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Constraints and Proofs team at Univ. Nice-Sophia
Antipolis

Program verification with CP

In competition with the well known COQ Proof assistant
program at INRIA

COQ is more formal, more theory oriented
is it better?

Verification is undecidable
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What can of problems can we solve?
—

o | want to do something that could be useful in the
future (50 years?)

71 Polynomial
1 Unclassified

1 NP-Complete



Solving polynomial problems

If we know that the problem is in P
why do we need CP?

If a P algorithm is known we don’t need CP
The problem is in P but we don’t have any P

algorithm

This is rare! | don’t have any problem like that



Solving unclassified problems

There are some problems like that

Some scheduling problems are large PERT with some
additional constraints

Three possibilities
We will prove it is in P: no more need of CP
We will prove it is NP-Complete (see later)

We will not prove anything (good for us)



Solving NP complete problems
N

11 Two possibilities
o P =NP
0P #NP

01 The first case, is not good for us (see P part).
7 Let’s go for P # NP



P # NP

Ok, we cannot avoid an exponential behavior

For some instances, each NP Complete Problem will
required an exponential time to be solved

So, our only hope is to shift the exponential such
that the problem is solvable for a size and a time
that are acceptable



Shifting the exponential
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Shifting the exponential
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Sports scheduling models

Second Model

# teams # fails Time (in s)
4 2 0.01
6 12 0.03
8 32 0.08

10 417 0.8
12 41 0.2
14 3,514 9.2
16 1,112 4.2
18 8,756 36
20 72,095 338
22 6,172,672 10h
24 6,391,470 12h

First Model

# teams # fails Time (in s)

8 10 0.01
10 24 0.06
12 58 0.2
14 21 0.2
16 182 0.6
18 263 0.9
20 226 1.2
24 2702 10.5
26 5,683 26.4
30 11,895 138
40 2,834,754 6h




P % NP

1 We can only shift the exponential

1 We will never solve the problem in general



CP and other techniques

It is not easy to compare CP with other techniques

It is not easy to compare techniques aiming at
solving NP-Complete problems

Because the problems are hard in general

Some instances are easy in CP and difficult with other
techniques and conversely :
2 examples: Sports scheduling (vs MIP) and Latin Square
Completion (vs SAT)

SAT is able to solve some efficiently some instances of the
Latin Square Completion but do not scale or not able to
solve an empty problem



Comparison with CP

It is difficult to define the difficulty of the resolution
of some NP Complete problems

In theory: they are hard

In practice: the resolution uses a particular technique, so
there is no absolute reference



P. NP and so what¢

Problems in P or P = NP: CP has almost no
advantage

The propagation mechanism in itself is interesting

(M. Wallace)

Problems in NP: try to solve it to show the
advantage of CP wrt the other techniques

Interest of CP if we don’t try to solve some
problems?

Open question ©



Problem resolution

It is hard

Common problems
Size
Intrinsic difficulty of some subparts

Combination of subparts

Usually requires the implementation of a complex
procedure divided into several steps



4 common steps

Try to abstract some parts of the whole problem

Focus your attention on the difficult parts or on the
combination of parts

Work on smaller parts (benchmarking)

Find good search strategies for the different parts

Define a global model (combination of parts,
scaling ...)
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4 common pitfalls
I =
11 Undivided model
11 Rigid search
©1 Biased benchmarking

1 Wrong abstraction



4 common pitfalls

Undivided model

The global model is too much general
Split the resolution into different parts
Rigid search
The search strategy is too much linked to a DFS
Wrong part must be left quickly
Biased benchmarking

The results obtained for small size abstraction cannot be
extrapolated for the whole problem

Wrong abstraction
The part identified as relevant are not relevant
The resolution of some subparts could be improved



4 common pitfalls
S —

1 Undivided model

11 Rigid search

©1 Biased benchmarking

1 Wrong abstraction



Undivided model

Either we directly deal with the whole problem in
one step or we try to decompose it

