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Solving Problems with CP: 

Four common pitfalls to avoid 



 Constraints and Proofs team at Univ. Nice-Sophia 
Antipolis 

 Program verification with CP 

 In competition with the well known COQ Proof assistant 
program at INRIA 

 

 COQ is more formal, more theory oriented 

 is it better? 

 

 Verification is undecidable 

 



Plan 

 What kind of problem can we solve with CP? 

 4 pitfalls to avoid 

 Conclusion 



What can of problems can we solve? 

 I want to do something that could be useful in the 

future (50 years?) 

 

 Polynomial 

 Unclassified 

 NP-Complete 

 



Solving polynomial problems 

 If we know that the problem is in P 

why do we need CP? 

 If a P algorithm is known we don’t need CP 

 The problem is in P but we don’t have any P 

algorithm 

 This is rare! I don’t have any problem like that  



Solving unclassified problems 

 There are some problems like that 

 Some scheduling problems are large PERT with some 

additional constraints 

 Three possibilities 

 We will prove it is in P: no more need of CP 

 We will prove it is NP-Complete (see later) 

 We will not prove anything (good for us) 



Solving NP complete problems 

 Two possibilities 

 P = NP 

 P ≠ NP 

 

 The first case, is not good for us (see P part). 

 Let’s go for P ≠ NP 

 



P ≠ NP 

 Ok, we cannot avoid an exponential behavior 

 For some instances, each NP Complete Problem will 

required an exponential time to be solved 

 So, our only hope is to shift the exponential such 

that the problem is solvable for a size and a time 

that are acceptable 



Shifting the exponential 
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We want to solve for n=60 in less than 400s 
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Sports scheduling models 

# teams # fails Time (in s)

8 10 0.01

10 24 0.06

12 58 0.2

14 21 0.2

16 182 0.6

18 263 0.9

20 226 1.2

24 2702 10.5

26 5,683 26.4

30 11,895 138

40 2,834,754 6h

# teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

First Model 

Second Model 



P ≠ NP 

 We can only shift the exponential 

 We will never solve the problem in general 



CP and other techniques 

 It is not easy to compare CP with other techniques 

 It is not easy to compare techniques aiming at 
solving NP-Complete problems 

 Because the problems are hard in general 

 Some instances are easy in CP and difficult with other 
techniques and conversely : 

 2 examples: Sports scheduling (vs MIP) and Latin Square 
Completion (vs SAT) 

 SAT is able to solve some efficiently some instances of the 
Latin Square Completion but do not scale or not able to 
solve an empty problem 



Comparison with CP 

 It is difficult to define the difficulty of the resolution 

of some NP Complete problems 

 In theory: they are hard 

 In practice: the resolution uses a particular technique, so 

there is no absolute reference 



P, NP and so what? 

 Problems in P or P = NP: CP has almost no 
advantage  

 The propagation mechanism in itself is interesting  
(M. Wallace) 

 Problems in NP: try to solve it to show the 
advantage of CP wrt the other techniques 

 

 Interest of CP if we don’t try to solve some 
problems? 

 Open question  



Problem resolution 

 It is hard 

 Common problems 

 Size 

 Intrinsic difficulty of some subparts 

 Combination of subparts 

 

 Usually requires the implementation of a complex 

procedure divided into several steps 



4 common steps 

 Try to abstract some parts of the whole problem 

 Focus your attention on the difficult parts or on the 

combination of parts 

 Work on smaller parts (benchmarking) 

 Find good search strategies for the different parts 

 Define a global model (combination of parts, 

scaling …) 
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4 common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 



4 common pitfalls 

 Undivided model 

 The global model is too much general 

 Split the resolution into different parts 

 Rigid search 

 The search strategy is too much linked to a DFS 

 Wrong part must be left quickly 

 Biased benchmarking 

 The results obtained for small size abstraction cannot be 
extrapolated for the whole problem 

 Wrong abstraction 

 The part identified as relevant are not relevant 

 The resolution of some subparts could be improved 



4 common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 



Undivided model 

 Either we directly deal with the whole problem in 

one step or we try to decompose it  

 The decomposition of the problem is a classical idea 

in MIP 

 Column generation 

 Bender’s decomposition 

 Lagrangian relaxation (close to abstraction) 



