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ABSTRACT

The extraction of patterns displaying significant association with
a class label is a key data mining task with wide application in
many domains. We study a variant of the problem that requires
to mine the top-k statistically significant patterns, thus providing
tight control on the number of patterns reported in output. We
develop TopKWY, the first algorithm to mine the top-k significant
patterns while rigorously controlling the family-wise error rate
of the output and provide theoretical evidence of its effectiveness.
TopKWY crucially relies on a novel strategy to explore statistically
significant patterns and on several key implementation choices,
which may be of independent interest. Our extensive experimental
evaluation shows that TopKWY enables the extraction of the most
significant patterns from large datasets which could not be analyzed
by the state-of-the-art. In addition, TopKWY improves over the
state-of-the-art even for the extraction of all significant patterns.
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1 INTRODUCTION

Frequent patterns mining is one of the fundamental primitives in
data mining, with applications in a large number of domains, rang-
ing from market basket analysis to biology and medicine [9]. In its
original definition [1] it requires to identify patterns that appear in
a fraction at least σ of all the transactions of a transactional dataset.
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Significant pattern mining [6] is an extension of the problem in
which each transaction is assigned a binary class label and the goal
is to identify patterns having significant association with one of the
class labels. Significance is commonly assessed using a statistical
test (e.g., Fisher exact test [7]), that provides a p-value quantifying
the probability that the association observed in real data arises due
to chance alone.

Significant patternmining is crucial inmany applications, provid-
ing additional information w.r.t. mining patterns that are frequent
in the entire dataset: in market basket analysis it serves to identify
itemsets that are purchased more frequently by one group of cus-
tomers than by another one (e.g., married people vs. singles); in
social networks, it finds features characterizing users interested in
one specific topic; in biology, it identifies sets of genetic variants
appearing more frequently in cancer vs normal tissues or in one
cancer type vs another one. In all applications, identifying highly
reliable associations is of the utmost importance.

One of the critical issues in significant pattern mining is the
multiple hypothesis problem, due to the huge number of patterns
appearing in large datasets. When testing only one pattern, if its
p-value is below a fixed threshold α , one can flag the pattern as
significant with the guarantee that the probability of false discovery
(e.g., flagging the pattern as significant when it is not) is bounded by
α . However, for a fixed significance threshold α , whenm patterns
are tested we expect αm of them to havep-value below α even when
they are not associated with the class labels. A standard method to
correct for multiple hypothesis testing, called Bonferroni method [5],
is to adjust the significance threshold by dividing α by the number
m of tested patterns. This guarantees that the probability of making
one or more false discoveries, called family-wise error rate (FWER),
is bounded by α . However, since the numberm of patterns can be
huge, this approach results in limited statistical power, with very
few patterns having p-value passing such small threshold [26–28].
A naïve solution for the problem is to limit the number of elements
in the patterns to be tested, hindering the ability to identify large
significant patterns.

A breakthrough in significant pattern mining is the work by
Terada et al. [22], that proposes LAMP, the first method to identify
significant patterns without limiting their size. LAMP is based on
the work by Tarone [20], which shows that patterns that cannot
reach statistical significance, called untestable, do not need to be
taken into account while correcting for multiple hypothesis testing.
Subsequent work by Minato et al. [15] has improved the search
strategy employed by LAMP to identify testable patterns. Even so,
such methods suffer from limited power, due to the use of Bonfer-
roni correction over the large number of testable patterns.
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Recently, methods based on the more powerful Westfall-Young
permutation procedure [29] have been proposed, first by Terada et
al. [24] with FastWY and then by Llinares-López et al. [14] with
Westfall-Young light (WYlight for short). These methods mine sev-
eral permuted datasets to identify a threshold such that all patterns
with p-value below the threshold can be flagged as statistically
significant while controlling the FWER. Such methods achieve a
higher power than methods based on Bonferroni correction, includ-
ing LAMP, and the state-of-the-art, WYlight, has proved to be more
efficient than LAMP also in terms of runtime and memory.

However, the extraction of significant patterns from large datasets
is still challenging, with three crucial issues that are not addressed
by currently available methods. First, in several cases the depen-
dency among patterns leads to a huge number of statistically signif-
icant patterns even after multiple hypothesis correction. A common
approach (used, e.g., in [14, 24]) to partially alleviate this problem
is to consider only closed patterns [9], discarding patterns with re-
dundant information content in terms of appearance in the dataset
and of association with the class label. Even with this restriction the
number of significant patterns can be extremely large and when this
happens one would like to focus on the most significant ones, with-
out resorting to filtering strategies after the expensive extraction of
all significant patterns has been performed. A second and related
issue is that current methods work by first identifying the exact cor-
rected threshold for statistical significance, and only subsequently
mining the real dataset: when the number of significant patterns is
huge, one would like to focus on the most significant ones without
the burden of computing the exact significance threshold. Third, all
methods may need to process several untestable patterns to identify
the correct threshold for significance, resulting in a extremely large
running time in particular for datasets with many low frequency
patterns. These issues make current methods impractical in many
cases, as shown by our experimental evaluation.