The decomposition of the problem is a classical idea
in MIP

Column generation

Bender’s decomposition

Lagrangian relaxation (close to abstraction)



Undivided model

Solving some subparts and recombine them for
solving the whole problem



Pre-resolution of a part of a problem

Configuration Problem:
5 types of components: {glass, plastic, steel, wood, copper}

3 types of bins: {red, blue, green} whose capacity is red 5, blue
5, green 6

Constraints:

- red can contain glass, cooper, wood

- blue can contain glass, steel, cooper

- green can contain plastic, copper, wood

- wood require plastic; glass exclusive copper

- red contains at most 1 of wood

- green contains at most 2 of wood

For all the bins there is either no plastic or at least 2 plastic

Given an initial supply of 12 of glass, 10 of plastic, 8 of steel,
12 of wood and 8 of copper;
what is the minimum total number of bins?

24



Pre-resolution of a part of a problem
N

#bk time
standard model 1,361,709 (430
GAC+allowed 12,659 | 9.7

25



Undivided model

Solving some subparts and recombine them for
solving the whole problem

( Scalable Load Balancing in Nurse to Patient

Assignment Problems », P. Schaus, P Van Hentenryck,
J-C Régin, CPAIOR 09



Description of the Problem




Description of the Problem




Description of the problem

The constraints
Each patient must be allocated to one nurse.
One nurse can take at most 3 patients and at least 1.
One nurse can only work in one zone.

The objective

Assign patients to nurses such that the nurse workload is
balanced.

Assigning patients to nurses in neonatal intensive care,

C Mullinax and M Lawley, Journal of the Operational
Research Society, 2002



Minimization of the variance




Results (2 zones instances)

0 All solved optimally within 20 minutes (the MIP
model cannot). m = #nurses; n = #infants

I i #lails time(s) avg workload scl. workload
11 25 211045 170.2 ST 2.064
11 21 1 126450 A02.0 sO0.2T 1.76G
11) 20 10431 24.7 Th.50 2.29
12 Al 250147 136.5 H3.42 1.93
11) 25 LTS 11355 Q180 .54
11) 2 TGS 20169 s 2.29
12 21 300243 105.2 =0.0= 2.72
11} 27 1858 3439 QG 9.4
11) 25 1616659 434.5 =270 7.32

& 22 41610 1.2 BT.al 3.12




Observations for improving the model

The number of nurses assigned to each zone has a huge
influence on the quality of the balancing.

Most of the inbalance comes from the inter-zone workloads.
Very good balance inside each zone.

Optimal solutions look like this:
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The Idea: A two steps approach

We consider a relaxation of the initial problem
Compute the number of nurses assigned to each zone.

A patient can only take the pre-computed nurses
(modification of the domains of variables).

Optimal solutions of this relaxed problem are very
close to optimal solutions of the general problem

- How to compute the number of nurses assigned to
each zone ¢



Compute the number of nurses
assigned to each zone

1 We solve the optimally of this problem in O(p™*m)
with a greedy algorithm. (p = #zones; m = #nurses)

- ad > Y2 >
. - A = A4
min T | — — A
p
\ZQ‘}*\ 7’%% s.t. Z:c,,, =m
k=1
T € Z(_){_

A.: acuity of the zone | (GIVEN)
x:: number of nurses in zone | (UNKNOWNS)



Previous results (2 zones instances)

0 All solved optimally within 20 minutes (the MIP
model cannot). m = #nurses; n = #infants

I i #lails time(s) avg workload scl. workload
11 25 211045 170.2 ST 2.064
11 21 1 126450 A02.0 sO0.2T 1.76G
11) 20 10431 24.7 Th.50 2.29
12 Al 250147 136.5 H3.42 1.93
11) 25 LTS 11355 Q180 .54
11) 2 TGS 20169 s 2.29
12 21 300243 105.2 =0.0= 2.72
11} 27 1858 3439 QG 9.4
11) 25 1616659 434.5 =270 7.32

& 22 41610 1.2 BT.al 3.12




New results on 2 zones instances
S

7 Less than 10 seconds (m: #nurses; n = #infants)

Tre il #lails  time(s)  avg workload sl workload  Ih. sd.

