper bound to the variances of all functions 𝑓 ∈ L with expectationE𝜇 [𝑓] lower
than 𝜃 , and an upper bound to the variances of all functions 𝑓 ∈ L with expectation E𝜇 [𝑓] higher
than 𝜃 (recall that we are assuming, w.l.o.g., that the functions in L go fromX to [0, 1]). TFP-R then
enters a loop (line 7). At each iteration of the loop, TFP-R calls the function getSupDevBoundVar
which returns a value 𝜀𝑢 computed as in (10) using F = B̂−, and 𝜂 = 𝛿− (line 8). It then calls
the function getSupDevBoundVar to compute a value 𝜀ℓ computed as in (10) using F = B̂+, and
𝜂 = 𝛿+ (line 9) The function getNMCERA from Alg. 1 is used inside of getSupDevBoundVar (with
the specified parameters) to compute the 𝑛-MCERA in the value 𝜌 from (9). The properties of 𝜀𝑢
and 𝜀ℓ are discussed in the proof for Thm. 5.1. TFP-R uses 𝜀𝑢 for two purposes: (1) to add to the set
T every function 𝑓 ∈ B̂+ with ÊS [𝑓] ≥ 𝜃 + 𝜀𝑢 (line 10); and (2) to refine the sets B̂− and B̂+ with
the goal of obtaining smaller supersets of B− (TFP(𝜃,L)) and of B+ (TFP(𝜃,L)), respectively. The
quantity 𝜀ℓ is instead used only for this second goal, which is achieved by computing the setH of
all functions with sample mean in [𝜃 − 𝜀ℓ , 𝜃 + 𝜀𝑢], and then updating B̂− (line 13) to be the union
betweenH and the negative border of T ∪H , and B̂+ (line 15) to be the union betweenH and
the positive border of T . The last steps inside the loop update the variables 𝑣− and 𝑣+, so that 𝑣− is

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:21

an upper bound to the variance of every function 𝑓 ∈ B− (TFP(𝜃,L)) with E𝜇 [𝑓] ≥ 𝑧 − 𝜀ℓ (line 18),
where 𝑧 is the minimum sample mean among the functions in B̂−, and 𝑣+ is instead an upper bound
to the variance of every function 𝑓 ∈ B+ (TFP(𝜃,L)) with E𝜇 [𝑓] ≤ 𝑧 + 𝜀𝑢 (line 19), where 𝑧 is the
maximum sample mean among the functions in B̂+. The loop keeps iterating until B̂− and B̂+ do
not change (condition on line 20), as assessed by comparing their new values with their previous
values, saved in the variables B̂−prev and B̂+prev, respectively. Finally the set T is returned in output.

In the interest of clarity, we gave a conceptually high-level description of TFP-R, but an efficient
implementation only requires one exploration ofL, i.e., some state can be kept between the different
calls to getSupDevBoundVar, saving significant time.

Proof of Thm. 5.1. For ease of notation, let B+ = B
+ (TFP(𝜃,L)) and B

− = B
− (TFP(𝜃,L)). Let

𝜀𝑢 be as in Thm. 3.5 for 𝜂 = 𝛿−, F = B
−, the matrix 𝝈 chosen as on line 1 of Alg. 3, the parameters

𝑛 and𝑚 as passed in input to Alg. 3, and 𝑣− being the maximum variance of any function in the
interval [𝑧 − 𝜀𝑢, 𝜃]. Analogously, let 𝜀ℓ be as in Thm. 3.5 for 𝜂 = 𝛿+, F = B

+, the matrix 𝝈 chosen as
on line 1 of Alg. 3, the parameters 𝑛 and𝑚 as passed in input to Alg. 3, and 𝑣+ being the maximum
variance of any function in the interval [𝜃, 𝑧 + 𝜀ℓ]. We remind that for ease of presentation we are
assuming that the functions in F have value in [0, 1]. Theorem 3.5 and a simple union bound tell
us that, with probability at least 1 − 𝛿 , it holds D(B−,S) ≤ 𝜀𝑢 and D(B+,S) ≤ 𝜀ℓ . Assume for the
rest of the proof that that is the case.

We show inductively that, at the end of every iteration of the loop of TFP-R (lines 7–20 of Alg. 3),
it holds that: T ⊆ TFP(𝜃,L); B− ⊆ B̂−; B+ ⊆ B̂+; 𝑣− is an upper bound to the variance of any
function in B

−; and 𝑣+ is an upper bound to the variance of any function in B
+, therefore the thesis

will hold. Note that, since the projection of L on the bag S (i.e., the dataset) is finite, the loop on
lines 7–20 of Alg. 3 performs a finite number of iterations, therefore Alg. 3 always terminates.
Consider the first iteration of the loop. At the beginning of the iteration, T = ∅ ⊆ TFP(𝜃,L)

is trivially true, and naturally 𝑣− and 𝑣+ as computed in lines 5 and 6 are an upper bound to the
variance of any function in B

− and of any function in B
+, respectively. Consider the value 𝜀𝑢

returned by the call to the function getSupDevBound on line 8 with the parameters shown in
the algorithm. As we discussed when we presented MCRapper, the function call computes the
𝑛-MCERA of B̂− to then compute 𝜀𝑢 using (6). It holds R̂𝑛𝑚

(
B̂−,S,𝝈

)
≥ R̂

𝑛
𝑚 (B−,S,𝝈), because

the 𝑛-MCERA of a superset of a family is not smaller than the 𝑛-MCERA of the family. Since
the value on the r.h.s. of (6) is monotonically increasing with the 𝑛-MCERA and with the upper
bound to the variance, then it holds that 𝜀𝑢 ≥ 𝜀. Since we assumed that D(B−,S) ≤ 𝜀𝑢 , it holds
𝜀𝑢 ≥ 𝜀𝑢 ≥ D(B−,S). Analogously, we have that 𝜀ℓ ≥ 𝜀ℓ ≥ D(B+,S).