1.1 Our Contribution

In this work we focus on the problem of mining the most statisti-
cally significant patterns while rigorously controlling the FWER
of the returned set of patterns. In particular, in analogy with fre-
quent pattern mining approaches, we focus on extracting the top-k
statistically significant patterns. This problem is more challenging
than the extraction of top-k frequent patterns, given that statistical
significance does not enjoy the anti-monotonicity property w.r.t. to
pattern frequency. In this regards, our contributions are:

• we formally define the problem of mining Top-k Statistically

Significant Patterns. Our definition allows to properly control
the size of the output set while providing guarantees on the
FWER of the output.
• we design a novel algorithm, called TopKWY for the problem
above, which provides guarantees on the FWER by using the
Westfall-Young permutation test procedure. The use of the
Westfall-Young permutation test allows TopKWY to have
higher power when the number of significant patterns is
small, while reporting only the most significant patterns
when the number of such patterns is huge. TopKWY is based
on a exploration strategy similar to the one used by Top-
KMiner [19], an efficient algorithm to identify the top-k

frequent patterns. We prove that the use of such strategy
guarantees that, in contrast to previous approaches, Top-
KWY will never explore untestable patterns.
• we introduce several bounds to prune untestable patterns
that improve over the bound introduced by LAMP and used
in WYlight as well. We show that such bounds can be ef-
fectively used within the exploration strategy employed by
TopKWY and that it provides a significant speed-up for real
datasets.
• we conduct an extensive experimental evaluation of the use
of TopKWY to extract significant itemsets, showing that
TopKWY allows the extraction of statistically significant pat-
terns for large datasets while having reasonable memory
requirements. Surprisingly, for many datasets TopKWY im-
proves over the state-of-the-art even when it is used to find
all statistically significant patterns.

1.2 Additional Related Work

Since the introduction of the frequent pattern mining problem [1],
a number of methods have been developed to efficiently extract
all frequent patterns (see [9] for several references). Given that
the number of such patterns can be extremely large and that iden-
tifying an appropriate frequency threshold to limit the number
of frequent patterns is challenging, methods to identify restricted
classes of patterns, e.g., closed patterns [18] or maximal patterns [3],
have been designed. Methods that directly limit the number of pat-
terns by reporting the k most frequent closed patterns have been
designed [11, 19] as well.

Many methods have been developed for subgroups discovery (see,
e.g., the reviews by Herrera et al. [12] and by Atzmueller [2]), that
is the task of mining patterns associated with class labels using a
quality score to quantify the association between a pattern and class
labels, but do not assess the statistical significance of the association
or do not correct for multiple hypothesis testing.

In addition to the contributions for significant pattern mining
mentioned above [14, 15, 21, 22, 24] (described more in depth in
Section 2), recent work has extended the extraction of statistically
sound patterns [8] in directions that are orthogonal to our con-
tributions. [13] has developed an efficient technique for multiple
testing correction in the mining of statistical emerging patterns.
[17, 23] have introduced methods to find significant patterns in the
presence of covariates.

2 BACKGROUND AND PROBLEM

DEFINITION

2.1 Significant Pattern Mining

Let the dataset D = {t1,t2,t3,...,tn } be a set of n transactions defined
on a universe I of f features. Each transaction is associated to a
binary label ci ∈ {0, 1}. We denote byn1 the number of transactions
with label 1, and, without loss of generality, we assume that n1 is
the minority class, i.e. n1 ≤ n/2. We define a pattern S as a set of
features S = {ℓ1, ℓ2, ..., ℓk }, and for each transaction t we define
the binary variable G(S, t) such that G(S, t) = 1 if S is contained
in transaction t and G(S, t) = 0 otherwise. Given a pattern S , we
define its support xS as the number of transactions containing S ,
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Variables G(S, t) = 1 G(S, t) = 0 Row totals
c = 1 aS n1 − aS n1
c = 0 xS − aS n − n1 + aS − xS n − n1

Col totals xS n − xS n

Figure 1: 2 × 2 contingency table.

that is xS =
∑n
i=1G(S, ti ). We denote by aS the number of class 1

transactions containing S .
The objective of significant pattern mining is to find patterns

with significant statistical association to one of the two classes. In
order to quantify the statistical association, a rigorous statistical
test is performed. Such test assesses the association between the
observations G(S, t1), . . . ,G(S, tn ) of variableG(S, t) (describing the
presence of S in the transactions of dataset D) and the observed
class labels ci of the transactions, representing observations of the
variable c ∈ {0, 1} defining the label of a transaction. Since the
variables are binary, for a given pattern S the 2 × 2 contingency
table represented in Figure 1 is considered and the popular Fisher
exact test [7] is often employed. Such test considers the marginals

(xS ,n1,n) of the contingency table for pattern S to be fixed; under
the null hypothesis of independence between variables G(S, t) and
c , the number aS of class 1 transactions containing S follows a
hypergeometric distribution:

Pr(aS = a |xS ,n1,n) = Pr(a |xS ,n1,n) =
(
n1
a

) (
n − n1
xS − a

)/ (
n

xS

)
.

Using such distribution, the probability, called p-value, of observing
an association that is equally ormore extreme than the one observed
in the data under the null hypothesis can be computed. Smaller
p-values indicate more probable associations. The p-value pS for
the pattern S is computed by summing all the probabilities to obtain,
under the null hypothesis, contingency tables which are at least as
extreme as the one observed in D:

pS = pS (aS ) =
∑

k :Pr(k |xS ,n1,n)≤Pr (aS |xS ,n1,n)

Pr(k |xS ,n1,n) . (1)

2.2 Multiple Hypothesis Testing

When only one pattern S is tested, it can be flagged as significant
when its p-value is smaller than a significance threshold α fixed
a priori. This guarantees that the probability of a false discovery
(i.e., reporting S as significant when it is not) is bounded by α .
However, if such approach is used when testing d hypotheses, the
expected number of false positives is αd ; when d is high, which
is typically the case of significant pattern mining, this results in a
large number of false positives. Therefore, an appropriate multiple

hypothesis testing correction of the significance threshold needs to
be performed in order to obtain rigorous guarantees in terms of the
number of false associations reported in output.

One common approach is to perform a correction in order to
bound the Family-Wise Error Rate (FWER), which is defined as
the probability of reporting at least one false positive. Let FP be
the number of false positives, then: FWER= Pr(FP > 0). For a
given value δ , define FWER(δ ) as the FWER obtained using δ as
corrected significance threshold, that is by rejecting (i.e., flagging
as significant) all null hypotheses (i.e., patterns) with p-value ≤ δ .