11 28 25385 4.5 =614 2064 2.23
11 24 449116 1.4 BT 1.7 (.62
1y 26 458 (.1 T4 2.20 2.2
12 30 17558 0.7 5342 1.93 1.1%
1y 25 29865 4.8 9180 (.54 G.81
1 26 ST05 1.1 HE_4H] 2.20 1.43
12 24 G115 1.2 S0 272 .64
1 27 1100t (1.4 Q)G 333 3.22
1y 25 3200 (1.1 H2.TI] T.32 G.71

B 22 127 (1.1 A7l .12 SRS




Results on 3 zones instances
N

71 6/10 instances solved optimally (m: #nurses; n =

Hinfants)
=Th)| m i #inils timme(s) avg. wl sl wl Iy, sl
| 15 42 19458 3.4 8420 3.04 293
| 15 43 19310 0149.2 V.78 o84 3.4%
(] L7 43 23072 1 E{N)0) 81.41 4.75 3.45
| L7 42 AR5 1{H;. 4 B3.82 .00 3.0
() 15 43 T124370 1 E{H)0) S1.0H) 7.11 4.4
| 14 38 2IHAT] 145.2 8536 .08 2.16
() 19 48 37 RS0 1 E{H)0) 87.42 3.18 2.0
| F 11 FREE210 B3O8 B4 88 (. 710 .34
() 19 10 obT272 1 E{H)0) 8604 2,70 1.495
| L7 41 G1250 17.3 82.18 .40 307




Good news: The decomposition can

work
.

1 Given a precomputation of the number of nurses for
each zone:

minimizing the variance minimizing the variance in

among all the nurses each zone separately




2 Steps Approach with Decomposition
—

1 Compute the number of nurses assigned to each
Zone.

1 Solve independently the problems inside each zone.



New results on the 3 zones instances
S

71 Easy now (less than 3 seconds) (m: #nurses; n =

Hinfants)
T i #lails  time(s)  avg workload sl workload  Ih. sd.
15 42 203 (1.1 54 20) .04 293
18 43 GlE (1.1 TOTH 3.54 3.4%
17T 43 5134 1.1 51.41 4.4 3.45
17T 42 345 (1.1 8352 3.00 3.0
18 43 24994 3.2 51000 3.7 4.4
14 38 151 (1.0 55,30 3.8 2.16
19 48 3605 (1.5 57.42 3.07 2.0
16 44 384 (1.1 54 58 (. 710 .34
19 49 20050 (1.4 STARAL 2.49 1.495

17 41 Tk (.2 5218 340 307




We can even solve 15 zones instances!
—




The problem

 n teams and n-1 weeks and n/2 periods

* every two teams play each other exactly once

« every team plays one game in each week

* no team plays more than twice in the same period

Week1 |Week?2 [Week3 |Week4 |Week5 |Week6 |Week7

Period1 | Owvsl Ovs?2 4vs7 3Vvs6 3vs7 1vs5 2Vs4

Period2 | 2vs3 1vs7 Ovs3 5vs7 1vs4 Ovs6 5vs6

Period3 | 4vs5 3vsh 1vs6 Ovs4 2 VS 6 2Vs7 Ovs7

Period4 | 6vs7 4vs6 2Vs5 1vs2 Ovs5 3vs4 1vs3




CP model: variables

For each slot: 2 variables represent the teams
and 1 variable represents the match are defined