We now prove that that the properties defined above hold at the end of the first iteration. Since
𝜀𝑢D(B−,S), as discussed in the description of the algorithm all 𝑓 ∈ L with ÊS [𝑓] ≥ 𝜃 + 𝜀𝑢 belong
to TFP(𝜃,L). We just showed that T ⊆ TFP(𝜃,L).

Consider now a function 𝑓 ∈ B− (TFP(𝜃,L)). Since T ⊆ TFP(𝜃,L), 𝑓 cannot be in T , therefore
ÊS [𝑓] < 𝜃 + 𝜀𝑢 . Moreover, either ÊS [𝑓] ≥ 𝜃 − 𝜀ℓ , therefore 𝑓 ∈ H , or ÊS [𝑓] < 𝜃 − 𝜀ℓ . If the latter
holds, consider any parent 𝑓 ′ of 𝑓 in the poset. By definition 𝑓 ′ ∈ B+ (TFP(𝜃,L)), therefore either
ÊS [𝑓 ′] ≥ 𝜃 + 𝜀𝑢 , that is 𝑓 ′ ∈ T , or ÊS [𝑓 ′] < 𝜃 + 𝜀𝑢 and ÊS [𝑓 ′] ≥ 𝜃 − 𝜀ℓ , since 𝜀ℓ ≥ D(B+,S),
therefore 𝑓 ′ ∈ H . Combining the two cases, 𝑓 ′ ∈ T ∪ H , therefore 𝑓 ∈ B

− (T ∪ H). We just
showed that B− ⊆ B̂−.
Consider now a function 𝑓 ∈ B+ (TFP(𝜃,L)). Since 𝜀ℓ ≥ D(B+,S) and 𝑓 ∈ TFP(𝜃,L), it holds

ÊS [𝑓] ≥ 𝜃 − 𝜀ℓ . Moreover, either ÊS [𝑓] ≤ 𝜃 + 𝜀𝑢 , that is 𝑓 ∈ H , or ÊS [𝑓] > 𝜃 + 𝜀𝑢 . If the latter
holds, then 𝑓 ∈ T , and since T ⊆ TFP(𝜃,L), it holds 𝑓 ∈ B+ (T). We just showed that B+ ⊆ B̂+.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:22 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

We now show that 𝑣− as computed on line 18 is not smaller than max𝑓 ∈B− (TFP(𝜃,L)) Var𝜇 [𝑓].
Since B− ⊆ B̂−, and no 𝑓 ∈ B− can have E𝜇 [𝑓] < ÊS [𝑓] − 𝜀𝑢 , then it follows that 𝑧 − 𝜀𝑢 , where 𝑧 is
computed as in line 16, is not larger than E𝜇 [𝑓] for any 𝑓 ∈ B−. The new value for 𝑣− is therefore
an upper bound to Var𝜇 [𝑓] for any 𝑓 ∈ B−. Analogously, the new value for 𝑣+ computed on line 19
is an upper bound to Var𝜇 [𝑓] for any 𝑓 ∈ B+.

So we are done with the proof of the base case: at the end of the first iteration of the loop, it holds
that: T ⊆ TFP(𝜃,L); B− ⊆ B̂−; B+ ⊆ B̂+; 𝑣− is an upper bound to the variance of any function in
B
−; and 𝑣+ is an upper bound to the variance of any function in B

+.
Assume now that that: T ⊆ TFP(𝜃,L), B− ⊆ B̂−, B+ ⊆ B̂+, 𝑣− is an upper bound to the variance

of any function in B
−, and 𝑣+ is an upper bound to the variance of any function in B

+ at the end of
all iterations from 1 to 𝑖 . Following the same reasoning as for the base case, it holds that these facts
are true also at the end of iteration 𝑖 + 1 and our proof is complete. □

Precision and recall: getting the best of both worlds. As presented in the previous section, the
output of TFP-R has (probabilistically) no false positives, i.e., it will not include patterns that are
not TFPs, but it may have false negatives, i.e., it may not return all TFPs. In other words, it has
perfect precision, but imperfect recall. It is possible to modify TFP-R to also return, in addition to T ,
a collection T ′ of patterns that is (probabilistically) a superset of TFP (𝜃,L), thus may also contain
some false positives. The set T ′ offers perfect recall but imperfect precision. The only change
necessary w.r.t. TFP-R is to return, in addition to T , the set T ′ � {𝑓 ∈ L : ÊS [𝑓] ≥ 𝜃 − 𝜀ℓ }. The
guarantees on T from Thm. 5.1 still hold, so we obtain the following result.

