

Tutorial

Integer Programming for Constraint Programmers

Ambros Gleixner and Stefan Heinz
Zuse Institute Berlin (ZIB)

Chris Beck, Timo Berthold, and Kati Wolter

DFG Research Center Matheon
Mathematics for key technologies

ZIB - Zuse Institute Berlin

\triangleright Non-university research institute of the state of Berlin (Germany)
\triangleright Research Units:

- Numerical Mathematics
- Numerical analysis and modeling
- Visualization and data analysis
- Discrete Mathematics
- Optimization
- Scientific Information
- Computer Science
- Parallel and Distributed Systems
- Supercomputing

CPAIOR 2011

CPAIOR 2012

Integer Programming for Constraint Programmers

(1) Introduction
(2) Linear programming
(3) Integer (linear) programming

4 Summary
(5) Discussion

Problem description

Definition

The steel mill slab problem consists of assigning colored, sized orders to slabs of certain different capacities such that the total loss is minimized and at most two different colors are present in each slab.

Orders

Problem description

Definition

The steel mill slab problem consists of assigning colored, sized orders to slabs of certain different capacities such that the total loss is minimized and at most two different colors are present in each slab.

Problem description

Definition

The steel mill slab problem consists of assigning colored, sized orders to slabs of certain different capacities such that the total loss is minimized and at most two different colors are present in each slab.

Orders

Slabs

Assignment
\triangleright Problem number 38 of the CSPLib (http://www.csplib.org/)

(A) Constraint programming formulation

Given

$\triangleright \mathcal{K}$ set of possible capacities for the slabs
$\triangleright \mathcal{C}$ set of colors
$\triangleright \mathcal{O}$ set of orders, $|\mathcal{O}|=n$

- s_{i} size of order i
- c_{i} color of order i

Binary variables

$\triangleright y_{i j}=1$ if order i is assigned to slab j
$\triangleright z_{c j}=1$ if color c is used in slab j
Observation
\triangleright We need at most n slabs
\triangleright Let \mathcal{S} be the set of slabs

Leftover array

\triangleright Array storing the leftover depending on the load

$$
\mathcal{L}[i]=\operatorname{argmin}\{k-i \mid k \in \mathcal{K} \text { and } k \geq i\}
$$

for $i=0, \ldots, \mathcal{K}_{\text {max }}$
$\triangleright \mathcal{K}_{\text {max }}:=\max \{k \mid k \in \mathcal{K}\}$

Leftover array

\triangleright Array storing the leftover depending on the load

$$
\mathcal{L}[i]=\operatorname{argmin}\{k-i \mid k \in \mathcal{K} \text { and } k \geq i\}
$$

for $i=0, \ldots, \mathcal{K}_{\text {max }}$
$\triangleright \mathcal{K}_{\text {max }}:=\max \{k \mid k \in \mathcal{K}\}$

Example

Leftover array

\triangleright Array storing the leftover depending on the load

$$
\mathcal{L}[i]=\operatorname{argmin}\{k-i \mid k \in \mathcal{K} \text { and } k \geq i\}
$$

for $i=0, \ldots, \mathcal{K}_{\text {max }}$
$\triangleright \mathcal{K}_{\text {max }}:=\max \{k \mid k \in \mathcal{K}\}$

Example

Leftover array

\triangleright Array storing the leftover depending on the load

$$
\mathcal{L}[i]=\operatorname{argmin}\{k-i \mid k \in \mathcal{K} \text { and } k \geq i\}
$$

for $i=0, \ldots, \mathcal{K}_{\text {max }}$
$\triangleright \mathcal{K}_{\text {max }}:=\max \{k \mid k \in \mathcal{K}\}$

Example

Leftover array

\triangleright Array storing the leftover depending on the load

$$
\mathcal{L}[i]=\operatorname{argmin}\{k-i \mid k \in \mathcal{K} \text { and } k \geq i\}
$$

for $i=0, \ldots, \mathcal{K}_{\text {max }}$
$\triangleright \mathcal{K}_{\text {max }}:=\max \{k \mid k \in \mathcal{K}\}$

Example

Leftover array

\triangleright Array storing the leftover depending on the load

$$
\mathcal{L}[i]=\operatorname{argmin}\{k-i \mid k \in \mathcal{K} \text { and } k \geq i\}
$$

for $i=0, \ldots, \mathcal{K}_{\text {max }}$
$\triangleright \mathcal{K}_{\text {max }}:=\max \{k \mid k \in \mathcal{K}\}$

Example

Leftover array

\triangleright Array storing the leftover depending on the load

$$
\mathcal{L}[i]=\operatorname{argmin}\{k-i \mid k \in \mathcal{K} \text { and } k \geq i\}
$$

for $i=0, \ldots, \mathcal{K}_{\text {max }}$
$\triangleright \mathcal{K}_{\text {max }}:=\max \{k \mid k \in \mathcal{K}\}$

Example

(A) Constraint programming formulation

$$
\begin{array}{rll}
\min & \sum_{j \in \mathcal{S}} \mathcal{L}\left[\sum_{i \in \mathcal{O}} s_{i} y_{i j}\right] & \\
\text { subject to } & \sum_{j \in \mathcal{S}} y_{i j}=1 & \forall i \in \mathcal{O} \\
& \sum_{i \in \mathcal{O}} s_{i} y_{i j} \leq \mathcal{K}_{\max } & \forall j \in \mathcal{S} \\
& y_{i j} \leq z_{c i j} & \forall i \in \mathcal{O} \forall j \in \mathcal{S} \\
& \sum_{c \in \mathcal{C}} z_{c j} \leq 2 & \forall j \in \mathcal{S} \\
& y_{i j}, z_{c j} \in\{0,1\} & \forall i \in \mathcal{O} \forall c \in \mathcal{C} \forall j \in \mathcal{S}
\end{array}
$$

(A) Constraint programming formulation

\min	$\sum_{j \in \mathcal{S}} \mathcal{L}\left[\sum_{i \in \mathcal{O}} s_{i} y_{i j}\right]$	
subject to	$\sum_{j \in \mathcal{S}} y_{i j}=1$	$\forall i \in \mathcal{O} \quad$ Assignment
	$\sum_{i \in \mathcal{O}} s_{i} y_{i j} \leq \mathcal{K}_{\max }$	$\forall j \in \mathcal{S}$
	$y_{i j} \leq z_{c_{j, j}}$	$\forall i \in \mathcal{O} \quad \forall j \in \mathcal{S}$
	$\sum_{c \in \mathcal{C}} z_{c j} \leq 2$	$\forall j \in \mathcal{S}$
$y_{i j}, z_{c j} \in\{0,1\}$	$\forall i \in \mathcal{O} \quad \forall c \in \mathcal{C} \quad \forall j \in \mathcal{S}$	

(A) Constraint programming formulation

$$
\begin{array}{rll}
\min & \sum_{j \in \mathcal{S}} \mathcal{L}\left[\sum_{i \in \mathcal{O}} s_{i} y_{i j}\right] & \\
\text { subject to } & \sum_{j \in \mathcal{S}} y_{i j}=1 & \forall i \in \mathcal{O} \\
& \sum_{i \in \mathcal{O}} s_{i} y_{i j} \leq \mathcal{K}_{\max } & \forall j \in \mathcal{S} \quad \text { Capas } \\
& y_{i j} \leq z_{c_{i j}} & \forall i \in \mathcal{O} \forall j \in \mathcal{S} \\
& \sum_{c \in \mathcal{C}} z_{c j} \leq 2 & \forall j \in \mathcal{S} \\
& y_{i j}, z_{c j} \in\{0,1\} & \forall i \in \mathcal{O} \forall c \in \mathcal{C} \forall j \in \mathcal{S}
\end{array}
$$

(A) Constraint programming formulation

$$
\begin{array}{rll}
\min & \sum_{j \in \mathcal{S}} \mathcal{L}\left[\sum_{i \in \mathcal{O}} s_{i} y_{i j}\right] & \\
\text { subject to } & \sum_{j \in \mathcal{S}} y_{i j}=1 & \\
& \sum_{i \in \mathcal{O}} s_{i} y_{i j} \leq \mathcal{K}_{\max } & \\
& \forall j \in \mathcal{O} \\
& y_{i j} \leq z_{c_{i j}} & \forall i \in \mathcal{O} \forall j \in \mathcal{S} \quad \text { Coloring } \\
& \sum_{c \in \mathcal{C}} z_{c j} \leq 2 & \forall j \in \mathcal{S} \\
& y_{i j}, z_{c j} \in\{0,1\} & \\
\forall i \in \mathcal{O} \quad \forall c \in \mathcal{C} \quad \forall j \in \mathcal{S}
\end{array}
$$

(A) Constraint programming formulation

$$
\begin{array}{rll}
\min & \sum_{j \in \mathcal{S}} \mathcal{L}\left[\sum_{i \in \mathcal{O}} s_{i} y_{i j}\right] & \\
\hline \text { subject to } & \sum_{j \in \mathcal{S}} y_{i j}=1 & \forall i \in \mathcal{O} \\
& \sum_{i \in \mathcal{O}} s_{i} y_{i j} \leq \mathcal{K}_{\max } & \\
& \forall j \in \mathcal{S} \\
& y_{i j} \leq z_{c_{i j}} & \\
z_{c j} \leq 2 & \forall i \in \mathcal{O} \forall j \in \mathcal{S} \\
& y_{i j}, z_{c j} \in\{0,1\} & \\
\forall j \in \mathcal{S} \\
& \forall i \in \mathcal{O} \forall c \in \mathcal{C} \forall j \in \mathcal{S}
\end{array}
$$

\triangleright ELEMENT constraint

(An) Integer programming formulation

Given

$\triangleright \mathcal{K}$ set of possible capacities for the slabs
$\triangleright \mathcal{C}$ set of colors
$\triangleright \mathcal{O}$ set of orders, $|\mathcal{O}|=n$

- s_{i} size of order i
- c_{i} color of order i

Binary variables

$\triangleright x_{k j}=1$ if capacity k is assigned to slab j
$\triangleright y_{i j}=1$ if order i is assigned to slab j
$\triangleright z_{c j}=1$ if color c is used in slab j
Observation
\triangleright We need at most n slabs
\triangleright Let \mathcal{S} be the set of slabs