Commonly, it is not possible to evaluate FWER(δ ) in closed form.
One approach to set δ is to use the Bonferroni correction, setting
δ to α/d . Using the union bound, one can easily show that the
resulting FWER(δ ) ≤ dδ = α . The problem with this approach is
that when d is high, δ is very close to 0, resulting in low statistical

power with many false negatives.
To increase the statistical power, more sophisticated techniques

have been be devised. In particular, one can look for an optimal

corrected significance threshold δ∗, which maximizes the statistical
power while keeping the FWER bounded by α :

δ∗ = max{δ : FWER(δ ) ≤ α } .

In this regard, a key result from Tarone [20] is the introduction
of minimum attainable p-value: if we use a corrected significance
threshold δ , patterns whosep-value cannot be ≤ δ , called untestable,
do not need to be explored and considered in themultiple-hypothesis
correction. Therefore, if we define k(δ ) as the number of patterns
having minimum attainable p-value ≤ δ , then the adjusted Bon-
ferroni correction when threshold δ is used can be written as
δ = α/k(δ ).

LAMP [22] introduced such concepts into the mining of signifi-
cant patterns: for a given pattern S , its p-value pS can be expressed
as a function of aS only. Since the set of allowable values of aS
is finite, i.e. aS ∈ [aS,min ,aS,max ], there exist a minimum attain-
able p-value ψ (xS ), which depends on xS , n1, and n, and which
corresponds to the most biased case for equation 1:

ψ (xS ) = min{pS (u) | aS,min ≤ u ≤ aS,max } .

Given a pattern S , its support xS , and a corrected significance
threshold δ , ifψ (xS ) > δ the pattern S will never be significant and
is therefore untestable. To useψ (xS ) in significant pattern mining,
Terada et al. [22] introduced in LAMP a monotonically decreasing
lower bound ψ̂ (xS ) onψ (xS ):

ψ̂ (xS ) =

{
ψ (xS ) 0 ≤ xS ≤ n1
1/

( n
n1

)
n1 < xS ≤ n .

Terada et al. showed that identifying a suitable significance
threshold δ∗ translates into finding the maximum support threshold
σmax satisfying:

ψ̂ (σmax − 1) >
α

k(σmax)
and

ψ̂ (σmax) ≤
α

k(σmax + 1)
.

2.3 Westfall-Young Permutation Testing

LAMP significantly increases the statistical power of the over-
conservative standard Bonferroni correction. However, it implicitly
assumes that hypotheses are independent, that can result in a loss
of power when there is dependence between the hypotheses, as
in pattern mining. The Westfall-Young (WY) permutation testing
method [29] is a multiple hypothesis testing procedure capable of
addressing this issue. This method performs random permutations

of the class labels, creating new datasets for which no pattern S is
truly associated with the permuted class labels. Since every pattern
flagged as significant in the permuted datasets is a false positive,
the null hypotheses joint distribution can be directly estimated,
resulting in improved statistical power with respect to LAMP.
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In detail, the WY method starts by creating jp permuted datasets,
with jp sufficiently large (typically in the order of 103 or 104). Then
for every permuted dataset j it computes the minimum p-value p(j)min
over all patterns (hypotheses). Then one can estimate FWER(δ ) as:

FWER(δ ) =
1
jp

jp∑
j=1

1[p
(j)
min ≤ δ ]

where 1(·) the indicator function (equal to 1 if its argument is true
and 0 otherwise). Given a user provided threshold α for the FWER,
the best corrected significance threshold δ∗ can then be obtained
as δ∗ = maxδ {FWER(δ ) ≤ α } with FWER(δ ) estimated as above.

The WY procedure does not provide an efficient way of com-
puting the set {p(j)min}

jp
j=1 of minimum p-values. Therefore, a naïve

implementation requires to exhaustively test all the hypothesis. For
significant pattern mining, this means exploring all the patterns
appearing in a dataset. Since this operation can require exponential
time, it is even more challenging to repeat the entire process jp
times, once for every permuted dataset. Terada et al. [24] proposed
the first efficient implementation, FastWY, of the WY procedure
for significant pattern mining. The identification of δ∗ is based on a
decremental search scheme, which starts with support σ = n and it-
eratively decrements it until an appropriate condition, guaranteeing
that all values {p(j)min}

jp
j=1 have been computed, is achieved. A more

recent method by Terada et al. [21], HWY, exploits a more efficient
mining strategy and parallel computing to accelerate FastWY.

Llinares-López et al. [14] proposed WYlight to efficiently com-
pute the optimal value δ∗ of the corrected significance threshold.
The main improvement of WYlight is to avoid the exact compu-
tation of all the {p(j)min}

jp
j=1 and to only produce its exact lower

α-quantile. This result is obtained by maintaining an estimate of
the α-quantile that is only lowered through the mining process.
WYlight performs a depth-first exploration of the patterns’ search
tree [10] in which each pattern has support less or equal than its
parent, and performs only one pattern mining instance, testing
one pattern at a time and computing its p-value on all the jp per-
muted datasets at the same time. At the same time, it maintains
a threshold σ , initialized at 1, that is raised during the execution
of the algorithm pruning patterns whose p-values cannot be in
the lower α-quantile of {p(j)min}

jp
j=1. This is achieved by using the

lower bound ψ̂ (σ ) on the minimum obtainable p-value for patterns
of support ≤ σ , which allows to effectively prune the search tree.
However, during the computation of δ∗, some patterns with sup-
port < ψ−1(δ∗) may be processed, due to the depth-first procedure
considered by WYlight. After computing δ∗, an additional mining
of D is performed (with minimum support thresholdψ−1(δ∗)) to
extract the significant patterns with p-value ≤ δ∗. As shown in [14],
WYlight significantly improves over FastWY in particular in terms
of memory requirements, allowing the extraction of significant
patterns from datasets larger than the ones that can be analyzed by
FastWY.