Theorem 5.2. Given L, S, 𝜃 ∈ [0, 1], 𝛿−, 𝛿+ ∈ (0, 1), and a number 𝑛 ≥ 1 of Monte-Carlo trials,
TFP-R with the above modification returns two sets T ′ and T such that

Pr
S,𝝈

(
T ⊆ TFP(𝜃,L) ⊆ T ′

)
≥ 1 − (𝛿− + 𝛿+) .

The proof follows from the properties of 𝜀ℓ that we discussed in the proof of Thm. 5.1.
This variant of TFP-R offers the best of both worlds in terms of precision and recall: T ′ has

perfect recall, while T has perfect precision. The set T ′ \ T is the collection of patterns for which
we cannot reliably state whether they belong or not to TFP (𝜃,L).

This result is made possible by the “decomposition” of the task of finding the TFPs into the two
tasks of identifying the positive and negative border, i.e., on appropriately choosing the families
of functions to consider when using the 𝑛-MCERA, which as we mentioned in Sect. 1, is one of
the challenges in applying this highly-theoretical concepts to practical algorithms. In this case,
other choices were possible, but submoptimal (see, for example, the version of the algorithm that
appeared in the conference version of this work [22]). The uniform convergence results involving
the 𝑛-MCERA then allow us to obtain the two distinct upper bound bounds 𝜀ℓ and 𝜀𝑢 to the SDs of
each border, and use these quantities to compute collections of patterns with the desired guarantees
in terms of precision and recall.

6 EXPERIMENTS

In this section we present the results of our experimental evaluation for MCRapper. We compare
MCRapper to Amira [26], an algorithm that bounds the Supremum Deviation by computing a
deterministic upper bound to the ERA with one pass on the random sample. The goal of our
experimental evaluation is to compare MCRapper to Amira in terms of the upper bound to the SD
they compute. We also assess the impact of the difference in the SD bound provided by MCRapper
and Amira for the application of mining true frequent patterns the set G(𝜃 + 𝜀,S). It is easy to

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:23

prove that the output of TFP-A is a subset of true frequent patterns with probability ≥ 1 − 𝛿 . We
also evaluate the running time of MCRapper and of its variantMCRapper-H.

Datasets and implementation. We implemented MCRapper and MCRapper-H in C, by modifying
TopKWY [24]. Our implementations are available at https://github.com/VandinLab/MCRapper.
The implementation of Amira [26] has been provided by the authors. We test both methods on
18 datasets (see Table 2 for their statistics), widely used for the benchmark of itemset mining
algorithms. To compareMCRapper to Amira in terms of the upper bound to the SD, we draw, from
every dataset, random samples of increasing size𝑚; we considered 6 values equally spaced in the
logarithmic space in the interval [103, 106]. We only consider values of𝑚 smaller than the dataset
size |D|. For both algorithms we fix 𝛿 = 0.1. For MCRapper we use 𝑛 ∈ {1, 10, 100}. Additional
details on reproducing our experiments are available in App. A.

Table 2. Datasets statistics. For each dataset, we report the number |D| of transactions; the number |I | of
items; the average transaction length.

dataset |D| |I| avg. trans. len.

svmguide3 1,243 44 21.9
chess 3,196 75 37
breast cancer 7,325 396 11.7
mushroom 8,124 117 22
phishing 11,055 137 30
a9a 32,561 245 13.9
pumsb-star 49,046 7,117 50.9
bms-web1 58,136 60,878 3.51
connect 67,557 129 43.5
bms-web2 77,158 330,285 5.6
retail 87,979 16,470 10.8
ijcnn1 91,701 43 13
T10I4D100K 100,000 1,000 10
T40I10D100K 100,000 1,000 40
accidents 340,183 468 34.9
bms-pos 515,420 1,657 6.9
covtype 581,012 108 12.9
susy 5,000,000 190 19

To compare TFP-R to TFP-A, we analyze synthetic datasets of size𝑚 = 104 obtained by randomly
sampling transactions from each dataset. We use 𝑛 = 10 for TFP-R, and 𝛿 = 0.1. We report the
results for 𝜃 = 0.1; other values of 𝜃 (we considered 𝜃 ∈ {0.05, 0.1, 0.25, 0.5}) produced similar
results, as we show in Appendix B.
For all experiments and parameters combinations we perform 10 runs of TFP-R over the same

random sample. For both algorithms, when the number of results exceeds 108 patterns, we report
at most 108 closed patterns, a lossless representation of the full set. In all the figures we report the
averages and average ± standard deviations of these runs.
All the code was compiled with GCC 8 and run on a machine with a 2.30 GHz Intel Xeon CPU,

512 GB of RAM, on Ubuntu 20.04.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

https://github.com/VandinLab/MCRapper

124:24 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

6.1 Bounds on the SD

Figure 2(a)–(c) show the ratio between the upper bound on the SD obtained by MCRapper and
the one obtained by Amira for different values of 𝑛. The bound provided byMCRapper is always
better (i.e., lower) than the bound provided by Amira (e.g., for 𝑛 = 100 the bound from MCRapper
is always at least 34% smaller than the bound from Amira). For 𝑛 = 1 one can see that the novel
improved bound from Thm. 4.7 should really be preferred over the “standard” one from Thm. 3.1
(shown with dashed lines). Similar results hold for all other datasets. These results highlight the
effectiveness of MCRapper in providing a much tighter bound to the SD than currently available
approaches. In Fig. 2d, we show the composition of the SD bound into its components: the bottom
(red) part is twice the 𝑛-MCERA, then comes (in green, second from the bottom) the contribution
of the tail bound from the previous quantity to twice the ERA, then, in orange and third from the
bottom, is the part that can be attributed to the tail bound to twice the Rademacher average, and
finally the tail bound from this quantity to the upper bound to the SD. It is evident from this figure
that the second component (2 · 𝑛-MCERA to 2· ERA) is the only one which depends on the number
𝑛 of MC-trials, and as its contribution decreases root-hyperbolically with increasing 𝑛, it quickly
becomes essentially insignificant.