(An) Integer programming formulation

\min

$$
\sum_{j \in \mathcal{S}} \sum_{k \in \mathcal{K}} k x_{k j}-\sum_{i \in \mathcal{O}} s_{i}
$$

subject to

$$
\begin{array}{ll}
\sum_{k \in \mathcal{K}} x_{k j}=1 & \forall j \in \mathcal{S} \\
\sum_{j \in \mathcal{S}} y_{i j}=1 & \forall i \in \mathcal{O} \\
\sum_{i \in \mathcal{O}} s_{i} y_{i j} \leq \sum_{k \in \mathcal{K}} k x_{k j} & \forall j \in \mathcal{S} \\
y_{i j} \leq z_{c_{i j}} & \forall i \in \mathcal{O} \forall j \in \mathcal{S} \\
\sum_{c \in \mathcal{C}} z_{c j} \leq 2 & \forall j \in \mathcal{S} \\
x_{k j}, y_{i j}, z_{c j} \in\{0,1\} & \forall k \in \mathcal{K} \forall i \in \mathcal{O} \forall c \in \mathcal{C} \forall j \in \mathcal{S}
\end{array}
$$

(An) Integer programming formulation

$\min \sum_{j \in \mathcal{S}} \sum_{k \in \mathcal{K}} k x_{k j}-\sum_{i \in \mathcal{O}} s_{i}$

$$
\begin{array}{ll}
\text { subject to } & \sum_{k \in \mathcal{K}} x_{k j}=1
\end{array} \quad \forall j \in \mathcal{S} \quad \text { Assignment }
$$

$$
\sum_{i \in \mathcal{O}} s_{i} y_{i j} \leq \sum_{k \in \mathcal{K}} k x_{k j} \quad \forall j \in \mathcal{S}
$$

$$
y_{i j} \leq z_{c_{i} j}
$$

$$
\forall i \in \mathcal{O} \forall j \in \mathcal{S}
$$

$$
\sum_{c \in \mathcal{C}} z_{c j} \leq 2
$$

$$
\forall j \in \mathcal{S}
$$

$$
x_{k j}, y_{i j}, z_{c j} \in\{0,1\} \quad \forall k \in \mathcal{K} \forall i \in \mathcal{O} \forall c \in \mathcal{C} \forall j \in \mathcal{S}
$$

(An) Integer programming formulation

$$
\min \sum_{j \in \mathcal{S}} \sum_{k \in \mathcal{K}} k x_{k j}-\sum_{i \in \mathcal{O}} s_{i}
$$

subject to $\quad \sum_{k \in \mathcal{K}} x_{k j}=1 \quad \forall j \in \mathcal{S}$

$$
\sum y_{i j}=1 \quad \forall i \in \mathcal{O}
$$

$$
\begin{array}{ll}
y_{i j} \leq z_{c_{i} j} & \forall i \in \mathcal{O} \forall j \in \mathcal{S} \\
\sum_{c \in \mathcal{C}} z_{c j} \leq 2 & \forall j \in \mathcal{S} \\
x_{k j}, y_{i j}, z_{c j} \in\{0,1\} & \forall k \in \mathcal{K} \forall i \in \mathcal{O} \forall c \in \mathcal{C} \forall j \in \mathcal{S}
\end{array}
$$

(An) Integer programming formulation

$$
\min \sum_{j \in \mathcal{S}} \sum_{k \in \mathcal{K}} k x_{k j}-\sum_{i \in \mathcal{O}} s_{i}
$$

subject to $\quad \sum_{k \in \mathcal{K}} x_{k j}=1 \quad \forall j \in \mathcal{S}$

$$
\begin{array}{ll}
\sum_{j \in \mathcal{S}} y_{i j}=1 & \forall i \in \mathcal{O} \\
\sum_{i \in \mathcal{O}} s_{i} y_{i j} \leq \sum_{k \in \mathcal{K}} k x_{k j} & \forall j \in \mathcal{S}
\end{array}
$$

$$
y_{i j} \leq z_{c_{i} j} \quad \forall i \in \mathcal{O} \forall j \in \mathcal{S} \quad \text { Coloring }
$$

$$
\sum z_{c j} \leq 2 \quad \forall j \in \mathcal{S}
$$

$$
\overline{c \in \mathcal{C}}
$$

$$
x_{k j}, y_{i j}, z_{c j} \in\{0,1\} \quad \forall k \in \mathcal{K} \forall i \in \mathcal{O} \forall c \in \mathcal{C} \forall j \in \mathcal{S}
$$

(An) Integer programming formulation

$\min \sum_{j \in \mathcal{S}} \sum_{k \in \mathcal{K}} k x_{k j}-\sum_{i \in \mathcal{O}} s_{i}$

Leftover
subject to

$$
\begin{array}{ll}
\sum_{k \in \mathcal{K}} x_{k j}=1 & \forall j \in \mathcal{S} \\
\sum_{j \in \mathcal{S}} y_{i j}=1 & \forall i \in \mathcal{O} \\
\sum_{i \in \mathcal{O}} s_{i} y_{i j} \leq \sum_{k \in \mathcal{K}} k x_{k j} & \forall j \in \mathcal{S} \\
y_{i j} \leq z_{c_{i j}} & \forall i \in \mathcal{O} \forall j \in \mathcal{S} \\
\sum_{c \in \mathcal{C}} z_{c j} \leq 2 & \forall j \in \mathcal{S} \\
x_{k j}, y_{i j}, z_{c j} \in\{0,1\} & \forall k \in \mathcal{K} \forall i \in \mathcal{O} \forall c \in \mathcal{C} \forall j \in \mathcal{S}
\end{array}
$$

```
#######################
    ## data parsing
######################
#umber of capacities
param ncapacity := read DATAFILE as "1n" use 1
do print "ncapacity = ", ncapacity;
# number of colors
#aram ncolors:= read DATAFILE as "1n" skip 1 use 1;
o print "ncolors = ", ncolors:
number of orderns
#am norders := read DATAFILE as "1n" skip 2 use 1;
print norders = ", norders
set tmp:= fread DATAFILE
    et tmp:= {read DATAFILE as "<n+>" use 1};
    et capacities := if card(tmp} = ncapacity then tmp union {0} else tmp union {0} \{ncapacity} end
    do check ncapacity = card(capacities)-1;
    do print capacities:
    index set for orders
    * index set for colors
    set C:= {1..nnolors }:
    IF get orders
    et orders[<i> in 1] := {read DATAFILE as "<ln,2n>* skip 2+i use 1}
    do forall <i> in | do print orders[i]:
    M
    decision variables
#
*)
slab variables which capacities is assigned to which slab
    var x[1 . capacities] binary;
    which order is assigned to which slab
    var y[1 - I] binary
    var z[C: 1];
```



```
    ## objective function
```



```
    minimize leftover
    sum <s,c> in 1 * capacities:c. x[s,c]-sum <0, s> in 1 * 1 : ord(orders (0],1,1) * y[0,5]:
    #########################
##
# constraints
##
each slab gets exactly one capacities
    subto oneCapacity
        forall <s> in 1 sum <c> in capacities: x|s,c| = 1;
    # each order is assigned to exactly one slab
    cubto oneSlab:
    each slab is not over loaded
    ubto Capacity:
        forall <s> in 1 : sum <c> in capacities: c . x[s,c]-sum <o> in |: ord(orders [0) 1, 1) & y (0, s]>= 0
    color linking constraints
    ubto finking.
        orall <0,s> in 1-1:y y 0,s]-z[ord(orders[0],1.2),s]<=0
    # color linking constraints
    subto Color
        forall <s> in 1: sum <c> in C: z[c,s] <= 2;
```


Linear programming relaxation

Integer program
Linear program relaxation

$$
\begin{aligned}
\min \{I P\} & \geq \min \{L P\} \\
\max \{I P\} & \leq \max \{L P\}
\end{aligned}
$$

Linear programming relaxation

\triangleright Omit integrality condition

$$
\begin{array}{rlrl}
\min & \sum_{j \in \mathcal{S}} \sum_{k \in \mathcal{K}} k x_{k j}-\sum_{i \in \mathcal{O}} s_{i} & \\
\text { subject to } & \sum_{k \in \mathcal{K}} x_{k j}=1 & & \forall j \in \mathcal{S} \\
& \sum_{j \in \mathcal{S}} y_{i j}=1 & \forall i \in \mathcal{O} \\
& \sum_{i \in \mathcal{O}} s_{i} y_{i j} \leq \sum_{k \in \mathcal{K}} k x_{k j} & \forall j \in \mathcal{S} \\
& y_{i j} \leq z_{c_{i j}} & & \forall i \in \mathcal{O} \forall j \in \mathcal{S} \\
& \sum_{c \in \mathcal{C}} z_{c j} \leq 2 & \forall j \in \mathcal{S} \\
& x_{k j}, y_{i j}, z_{c j} \in[0,1] & & \forall k \in \mathcal{K} \forall i \in \mathcal{O} \forall c \in \mathcal{C} \forall j \in \mathcal{S}
\end{array}
$$

Root node solution

Root node solution

Capacities

$$
\begin{aligned}
& x_{51}=0.8 \\
& x_{01}=0.2 \\
& x_{52}=0.6 \\
& x_{02}=0.4 \\
& x_{53}=0.4 \\
& x_{03}=0.6 \\
& x_{04}=1.0 \\
& x_{06}=1.0
\end{aligned}
$$

Assignments

$y_{11}=1.0$
$y_{23}=1.0$
$y_{31}=1.0$
$y_{41}=1.0$
$y_{52}=1.0$

Colors

$$
\begin{aligned}
& z_{11}=1.0 \\
& z_{23}=1.0 \\
& z_{31}=1.0 \\
& z_{32}=1.0 \\
& z_{33}=1.0 \\
& z_{34}=1.0 \\
& z_{35}=1.0 \\
& z_{42}=1.0
\end{aligned}
$$

\triangleright Remaining decission variables are zero

Root node solution

Capacities

$$
\begin{aligned}
& x_{51}=0.8 \\
& x_{01}=0.2 \\
& x_{52}=0.6 \\
& x_{02}=0.4
\end{aligned}
$$

$$
x_{53}=0.4
$$

$$
x_{03}=0.6
$$

$x_{03}=0.6$

$$
x_{04}=1.0
$$

$x_{04}=1.0$

$$
x_{06}=1.0
$$

$x_{06}=1.0$

Assignments

$y_{11}=1.0$
$y_{23}=1.0$
$y_{31}=1.0$
$y_{41}=1.0$
$y_{52}=1.0$

Colors

$$
\begin{aligned}
& z_{11}=1.0 \\
& z_{23}=1.0 \\
& z_{31}=1.0 \\
& z_{32}=1.0 \\
& z_{33}=1.0 \\
& z_{34}=1.0 \\
& z_{35}=1.0 \\
& z_{42}=1.0
\end{aligned}
$$

\triangleright Remaining decission variables are zero
\triangleright Observation: Independently of the problem instance the root LP value for this model is always zero.
node \mid left
depth
frac
curdualbound
1 0