Week 1 | Week?2 |Week3 |Week4 |Week5 |Week6 |Week7

Period1| Owvsl Ovs?2 4vs7 3Vvsb 3vs7 1vs5 2Vs4

Period2 | 2vs3 1vs7 Ovs3 5vs7 1vs4 Ovsb 5vs6

Period3 | 4vs5 3vs5 1vs6 Ovs4 2VsS6 2Vs7 Ovs7

Period4 | 6vs7 4v56 2Vs5 lvs?2 Ovs5h 3vs4 1vs3

LlLs(Ef M33 variable (M33=12)| Mij=1<=>0vslorlvsO

T33a variable (T33a=6) Mij=12 <=>1vsGorbvsl
T33h variable (T33h=1)




CP model: T variables

Week 1 | Week?2 |[Week3 |Week4 | Week5 |Week6 |Week?7

Period 1 T11lh vs T12h vs T13h vs T14h vs T15h vs T16h vs T17h vs
T1lla T12a T13a T14a T15a T16a T17a

Period 2 | T2lhvs T22h vs T23hvs T24h vs T25h vs T26h vs T27hvs
T21a T22a T23a T24a T25a T26a T27a

Period 3 T31hvs T32h vs T33h vs T34h vs T35h vs T36h vs T37h vs
T31a T32a T33a T34a T35a T36a T37a

Period 4 T41h vs T42h vs T43h vs T44h vs T45h vs T46h vs T47h vs
T4la T42a T43a T44a T45a T46a T47a

D(Tija)=[1,n-1]
D(Tijh)=[0,n-2]

Tijh < Tija



CP model: M variables

Week 1 [Week2 |[Week3 |[Week4 |Week5 |Week6 |Week?7
Period 1 M1l M12 M13 M14 M15 M16 M17
Period 2 M21 M22 M23 M24 M25 M26 M27
Period3 | M31 M32 M33 M34 M35 M36 M37
Period 4 M41 M42 M43 M44 M45 M46 M47

D(Mij)=[1,n(n-1)/2]




CP model: constraints

* n teams and n-1 weeks and n/2 periods

* every two teams play each other exactly once

* every team plays one game in each week

* no team plays more than twice in the same period

Week 1 [Week2 |[Week3 |[Week4 |Week5 |Week6 |Week?7
Period 1 M11 M12 M13 M14 M15 M16 M17
Period 2 M21 M22 M23 M24 M25 M26 M27
Period3 | M31 M32 M33 M34 M35 M36 M37
Period 4 M41 M42 M43 M44 M45 M46 M47

Alldiff constraints defined on M variables




CP model: constraints

 n teams and n-1 weeks and n/2 periods

e every two teams play each other exactly once

« every team plays one game in each week

* no team plays more than twice in the same period

Week 1 |[Week?2 |Week3 |[Week4 |[Week5 |Week6 |Week7

Period 1 | Tllhws T12h vs T13h vs T14h vs T15h vs T16h vs T17h vs
Tlla T12a T13a Tl4a T15a T16a T17a

Period2 | T21lhvs T22h vs T23h vs T24h vs T25h vs T26h vs T27h vs
T21a T22a T23a T24a T25a T26a T27a

Period 3 T31h vs T32h vs T33h vs T34h vs T35h vs T36h vs T37h vs
T31la T32a T33a T34a T35a T36a T37a

Period4 | T4lhvs T42h vs T43h vs T44h vs T45h vs T46h vs T47h vs
T4la T42a T43a T44a T45a T46a T47a

For each week w:
Alldiff constraint defined
on {Tpwh, p=1..4} U {Tpwa, p=1..4}



CP model: constraints

 n teams and n-1 weeks and n/2 periods

e every two teams play each other exactly once

« every team plays one game in each week

* N0 team plays more than twice in the same period

Week 1 | Week2 |[Week3 |Week4 | Week5 |Week6 |Week?7

Period 1 T11lhvs T12h vs T13h vs T14h vs T15h vs T16h vs T17h vs
Tlla T12a T13a T14a T15a T16a T17a

Period 2 | T21lhvs T22h vs T23h vs T24h vs T25h vs T26h vs T27hvs
T21a T22a T23a T24a T25a T26a T27a