6.2 Mining True Frequent Patterns

We compare the SD bound computed by MCRapper with the one computed by TFP-A. The results
are shown in Fig. 3a. Similarly to what we observed in Sect. 6.1, MCRapper provides much tighter
bounds being, in most cases, less than 50% of the bound reported by Amira. We then assessed the
impact of such difference in the mining of TFPs, by comparing the number of patterns reported by
TFP-R and by TFP-A. Since for both algorithms the output is a subset of the true frequent patterns
with probability ≥ 1 − 𝛿 , reporting a higher number of patterns corresponds to identifying more
true frequent patterns, i.e., to higher power. Figure 3b shows the number of patterns reported
by TFP-R and by TFP-A (left 𝑦-axis) and the ratio between such quantities (right 𝑦-axis). The
SD bound from MCRapper is always lower than the SD bound from Amira, so TFP-R always
reports at least as many patterns as TFP-A, and it reports at least twice as many patterns as TFP-A
for 10 out of 18 datasets. These results show that the SD bound computed by TFP-R provides a
great improvement in terms of power for mining TFPs w.r.t. current state-of-the-art methods for
SD bound computation. Comparing TFP-R with its conference version [22] (that we denote with
TFP-R-C), we observed TFP-R to always compute a comparable or smaller bound on the Supremum
Deviation, thus reporting a comparable or larger set of results. We compared both algorithms
on a9a, mushroom, and svmguide3 datasets (which are representatives of other instances); over
all runs and for the same values of 𝜃 previously considered, TFP-R always report at least 95% of
the patterns reported by TFP-R-C, and in some cases > 15% more patterns (e.g., for the dataset
mushroom and 𝜃 = 0.5). It is not surprising that, in some cases, the number of results reported by
TFP-R is slightly smaller than TFP-R-C; rather, it is a consequence of the fact that TFP-R balances
rigorous guarantees on the precision (i.e., maintaining a subset of the TFPs) and on the recall
(i.e., maintaining a superset of the TFPs), in strong contrast with TFP-R-C, which only achieves
the former. Overall, TFP-R allows to discover more TFPs while providing stronger probabilistic
guarantees, leveraging the decomposition of the problem into bounds on the positive and negative
borders.

6.3 Running time

For these experiments we take a random sample of size 104 of the 6 most demanding datasets
(accidents, chess, connect, phishing, pumsb-star, susy; for the other datasetsMCRapper takes

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:25

103 104 105 106

Sample Size

0.2

0.4

0.6

0.8

1.0

1.2

Ra
tio

 o
f S

D
bo

un
d

(M
CR

/A
)

(a) 𝑛 = 1.

103 104 105 106

Sample Size

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ra
tio

 o
f S

D
bo

un
d

(M
CR

/A
)

(b) 𝑛 = 10.

103 104 105 106

Sample Size

0.40

0.45

0.50

0.55

0.60

0.65

Ra
tio

 o
f S

D
bo

un
d

(M
CR

/A
)

(c) 𝑛 = 102
.

1 10 100
n

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016
SD
2 RC
2 ERA
2 n-MCERA

(d) Decomposition of 𝜀

Fig. 2. (a)–(c): Ratios of the SD bounds obtained by MCRapper (𝑛 ∈ {1, 10, 102}) to Amira SD bounds, for

the entire F , on four of the datasets we analyzed. For 𝑛 = 1, dashed lines use the tail bound from Thm. 3.1

instead of the one from Thm. 4.7. (d): Values of 2 · 𝑛-MCERA, and upper bounds to 2· ERA, 2· RC, and SD, for

a random sample of the dataset accidents of size𝑚 = 2.56 · 105
, as functions of 𝑛.

much less time than the ones shown) and use the hybrid approach MCRapper-H (Sect. 4.2.1) with
different values of 𝛽 (and 𝑛 = 1, which gives a good trade-off between the bounds and the running
time, 𝛾 = 0.01, 𝛿 = 0.1). We naïvely upper bound |K(S, 𝛽) | with ∑

𝑠𝑖∈S 2 |𝑠𝑖 | , where |𝑠𝑖 | is the length
of the transaction 𝑠𝑖 , a very loose bound that could be improved using more information from S.
Figures 4a and 4b show the running time of MCRapper and Amira vs. the obtained upper bound on
the SD (different colors correspond to different values of 𝛽). With Amira one can quickly obtain a
fairly loose bound on the SD, by using MCRapper and MCRapper-H one can trade-off the running
time for smaller bounds on the SD.