0
$6 \mid 0.000000 \mathrm{e}+00$
dualbound
primalbound

Search tree

Search tree

Node 2
Lower bound: 0
${ }^{\times} 52$

Search tree

Node 3
Lower bound: 1
x_{52}, x_{53}

Search tree

Node 4
Lower bound: 0
x_{52}, \bar{x}_{53}

Search tree

Node 5
Lower bound: 1
$x_{52}, \bar{x}_{53}, x_{51}$

node	left	depth	frac	curdualbound	dualbound	primalbound
1	0	0	6	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
1	2	0	6	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
2	3	1	4	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
3	4	2	6	$1.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
4	5	2	2	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
5	2	3	-	$1.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$

Search tree

Search tree

Node 7

Lower bound: 0
$x_{52}, \bar{x}_{53}, \bar{x}_{51}, \bar{x}_{55}$

Search tree

node	left	depth	frac	curdualbound	dualbound	primalbound
1	0	0	6	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
1	2	0	6	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
2	3	1	4	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
3	4	2	6	$1.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
4	5	2	2	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
5	2	3	-	$1.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
6	3	3	2	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
7	4	4	2	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
8	3	5	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$

Node 9

Lower bound: ≥ 1
$x_{52}, \bar{x}_{53}, \bar{x}_{51}, \bar{x}_{55}, x_{54}$

Node 11

Lower bound: 0

Search tree

Search tree

Node 24
Lower bound: ≥ 1
$\bar{x}_{52}, \bar{x}_{51}, \bar{x}_{54}, x_{55}, \bar{x}_{53}$
$22 / 62$

Search tree

Node 28

Lower bound: ≥ 1
$\bar{x}_{52}, x_{51}, x_{53}$

Node 29
Lower bound: ≥ 1
$x_{52}, \bar{x}_{53}, \bar{x}_{51}, x_{55}$

node	left	depth	frac	curdualbound	dualbound	primalbound
1	0	0	6	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
1	2	0	6	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
2	3	1	4	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
3	4	2	6	$1.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
4	5	2	2	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	--
5	2	3	-	$1.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
6	3	3	2	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
7	4	4	2	$0.000000 \mathrm{e}+00$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
8	3	5	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
9	2	5	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
10	3	1	2	$4.440892 \mathrm{e}-16$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
11	4	2	2	$4.440892 \mathrm{e}-16$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
12	5	2	4	$4.440892 \mathrm{e}-16$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
13	6	3	4	$1.776357 \mathrm{e}-15$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
14	7	4	4	$1.776357 \mathrm{e}-15$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
node	left	depth	frac	curduallbound	dualbound	primalbound
15	8	3	4	$1.184238 \mathrm{e}-15$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
16	7	4	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
17	6	5	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
18	7	3	2	$4.440892 \mathrm{e}-16$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
19	8	4	4	$8.881784 \mathrm{e}-16$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
20	7	5	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
21	6	5	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
22	5	4	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
23	6	4	2	$1.184238 \mathrm{e}-15$	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
24	5	5	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
25	4	5	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
26	3	4	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
27	2	5	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$
28	1	3	-	--	$0.000000 \mathrm{e}+00$	$1.000000 \mathrm{e}+00$

Search tree

Statistic without LP
Total nodes: 2154
Max depth: 21

\triangleright A solution of a linear relaxation gives a proven dual bound

- in case of minimization it is a lower bound
- in case of maximization it is a upper bound
\triangleright Linear relaxation is a natural relaxation for an integer program
- omitting integrality conditions
\triangleright Linear relaxation gives a global view w.r.t. all linear constraints
\triangleright Linear relaxation guides the search via fractional variables

Summary

\triangleright A solution of a linear relaxation gives a proven dual bound

- in case of minimization it is a lower bound
- in case of maximization it is a upper bound
\triangleright Linear relaxation is a natural relaxation for an integer program
- omitting integrality conditions
\triangleright Linear relaxation gives a global view w.r.t. all linear constraints
\triangleright Linear relaxation guides the search via fractional variables

Coming up:

\triangleright How can a linear program be solved?
\triangleright How can an integer program be solved?
\triangleright For what is the linear programming relaxation used within an integer programming solver?

Integer Programming for Constraint Programmers

(1) Introduction
(2) Linear programming
(3) Integer (linear) programming

4 Summary
(5) Discussion

General linear programs (LPs)

Continuous variables: $\quad x_{i} \geq 0, l b_{i} \leq x_{i} \leq u b_{i}, x_{i}$ free

Linear constraints:
Linear objective:

$$
a_{1} x_{1}+\ldots+a_{n} x_{n} \lesseqgtr b
$$

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}
$$

$$
(\rightarrow \min / \max)
$$

General linear programs (LPs)

Continuous variables: $\quad x_{i} \geq 0, l b_{i} \leq x_{i} \leq u b_{i}, x_{i}$ free
Linear constraints: $a_{1} x_{1}+\ldots+a_{n} x_{n} \lesseqgtr b$

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}
$$

$$
(\rightarrow \min / \max)
$$

Computational standard form: $\min \left\{c^{\prime} x \mid A x=b, x \geq 0\right\}$

General linear programs (LPs)

Continuous variables: $\quad x_{i} \geq 0, I b_{i} \leq x_{i} \leq u b_{i}, x_{i}$ free
Linear constraints: $a_{1} x_{1}+\ldots+a_{n} x_{n} \lesseqgtr b$

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}
$$

Computational standard form: $\min \left\{c^{\prime} x \mid A x=b, x \geq 0\right\}$
\triangleright feasible region is convex and polyhedral
\triangleright problem may be

- unbounded,
- infeasible, or
- optimal
\triangleright always optimal vertex solution (if an optimal solution exists)

General linear programs (LPs)

Continuous variables: $\quad x_{i} \geq 0, I b_{i} \leq x_{i} \leq u b_{i}, x_{i}$ free
Linear constraints: $a_{1} x_{1}+\ldots+a_{n} x_{n} \lesseqgtr b$

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}
$$

Computational standard form: $\min \left\{c^{\prime} x \mid A x=b, x \geq 0\right\}$
\triangleright feasible region is convex and polyhedral
\triangleright problem may be

- unbounded,
- infeasible, or
- optimal
\triangleright always optimal vertex solution (if an optimal solution exists)

General linear programs (LPs)

Continuous variables: $\quad x_{i} \geq 0, I b_{i} \leq x_{i} \leq u b_{i}, x_{i}$ free
Linear constraints: $a_{1} x_{1}+\ldots+a_{n} x_{n} \lesseqgtr b$

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}
$$

Computational standard form: $\min \left\{c^{\prime} x \mid A x=b, x \geq 0\right\}$
\triangleright feasible region is convex and polyhedral
\triangleright problem may be

- unbounded,
- infeasible, or
- optimal
\triangleright always optimal vertex solution (if an optimal solution exists)

General linear programs (LPs)

Continuous variables: $\quad x_{i} \geq 0, I b_{i} \leq x_{i} \leq u b_{i}, x_{i}$ free
Linear constraints: $a_{1} x_{1}+\ldots+a_{n} x_{n} \lesseqgtr b$

$$
c_{1} x_{1}+\ldots+c_{n} x_{n}
$$

Computational standard form: $\min \left\{c^{\prime} x \mid A x=b, x \geq 0\right\}$
\triangleright feasible region is convex and polyhedral
\triangleright problem may be

- unbounded,
- infeasible, or
- optimal
\triangleright always optimal vertex solution (if an optimal solution exists)

An incomplete history on linear programming

1827 J. Fourier: Variable elimination algorithm ("Fourier-Motzkin")

1827 J. Fourier: Variable elimination algorithm ("Fourier-Motzkin")
1947 G. Dantzig: Primal Simplex algorithm
1954 C. Lemke and E. Beale: Dual Simplex algorithm

- by far the most used algorithm to solve LPs
- worst case exponential running time

LP algorithms

simplex algorithm [Dantzig 1947]

1827 J. Fourier: Variable elimination algorithm ("Fourier-Motzkin")
1947 G. Dantzig: Primal Simplex algorithm
1954 C. Lemke and E. Beale: Dual Simplex algorithm

- by far the most used algorithm to solve LPs
- worst case exponential running time

1975 L. Kantorovich and T.C. Koopmans:
Nobel prize for Economics

Leonid Kantorovich \& Tjalling C. Koopmans

1975: Nobel price in Economic Science
"Optimal allocation of ressources"

An incomplete history on linear programming

1827 J. Fourier: Variable elimination algorithm ("Fourier-Motzkin")
1947 G. Dantzig: Primal Simplex algorithm
1954 C. Lemke and E. Beale: Dual Simplex algorithm

- by far the most used algorithm to solve LPs
- worst case exponential running time

1975 L. Kantorovich and T.C. Koopmans:
Nobel prize for Economics
1979 L. Khachiyan: Ellipsoid Method

- first polynomial time algorithm

LP algorithms

simplex algorithm
 [Dantzig 1947]

ellipsoid method

[Khachiyan 1979]

LP algorithms

simplex algorithm [Dantzig 1947]

ellipsoid method [Khachiyan 1979]

interior point
[Karmarkar 1984]

An incomplete history on linear programming

1827 J. Fourier: Variable elimination algorithm ("Fourier-Motzkin")
1947 G. Dantzig: Primal Simplex algorithm
1954 C. Lemke and E. Beale: Dual Simplex algorithm

- by far the most used algorithm to solve LPs
- worst case exponential running time

1975 L. Kantorovich and T.C. Koopmans:
Nobel prize for Economics
1979 L. Khachiyan: Ellipsoid Method

- first polynomial time algorithm

1984 N. Karmarkar: Interior Point Method/Barrier Algorithm
≥ 1987 Primal-Dual Interior Point Algorithms

- basis for state-of-the-art interior point implementations
- for single, sparse LPs often faster than simplex

A transportation problem

$$
\text { min } \begin{aligned}
2 x_{A, 1}+3 x_{A, 2}+9 x_{A, 3}+ \\
4 x_{B, 1}+1 x_{B, 2}+3 x_{B, 3} \\
\text { s.t. } \quad \begin{aligned}
x_{A, 1}+x_{A, 2}+x_{A, 3} & =13 \\
x_{B, 1}+x_{B, 2}+x_{B, 3} & =9 \\
x_{A, 1}+x_{B, 1} & =7 \\
x_{A, 2}+x_{B, 2} & =9 \\
x_{A, 3}+x_{B, 3} & =6 \\
x & \geq 0
\end{aligned}, \begin{aligned}
& =9
\end{aligned} \\
\end{aligned}
$$