2.4 Problem Definition

For a dataset D, let δ (α) = maxδ {FWER(δ ) ≤ α } the threshold
obtained through the WY permutation procedure for FWER bound

α . Let p(k ) be the p-value of the k-th pattern with patterns sorted by
(increasing) p-value. Given a dataset D and user-provided values k
andα , our goal is to extract the setTSP(D,k,α) of top-k statistically
significant patterns with FWER ≤ α , defined as:

TSP(D,k,α) =
{
S : pS ≤ min{δ (α),p(k )}

}
.

Note that when less than k patterns have p-value below δ (α),
TSP(D,k,α) contains all such patterns. In addition, according to
our definition more than k patterns may be inTSP(D,k,α), in case
many have the same p-value p(k). In particular, for any two patterns
S, S ′ with S ′ ⊂ S and xS ′ = xS ,aS ′ = aS we have that pS = pS ′ .
For this reason we restrict our interest only to closed patterns, i.e.
patterns whose supersets have support strictly lower than the pat-
tern itself. Since the definition of closed pattern does not depend
on the class labels, restricting to closed patterns does not bias any
analysis.

The following result establishes the required guarantees on false
positives in TSP(D,k,α) and it is a direct consequence of the fact
that TSP(D,k,α) is a subset of all the patterns that would be re-
ported using the WY method.

Lemma 2.1. The set TSP(D,k,α) has FWER ≤ α .

3 TOPKWY ALGORITHM

In this section we present our algorithm TopKWY for mining the
set TSP(D,k,α). We first present its main strategy (Section 3.1)
that can be applied to any pattern mining problem. We then an-
alyze TopKWY showing theoretical evidence of the efficiency of
its strategy (Section 3.2) and introduce improved bounds on the
minimum attainable p-value used by TopKWY (Section 3.3). Finally,
we introduce some crucial implementation details (Section 3.4),
focusing on the problem of mining significant itemsets.

3.1 Main Strategy

TopKWY combines two key ideas. First, it maintains an estimate
of δm = min{δ (α),p(k )} that is updated during the exploration
of the patterns and maintains a corresponding minimum support
threshold σ = ψ−1(δm ) that is raised during the exploration of the
patterns. Analogously to the strategy employed byWYlight [14] the
updates of δm and σ depend on α , but in addition TopKWY updates
them also depending on the p-values of members of TSP(D,k,α).
Second, the search tree of all possible patterns is explored in order
of decreasing support, analogously to the strategy used by Top-
KMiner [19] for mining top-k frequent patterns, which guarantees
that only patterns of support greater or equal to the final value of

σ (i.e.,ψ−1(δm )) are explored.1
TopKWY is described in Algorithm 1. In line 1, the threshold

δm is initialized to α (the threshold with no correction for multiple
hypothesis) and σ is initialized accordingly to ψ̂−1(δm ). All the ele-
ments of the set of minimum p-values {p(j)min}

jp
j=1 observed on the

permuted datasets are initialized to 1 (their maximum achievable
value) in line 2. The labels of the permuted datasets are generated
in line 3. The pattern exploration is organized using a priority

1This assumes that the search tree for patterns has the property that the children of
a node have support not greater than the node itself, which is a usual property of
pattern mining algorithms [9, 16, 25] and is required by WYlight as well.
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queueQ where each entry represents a pattern S , with key equal to
the support xS and value representing all the information needed
by the algorithm regarding S (e.g., aS ) and also with relevant in-
formation regarding the parent fS of pattern S in the search tree
(see Section 3.3). Q is initialized in line 4 and stores the frontier of
unexplored patterns, keeping them accessible by non-increasing
support. TopKWY stores patterns having p-value ≤ δm in a priority
queue P , keeping them accessible by non-decreasing p-value. This
is the set of candidates for TSP(D,k,α), which are collected and
produced in output as soon as possible during the exploration. This
allows to reduce the memory requirements and to start analyzing
the results during the exploration, without the need of waiting for
the algorithm’s termination. The first patterns inQ are obtained by
the expand(S,Q) operation on line 5 called on the empty pattern
S = ∅: this procedure generates all patterns children of the pattern
S in the search tree (and their corresponding projected datasets),
and inserts the ones of support ≥ σ in the queue Q . The details of
an efficient implementation of expand are described in Section 3.4.
The while loop (lines 6-22) implements the main step of the ex-
ploration strategy: the most frequent pattern S , its support xS , its
support aS in the minority class ofD, and the relevant information
for its parent fS are extracted from Q in line 7. If the p-value pS of
S is < δm , then S is inserted in P in line 10. In line 8, σ ′ is set to xS ,
which is the exact upper bound of the support of all elements stored
in Q . This quantity is used to identify patterns surely in the set
TSP(D,k,α) without waiting for the final corrected significance
threshold δm to be found, done in lines 11 and 12. k is updated
accordingly, reducing it to the number of patterns which still need
to be found. In order to compute the corrected significance thresh-
old δm , the algorithm needs to compute the p-value of pattern S

in the jp permuted datasets, updating the values of {p(j)min}
jp
j=1 if

needed. This operation is done with the test procedure. Similarly
to WYlight, our algorithm processes all the jp permutations for
every pattern S at once, computing only the needed exact lower
quantile of the set of minimum p-values of the WY permutations,
and not the minimum p-values of every permuted dataset. Differ-
ently from WYlight, we use an improved lower boundψ ′(xS , fS )
to the minimum attainable p-value of S to decide to test it on the
permuted datasets or not (see Section 3.3). This allows to skip the
expensive computation of the jp supports {a(j)S }

jp
j=1 of S on the

minority class of the permuted datasets for several patterns S .
The significance threshold δm and the corresponding minimum

support threshold σ are increased during the exploration in two
cases: when the estimated FWER(δm ) for the current threshold
δm increases above α (lines 15-16), or when more than k patterns
with p-value ≤ δm are observed (lines 17-19). The correctness of
these steps are proved in Section 3.2. After the update of δm and
σ , elements which have become untestable are removed from Q in
line 20, and elements which are not significant are removed from P
in line 21. The current pattern S is expanded in line 22, and all its
children having support ≥ σ are inserted into Q . The exploration
ends when Q gets empty, or when the maximum support of all its
elements is < σ . When this happens, all elements still contained in
P with p-value at most δm are reported as significant.