Undivided model 

 Solving some subparts and recombine them for 

solving the whole problem 

 



Pre-resolution of a part of a problem 

24 

 Configuration Problem: 

 5 types of components: {glass, plastic, steel, wood, copper} 

 3 types of bins: {red, blue, green} whose capacity is red 5, blue 
5, green 6 

 Constraints: 
- red can contain glass, cooper, wood 
- blue can contain glass, steel, cooper 
- green can contain plastic, copper, wood 
- wood require plastic; glass exclusive copper 
- red contains at most 1 of wood 
- green contains at most 2 of wood 
For all the bins there is either no plastic or at least 2 plastic 

 Given an initial supply of 12 of glass, 10 of plastic, 8 of steel, 
12 of wood and 8 of copper;  
what is the minimum total number of bins? 



Pre-resolution of a part of a problem 

25 

                            #bk            time 

standard model  1,361,709   430 

 GAC+allowed       12,659      9.7 

                        



Undivided model 

 Solving some subparts and recombine them for 

solving the whole problem 

 

 « Scalable Load Balancing in Nurse to Patient 

Assignment Problems », P. Schaus, P Van Hentenryck, 

J-C Régin, CPAIOR 09 



Description of the Problem 



Description of the Problem 



Description of the problem 

 The constraints 

 Each patient must be allocated to one nurse. 

 One nurse can take at most 3 patients and at least 1. 

 One nurse can only work in one zone. 

 The objective 

 Assign patients to nurses such that the nurse workload is 
balanced. 

 

 

Assigning patients to nurses in neonatal intensive care,  

C Mullinax and M Lawley, Journal of the Operational 
Research Society, 2002 

 

 

 



Minimization of the variance 



Results (2 zones instances) 

 All solved optimally within 20 minutes (the MIP 

model cannot). m = #nurses; n = #infants 



 

Observations for improving the model 

 
 The number of nurses assigned to each zone has a huge 

influence on the quality of the balancing. 

 Most of the inbalance comes from the inter-zone workloads. 

Very good balance inside each zone. 

 Optimal solutions look like this: 

 

 Ai: acuity of the zone i 

xi: number of nurses in zone i 



 

The Idea: A two steps approach 

 
 We consider a relaxation of the initial problem 

 Compute the number of nurses assigned to each zone. 

 A patient can only take the pre-computed nurses 
(modification of the domains of variables). 

 

 Optimal solutions of this relaxed problem are very 
close to optimal solutions of the general problem 

 

 How to compute the number of nurses assigned to 
each zone ? 

 



Compute the number of nurses 

assigned to each zone 

 We solve the optimally of this problem in O(p*m) 

with a greedy algorithm. (p = #zones; m = #nurses) 

 

Ai: acuity of the zone I (GIVEN) 

xi: number of nurses in zone I (UNKNOWNS) 

 



Previous results (2 zones instances) 

 All solved optimally within 20 minutes (the MIP 

model cannot). m = #nurses; n = #infants 



New results on 2 zones instances 

 Less than 10 seconds (m: #nurses; n = #infants) 



Results on 3 zones instances 

 6/10 instances solved optimally (m: #nurses; n = 

#infants) 



Good news: The decomposition can 

work 

 

 Given a precomputation of the number of nurses for 

each zone:  

 

minimizing the variance 

among all the nurses 

minimizing the variance in 

each zone separately 



2 Steps Approach with Decomposition 

 

 

 

 

 Compute the number of nurses assigned to each 

zone. 

 Solve independently the problems inside each zone. 

 



New results on the 3 zones instances 

 Easy now (less than 3 seconds) (m: #nurses; n = 

#infants) 



We can even solve 15 zones instances! 