A transportation problem

$$
\min \quad \begin{aligned}
& 2 x_{A, 1}+3 x_{A, 2}+9 x_{A, 3}+ \\
& 4 x_{B, 1}+1 x_{B, 2}+3 x_{B, 3} \\
& \text { s.t. } \quad x_{A, 1}+x_{A, 2}+x_{A, 3}=13 \\
& x_{B, 1}+x_{B, 2}+x_{B, 3}=9 \\
& x_{A, 1}+x_{B, 1}=7 \\
& x_{A, 2}+x_{B, 2}=9 \\
& x_{A, 3}+x_{B, 3}=6 \\
& x \geq 0
\end{aligned}
$$

Heuristic solution with objective value 53:

$$
A \rightarrow 1=7 \quad A \rightarrow 2=6 \quad B \rightarrow 2=3 \quad B \rightarrow 3=6
$$

A transportation problem

$$
\min \quad \begin{aligned}
& 2 x_{A, 1}+3 x_{A, 2}+9 x_{A, 3}+ \\
& 4 x_{B, 1}+1 x_{B, 2}+3 x_{B, 3} \\
& \text { s.t. } \quad x_{A, 1}+x_{A, 2}+x_{A, 3}=13 \\
& x_{B, 1}+x_{B, 2}+x_{B, 3}=9 \\
& x_{A, 1}+x_{B, 1}=7 \\
& x_{A, 2}+x_{B, 2}=9 \\
& x_{A, 3}+x_{B, 3}=6 \\
& x \geq 0
\end{aligned}
$$

Heuristic solution with objective value 53:

$$
A \rightarrow 1=7 \quad A \rightarrow 2=6 \quad B \rightarrow 2=3 \quad B \rightarrow 3=6
$$

Dual multipliers: proofing solution quality

min

$$
2 x_{A, 1}+3 x_{A, 2}+9 x_{A, 3}+4 x_{B, 1}+1 x_{B, 2}+3 x_{B, 3}
$$

s.t.

$$
\begin{array}{rlrl}
x_{A, 1}+x_{A, 2}+x_{A, 3} & & =13 \\
& & & \\
x_{A, 1} & & x_{B, 1}+x_{B, 2}+x_{B, 3} & =9 \\
+x_{B, 1} & & =7 \\
x_{A, 2} & & & +x_{B, 2} \\
& & =9 \\
x_{A, 3} & & +x_{B, 3} & =6
\end{array}
$$

$$
x \geq 0
$$

Dual multipliers: proofing solution quality

Dual multipliers: proofing solution quality

Solution is optimal!

Duality

Primal LP $\min \left\{c^{\top} x \mid A x=b, x \geq 0\right\}$

Dual LP
 $\max \left\{b^{\top} y \mid y^{\top} A \leq c^{\top}, y \in \mathbb{R}^{m}\right\}$

Simple observation: For any x, y feasible,

$$
c^{\top} x \geq y^{\top} A x=b^{\top} y .
$$

Duality

Primal LP

 $\min \left\{c^{\top} x \mid A x=b, x \geq 0\right\}$
Dual LP $\max \left\{b^{\top} y \mid y^{\top} A \leq c^{\top}, y \in \mathbb{R}^{m}\right\}$

Simple observation: For any x, y feasible,

$$
c^{\top} x \geq y^{\top} A x=b^{\top} y .
$$

\triangleright Weak Duality:

$$
\min \left\{c^{\top} x \mid A x=b, x \geq 0\right\} \geq \max \left\{b^{\top} y \mid y^{\top} A \leq c^{\top}, y \in \mathbb{R}^{m}\right\}
$$

Duality

Primal LP

$$
\min \left\{c^{\top} x \mid A x=b, x \geq 0\right\}
$$

Dual LP $\max \left\{b^{\top} y \mid y^{\top} A \leq c^{\top}, y \in \mathbb{R}^{m}\right\}$

Simple observation: For any x, y feasible,

$$
c^{\top} x \geq y^{\top} A x=b^{\top} y .
$$

\triangleright Weak Duality:

$$
\min \left\{c^{\top} x \mid A x=b, x \geq 0\right\} \geq \max \left\{b^{\top} y \mid y^{\top} A \leq c^{\top}, y \in \mathbb{R}^{m}\right\}
$$

\triangleright Strong Duality: $\min \left\{c^{\top} x \mid A x=b, x \geq 0\right\}=\max \left\{b^{\top} y \mid y^{\top} A \leq c^{\top}, y \in \mathbb{R}^{m}\right\}$

Consider n variables, m constraints:

$$
\min \left\{c^{\top} x \mid A x=b, x \geq 0\right\}
$$

with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.
\triangleright If optimal: there always exists an optimal vertex solution.

Consider n variables, m constraints:

$$
\min \left\{c^{T} x \mid A x=b, x \geq 0\right\}
$$

with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.
\triangleright If optimal: there always exists an optimal vertex solution.
\triangleright Vertices uniquely determined by n tight inequalities:
\triangleright In standard from that means

- m equality constraints $A x=b$
- $n-m$ tight bounds $x_{i}=0$

Consider n variables, m constraints:

$$
\min \left\{c^{T} x \mid A x=b, x \geq 0\right\}
$$

with $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, c \in \mathbb{R}^{n}$.
\triangleright If optimal: there always exists an optimal vertex solution.
\triangleright Vertices uniquely determined by n tight inequalities:
\triangleright In standard from that means

- m equality constraints $A x=b$
- $n-m$ tight bounds $x_{i}=0$

Basic solutions

Primal solution

\triangleright Fix $n-m$ variables: $x_{i}=0$ for $i \in \mathcal{N} \subseteq\{1, \ldots, n\}$
$\triangleright m$ variables remain: x_{i} for $i \in \mathcal{B}=\{1, \ldots, n\} \backslash \mathcal{N}$
\triangleright Solve linear system with m equations, m variables:

$$
A x=b \rightsquigarrow A_{\mathcal{B}} x_{\mathcal{B}}=b \rightsquigarrow x_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b
$$

Basic solutions

Primal solution

\triangleright Fix $n-m$ variables: $x_{i}=0$ for $i \in \mathcal{N} \subseteq\{1, \ldots, n\}$
$\triangleright m$ variables remain: x_{i} for $i \in \mathcal{B}=\{1, \ldots, n\} \backslash \mathcal{N}$
\triangleright Solve linear system with m equations, m variables:

$$
A x=b \rightsquigarrow A_{\mathcal{B}} x_{\mathcal{B}}=b \rightsquigarrow x_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b
$$

Dual multipliers

\triangleright Globally: find y such that $y^{\top} A \leq c^{\top}$
\triangleright Locally: ignore fixed variables and solve

$$
y^{\top} A_{\mathcal{B}}=c_{\mathcal{B}}^{\top} \rightsquigarrow y^{\top}=c_{\mathcal{B}}^{\top} A_{\mathcal{B}}^{-1}
$$

Basic solutions

Primal solution

\triangleright Fix $n-m$ variables: $x_{i}=0$ for $i \in \mathcal{N} \subseteq\{1, \ldots, n\}$
$\triangleright m$ variables remain: x_{i} for $i \in \mathcal{B}=\{1, \ldots, n\} \backslash \mathcal{N}$
\triangleright Solve linear system with m equations, m variables:

$$
A x=b \rightsquigarrow A_{\mathcal{B}} x_{\mathcal{B}}=b \rightsquigarrow x_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b
$$

Dual multipliers

\triangleright Globally: find y such that $y^{\top} A \leq c^{\top}$
\triangleright Locally: ignore fixed variables and solve

$$
y^{\top} A_{\mathcal{B}}=c_{\mathcal{B}}^{\top} \rightsquigarrow y^{\top}=c_{\mathcal{B}}^{\top} A_{\mathcal{B}}^{-1}
$$

Basic solution $=$ discrete basis $\mathcal{B}+$ primal sol. $x+$ dual mult. y \triangleright In theory: could enumerate $\binom{n}{m}$ basic solutions.

Improving steps

$\triangleright x_{\mathcal{B}}$ is a function of $x_{\mathcal{N}}$:

$$
A_{\mathcal{B}} x_{\mathcal{B}}+A_{\mathcal{N}} x_{\mathcal{N}}=b
$$

Improving steps

$\triangleright x_{\mathcal{B}}$ is a function of $x_{\mathcal{N}}$:

$$
A_{\mathcal{B}} x_{\mathcal{B}}=b-A_{\mathcal{N}} x_{\mathcal{N}}
$$

Improving steps

$\triangleright x_{\mathcal{B}}$ is a function of $x_{\mathcal{N}}$:

$$
x_{\mathcal{B}}=A_{\mathcal{B}}^{-1}\left(b-A_{\mathcal{N}} x_{\mathcal{N}}\right)
$$

Improving steps

$\triangleright x_{\mathcal{B}}$ is a function of $x_{\mathcal{N}}$:

$$
\begin{aligned}
& x_{\mathcal{B}}=A_{\mathcal{B}}^{-1}\left(b-A_{\mathcal{N}} x_{\mathcal{N}}\right) \\
& \triangleright \hat{x}_{\mathcal{N}}=0 \rightsquigarrow \hat{x}_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b
\end{aligned}
$$

Improving steps

$\triangleright x_{\mathcal{B}}$ is a function of $x_{\mathcal{N}}$:

$$
x_{\mathcal{B}}=A_{\mathcal{B}}^{-1}\left(b-A_{\mathcal{N}} x_{\mathcal{N}}\right)
$$

$$
\triangleright \hat{x}_{\mathcal{N}}=0 \rightsquigarrow \hat{x}_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b
$$

\triangleright Unfix $x_{i}, i \in \mathcal{N}$:

$$
x_{\mathcal{B}}=\hat{x}_{\mathcal{B}}-\underbrace{A_{\mathcal{B}}^{-1} A_{i}}_{\delta_{i}} x_{i}
$$

Improving steps

$\triangleright x_{\mathcal{B}}$ is a function of $x_{\mathcal{N}}$:

$$
x_{\mathcal{B}}=A_{\mathcal{B}}^{-1}\left(b-A_{\mathcal{N}} x_{\mathcal{N}}\right)
$$

$\triangleright \hat{x}_{\mathcal{N}}=0 \rightsquigarrow \hat{x}_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b$
\triangleright Unfix $x_{i}, i \in \mathcal{N}$:

$$
x_{\mathcal{B}}=\hat{x}_{\mathcal{B}}-\underbrace{A_{\mathcal{B}}^{-1} A_{i}}_{\delta_{i}} x_{i}
$$

Improving steps

$\triangleright x_{\mathcal{B}}$ is a function of $x_{\mathcal{N}}$:

$$
x_{\mathcal{B}}=A_{\mathcal{B}}^{-1}\left(b-A_{\mathcal{N}} x_{\mathcal{N}}\right)
$$