7 CONCLUSION

We present MCRapper, an algorithm for computing a bound to the supremum deviation of the
sample means from their expectations for families of functions with poset structure, such as those
that arise in pattern mining tasks. At the core of MCRapper there is a novel efficient approach
to compute the 𝑛-sample Monte-Carlo Empirical Rademacher Average based on fast search space

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:26 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

a9
a

ac
cid

en
ts

bm
s-

po
s

bm
s-

we
b1

bm
s-

we
b2

br
ea

st
-c

an
ce

r
ch

es
s

co
nn

ec
t

co
vt

yp
e

ijc
nn

1
m

us
hr

oo
m

ph
ish

in
g

pu
m

sb
-s

ta
r

re
ta

il
su

sy
sv

m
gu

id
e3

T1
0I

4D
10

0K
T4

0I
10

D1
00

K0.00

0.02

0.04

0.06

0.08

0.10

Bo
un

d
on

 S
up

re
m

um
 D

ev
ia

tio
n TFP-A

TFP-R

(a)

a9
a

ac
cid

en
ts

bm
s-

po
s

bm
s-

we
b1

bm
s-

we
b2

br
ea

st
-c

an
ce

r
ch

es
s

co
nn

ec
t

co
vt

yp
e

ijc
nn

1
m

us
hr

oo
m

ph
ish

in
g

pu
m

sb
-s

ta
r

re
ta

il
su

sy
sv

m
gu

id
e3

T1
0I

4D
10

0K
T4

0I
10

D1
00

K

102

104

106

Nu
m

be
r o

f R
ep

or
te

d
Pa

tte
rn

s TFP-A
TFP-R

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ra
tio

 o
f R

ep
. P

at
t.

(T
FP

-R
/T

FP
-A

)

Ratio

(b)

Fig. 3. (a) Bounds on the Supremum Deviation obtained by TFP-R and TFP-A for 𝜃 = 0.1. (b) Number of

reported patterns (left 𝑦-axis) and ratios (right 𝑦-axis) by TFP-R and TFP-A (for some datasets, there were no

patterns due to the choice of minimum true frequency threshold).

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
Bound on supremum deviation

100

101

102

103

104

Ru
nn

in
g

Ti
m

e
(s

)

Amira+Min.(= 0.1) MCR(MCR-H w. = 0) MCR-H(= 0.01) MCR-H(= 0.025) MCR-H(= 0.05) MCR-H(= 0.1)

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
Bound on supremum deviation

10 2

10 1

100

101

102

103

Ru
nn

in
g

Ti
m

e
(s

)

connect accidents chess

(a)

0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
Bound on supremum deviation

10 2

10 1

100

101

102

103

Ru
nn

in
g

Ti
m

e
(s

)

pumsb-star susy phishing

(b)

Fig. 4. Running times of MCRapper, MCRapper-H and Amira versus corresponding upper bounds to the SD

over the entire family F . ForMCRapper-H, we use several values of 𝛽 , demarcated by color. Each marker

shape corresponds to one of the datasets we considered. For Amira we also show the time for mining the

TFPs (Amira+Min.), with freq. ≥ 𝛽 = 0.1, as needed after processing the sample.

exploration and pruning techniques. Thus, we are using pattern mining techniques to solve a
problem (the computation of the 𝑛-MCERA) that is not a pattern mining problem, but the solution
to this problem allows us to solve pattern mining problems (e.g., the True-Frequent-Patterns
problem).MCRapper returns a much better (i.e., smaller) bound to the supremum deviation than
existing techniques. We use MCRapper to extract true frequent patterns and show that it finds
many more patterns than the state of the art.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:27

ACKNOWLEDGMENTS

Part of this work was conducted while L.P. was visiting the Department of Computer Science of
Brown University, supported by a “Fondazione Ing. Aldo Gini” fellowship. Part of this work is sup-
ported by the National Science Foundation awards RI-1813444 (https://www.nsf.gov/awardsearch/
showAward?AWD_ID=1813444) and IIS-2006765 (https://www.nsf.gov/awardsearch/showAward?
AWD_ID=2006765), by the DARPA/ARFL grant FA8750, by the Italian Ministry of Education, Uni-
versity and Research (MIUR) under PRIN Project no. 20174LF3T8 AHeAD (Efficient Algorithms for
HArnessing Networked Data), and by the University of Padova project SID 2020: RATED-X and
project STARS 2018.

REFERENCES

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association rules between sets of items in large
databases. SIGMOD Rec. 22 (June 1993), 207–216. Issue 2. https://doi.org/10.1145/170036.170072

[2] RakeshAgrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns. In Proceedings of the Eleventh International
Conference on Data Engineering, (ICDE’95). IEEE, 3–14.

[3] N. K. Ahmed, J. Neville, R. A. Rossi, and Duffield N. 2015. Efficient Graphlet Counting for Large Networks. In 2015
IEEE International Conference on Data Mining. 1–10. https://doi.org/10.1109/ICDM.2015.141

[4] Peter L. Bartlett and Shahar Mendelson. 2002. Rademacher and Gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research 3, Nov (2002), 463–482.

[5] Stephen D. Bay and Michael J. Pazzani. 2001. Detecting group differences: Mining contrast sets. Data Mining and
Knowledge Discovery 5, 3 (2001), 213–246.