The problem 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

• n teams and n-1 weeks and n/2 periods 

• every two teams play each other exactly once 

• every team plays one game in each week 

• no team plays more than twice in the same period 



CP model: variables 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

For each slot: 2 variables represent the teams  

and 1 variable represents the match are defined 

1 vs 6 

T33a variable (T33a=6) 

T33h variable (T33h=1) 

M33 variable (M33=12) Mij=1 <=> 0 vs 1 or 1 vs 0 

Mij=12 <=> 1 vs 6 or 6 vs1 



CP model: T variables 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

D(Tija)=[1,n-1] 

D(Tijh)=[0,n-2] 

Tijh < Tija 



CP model: M variables 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

D(Mij)=[1,n(n-1)/2] 



CP model: constraints 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

• n teams and n-1 weeks and n/2 periods 

• every two teams play each other exactly once 

• every team plays one game in each week 

• no team plays more than twice in the same period 

Alldiff constraints defined on M variables 



CP model: constraints 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods 

• every two teams play each other exactly once 

• every team plays one game in each week 

• no team plays more than twice in the same period 

For each week w: 

Alldiff constraint defined 

on {Tpwh, p=1..4} U {Tpwa, p=1..4}  



CP model: constraints 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods 

• every two teams play each other exactly once 

• every team plays one game in each week 

• no team plays more than twice in the same period 

For each period p: 

Global cardinality constraint defined on 

{Tpwh, w=1..7} U {Tpwa, w=1..7} 

every team t is taken at most 2 



CP model: constraints 

 For each slot the two T variables and the M variable must be linked together; example: 

M12 = game T12h vs T12a  

 For each slot we add Cij a ternary constraint defined on the two T variables and the M 

variable; example: 

C12 defined on {T12h,T12a,M12} 

 Cij are defined by the list of allowed tuples:  
for n=4: {(0,1,1),(0,2,2),(0,3,3),(1,2,4),(1,3,5),(2,3,6)} 

(1,2,4) means game 1 vs 2 is the game number 4 

 All these constraints have the same list of allowed tuples 

 Efficient arc consistency algorithm for this kind of constraint is known 



First model 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 . vs .

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column 



First model 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column 

We can prove that: 

• each team occurs exactly twice for each period 

 



First model 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column 

We can prove that: 

• each team occurs exactly twice for each period 

• each team occurs exactly once in the dummy column 



First model: strategies 

 Break symmetries: 0 vs w appears in week w 

 Teams are instantiated: 

- the most instantiated team is chosen 

- the slots that has the less remaining possibilities 

(Tijh or Tija is minimal) is instantiated with that team 



First model: results 

# teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

MIPLIB 



Second model 

 Break symmetry: 0 vs 1 is the first game of the 

dummy column 



Second model 

 Break symmetry: 0 vs 1 is the first game of the 

dummy column 

 1) Find a round-robin. Define all the games for each 

column (except for the dummy) 

- Alldiff constraint on M is satisfied 

- Alldiff constraint for each week is satisfied 



Second model 

 Break symmetry: 0 vs 1 is the first game of the 

dummy column 

 1) Find a round-robin. Define all the games for each 

column (except for the dummy) 

- Alldiff constraint on M is satisfied 

- Alldiff constraint for each week is satisfied 

 2) set the games in order to satisfy constraints on 

periods. If no solution go to 1) 



Second model: strategy 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated 
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Second model: strategy 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated 



Sports scheduling models 

# teams # fails Time (in s)

8 10 0.01

10 24 0.06

12 58 0.2

14 21 0.2

16 182 0.6

18 263 0.9

20 226 1.2

24 2702 10.5

26 5,683 26.4

30 11,895 138

40 2,834,754 6h

# teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

First Model 

Second Model 



4 common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 



Rigid search 

 I notice that there are 2 kinds of people in CP 

 Those focused on the search strategies, who « thinks » 

strategies 

 Those focused on constraints, who « thinks » constraints 

 

 I am not a big fan of search strategy 



Rigid Search 

 We can deal a lot and invent a lot of strategies fro 

solving a problem 

 Random-restart is a method  

 performing very well 

 that can be used with any strategy 

 

 Slides and work of Carla Gomes  



Quasigroup completion 

 

Median = 1! 

3500! 

500 

2000 



Heavy tail distribution (Pareto 1920) 

 

Standard Distribution 

(finite mean & variance) 

Power Law Decay 

Exponential  Decay 



Quasigroup Resolution 

 

18% 

unsolved 

0.002% 

unsolved 



Exploiting Heavy-Tailed behavior 

 Heavy Tailed behavior has been observed in 

several domains: QCP, Graph Coloring, Planning, 

Scheduling, Circuit synthesis, Decoding, etc. 