$\triangleright \hat{x}_{\mathcal{N}}=0 \rightsquigarrow \hat{x}_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b$
\triangleright Unfix $x_{i}, i \in \mathcal{N}$:

$$
x_{\mathcal{B}}=\hat{x}_{\mathcal{B}}-\underbrace{A_{\mathcal{B}}^{-1} A_{i}}_{\delta_{i}} x_{i}
$$

\triangleright Objective change:

$$
c^{T} x=c^{T} \hat{x}+c_{i} x_{i}-c^{\top} \delta_{i} x_{i}
$$

Improving steps

$\triangleright x_{\mathcal{B}}$ is a function of $x_{\mathcal{N}}$:

$$
x_{\mathcal{B}}=A_{\mathcal{B}}^{-1}\left(b-A_{\mathcal{N}} x_{\mathcal{N}}\right)
$$

$\triangleright \hat{x}_{\mathcal{N}}=0 \rightsquigarrow \hat{x}_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b$
\triangleright Unfix $x_{i}, i \in \mathcal{N}$:

$$
x_{\mathcal{B}}=\hat{x}_{\mathcal{B}}-\underbrace{A_{\mathcal{B}}^{-1} A_{i}}_{\delta_{i}} x_{i}
$$

\triangleright Objective change:

$$
c^{\top} x=c^{\top} \hat{x}+c_{i} x_{i}-c^{\top} \delta_{i} x_{i}=c^{\top} \hat{x}+\underbrace{\left(c_{i}-y^{\top} A_{i}\right)}_{\text {reduced cost } r_{i}} x_{i}
$$

Improving steps

$\triangleright x_{\mathcal{B}}$ is a function of $x_{\mathcal{N}}$:

$$
x_{\mathcal{B}}=A_{\mathcal{B}}^{-1}\left(b-A_{\mathcal{N}} x_{\mathcal{N}}\right)
$$

$\triangleright \hat{x}_{\mathcal{N}}=0 \rightsquigarrow \hat{x}_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b$
\triangleright Unfix $x_{i}, i \in \mathcal{N}$:

$$
x_{\mathcal{B}}=\hat{x}_{\mathcal{B}}-\underbrace{A_{\mathcal{B}}^{-1} A_{i}}_{\delta_{i}} x_{i}
$$

\triangleright Objective change:

$$
c^{\top} x=c^{\top} \hat{x}+c_{i} x_{i}-c^{\top} \delta_{i} x_{i}=c^{\top} \hat{x}+\underbrace{\left(c_{i}-y^{\top} A_{i}\right)}_{\text {reduced cost } r_{i}} x_{i}
$$

\triangleright Reduced cost of $x_{i}=\mathrm{obj}$. change per unit increase of x_{i}

Improving steps

$\triangleright x_{\mathcal{B}}$ is a function of $x_{\mathcal{N}}$:

$$
x_{\mathcal{B}}=A_{\mathcal{B}}^{-1}\left(b-A_{\mathcal{N}} x_{\mathcal{N}}\right)
$$

$\triangleright \hat{x}_{\mathcal{N}}=0 \rightsquigarrow \hat{x}_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b$
\triangleright Unfix $x_{i}, i \in \mathcal{N}$:

$$
x_{\mathcal{B}}=\hat{x}_{\mathcal{B}}-\underbrace{A_{\mathcal{B}}^{-1} A_{i}}_{\delta_{i}} x_{i}
$$

\triangleright Objective change:

$$
c^{\top} x=c^{\top} \hat{x}+c_{i} x_{i}-c^{\top} \delta_{i} x_{i}=c^{\top} \hat{x}+\underbrace{\left(c_{i}-y^{\top} A_{i}\right)}_{\text {reduced cost } r_{i}} x_{i}
$$

\triangleright Reduced cost of $x_{i}=\mathbf{o b j}$. change per unit increase of x_{i}

Primal simplex algorithm

Idea: Given a primal feasible starting basis \mathcal{B}, i.e., $x_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b \geq 0$,

Primal simplex algorithm

Idea: Given a primal feasible starting basis \mathcal{B}, i.e., $x_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b \geq 0$,
\triangleright maintain primal feasibility
\triangleright improve obj. value until reduced costs are $\geq 0 \Leftrightarrow$ dual feasible

Primal simplex algorithm

Idea: Given a primal feasible starting basis \mathcal{B}, i.e., $x_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b \geq 0$,
\triangleright maintain primal feasibility
\triangleright improve obj. value until reduced costs are $\geq 0 \Leftrightarrow$ dual feasible

Init

\triangleright factorize basis matrix $A_{\mathcal{B}} \rightsquigarrow " A_{\mathcal{B}}^{-1 "}$

Primal simplex algorithm

Idea: Given a primal feasible starting basis \mathcal{B}, i.e., $x_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b \geq 0$,
\triangleright maintain primal feasibility
\triangleright improve obj. value until reduced costs are $\geq 0 \Leftrightarrow$ dual feasible

Init

\triangleright factorize basis matrix $A_{\mathcal{B}} \rightsquigarrow$ " $A_{\mathcal{B}}^{-1 "}$
\triangleright solve for $x_{\mathcal{B}}$ and y
\triangleright compute reduced costs: $r_{i}=c_{i}-y^{\top} A_{i}$ for $i \in \mathcal{N}$

Primal simplex algorithm

Idea: Given a primal feasible starting basis \mathcal{B}, i.e., $x_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b \geq 0$,
\triangleright maintain primal feasibility
\triangleright improve obj. value until reduced costs are $\geq 0 \Leftrightarrow$ dual feasible

Init

\triangleright factorize basis matrix $A_{\mathcal{B}} \rightsquigarrow " A_{\mathcal{B}}^{-1 "}$
\triangleright solve for $x_{\mathcal{B}}$ and y
\triangleright compute reduced costs: $r_{i}=c_{i}-y^{\top} A_{i}$ for $i \in \mathcal{N}$
Repeat
\triangleright if $r_{i} \geq 0$ for all $i \in \mathcal{N}$ stop \rightsquigarrow OPTIMAL

Primal simplex algorithm

Idea: Given a primal feasible starting basis \mathcal{B}, i.e., $x_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b \geq 0$,
\triangleright maintain primal feasibility
\triangleright improve obj. value until reduced costs are $\geq 0 \Leftrightarrow$ dual feasible

Init

\triangleright factorize basis matrix $A_{\mathcal{B}} \rightsquigarrow " A_{\mathcal{B}}^{-1 "}$
\triangleright solve for $x_{\mathcal{B}}$ and y
\triangleright compute reduced costs: $r_{i}=c_{i}-y^{\top} A_{i}$ for $i \in \mathcal{N}$

Repeat

\triangleright if $r_{i} \geq 0$ for all $i \in \mathcal{N}$ stop \rightsquigarrow OPTIMAL else choose $r_{i}<0, i \in \mathcal{N}$

Primal simplex algorithm

Idea: Given a primal feasible starting basis \mathcal{B}, i.e., $x_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b \geq 0$,
\triangleright maintain primal feasibility
\triangleright improve obj. value until reduced costs are $\geq 0 \Leftrightarrow$ dual feasible

Init

\triangleright factorize basis matrix $A_{\mathcal{B}} \rightsquigarrow " A_{\mathcal{B}}^{-1 "}$
\triangleright solve for $x_{\mathcal{B}}$ and y
\triangleright compute reduced costs: $r_{i}=c_{i}-y^{\top} A_{i}$ for $i \in \mathcal{N}$

Repeat

\triangleright if $r_{i} \geq 0$ for all $i \in \mathcal{N}$ stop \rightsquigarrow OPTIMAL else choose $r_{i}<0, i \in \mathcal{N}$
\triangleright compute max. steplength α s.t. $x_{\mathcal{B}}-\alpha \delta_{i} \geq 0$

Primal simplex algorithm

Idea: Given a primal feasible starting basis \mathcal{B}, i.e., $x_{\mathcal{B}}=A_{\mathcal{B}}^{-1} b \geq 0$,
\triangleright maintain primal feasibility
\triangleright improve obj. value until reduced costs are $\geq 0 \Leftrightarrow$ dual feasible

Init

\triangleright factorize basis matrix $A_{\mathcal{B}} \rightsquigarrow " A_{\mathcal{B}}^{-1 "}$
\triangleright solve for $x_{\mathcal{B}}$ and y
\triangleright compute reduced costs: $r_{i}=c_{i}-y^{\top} A_{i}$ for $i \in \mathcal{N}$

Repeat

\triangleright if $r_{i} \geq 0$ for all $i \in \mathcal{N}$ stop \rightsquigarrow OPTIMAL else choose $r_{i}<0, i \in \mathcal{N}$
\triangleright compute max. steplength α s.t. $x_{\mathcal{B}}-\alpha \delta_{i} \geq 0$
(ratiotest)
\triangleright if $\alpha=\infty$ stop \rightsquigarrow UNBOUNDED else update $\mathcal{B}, x, y, r, A_{\mathcal{B}}^{-1}$

Re-solving and hot starts

An IP solver classically solves many related LPs.
\triangleright modified objective function
\triangleright changed variable bounds or added constraints

Re-solving and hot starts

An IP solver classically solves many related LPs.
\triangleright modified objective function

- last basic solution becomes suboptimal, but remains primal feasible
- only reduced costs $r_{i}=c_{i}-y^{\top} A_{i}$ change
- continue with primal simplex iterations
\triangleright changed variable bounds or added constraints

Re-solving and hot starts

An IP solver classically solves many related LPs.
\triangleright modified objective function

- last basic solution becomes suboptimal, but remains primal feasible
- only reduced costs $r_{i}=c_{i}-y^{\top} A_{i}$ change
- continue with primal simplex iterations
\triangleright changed variable bounds or added constraints
- last basic solution becomes primal infeasible
- dual multipliers and reduced costs unchanged
- continue with dual simplex

Re-solving and hot starts

An IP solver classically solves many related LPs.
\triangleright modified objective function

- last basic solution becomes suboptimal, but remains primal feasible
- only reduced costs $r_{i}=c_{i}-y^{\top} A_{i}$ change
- continue with primal simplex iterations
\triangleright changed variable bounds or added constraints
- last basic solution becomes primal infeasible
- dual multipliers and reduced costs unchanged
- continue with dual simplex

Dual simplex

\triangleright basic procedures as in primal simplex
\triangleright maintains dual feasibility and moves towards primal feasibility
\triangleright objective value increases towards optimum
\triangleright typically very few iterations to re-optimize

Dual simplex algorithm

Idea: Given a dual feasible starting basis \mathcal{B}, i.e., $r \geq 0$,
\triangleright maintain dual feasibility
\triangleright reduce primal infeasibility until $x \geq 0$