We note that the strategy employed by TopKWY can be adapted
to incrementally update k for the same α , providing an interactive

mining process. This can be achieved by considering a maximum
value k∗, provided by the user, in Algorithm 1 to definitely prune
untestable patterns, but freezing the computation after k patterns
with p-value below the current value of σ have been found. If the
user wants to increase k , the exploration can continue without
restarting the entire mining instance.

Algorithm 1: TopKWY
Input: Transaction dataset D with class labels c , number of

permutations jp , target FWER α , number of results k
Output: Set of top-k significant patterns with FWER ≤ α

1 δm ← α ; σ ← ψ̂ −1(δm );
2 p(j )min ← 1, ∀j ∈ [1, jp ];
3 generate jp permuted class labels;
4 Q, P ← empty priority queues;
5 expand(∅ , Q );
6 while (Q , ∅) and (max(xS ∈ Q ) ≥ σ ) do
7 (S, xS , aS , fS ) ← Q .removeMax();
8 σ ′ ← xS ;
9 if pS ≤ ψ̂ (σ ) then
10 P .insert(S, pS );

/* O = patterns surely in TSP (D, k, α ) */

11 O ← {S ′ ∈ P : pS ′ < ψ̂ (σ ′)} |; produce O in output;
12 remove patterns in O from P ; no ← |O |; k ← k − no ;
13 if ψ ′(xS , fS ) ≤ ψ̂ (σ ) then
14 test(S , {p(j )min }

jp
j=1);

/* update δm based on estimate of δ ∗ */

15 δm ← min{δm, max{δ : FW ER(δ ) ≤ α }};
16 σ ← ψ −1(δm );

/* update δm based on top-k patterns in P */

17 p(k ) ← k-th largest p-value in P ;
18 δm ← min{δm, p(k ) };
19 σ ← ψ −1(δm );

/* remove untestable patterns from Q */

20 remove from Q all patterns S ′ with xS ′ < σ ;
/* remove non-significant patterns from P */

21 remove from P all patterns S ′ with pS ′ > δm ;
22 expand(S , Q );

23 produce in output {S ′ ∈ P : pS ′ ≤ δm };

3.2 Analysis

Some important properties of TopKWY algorithm can be formally
stated. The first regards the correctness of the algorithm.

Theorem 3.1. [Correctness of TopKWY] TopKWY outputs the set

TSP(D,k,α) of top-k significant patterns with FWER ≤ α .

Proof. The correctness of TopKWY follows from two obser-
vations: first, the final threshold δm obtained by the algorithm is
correct; second, only patterns with p-value less or equal than the fi-
nal value of δm are produced in output. We start by proving the first
statement. δm is initialized to the value α , that is the uncorrected
threshold for significance and is always ≥ δ∗. δm is decreased (and
the corresponding minimum support threshold σ is increased) dur-
ing the exploration in two cases. The first case (lines 15-16) is when
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the estimated FWER(δm ) for the current threshold δm increases
above α . This means that more than α jp p-values {p(j)min}

jp
j=1 are be-

low the current significance threshold δm = ψ̂ (σ ), which allows for
too many false positives, and the FWER is not correctly controlled
to the level α . δm is then updated to the highest value of δ for which
FWER(δ ) ≤ α . The second case is when more than k patterns with
p-value ≤ δm are observed (lines 17-19). In this case, let p̃ be the
highest p-value of the k most significant patterns observed up to
this point. Then all patterns of support < ψ̂−1(p̃) cannot result in
a p-value < p̃ and therefore we need to consider (both in D and
in the permuted datasets) only patterns of support at least ψ̂−1(p̃).
That is, the minimum support threshold σ can be safely increased
to ψ̂−1(p̃) with a corresponding significance threshold p̃. When δm
is last updated, its value will then be equal to the minimum between
δ (α) and p(k ).

We now prove the second statement. This is trivially correct for
patterns produced in output by line 23. We then consider patterns
produced in output in line 11. Note that the current pattern S has
support σ ′ and the search strategy employed by TopKWY guaran-
tees that all patterns with support > σ ′ have already been explored.
Therefore, from this point on the algorithm will never encounter
p-values < ψ̂ (σ ′) and therefore the corrected significance threshold
δm will be ≥ ψ̂ (σ ′). Thus all patterns in P with p-value < ψ̂ (σ ′)
can be safely produced in output (and removed from P ). □

The following result provides theoretical guarantees on which
patterns will be explored by TopKWY, providing analytical evidence
of the efficiency of our strategy.

Theorem 3.2 (Optimality of TopKWY). TopKWY expands only

patterns of support ≥ ψ̂−1(δm ).

Proof. Similarly to the proof of Thm. 3.1, when pattern S of
support σ ′ is extracted from Q , we are guaranteed that the al-
gorithm will never encounter p-values < ψ̂ (σ ′) again. Therefore
the corrected significance threshold δm will be ≥ ψ̂ (σ ′), that is
σ ′ ≥ ψ̂−1(δm ) (i.e., S is testable). □

3.3 Improved Bound on Minimum Attainable

p-value
TopKWY employs novel and efficiently computable lower bounds
on the minimum p-value achievable by a pattern S . Let the pattern
S be a super pattern of Y , that is S ⊃ Y . Then xY ≥ aY ≥ 0 and
xY ≥ xS . Since the set of transactions (i.e., the conditional dataset)
containing S is a subset of the set of transactions containing Y , we
can bound the support aS of S in the class c1 with the following
relations:

max(aY − (xY − xS ), 0) ≤ aS ≤ min(xS ,aY )

Considering the jp permuted class labels, let a(j)Y be the number
of transactions containingY and in the minority class (i.e., a(j)Y is the
value of aY when the class labels are given by the j-th permutation).
Let

aYmin = min
{
{a
(j)
Y }

jp
j=1

}
and

aYmax = max
{
{a
(j)
Y }

jp
j=1

}
.