[6] Mario Boley, Claudio Lucchese, Daniel Paurat, and Thomas Gärtner. 2011. Direct local pattern sampling by efficient
two-step random procedures. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining - KDD ’11 (2011). https://doi.org/10.1145/2020408.2020500

[7] Olivier Bousquet. 2002. A Bennett concentration inequality and its application to suprema of empirical processes.
Comptes Rendus Mathematique 334, 6 (2002), 495–500.

[8] Venkatesan T. Chakaravarthy, Vinayaka Pandit, and Yogish Sabharwal. 2009. Analysis of sampling techniques for
association rule mining. In Proc. 12th Int. Conf. Database Theory (St. Petersburg, Russia) (ICDT ’09). ACM, New York,
NY, USA, 276–283. https://doi.org/10.1145/1514894.1514927

[9] Cyrus Cousins and Matteo Riondato. 2020. Sharp uniform convergence bounds through empirical centraliza-
tion. In Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 15123–15132. https://proceedings.neurips.cc/paper/2020/file/
ac457ba972fb63b7994befc83f774746-Paper.pdf

[10] Cyrus Cousins, Chloe Wohlgemuth, and Matteo Riondato. 2021. Bavarian: Betweenness Centrality Approximation with
Variance-aware Rademacher Averages. In Proceedings of the 27th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’21). ACM.

[11] L. De Stefani and E. Upfal. 2019. A Rademacher Complexity Based Method for Controlling Power and Confidence
Level in Adaptive Statistical Analysis. In 2019 IEEE International Conference on Data Science and Advanced Analytics
(DSAA). 71–80. https://doi.org/10.1109/DSAA.2019.00021

[12] Vladimir Dzyuba, Matthijs van Leeuwen, and Luc De Raedt. 2017. Flexible constrained sampling with guarantees for
pattern mining. Data Mining and Knowledge Discovery 31, 5 (Mar 2017), 1266–1293. https://doi.org/10.1007/s10618-
017-0501-6

[13] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Tin Truong-Chi, and Roger Nkambou. 2019. A Survey of High Utility
Itemset Mining. In High-Utility Pattern Mining. Springer International Publishing.

[14] Wilhelmiina Hämäläinen and Geoffrey I. Webb. 2018. A Tutorial on Statistically Sound Pattern Discovery. Data Mining
and Knowledge Discovery (Dec 2018). https://doi.org/10.1007/s10618-018-0590-x

[15] Adam Kirsch, Michael Mitzenmacher, Andrea Pietracaprina, Geppino Pucci, Eli Upfal, and Fabio Vandin. 2012. An
efficient rigorous approach for identifying statistically significant frequent itemsets. Journal of the ACM (JACM) 59, 3
(2012), 1–22.

[16] Willi Klösgen. 1992. Problems for knowledge discovery in databases and their treatment in the Statistics Interpreter
Explora. International Journal of Intelligent Systems 7 (1992), 649–673.

[17] Vladimir Koltchinskii and Dmitriy Panchenko. 2000. Rademacher processes and bounding the risk of function learning.
In High dimensional probability II. Springer, 443–457.

[18] Heikki Mannila and Hannu Toivonen. 1996. On an algorithm for finding all interesting sentences. In 13th European
Meeting on Cybernetics and Systems Research, Vol. II. Citeseer.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1813444
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1813444
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2006765
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2006765
https://doi.org/10.1145/170036.170072
https://doi.org/10.1109/ICDM.2015.141
https://doi.org/10.1145/2020408.2020500
https://doi.org/10.1145/1514894.1514927
https://proceedings.neurips.cc/paper/2020/file/ac457ba972fb63b7994befc83f774746-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ac457ba972fb63b7994befc83f774746-Paper.pdf
https://doi.org/10.1109/DSAA.2019.00021
https://doi.org/10.1007/s10618-017-0501-6
https://doi.org/10.1007/s10618-017-0501-6
https://doi.org/10.1007/s10618-018-0590-x

124:28 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

[19] Colin McDiarmid. 1989. On the method of bounded differences. Surveys in combinatorics 141, 1 (1989), 148–188.
[20] Luca Oneto, Alessandro Ghio, Davide Anguita, and Sandro Ridella. 2013. An improved analysis of the Rademacher

data-dependent bound using its self bounding property. Neural Networks 44 (2013), 107–111.
[21] Leonardo Pellegrina. 2021. Rigorous and Efficient Algorithms for Significant and Approximate Pattern Mining. Ph.D.

Thesis. http://www.dei.unipd.it/~pellegri/thesis/leonardo_pellegrina_tesi.pdf.
[22] Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato. 2020. MCRapper: Monte-Carlo Rademacher

Averages for Poset Families and Approximate Pattern Mining. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’20). ACM.

[23] Leonardo Pellegrina, Matteo Riondato, and Fabio Vandin. 2019. SPuManTE: Significant Pattern Mining with Uncondi-
tional Testing. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
(Anchorage, AK, USA) (KDD ’19). ACM, New York, NY, USA, 1528–1538. https://doi.org/10.1145/3292500.3330978

[24] Leonardo Pellegrina and Fabio Vandin. 2020. Efficient mining of the most significant patterns with permutation testing.
Data Mining and Knowledge Discovery (2020).