Dual simplex algorithm

Idea: Given a dual feasible starting basis \mathcal{B}, i.e., $r \geq 0$,
\triangleright maintain dual feasibility
\triangleright reduce primal infeasibility until $x \geq 0$

Init

\triangleright factorize basis matrix $A_{\mathcal{B}} \rightsquigarrow " A_{\mathcal{B}}^{-1}$ "
\triangleright solve for $x_{\mathcal{B}}$ and y
\triangleright compute reduced costs: $r_{i}=c_{i}-y^{\top} A_{i}$ for $i \in \mathcal{N}$

Dual simplex algorithm

Idea: Given a dual feasible starting basis \mathcal{B}, i.e., $r \geq 0$,
\triangleright maintain dual feasibility
\triangleright reduce primal infeasibility until $x \geq 0$

Init

\triangleright factorize basis matrix $A_{\mathcal{B}} \rightsquigarrow " A_{\mathcal{B}}^{-1 "}$
\triangleright solve for $x_{\mathcal{B}}$ and y
\triangleright compute reduced costs: $r_{i}=c_{i}-y^{\top} A_{i}$ for $i \in \mathcal{N}$

Repeat

\triangleright if $x_{i} \geq 0$ for all $i \in \mathcal{B}$ stop \rightsquigarrow OPTIMAL else choose $x_{i}<0, i \in \mathcal{B}$
\triangleright compute max. steplength α
\triangleright if $\alpha=\infty$ stop \rightsquigarrow INFEASIBLE else update $\mathcal{B}, x, y, r, A_{\mathcal{B}}^{-1}$

Dual simplex algorithm

Idea: Given a dual feasible starting basis \mathcal{B}, i.e., $r \geq 0$,
\triangleright maintain dual feasibility
\triangleright reduce primal infeasibility until $x \geq 0$

Init

\triangleright factorize basis matrix $A_{\mathcal{B}} \rightsquigarrow " A_{\mathcal{B}}^{-1 "}$
\triangleright solve for $x_{\mathcal{B}}$ and y
\triangleright compute reduced costs: $r_{i}=c_{i}-y^{\top} A_{i}$ for $i \in \mathcal{N}$
Repeat while $c^{\top} x<z^{*}$ obj. limit
\triangleright if $x_{i} \geq 0$ for all $i \in \mathcal{B}$ stop \rightsquigarrow OPTIMAL else choose $x_{i}<0, i \in \mathcal{B}$
\triangleright compute max. steplength α
\triangleright if $\alpha=\infty$ stop \rightsquigarrow INFEASIBLE else update $\mathcal{B}, x, y, r, A_{\mathcal{B}}^{-1}$
\triangleright Discrete and continuous:

- vertices are uniquely determined by n equalities
- if optimal: there always exists an optimal vertex solution
- solution values are computed numerically
\triangleright Reduced costs quantify impact of (non-basic) variable on the objective
\triangleright efficient hot starts for re-optimization

Summary

\triangleright Discrete and continuous:

- vertices are uniquely determined by n equalities
- if optimal: there always exists an optimal vertex solution
- solution values are computed numerically
\triangleright Reduced costs quantify impact of (non-basic) variable on the objective
\triangleright efficient hot starts for re-optimization

Further aspects:

\triangleright general bounds: $l b_{i} \leq x_{i} \leq u b_{i}$
\triangleright feasible starting basis for simplex ("phase 1"), pricing strategies, linear algebra tricks, ...
\triangleright exponential worst-case complexity of simplex vs. performance in practice
\triangleright interior point algorithms
\triangleright algorithms for specially structured LPs: networks, ...

Integer Programming for Constraint Programmers

(1) Introduction
(2) Linear programming
(3) Integer (linear) programming

4 Summary
(5) Discussion

Linear programming

Linear program

Objective function:
\triangleright linear function
Feasible set:
\triangleright described by linear constraints
Variable domains:
\triangleright real values

$$
\begin{array}{lll}
\min & c^{\top} x & \triangleright \text { convex set } \\
\text { s.t. } & A x=b & \triangleright \text { "basic" solutions } \\
& x \in \mathbb{R}_{\geq 0}^{n} &
\end{array}
$$

Integer programming

Integer Program

Objective function:
\triangleright linear function
Feasible set:
\triangleright described by linear constraints
Variable domains:
\triangleright integer values

$$
\begin{array}{lll}
\min & c^{T} x & \triangleright \text { not even connected } \\
\text { s.t. } & A x \leq b & \triangleright \mathcal{N P} \text {-hard problem } \\
& x \in \mathbb{Z}_{\geq 0} &
\end{array}
$$

An incomplete history on integer programming

Cutting plane algorithm

\triangleright R. E. Gomory, "Outline of an algorithm for integer solutions to linear programs". Bull. AMS 64, 1958, pp. 275-278.

An incomplete history on integer programming

Cutting plane algorithm

\triangleright R. E. Gomory, "Outline of an algorithm for integer solutions to linear programs". Bull. AMS 64, 1958, pp. 275-278.
Branch-and-bound
\triangleright A. H. Land, A. G. Doig, "An automatic method of solving discrete programming problems". Econometrica 28, 1960, pp. 497-520
\triangleright R. J. Dakin, "A tree-search algorithm for mixed integer programming problems". The Computer Journal, Volume 8, 1965, pp. 250-255
\triangleright J. D. C. Little, K. G. Murty, D. W. Sweeney, C. Karel, "An algorithm for the traveling salesman problem". Operations Research 11, 1963, pp. 972-989.

Cutting plane algorithm

\triangleright R. E. Gomory, "Outline of an algorithm for integer solutions to linear programs". Bull. AMS 64, 1958, pp. 275-278.

Branch-and-bound

\triangleright A. H. Land, A. G. Doig, "An automatic method of solving discrete programming problems". Econometrica 28, 1960, pp. 497-520
\triangleright R. J. Dakin, "A tree-search algorithm for mixed integer programming problems". The Computer Journal, Volume 8, 1965, pp. 250-255
\triangleright J. D. C. Little, K. G. Murty, D. W. Sweeney, C. Karel, "An algorithm for the traveling salesman problem". Operations Research 11, 1963, pp. 972-989.

Branch-and-cut

\triangleright Grötschel, Jünger, Reinelt $(1984,1985,1987)$
\triangleright Padberg, Rinaldi (1991)

General cutting plane method

$$
\begin{aligned}
& \mathcal{F}_{\mathrm{PP}}:=\left\{x \in \mathbb{Z}_{+}^{n}: A x \leq b\right\} \\
& \mathcal{F}_{\mathrm{LP}}:=\left\{x \in \mathbb{R}_{+}^{n}: A x \leq b\right\}
\end{aligned}
$$

General cutting plane method

Observation

$\triangleright \operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ is a polyhedron
\triangleright IP could be formulated as LP

Problems with $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$:
\triangleright linear description not known
\triangleright large nr. of constraints needed

General cutting plane method

Observation

$\triangleright \operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ is a polyhedron
\triangleright IP could be formulated as LP

Problems with $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$:
\triangleright linear description not known
\triangleright large nr. of constraints needed

$$
\mathcal{F}_{\mathrm{LP}} \supseteq \quad \mathcal{F} \supseteq \quad \operatorname{conv}\left(\mathcal{F}_{\mathrm{IP}}\right)
$$

$$
\min \left\{c^{\top} x: x \in \mathcal{F}_{\mathrm{LP}}\right\} \leq \min \left\{c^{\top} x: x \in \mathcal{F}\right\}=\min \left\{c^{\top} x: x \in \operatorname{conv}\left(\mathcal{F}_{\mathbb{I P}}\right)\right\}
$$

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve
$\min c^{T} x$
s.t. $\quad x \in \mathcal{F}$
3. If $x^{*} \in \mathcal{F}_{\text {IP }}$: Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve
$\min c^{T} x$
s.t. $\quad x \in \mathcal{F}$
3. If $x^{*} \in \mathcal{F}_{\mathrm{IP}}$: Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

$\min \left\{c^{\top} x: x \in \operatorname{conv}\left(\mathcal{F}_{\mathrm{IP}}\right)\right\}$

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{F}
\end{array}
$$

3. If $x^{*} \in \mathcal{F}_{\text {Ip }}$: Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve
$\min c^{T} x$
s.t. $\quad x \in \mathcal{F}$
3. If $x^{*} \in \mathcal{F}_{\mathrm{IP}}$: Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve
$\min c^{T} x$
s.t. $\quad x \in \mathcal{F}$
3. If $x^{*} \in \mathcal{F}_{\text {Ip }}$: Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve
$\min c^{T} x$
s.t. $\quad x \in \mathcal{F}$
3. If $x^{*} \in \mathcal{F}_{\mathrm{Ip}}:$ Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve
$\min c^{T} x$
s.t. $\quad x \in \mathcal{F}$
3. If $x^{*} \in \mathcal{F}_{\text {IP }}$: Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{F}
\end{aligned}
$$

3. If $x^{*} \in \mathcal{F}_{\mathrm{Ip}}:$ Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

\triangleright Resolving is cheap since dual feasible (hot start)

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{F}
\end{array}
$$

3. If $x^{*} \in \mathcal{F}_{\mathrm{Ip}}:$ Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

\triangleright Resolving is cheap since dual feasible (hot start)

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve

$$
\min c^{T} x
$$

$$
\text { s.t. } \quad x \in \mathcal{F}
$$

3. If $x^{*} \in \mathcal{F}_{\mathrm{IP}}$: Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

\triangleright Resolving is cheap since dual feasible (hot start)

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve

$$
\min c^{T} x
$$

$$
\text { s.t. } \quad x \in \mathcal{F}
$$

3. If $x^{*} \in \mathcal{F}_{\text {IP }}$: Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

\triangleright Resolving is cheap since dual feasible (hot start)

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{F}
\end{array}
$$

3. If $x^{*} \in \mathcal{F}_{\mathrm{IP}}$: Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\mathrm{IP}}\right)$ but
- violated by x^{*}.

5. Goto 2.

\triangleright Resolving is cheap since dual feasible (hot start)

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{F}
\end{aligned}
$$

3. If $x^{*} \in \mathcal{F}_{\mathrm{Ip}}:$ Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

\triangleright Resolving is cheap since dual feasible (hot start)

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{F}
\end{array}
$$

3. If $x^{*} \in \mathcal{F}_{\mathrm{Ip}}:$ Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

\triangleright Resolving is cheap since dual feasible (hot start)

General cutting plane method

Algorithm

1. $\mathcal{F} \leftarrow \mathcal{F}_{\mathrm{LP}}$
2. Solve

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & x \in \mathcal{F}
\end{array}
$$

3. If $x^{*} \in \mathcal{F}_{\mathrm{Ip}}:$ Stop
4. Add inequality to \mathcal{F} that is ...

- valid for $\operatorname{conv}\left(\mathcal{F}_{\text {IP }}\right)$ but
- violated by x^{*}.