Then, ∀j ∈ {1, . . . , jp } we can bound a(j)S as:

aSmin = max(aYmin −(xY −xS ), 0) ≤ a
(j)
S ≤ min(xS ,aYmax ) = aSmax .

This allows to compute a boundψ ′(xS ,xY ,aYmin ,aYmax ) to the min-
imum attainable p-value of S that is tighter thanψ (xS ):

ψ ′(xS ,xY ,aYmin ,aYmax ) = min(pS (aSmin ),pS (aSmax )) .

The following is a simple consequence of the fact that aSmin and
aSmax are always equally or more tight than the naive bounds on
aS assumed byψ (xS ).

Lemma 3.3. ψ ′(xS ,xY ,aYmin ,aYmax ) ≥ ψ (xS ).

If for the current significance threshold δm it holds thatψ ′S > δm ,
then we can infer, without computing {a(j)S }

jp
j=1, that none of the jp

p-values of S in the permuted datasets will improve the estimate of
the current lower-quantile of the set {p(j)min} and therefore cannot
contribute to the computation of δ (α). That is, all the computation
on the permuted datasets can be skipped for the current pattern S .
For all children of S , if S is not tested the bounds aSmin and aSmax can
be propagated to compute bounds also on their class distribution; if
S is tested, then we propagate the actual minimum and maximum
values of {a(j)S }

jp
j=1. In Algorithm 1 we use the bound above with

the values propagated by the parent fS of S and useψ ′(xS , fS ) to
highlight this fact. This optimization is particularly effective when
patterns have an high degree of correlation.

Note that even if S does not need to be tested, descendants of
S may need to be tested. However, using the bound ψ ′(·) we can
quickly identify cases in which none of the descendants of S need
to be explored and therefore the entire subtree can be pruned. In
particular, since all the descendants of S will have support ≤ xS − 1,
considering aS (i.e., the number of transactions containing S and
in the minority class in the dataset D), the algorithm can find
min{ψ ′(i,xS ,aSmin ,aSmax ) : i ∈ [σ ,xs − 1]}, and if such value is
> δm we can prune all the search subtrees rooted in the children of S .
This optimization is part of the expand operation inTopKWY. These
optimization allows to consider the information of one common
ancestor pattern to avoid useless computations for many of its
children: in practice, the number of tests to perform across the
permuted datasets can be significantly smaller than the number of
testable patterns, leading to a significant computational speed-up.

3.4 Implementation Details

An efficient implementation of expand and test procedures is crit-
ical for the efficiency of TopKWY. This crucially depends on the
representation of D and the permuted class labels, and both de-
pend on the type of patterns of interest. We now present some key
implementation details for the case of significant itemsets mining.

Dataset representation. TopKWY uses a PatriciaTrie [30] to store
a compact representation of the dataset D in which transactions
sharing the same prefix are represented by the same node in the
tree. The conditional dataset of (i.e., the set transactions containing)
an itemset Y is stored as a listmY of nodes of the Patricia Trie. An
additional counter is added to every node, representing how many
transactions with prefix represented by the node belong to the class
1. The same is done for the jp permutations adding jp counters to
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each node in the trie. A technique similar to reservoir sampling is
used to generate the jp permuted labels of every transaction. (All
details will be provided in the extended version of the paper.)

P-values representation and look-up. The precise ranking of ob-
served p-values is a fundamental prerequisite when mining the
top-k most significant patterns. Significant pattern mining algo-
rithms (e.g., [14]) typically suffer from underflow imprecision of
very low p-values, inevitably due to the finite representation of float
values. When this happens, patterns are reported as significant with
a p-value equal to 0. This imprecision does not allow the ranking
of those p-values, nor the restriction to the top-k most significant
patterns. Therefore, TopKWY relies on log-p-values: this represen-
tation do not suffer from the same underflow problem. A drawback
of this design choice is a slightly increase in computation time of
p-values, since the sum of the hypergeometric tails involves the
sum of log-probabilities. To reduce this issue, TopKWY (similarly
to [21]) stores computed p-values in a lookup table of fixed size, so
that the time required to compute p-values is significantly reduced
with a minimum memory overhead.

4 EXPERIMENTAL EVALUATION

We implemented and tested TopKWY for the extraction of signifi-
cant itemsets. Our experimental evaluation has three goals. First,
to assess the number of significant patterns found in real datasets.
Second, to evaluate the performance of TopKWY: since no other
tool for the extraction of top-k significant patterns exists, we com-
pare TopKWY with the state-of-the-art tool for significant pattern
mining, WYlight [14]. We do not compare with LAMP [22] or de-
rived strategies [15] since [14] shows that WY permutation testing
results in higher power. Third, to assess the impact of our improved
bounds and implementation choices on performances.

In Section 4.1 we describe the implementation and computational
environment for our experiments. In Section 4.2 we describe the
datasets we used. In Section 4.3 we describe the experiments we
have performed and our choice of parameters. Finally, in Section 4.4
we report and discuss the results of our experiments.