[25] Matteo Riondato and Eli Upfal. 2014. Efficient Discovery of Association Rules and Frequent Itemsets through Sampling
with Tight Performance Guarantees. ACM Trans. Knowl. Disc. from Data 8, 4 (2014), 20. https://doi.org/10.1145/2629586

[26] Matteo Riondato and Eli Upfal. 2015. Mining Frequent Itemsets through Progressive Sampling with Rademacher
Averages. In Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’15). ACM, 1005–1014.

[27] Matteo Riondato and Fabio Vandin. 2014. Finding the true frequent itemsets. In Proceedings of the 2014 SIAM international
conference on data mining. SIAM, 497–505.

[28] Matteo Riondato and Fabio Vandin. 2018. MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimen-
sion. In Proc. 24th ACM SIGKDD Int. Conf. Knowl. Disc. and Data Mining (KDD ’18). ACM, 2130–2139.

[29] Matteo Riondato and Fabio Vandin. 2020. MiSoSouP: Mining Interesting Subgroups with Sampling and Pseudodimen-
sion. ACM Trans. Knowl. Discov. Data 14, 5, Article 56 (June 2020), 31 pages. https://doi.org/10.1145/3385653

[30] Diego Santoro, Andrea Tonon, and Fabio Vandin. 2020. Mining Sequential Patterns with VC-Dimension and Rademacher
Complexity. Algorithms 13, 5 (2020), 123.

[31] Sacha Servan-Schreiber, Matteo Riondato, and Emanuel Zgraggen. 2018. ProSecCo: Progressive Sequence Mining with
Convergence Guarantees. In Proceedings of the 18th IEEE International Conference on Data Mining. 417–426.

[32] Sacha Servan-Schreiber, Matteo Riondato, and Emanuel Zgraggen. 2020. ProSecCo: Progressive Sequence Mining with
Convergence Guarantees. Knowledge and Information Systems 62, 4 (2020), 1313–1340.

[33] Shai Shalev-Shwartz and Shai Ben-David. 2014. UnderstandingMachine Learning: From Theory to Algorithms. Cambridge
University Press.

[34] Mahito Sugiyama, Felipe Llinares-López, Niklas Kasenburg, and Karsten M Borgwardt. 2015. Significant subgraph
mining with multiple testing correction. In Proceedings of the 2015 SIAM International Conference on Data Mining.
SIAM, 37–45.

[35] Aika Terada, Mariko Okada-Hatakeyama, Koji Tsuda, and Jun Sese. 2013. Statistical significance of combinatorial
regulations. Proceedings of the National Academy of Sciences 110, 32 (2013), 12996–13001.

[36] Hannu Toivonen. 1996. Sampling Large Databases for Association Rules. In Proc. 22nd Int. Conf. Very Large Data Bases
(VLDB ’96). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 134–145.

[37] Andrea Tonon and Fabio Vandin. 2019. Permutation Strategies for Mining Significant Sequential Patterns. In 2019 IEEE
International Conference on Data Mining (ICDM). IEEE, 1330–1335.

[38] Vladimir N. Vapnik. 1998. Statistical learning theory. Wiley.

A APPENDIX: REPRODUCIBILITY

We now describe how to reproduce our experimental results. Code and data are available at
https://github.com/VandinLab/MCRapper.
The code of MCRapper, TFP-R, and Amira are in the sub-folders mcrapper/ and amira/. To

compile with recent GCC or Clang, use the make command inside each sub-folder.
The convenient scripts run_amira.py and run_mcrapper.py can be used to run the experiments

(i.e., run Amira, MCRapper, and TFP-R). They accept many input parameters (described using the
flag -h). You need to specify a dataset and the size of a random sample to create using the flags
-db and -sz. E.g., to process a random sample of 103 transactions from the dataset mushroom with
𝑛 = 100, run

run_mcrapper.py -db mushroom -sz 1000 -j 100

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

http://www.dei.unipd.it/~pellegri/thesis/leonardo_pellegrina_tesi.pdf
https://doi.org/10.1145/3292500.3330978
https://doi.org/10.1145/2629586
https://doi.org/10.1145/3385653
https://github.com/VandinLab/MCRapper

MCRapper: Monte-Carlo Rademacher Averages for Poset Families and Approximate Pattern Mining 124:29

and it automatically executes both Amira and MCRapper. The command line to process with
TFP-R a sample of 104 transactions from the dataset retail with 𝑛 = 30 and 𝜃 = 0.05 is

run_mcrapper.py -db retail -sz 10000 -j 30 -tfp 0.05

The run_all_datasets.py script runs all the instances of MCRapper and Amira in parallel, and
can be used to reproduce all the experiments described in Sect. 6. The run_tfp_all_datasets.py
script reproduces the experiments for TFP-R and TFP-A.

All the results are stored in the files results_mcrapper.csv and results_tfp_mcrapper.csv.