5. Goto 2.

\triangleright Resolving is cheap since dual feasible (hot start)

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
2. Node selection
3. Solve relaxation
4. Bounding
5. Feasibility check
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
2. Node selection
3. Solve relaxation
4. Bounding
5. Feasibility check
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
2. Node selection
3. Solve relaxation
4. Bounding
5. Feasibility check
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
2. Node selection
3. Solve relaxation
4. Bounding
5. Feasibility check
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

\author{

1. Abort criterion
 2. Node selection
}
2. Solve relaxation
3. Bounding
4. Feasibility check
5. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
2. Node selection
3. Solve relaxation
4. Bounding
5. Feasibility check
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
 2. Node selection

3. Solve relaxation
4. Bounding
5. Feasibility check
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

\author{

1. Abort criterion
 2. Node selection
}
2. Solve relaxation
3. Bounding
4. Feasibility check
5. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
 2. Node selection

3. Solve relaxation
4. Bounding
5. Feasibility check
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
2. Node selection
3. Solve relaxation
4. Bounding
5. Feasibility check
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
 2. Node selection

3. Solve relaxation
4. Bounding
5. Feasibility check
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
 2. Node selection

3. Solve relaxation
4. Bounding
5. Feasibility check
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
 2. Node selection

3. Solve relaxation
4. Feasibility check
5. Bounding
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
 2. Node selection

3. Solve relaxation
4. Feasibility check
5. Bounding
6. Branching

0	0∞	0	0	0	0
0	0	0	0	0	0
0	\bullet	\bullet	\bullet	0	0
0	0	0	0	0	0
0	$X^{I P}$				

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
 2. Node selection

3. Solve relaxation
4. Bounding
5. Feasibility check
6. Branching

0	0	0	0	0	0
0	0	0	0	0	
0	0	0	0	0	0
0	0	0	0	0	0
0	$X^{I P}$			0	

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
 2. Node selection

3. Solve relaxation
4. Feasibility check
5. Bounding
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

1. Abort criterion
 2. Node selection

3. Solve relaxation
4. Feasibility check
5. Bounding
6. Branching

LP-based branch-and-bound (colorful picture)

Steps

\author{

1. Abort criterion
 2. Node selection
}
2. Solve relaxation
3. Bounding
4. Feasibility check
5. Branching

LP－based branch－and－bound（colorful picture）

Steps

1．Abort criterion
2．Node selection

3．Solve relaxation
5．Feasibility check
4．Bounding
6．Branching

0

。
－
－
－

。
。
。
\circ
$x^{1 P}$

0
－
－

LP－based branch－and－bound（colorful picture）

Steps

1．Abort criterion
2．Node selection

3．Solve relaxation
4．Bounding
5．Feasibility check
6．Branching

0
0
－

。

> 。

。
－
。
$\begin{array}{cc}0 & 0 \\ & X^{\mathrm{IP}}\end{array}$

LP-based branch-and-bound (colorful picture)

Steps

\author{

1. Abort criterion
 2. Node selection
}
2. Solve relaxation
3. Bounding
4. Feasibility check

0
0
o
-
6. Branching

。

。
-
-
$\begin{array}{cc}0 \\ & X^{\mathrm{IP}}\end{array}$

LP-based branch-and-bound (colorful picture)

Steps

\author{

1. Abort criterion
 2. Node selection
}
2. Solve relaxation
3. Bounding
4. Feasibility check
5. Branching

0	0	0	0	0	0
0	0	\bullet	\bullet	0	0
0	\bullet	\bullet	\bullet	\bullet	0
0	0	0	0	0	0

LP-based branch-and-bound (colorful picture)

Steps

\author{

1. Abort criterion
 2. Node selection
}
2. Solve relaxation
3. Feasibility check
4. Bounding
5. Branching

0	0	0	0	0	0
0	0	\bullet	\bullet	0	0
0	\bullet	\bullet	\bullet	\bullet	0
0	0	0	0	0	0
0				$X^{I P}$	

LP-based branch-and-bound (colorful picture)

Steps

\author{

1. Abort criterion
 2. Node selection
}
2. Solve relaxation
3. Bounding
4. Feasibility check
5. Branching

0	0	0	0	0	0
0	0	\bullet	\bullet	0	0
0	\bullet	\bullet	\bullet	\bullet	0
0	0	0	0	0	0

LP-based branch-and-bound (colorful picture)

Steps

\author{

1. Abort criterion
}
2. Solve relaxation
3. Bounding
4. Feasibility check
5. Branching

0	0	0	0	0	0
0	0	\bullet	\bullet	0	0
0	\bullet	\bullet	\bullet	\bullet	0
0	0	0	0	0	0
0				$X^{I P}$	

Solving an integer program

branch-and-bound

Solving an integer program

branch-and-bound
\triangleright Both approaches solve an initial linear program.

Solving an integer program

branch-and-bound
\triangleright Both approaches solve an initial linear program.
\triangleright Classically using simplex algorithm for efficent hot start

Solving an integer program

branch-and-bound
\triangleright Both approaches solve an initial linear program.
\triangleright Classically using simplex algorithm for efficent hot start

- A cutting plane or a bound change is an additional row (linear constraint).

Branch-and-cut

Branch-and-cut

Branch-and-cut $=$ Branch-and-bound + Cutting planes

Branch-and-cut

Branch-and-cut $=$ Branch-and-bound + Cutting planes

\triangleright Use branch-and-bound as global solver paradigm.
\triangleright Perform limited cutting plane generation within each search node.

- global versus local cuts

Branch-and-cut

Branch-and-cut $=$ Branch-and-bound + Cutting planes

\triangleright Use branch-and-bound as global solver paradigm.
\triangleright Perform limited cutting plane generation within each search node.

- global versus local cuts
\triangleright Pure cutting plane generation does not work in practice
- numerical issues
- convergence

Branch-and-cut

Branch-and-cut $=$ Branch-and-bound + Cutting planes

\triangleright Use branch-and-bound as global solver paradigm.
\triangleright Perform limited cutting plane generation within each search node.

- global versus local cuts
\triangleright Pure cutting plane generation does not work in practice
- numerical issues
- convergence
\triangleright Pure branch-and-bound fails in general
- exponential search tree

Branch-and-cut

Branch-and-cut $=$ Branch-and-bound + Cutting planes

\triangleright Use branch-and-bound as global solver paradigm.
\triangleright Perform limited cutting plane generation within each search node.

- global versus local cuts
\triangleright Pure cutting plane generation does not work in practice
- numerical issues
- convergence
\triangleright Pure branch-and-bound fails in general
- exponential search tree
\triangleright Branch-and-cut fails later
- still exponential search tree
- but shifts the exponential grow significantly

Solving an integer program

\triangleright How can a linear program be solved?
\triangleright How can an integer program be solved?
\triangleright For what is the linear programming relaxation used within an integer programming solver?

Reduced cost propagation

$\triangleright z^{*}$: best objective value $\rightarrow c^{\top} x \leq z^{*}$
$\triangleright \hat{x}$: LP optimum
\triangleright For variables x_{i} with reduced cost $r_{i} \neq 0$

- variables are not in the basis
- variables sitting on one of their bounds
- $r_{i}>0 \rightarrow \hat{x}_{i}=\mathrm{lb}_{i}$ (lower bound)
- $r_{i}<0 \rightarrow \hat{x}_{i}=u b_{i}$ (upper bound)

Reduced cost propagation

$\triangleright z^{*}$: best objective value $\rightarrow c^{\top} x \leq z^{*}$
$\triangleright \hat{x}$: LP optimum
\triangleright For variables x_{i} with reduced cost $r_{i} \neq 0$

- variables are not in the basis
- variables sitting on one of their bounds
- $r_{i}>0 \rightarrow \hat{x}_{i}=\mathrm{lb}_{i}$ (lower bound)

- $r_{i}<0 \rightarrow \hat{x}_{i}=u b_{i}$ (upper bound)

Case $1 r_{i}>0$:

$$
c^{\top} \hat{x}+r_{i}\left(x_{i}-\mathrm{lb}_{i}\right) \leq z^{*} \Leftrightarrow x_{i} \leq \frac{z^{*}-c^{\top} \hat{x}}{r_{i}}+\mathrm{lb}_{i}
$$

Reduced cost propagation

$\triangleright z^{*}$: best objective value $\rightarrow c^{\top} x \leq z^{*}$
$\triangleright \hat{x}$: LP optimum
\triangleright For variables x_{i} with reduced cost $r_{i} \neq 0$

- variables are not in the basis
- variables sitting on one of their bounds
- $r_{i}>0 \rightarrow \hat{x}_{i}=\mathrm{lb}_{i}$ (lower bound)

- $r_{i}<0 \rightarrow \hat{x}_{i}=u b_{i}$ (upper bound)

Case $1 r_{i}>0$:

$$
c^{\top} \hat{x}+r_{i}\left(x_{i}-\mathrm{Ib}_{i}\right) \leq z^{*} \Leftrightarrow x_{i} \leq \frac{z^{*}-c^{\top} \hat{x}}{r_{i}}+\mathrm{Ib}_{i} \Rightarrow x_{i} \leq\left\lfloor\frac{z^{*}-c^{\top} \hat{x}}{r_{i}}+\mathrm{Ib}_{i}\right\rfloor
$$

Reduced cost propagation

$\triangleright z^{*}$: best objective value $\rightarrow c^{\top} x \leq z^{*}$
$\triangleright \hat{x}$: LP optimum
\triangleright For variables x_{i} with reduced cost $r_{i} \neq 0$

- variables are not in the basis
- variables sitting on one of their bounds
- $r_{i}>0 \rightarrow \hat{x}_{i}=\mathrm{lb}_{i}$ (lower bound)
- $r_{i}<0 \rightarrow \hat{x}_{i}=u b_{i}$ (upper bound)

Case $1 r_{i}>0$:

$$
c^{\top} \hat{x}+r_{i}\left(x_{i}-\mathrm{lb}_{i}\right) \leq z^{*} \Leftrightarrow x_{i} \leq \frac{z^{*}-c^{\top} \hat{x}}{r_{i}}+\mathrm{lb}_{i} \Rightarrow x_{i} \leq\left\lfloor\frac{z^{*}-c^{\top} \hat{x}}{r_{i}}+\mathrm{lb}_{i}\right\rfloor
$$