4.1 Implementation and Environment

We implementedTopKWY in C/C++. TheTopKMiner algorithm [19]
is used to process closed itemsets in TopKWY. Our code is avail-
able at https://github.com/VandinLab/TopKWY. For WYlight we
used the C/C++ implementation (based on LCM [25]) made avail-
able by the authors at https://github.com/fllinares/wylight. Both
implementations were compiled with the C++ gcc 4.8.4 compiler.
Our experiments have been performed on a 16-core 2.30 GHz In-
tel Xeon CPU machine with 512 GB of RAM, running on Ubuntu
14.04. Scripts to replicate all experiments described in the paper are
available at https://github.com/VandinLab/TopKWY.

4.2 Datasets

Weperformed our experiments using 19 datasets: the 10 largest ones
used in [14] and available at FIMI’042 and UCI3, all the datasets used
in [13], available from the libSVM repository4, and 4 additional ones
2http://fimi.ua.ac.be
3https://archive.ics.uci.edu/ml/index.php
4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

dataset |D | |I | avд n1/n SP (0.05)

svmguide3(L) 1,243 44 21.9 0.23 36,736
chess(U ) 3,196 75 37 0.05 > 107

mushroom(L) 8,124 118 22 0.48 71,945
phishing(L) 11,055 813 43 0.44 > 107

breast cancer(L) 12,773 1,129 6.7 0.09 6
a9a(L) 32,561 247 13.9 0.24 348,611

pumb-star(U ) 49,046 7117 50.5 0.44 > 107

bms-web1(U ) 58,136 60,978 2.51 0.03 704,685
connect(U ) 67,557 129 43 0.49 > 108

bms-web2(U ) 77,158 330,285 4.59 0.04 289,012
retail(U ) 88,162 16,470 10.3 0.47 3,071
ijcnn1(L) 91,701 44 13 0.10 607,373

T10I4D100K(U ) 100,000 870 10.1 0.08 3,819
T40I10D100K(U ) 100,000 942 39.6 0.28 5,986,439

codrna(L) 271,617 16 8 0.33 4,088
accidents(U ) 340,183 467 33.8 0.49 > 107

bms-pos(U ) 515,597 1,656 6.5 0.40 26,366,131
covtype(L) 581,012 64 11.9 0.49 542,365
susy(U ) 5,000,000 190 43 0.48 > 107

Table 1: Datasets statistics. For each dataset the table reports:

the number |D | of transactions; the number |I | of items; the

average transaction length avд; the fraction n1/n of transac-

tions in the minority class; the number SP(0.05) of signifi-
cant patterns for FWER = 0.05.

(a9a, bms-web1, accidents, susy) available from libSVM, FIMI’04,
and SPMF5. The datasets’ statistics are in Table 1. For each dataset,
we also note if it already contained class labels (L) or not (U ). For
unlabeled datasets we simulated a typical analysis requiring to find
itemsets correlated with a given item (feature) in a dataset. For every
unlabeled dataset we selected the single item whose frequency is
closer from below to 0.5, removed the corresponding item from
every transaction, and use its appearance to define the target class
label. The reported ratio n1/n for the minority class of unlabeled
datasets refers to the output of this labeling process. For real-valued
features we obtained two bins by thresholding at the mean value
and using one item for each bin (analogously to [13]).

4.3 Parameters and Experiments

For TopKWY we considered k = 10, 102, 103, 104, 105, 106. For all
the datasets we analyzed, we ran TopKWY, for all such values of k ,
andWYlight. We fixed the number of permutations jp = 104, shown
to be a good choice in [14], and fixed the commonly used value
α = 0.05 as FWER threshold. For the comparison between TopKWY
and WYlight we repeated every experiment 10 times, recording the
running time and peak memory provided by the operating system;
we report the averages over the 10 runs, standard deviations are
negligible and therefore not shown. The measures reported for Top-
KWY include the time and space to retrieve statistically significant
patterns and write them on file, while for WYlight, we only report

5http://www.philippe-fournier-viger.com/spmf
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Figure 2: Running time for TopKWY (with various values of

k) and WYlight. The blue horizontal lines corresponds to 1

month of computation.

Figure 3: Peakmemory for TopKWY (with various values of

k) and WYlight.

the time and space needed to find the optimal significance thresh-
old, which corresponds to the first step of the method, therefore
reporting a lower bound to the runtime required by WYlight. We
stopped the execution of an algorithm if it did not conclude after
(at least) one month of computation; for these cases, the indicated
time and peak memory are lower bounds. For experiments testing
the impact of parameters or implementation choices on TopKWY
we used only one execution.

4.4 Results

Table 1 reports the number of significant patterns for α = 0.05 in
the datasets we considered, obtained by running TopKWY (with
k = +∞) orWYlight. For some datasets we stopped the computation
after 1 month, so only a lower bound is available. In most cases, the
number of significant patterns is extremely large: for 11 out of 19
datasets there are > 5 × 105 significant patterns and in 7 datasets
there are > 107 significant patterns. Therefore a direct way to limit

the number of significant patterns in output, as provided by the
top-k significant patterns, is required.

Figure 2 compares the running time of TopKWY and WYlight.
Note that for the 11 datasets in which the number of significant
patterns is < 106, TopKWY with k = 106 identifies all the signifi-
cant patterns and produces the same patterns found with WYlight.
For 9 datasets TopKWY is faster than WYlight by at least one order
of magnitude, and for 6 datasets WYlight requires > 11 days while
TopKWY identifies up to the 106 most significant patterns within
one day and the 104 most significant ones in few hours. Even for
the datasets where TopKWY identifies all significant patterns, pro-
ducing the same patterns as WYlight, TopKWY is always faster
than WYlight, with up to one order of magnitude speed-up in some
cases. This shows that TopKWY is an effective tool to identify all
significant patterns whenever possible and enables the analysis
of significant patterns when their number is extremely high. For
datasets in which the number of significant patterns is > 106 we
ran TopKWY with k = ∞ to compare its strategy for finding the
corrected significance threshold for all significant patterns with
the one used by WYlight. The runtime of TopKWY is always lower
than the runtime of WYlight by at least 20%, with a significant
speed-up in some case (e.g., for chess, TopKWY terminates in 2
days, while WYlight needs more than 10 days). These results show
that TopKWY outperform the state-of-the-art even for this task.