B ADDITIONAL RESULTS

a9
a

ac
cid

en
ts

bm
s-

po
s

bm
s-

we
b1

bm
s-

we
b2

br
ea

st
-c

an
ce

r
ch

es
s

co
nn

ec
t

co
vt

yp
e

ijc
nn

1
m

us
hr

oo
m

ph
ish

in
g

pu
m

sb
-s

ta
r

re
ta

il
su

sy
sv

m
gu

id
e3

T1
0I

4D
10

0K
T4

0I
10

D1
00

K0.00

0.02

0.04

0.06

0.08

0.10

Bo
un

d
on

 S
up

re
m

um
 D

ev
ia

tio
n TFP-A

TFP-R

(a)

a9
a

ac
cid

en
ts

bm
s-

po
s

bm
s-

we
b1

bm
s-

we
b2

br
ea

st
-c

an
ce

r
ch

es
s

co
nn

ec
t

co
vt

yp
e

ijc
nn

1
m

us
hr

oo
m

ph
ish

in
g

pu
m

sb
-s

ta
r

re
ta

il
su

sy
sv

m
gu

id
e3

T1
0I

4D
10

0K
T4

0I
10

D1
00

K

102

104

106

108

Nu
m

be
r o

f R
ep

or
te

d
Pa

tte
rn

s TFP-A
TFP-R

1

2

3

4

5

6

Ra
tio

 o
f R

ep
. P

at
t.

(T
FP

-R
/T

FP
-A

)

Ratio

(b)

Fig. 5. (a) Bounds on the Supremum Deviation obtained by TFP-R and TFP-A for 𝜃 = 0.05. (b) Number of

reported patterns (left 𝑦-axis) and ratios (right 𝑦-axis) by TFP-R and TFP-A.

a9
a

ac
cid

en
ts

bm
s-

po
s

bm
s-

we
b1

bm
s-

we
b2

br
ea

st
-c

an
ce

r
ch

es
s

co
nn

ec
t

co
vt

yp
e

ijc
nn

1
m

us
hr

oo
m

ph
ish

in
g

pu
m

sb
-s

ta
r

re
ta

il
su

sy
sv

m
gu

id
e3

T1
0I

4D
10

0K
T4

0I
10

D1
00

K0.00

0.02

0.04

0.06

0.08

0.10

Bo
un

d
on

 S
up

re
m

um
 D

ev
ia

tio
n TFP-A

TFP-R

(a)

a9
a

ac
cid

en
ts

bm
s-

po
s

bm
s-

we
b1

bm
s-

we
b2

br
ea

st
-c

an
ce

r
ch

es
s

co
nn

ec
t

co
vt

yp
e

ijc
nn

1
m

us
hr

oo
m

ph
ish

in
g

pu
m

sb
-s

ta
r

re
ta

il
su

sy
sv

m
gu

id
e3

T1
0I

4D
10

0K
T4

0I
10

D1
00

K

101

103

105

107

Nu
m

be
r o

f R
ep

or
te

d
Pa

tte
rn

s TFP-A
TFP-R

1.0

1.5

2.0

2.5

3.0
Ra

tio
 o

f R
ep

. P
at

t.
(T

FP
-R

/T
FP

-A
)

Ratio

(b)

Fig. 6. (a) Bounds on the Supremum Deviation obtained by TFP-R and TFP-A for 𝜃 = 0.25. (b) Number of

reported patterns (left 𝑦-axis) and ratios (right 𝑦-axis) by TFP-R and TFP-A.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

124:30 Leonardo Pellegrina, Cyrus Cousins, Fabio Vandin, and Matteo Riondato

a9
a

ac
cid

en
ts

bm
s-

po
s

bm
s-

we
b1

bm
s-

we
b2

br
ea

st
-c

an
ce

r
ch

es
s

co
nn

ec
t

co
vt

yp
e

ijc
nn

1
m

us
hr

oo
m

ph
ish

in
g

pu
m

sb
-s

ta
r

re
ta

il
su

sy
sv

m
gu

id
e3

T1
0I

4D
10

0K
T4

0I
10

D1
00

K0.00

0.02

0.04

0.06

0.08

0.10

Bo
un

d
on

 S
up

re
m

um
 D

ev
ia

tio
n TFP-A

TFP-R

(a)

a9
a

ac
cid

en
ts

bm
s-

po
s

bm
s-

we
b1

bm
s-

we
b2

br
ea

st
-c

an
ce

r
ch

es
s

co
nn

ec
t

co
vt

yp
e

ijc
nn

1
m

us
hr

oo
m

ph
ish

in
g

pu
m

sb
-s

ta
r

re
ta

il
su

sy
sv

m
gu

id
e3

T1
0I

4D
10

0K
T4

0I
10

D1
00

K

101

103

105

107

Nu
m

be
r o

f R
ep

or
te

d
Pa

tte
rn

s TFP-A
TFP-R

1.0

1.5

2.0

2.5

3.0

Ra
tio

 o
f R

ep
. P

at
t.

(T
FP

-R
/T

FP
-A

)

Ratio

(b)

Fig. 7. (a) Bounds on the Supremum Deviation obtained by TFP-R and TFP-A for 𝜃 = 0.5. (b) Number of

reported patterns (left 𝑦-axis) and ratios (right 𝑦-axis) by TFP-R and TFP-A.

ACM Trans. Knowl. Discov. Data., Vol. 16, No. 6, Article 124. Publication date: May 2022.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Poset families and patterns
	3.2 Rademacher Averages

	4 MCRapper
	4.1 Discrepancy bounds
	4.2 Algorithms
	4.3 Improved bounds for n=1

	5 Applications
	6 Experiments
	6.1 Bounds on the SD
	6.2 Mining True Frequent Patterns
	6.3 Running time

	7 Conclusion
	Acknowledgments
	References
	A Appendix: Reproducibility
	B Additional Results