 

 Consequence for algorithm design: Use restarts 

runs to exploit the extreme variance performance. 

 



Restarts 

 

no restarts 

restart every 4 backtracks 

0.001% 

unsolved 

70% 

unsolved 



Restarts 

 Restarts provably eliminate heavy-tailed behavior. 

(Gomes et al. 97, Hoos 99, Horvitz 99, Huberman, 

Lukose and Hogg 97, Karp et al  96, Luby et al.  

93, Rish et al. 97) 

 This idea is implemented  in ILOG CPOptimizer and 

it works! 

 It is also implemented in ILOG Cplex under the 

name “Dynamic search” 

 Main advantage: it is much more robust 

 



4 common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 



Biased Benchmarking 

 The identification of an interesting subpart is a first 

step. The advantage is two fold: 

 We can focus our attention on a difficult part that we 

need to solve  

 We can work on smaller problems 

 Be careful: it is also important to design some 

benchmarks from which we expect to derive 

general considerations 

 



Biased Benchmarking 

 Represent the fact that the results obtained from a 

benchmark can be not representative of the whole, 

problem 

 Make sure that you can extrapolate your results! 

 



Relevant and realistic Instances 

 Benchmarking is serious and not easy 

 The name of a problem is not enough (e.g. quasigroup 
completion problem (QCP), latin square).  

 It is an hard task to find hard QCP instances for small values 
(<100 or < 200).  

 However, there are some exceptionally hard instances (B. Smith) 
for n=35 

 Avoid considering empty instances if you want to be able to 
generalize your results 

 Example of biased benchmarking: the bin packing problem 
(“Comparison of Bin Packing models”, JC Régin, M. Rezgui, 
A. Malapert, AIDC workshop at AAAI-11)  



Bin packing problem 

 

 Bin Packing Problem 

 

 Range different sizes items in a 

number of bins with a limited 

capacity 

 

 

 

 

 

 

 



Instances 
78 

 Falkenauer, Scholl and Korf mainly consider instances 
with about 3 items per bins (Korf explicitly build 
instances with 3 items per bins) 

 This lead to efficient methods. 

 Some lower bounds may be used (Martello and Toth 
consider items whose size is more than half or a third of 
the bin capacity) 

 

 I. Gent solved by hand some instances claimed to be 
difficult by Faulkenauer. He criticized the proposed 
instances  



Instances 
79 

 I. Gent is right 

 It is difficult to extrapolate from these instances 

 4 items per bins are more difficult 

 Then, the difficulties of the instances decrease (in 

general) when the number of item per bin is increased!  



Instances 
80 



Sum constraint 
81 

 We have seen that the number of items per bin is 

quite important 

 We made an interesting remark about this 

 Consider Diophantine equation 

 

 



Sum constraint 

 Diophantine equation ax + by =c, solved for 
natural numbers 

 Paoli’s Theorem 

 q is the quotient of c/ab and r the remaining part of c/ab  

 The number of positives (or =0) integer solutions of the 
equation ax + by = c is  q or q+1 depending on the fact 
that the equation ax + by = r admits one or zero solution. 

 We set gcd(a,b)=1 

 If c > ab : always a solution : no (or almost no) filtering!  

 if c < ab : half of the values have a solution: almost no 
filtering 



Sum constraint 

 Diophantine equation ax + by +cz =d 

 Is equivalent to 

 ax + by = d-c OR ax + by = d -2c OR … 

 The density of solution increases! We have less and 

less chance to not be able to satisfy the constraint… 

 

 If our results are based on a sum with only few 

variables then we cannot extrapolate when we will 

have a lot of variables! 



4 common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 



Wrong abstraction 

 It is difficult to identify relevant subparts of a problems, 
that is the one on which we should first focus our 
attention 

 The wrong abstraction pitfall is the consideration of a 
subpart which is interesting but which is not relevant for 
the resolution of the whole problem 

 

 Considered in 1997 by C. Bessière and J-C Régin 
(CP’97)  

 Before writing a filtering algorithm we should study if it 
could be worthwhile for solving the problem 



Abstractions 

 Some problems are more interesting than some 

others 

 For instance, the Golomb ruler problem is more 

interesting than the allinterval series 



Abstractions 

 Allinterval Series:  
Find a permutation (x1, ..., xn) of {0,1,...,n-1} such that 
the list (abs(x2-x1), abs(x3-x2), ... , abs(xn - xn-1)) is a 
permutation of {1,2,...,n-1}. 