Figure 3 compares the peak memory required by TopKWY and
WYlight. Given the best first strategy employed by TopKWY, we
expected its memory requirement could be higher than WYlight,
that follows a depth-first strategy. Interestingly, only in three
cases TopKWY required 1 order of magnitude more memory than
WYlight and in both such cases the requirements are reasonable
(≤ 20GBytes) for current machines. However, in such casesWYlight
required > 11 days to complete, while TopKWY terminated in < 1
day, showing that, by using a reasonably larger amount of memory
than WYlight, TopKWY renders the identification of significant
patterns feasible. In all other cases the memory requirement of Top-
KWY is either the same or within few GBs of WYlight. For some
datasets TopKWY requires significantly less memory than WYlight:
surprisingly this happens for datasets (cod-rna, covtypes) on which
TopKWY reports the same significant patterns as WYlight (i.e., all).
In some cases, memory usage decreases slightly when k increases,
due to our dynamical allocation of the p-values lookup table that
may require less space when the minimum support decreases.

We investigated the impact of our implementation choices on
the memory requirement of TopKWY (Figure 4). We compared
the space required to store the permuted labels on all the nodes of
the PatriciaTrie used by TopKWY (see Section 3.4) with the space
required by storing the permuted labels for each transaction (as
done for example by WYlight). Since TopKWY stores, for each
node of the Patricia Trie, a list of jp values (i.e., the number of
transactions with minority label among the ones sharing the prefix
corresponding to the node), one transaction may have more than
jp values associated to its nodes. In most cases the space required
by the two methods is essentially the same, but in three cases the
use of the Patricia Trie corresponds to a significant reduction in
the memory used. In particular, these three cases are for datasets
in which TopKWY identifies all the significant patterns using less
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Figure 4: Memory requirement for permuted class labels us-

ing PatriciaTrie and permutation matrix.

Figure 5: Comparison between the number of tested pat-

terns on the permuted datasets by TopKWY and WYlight.

memory thanWYlight, providing strong evidence of the importance
of our encoding of the permuted class labels.

We compared the exploration strategies used by TopKWY and
byWYlight by recording the number of patterns they test (Figure 5),
restricting to datasets in which WYlight terminates. In all cases,
TopKWY tests a lower number of patterns than WYlight, with
differences of almost two orders of magnitude for some datasets.
This shows the effectiveness of our exploration strategy and of our
novel boundsψ ′(·) (see Section 3.3) on reducing the number of tests
to perform.

We then directly investigated the impact of our novel bounds
on the runtime of TopKWY. We compared the running time of
WYlight with the running time of two variants of TopKWY: one
using our improved bound ψ ′(·) and one using the LAMP bound
ψ̂ (·) (i.e., the same bound used by WYlight). The results for some
representative datasets are in Figure 6(a). The results for the other
datasets are similar. We observed that, for all datasets other than
chess, the exploration strategy employed by TopKWY to extract

(a) (b)

Figure 6: (a) Comparison between the running time of

WYlight and the running time of TopKWY using our im-

proved bound ψ ′(·) and the LAMP bound ψ̂ (·). (b) Running
time for different values of α and jp .

only the top-k significant patterns already provides a substantial (up
to more than one order of magnitude) improvement in the running
time of TopKWY with respect to WYlight, even using the same
LAMP bounds. When our novel bound ψ ′(·) is used in TopKWY
we observe additional speed-ups, for a total up to more than two
orders of magnitude. Therefore, the reduction in the number of
patterns that need to be tested on the permuted datasets, obtained
by the exploration strategy of TopKWY and our improved bound,
is a crucial component for the performance of TopKWY.

Finally, we assessed the impact of α and jp on the running time
of TopKWY and WYlight on two representative datasets, cod-rna
and accidents, which are representative for the two scenarios of
a small number of significant patterns (cod-rna) and of a large
number of significant patterns (accidents). In these experiments we
fixed k = 104. Figure 6(b) reports the results for cod-rna. Results
for accidents are not reported since the running time of accidents
remained essentially the same for all values of α and jp . This means
that for accidents using the bounds introduced in Section 3.3 the
computational effort is dominated by the pattern space exploration
(and not the evaluation of the permuted datasets): considering only
the top-k significant patterns is therefore crucial to analyze such
dataset. For cod-rna, we observe that varying α has some but small
impact on the runtime of both methods while there is a linear
dependence of the running time of WYlight on jp and a similar but
less pronounced dependence of TopKWY. In all cases, TopKWY
is faster than WYlight (for accidents WYlight does not terminate
within 1 month) showing the efficiency of TopKWY for different
ranges of the α and jp parameters.

5 CONCLUSION

In this work we introduce TopKWY, an efficient algorithm to iden-
tify the top-k significant patterns with rigorous guarantees on the
FWER and provide theoretical evidence of its effectiveness. Our
extensive experimental evaluation shows that TopKWY enables the
identification of significant patterns on large datasets and that it
significantly improves over the state-of-the-art.

Our notion of top-k significant patterns and our algorithm Top-
KWY could be relevant to other mining problems, for example
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statistical emerging pattern mining [13], while providing a bound
on the FWER.

While we focus on bounding the FWER, a different approach
would be to bound the false discovery rate (FDR) [4], that is the
expected ratio of false discoveries among all reported patterns. This
is an interesting direction for future research in which the top-k
approach we propose is crucial, since more patterns can be reported
with FDR ≤ α than with FWER ≤ α and our experiments show
that in many cases a large number of patterns is reported with
FWER ≤ α . In addition, fully processing extremely large datasets
may not be feasible: the combination of the techniques we develop
in this work with sampling is a promising direction that we will
investigate in future work.
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