Case $2 r_{i}<0$:

$$
c^{\top} \hat{x}+r_{i}\left(x_{i}-\mathrm{ub}_{i}\right) \leq z^{*} \Leftrightarrow x_{i} \geq \frac{z^{*}-c^{\top} \hat{x}}{r_{i}}+\mathrm{ub}_{i} \Rightarrow x_{i} \geq\left\lfloor\frac{z^{*}-c^{\top} \hat{x}}{r_{i}}+\mathrm{ub}_{i}\right\rfloor
$$

Branching - Pseudo Cost

Estimating the objective

$$
\begin{aligned}
& x_{3}=7.4 \\
& \quad \subset=2
\end{aligned}
$$

Branching - Pseudo Cost

Estimating the objective

\triangleright objective gain per unit:

- $\zeta^{-}\left(x_{3}\right)=\frac{4-2}{7.4-7}=\frac{2}{0.4}=5$

Branching - Pseudo Cost

Estimating the objective

\triangleright objective gain per unit:

- $\zeta^{+}\left(x_{3}\right)=\frac{8-2}{8-7.4}=\frac{6}{0.6}=10$

Branching - Pseudo Cost

Estimating the objective

\triangleright objective gain per unit:

- $\zeta_{1}^{-}\left(x_{3}\right)=5, \zeta_{1}^{+}\left(x_{3}\right)=10$

Branching - Pseudo Cost

Estimating the objective

\triangleright objective gain per unit:

- $\zeta_{1}^{-}\left(x_{3}\right)=5, \zeta_{1}^{+}\left(x_{3}\right)=10$
- other values at other nodes

Branching - Pseudo Cost

Estimating the objective

\triangleright objective gain per unit:

- $\zeta_{1}^{-}\left(x_{3}\right)=5, \zeta_{1}^{+}\left(x_{3}\right)=10$
- other values at other nodes
\triangleright pseudocosts:
average objective gain
$\psi^{-}\left(x_{3}\right)=\frac{\zeta_{1}^{-}\left(x_{3}\right)+\ldots+\zeta_{n}^{-}\left(x_{3}\right)}{n}=\frac{5+3}{2}=4$

Branching - Pseudo Cost

Estimating the objective

\triangleright objective gain per unit:

- $\zeta_{1}^{-}\left(x_{3}\right)=5, \zeta_{1}^{+}\left(x_{3}\right)=10$
- other values at other nodes
\triangleright pseudocosts:
average objective gain
$\psi^{-}\left(x_{3}\right)=4, \psi^{+}\left(x_{3}\right)=9.5$

$$
x_{3}=5.2 \bigcirc \quad c=0
$$

\triangleright estimate increase of objective by pseudocosts and fractionality:

Branching - Pseudo Cost

Estimating the objective

\triangleright objective gain per unit:

- $\zeta_{1}^{-}\left(x_{3}\right)=5, \zeta_{1}^{+}\left(x_{3}\right)=10$
- other values at other nodes
\triangleright pseudocosts:
average objective gain
$\psi^{-}\left(x_{3}\right)=4, \psi^{+}\left(x_{3}\right)=9.5$

$x_{3}=5.2$
$c=0$
$x_{3} \leq 5$
\triangleright estimate increase of objective by pseudocosts and fractionality:
$\psi^{-}\left(x_{3}\right) \cdot \operatorname{frac}\left(x_{3}\right)$

Branching - Pseudo Cost

Estimating the objective

\triangleright objective gain per unit:

- $\zeta_{1}^{-}\left(x_{3}\right)=5, \zeta_{1}^{+}\left(x_{3}\right)=10$
- other values at other nodes
\triangleright pseudocosts:
average objective gain
$\psi^{-}\left(x_{3}\right)=4, \psi^{+}\left(x_{3}\right)=9.5$
\triangleright estimate increase of objective by pseudocosts and fractionality:

$$
x_{3}=5.2 \bigcirc \quad c=0
$$

$$
x_{3} \leq 5
$$

$$
c \approx 0.8
$$

Branching - Pseudo Cost

Estimating the objective

\triangleright objective gain per unit:

- $\zeta_{1}^{-}\left(x_{3}\right)=5, \zeta_{1}^{+}\left(x_{3}\right)=10$
- other values at other nodes
\triangleright pseudocosts:
average objective gain
$\psi^{-}\left(x_{3}\right)=4, \psi^{+}\left(x_{3}\right)=9.5$
\triangleright estimate increase of objective by pseudocosts and fractionality:

$\psi^{-}\left(x_{3}\right) \cdot \operatorname{frac}\left(x_{3}\right)=4 \cdot 0.2=0.8$, and $\psi^{+}\left(x_{3}\right)\left(1-\operatorname{frac}\left(x_{3}\right)\right)=7.6$

Heuristic - RENS

RENS - Relaxation Enforced Neighborhood Search

Idea: Search the vicinity of a relaxation solution

Algorithm

1. $\bar{x} \leftarrow \mathrm{LP}$ optimum;
2. Fix all integral variables: $x_{i}:=\bar{x}_{i}$ for all $i: \bar{x}_{i} \in \mathbb{Z}$;
3. Reduce domain of fractional variables
 $x_{i} \in\left\{\left\lfloor\bar{x}_{i}\right\rfloor ;\left\lceil\bar{x}_{i}\right\rceil\right\}$;
4. Solve the resulting sub-MIP;

Heuristic - RENS

RENS - Relaxation Enforced Neighborhood Search

Idea: Search the vicinity of a relaxation solution

Algorithm

1. $\bar{x} \leftarrow \mathrm{LP}$ optimum;
2. Fix all integral variables:
$x_{i}:=\bar{x}_{i}$ for all $i: \bar{x}_{i} \in \mathbb{Z}$;
3. Reduce domain of fractional variables
 $x_{i} \in\left\{\left\lfloor\bar{x}_{i}\right\rfloor ;\left\lceil\bar{x}_{i}\right\rceil\right\}$;
4. Solve the resulting sub-MIP;

Heuristic - RENS

RENS - Relaxation Enforced Neighborhood Search

Idea: Search the vicinity of a relaxation solution

Algorithm

1. $\bar{x} \leftarrow \mathrm{LP}$ optimum;
2. Fix all integral variables:

$$
x_{i}:=\bar{x}_{i} \quad \text { for all } i: \bar{x}_{i} \in \mathbb{Z} ;
$$

3. Reduce domain of fractional variables
 $x_{i} \in\left\{\left\lfloor\bar{x}_{i}\right\rfloor ;\left\lceil\bar{x}_{i}\right\rceil\right\}$;
4. Solve the resulting sub-MIP;

Heuristic - RENS

RENS - Relaxation Enforced Neighborhood Search

Idea: Search the vicinity of a relaxation solution

Algorithm

1. $\bar{x} \leftarrow \mathrm{LP}$ optimum;
2. Fix all integral variables:
$x_{i}:=\bar{x}_{i}$ for all $i: \bar{x}_{i} \in \mathbb{Z}$;
3. Reduce domain of fractional variables
 $x_{i} \in\left\{\left\lfloor\bar{x}_{i}\right\rfloor ;\left\lceil\bar{x}_{i}\right\rceil\right\}$;
4. Solve the resulting sub-MIP;

Heuristic - RENS

RENS - Relaxation Enforced Neighborhood Search

Idea: Search the vicinity of a relaxation solution

Algorithm

1. $\bar{x} \leftarrow \mathrm{LP}$ optimum;
2. Fix all integral variables: $x_{i}:=\bar{x}_{i}$ for all $i: \bar{x}_{i} \in \mathbb{Z}$;
3. Reduce domain of fractional variables
 $x_{i} \in\left\{\left\lfloor\bar{x}_{i}\right\rfloor ;\left\lceil\bar{x}_{i}\right\rceil\right\} ;$
4. Solve the resulting sub-MIP;

Heuristic - RENS

RENS - Relaxation Enforced Neighborhood Search

Idea: Search the vicinity of a relaxation solution

Algorithm

1. $\bar{x} \leftarrow \mathrm{LP}$ optimum;
2. Fix all integral variables:
$x_{i}:=\bar{x}_{i}$ for all $i: \bar{x}_{i} \in \mathbb{Z}$;
3. Reduce domain of fractional variables
 $x_{i} \in\left\{\left\lfloor\bar{x}_{i}\right] ;\left\lceil\bar{x}_{i}\right\rceil\right\}$;
4. Solve the resulting sub-MIP;

Crucial point: Does not need a feasible start solution

Integer Programming for Constraint Programmers

(1) Introduction
(2) Linear programming
(3) Integer (linear) programming

4 Summary
(5) Discussion

Linear relaxation

\triangleright gives a global view
\triangleright provides a proven dual bound for the original problem

- quality guarantee
\triangleright can be used for more than getting a dual bound
- propagation, branching, primal heuristic, ...

Summary

Linear relaxation

\triangleright gives a global view
\triangleright provides a proven dual bound for the original problem

- quality guarantee
\triangleright can be used for more than getting a dual bound
- propagation, branching, primal heuristic, ...

Additional remarks

\triangleright a linear relaxation does not have to represent all constraints
\triangleright numeric issues can arise due to continuous optimization

- in general the numerics can be controlled
- there exist critical instances
- see also exact interger programming

Summary

Linear relaxation

\triangleright gives a global view
\triangleright provides a proven dual bound for the original problem

- quality guarantee
\triangleright can be used for more than getting a dual bound
- propagation, branching, primal heuristic, ...

Additional remarks

\triangleright a linear relaxation does not have to represent all constraints
\triangleright numeric issues can arise due to continuous optimization

- in general the numerics can be controlled
- there exist critical instances
- see also exact interger programming

As in CP, the chosen model has a huge impact on the performance of a solver

An incomplete list of IP Solvers

Non-commercial solvers
\triangleright CBC (IBM)
\triangleright GLPK
\triangleright LPSOLVE
\triangleright SCIP
\triangleright SYMPHONY
https://projects.coin-or.org/Cbc http://www.gnu.org/s/glpk/ http://lpsolve.sourceforge.net/ http://scip.zib.de https://projects.coin-or.org/SYMPHONY

Commercial solvers
\triangleright CPLEX (IBM)
\triangleright GUROBI
\triangleright MOPS
\triangleright MOSEK
\triangleright XPRESS (Fico)
http://www.cplex.com
http://www.gurobi.com
http://www.mops-optimizer.com http://www.mosek.com http://www.fico.com

Integer Programming for Constraint Programmers

(1) Introduction
(2) Linear programming
(3) Integer (linear) programming

4 Summary
(5) Discussion

Questions

Tutorial

Integer Programming for Constraint Programmers

Ambros Gleixner and Stefan Heinz
Zuse Institute Berlin (ZIB)

Chris Beck, Timo Berthold, and Kati Wolter

DFG Research Center Matheon
Mathematics for key technologies