 Golomb Ruler:  
a set of n integers 0=x1 < x2 < … < xn s.t. the  
n(n-1)/2 differences (xk - xi) are distinct and xn is 
minimized 

 In the allinterval series there is no mix between the 
alldiff constraint and the arithmetic constraints (2 
separate alldiff + absolute difference constraints), 
whereas such a mix exists in the Golomb ruler 



AllInterval series 

 See Puget & Regin’s note in the CSPLib 

 2 first solutions non symmetrical: 

 N=2000, #fails=0, time=32s (Pentium III, 800Mhz) 

 N <100 #fails=0, time < 0.02s 

 All solutions: 

 N=14, #fails=670K, time=600s, #sol=9912 

 This problem is not really difficult 



Golomb Ruler 
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 x1,…,xn = variables; (xi-xj)= variables. Alldiff 

involving all the variables. 

 with CP difficult for n > 13. 

 

   



Alldiff 
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|x1-x2| 

 

|x1-x3| 

 

|x2-x3| 
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Not a good solution 

Bad incorporation 

of constraint 

|xi – xj| in alldiff 
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|xi – xj| in alldiff 



Golomb Ruler 

 Conclusion about the Golomb Ruler: we are not able to 
integrate counting constraints and arithmetic constraints 

 If we want to solve such a problem: 

 Either we are able to do that 

 Or we find a completely different model 

 The Golomb Ruler Problem is not a subproblem of any 
problem, BUT it is a good representative of a type of 
combination we are not able to solve 

 Improving the resolution of Golomb Ruler will help us to 
improve the resolution of a lot of problems   



Abstraction 

 Consider you have a mix of symbolic and arithmetic 

constraints 

 If I solve the golomb ruler then I will be able to 

solve the allinterval series 

 The opposite is not true 

 Conclusion 

 The golomb ruler is a good abstraction  

 The allinterval series is not a good abstraction 



Good abstraction 

 An example of good abstraction is the 1-tree for 

the TSP (Traveling Salesman Problem) 

 P. Benchimol, J-C. Régin, L-M. Rousseau, M. Rueher and 

W-J. van Hoeve: “Improving the Held and Karp Bound 

with Constraint Programming”, CP-AI-OR’10, Bologna, 

2010 

 J-C. Régin, L-M. Rousseau, M. Rueher and W-J. van 

Hoeve: “The Weighted Spanning Tree Constraint 

Revisited”, CP-AI-OR’10, Bologna, 2010 
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Replacement costs 

 An edge e is inconsistent iff every spanning tree that contains e 

has weight > K 

 Replacement edge 

 Replacement edge minimizes the increase of cost 

 Replacement edge =  maximum edge on the i-j path in T 

Replacement cost of 

• (1,2) is 4 - 2 = 2 

• (6,7) is 5 - 5 = 0 
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Replacement cost for tree edges 

 The replacement cost of a tree edge e is  

 w(T’) - w(T), where 

 T is a minimum spanning tree of G, and T’ is a minimum spanning tree of G \ e 

 In other words, it represents the minimum marginal increase if we replace e by 

another edge 

 An edge e is mandatory iff its replacement cost + w(T) > K 

Replacement cost of (1,4)? 

we need to find the cheapest 

edge to reconnect: 3 - 1 = 2 



St70 opt = 675 upper bound 700 

 



St70 opt=685 upper bound=675 

 



TSP: results 

 



TSP: results 

 



TSP 

 Good abstraction 

 Random-restart 

 Good benchmarks 

 

 Lack of decomposition? 

 



Conclusion 

 When you want to solve a problem or when you are 
not able to solve a problem. Think about the 4 
common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 

 Try to solve some real world problems 

 Try to solve some well known problems (clique max, 
TSP, coloring, …) 

 