Period3 | T3lhvs T32h vs T33h vs T34h vs T35h vs T36h vs T37h vs
T31a T32a T33a T34a T35a T36a T37a

Period 4 T41h vs T42h vs T43h vs T44h vs T45h vs T46h vs T47h vs
T41a T42a T43a T44a T45a T46a T47a

For each period p:

Global cardinality constraint defined on
{Tpwh, w=1..7} U {Tpwa, w=1..7}
every team t is taken at most 2



CP model: constraints

For each slot the two T variables and the M variable must be linked together; example:
M12 = game T12h vs T12a

For each slot we add Cij a ternary constraint defined on the two T variables and the M

variable; example:
C12 defined on {T12h,T12a,M12}

Cij are defined by the list of allowed tuples:
for n=4:{(0,1,1),(0,2,2),(0,3,3),(1,2,4),(1,3,5),(2,3,6)}

(1,2,4) means game 1 vs 2 is the game number 4
All these constraints have the same list of allowed tuples

Efficient arc consistency algorithm for this kind of constraint is known



First model

Introduction of a dummy column

Week 1 |Week2 |Week3 [Week4 |Week5 |[Week6 |Week7 | Dummy
Period1 | Owvsl Ovs2 4vs 7 3Vs6 3vs7 1vs5 2Vvs4 . VS.
Period2 | 2vs3 1vs7 Ovs3 Svs7 1vs4 Ovs6 Svs6 . VS.
Period3 | 4vs5 3vs5 1vs6 Ovs4 2 Vs 6 2 Vs 7 Ovs7 . VS.
Period4 | 6vs7 4 vs 6 2VS5 1vs?2 Ovs5 3vs4 1vs3 VS,




First model

Introduction of a dummy column

Week 1 |[Week2 |Week3 |[Week4 |Week5 |Week6 |Week7 | Dummy
Period1 | Ovsl Ovs2 4vs7 3vs6 3vs7 1vs5 2vs4 5vs6
Period2 | 2vs3 1vs7 Ovs3 S5vs7 1vs4 Ovs6 S5vs6 . VS.
Period3 | 4vs5 3vs5 1vs6 Ovs4 2Vs6 2 Vs 7 Ovs7 . VS.
Period4 | 6vs7 4Vs6 2VsS5 1vs2 Ovs5S 3vs4 1vs3 . VS.

We can prove that:

» each team occurs exactly twice for each period




First model

Introduction of a dummy column

Week 1 |Week2 |[Week3 |Week4 |Week5 |Week6 |Week7 | Dummy
Period1 | Ovsl Ovs2 4vs7 3vs6 3vs7 1vs5 2vs4 5vs6
Period2 | 2vs3 1vs7 Ovs3 5vs7 1vs4 Ovs6 5vs6 2vs 4
Period3 | 4vs5 3vs5 1vs6 Ovs4 2Vs6 2 Vs 7 Ovs7 1vs3
Period4 | 6vs7 4 vs 6 2Vs5 1vs?2 Ovs5 3vs4 1vs3 Ovs7

We can prove that:
» each team occurs exactly twice for each period

» each team occurs exactly once in the dummy column ——




First model: strategies

Break symmetries: O vs w appears in week w

Teams are instantiated:

- the most instantiated team is chosen

- the slots that has the less remaining possibilities
(Tijh or Tija is minimal) is instantiated with that team



First model: results

# teams # fails Time (in s)
4 2 0.01
6 12 0.03
8 32 0.08

10 417 0.8
12 41 0.2
14 3,514 9.2
16 1,112 4.2
18 8,756 36
20 72,095 338
22 6,172,672 10h
24 6,391,470 12h

MIPLIB



Second model
B

71 Break symmetry: O vs 1 is the first game of the
dummy column



Second model

Break symmetry: O vs 1 is the first game of the
dummy column

1) Find a round-robin. Define all the games for each
column (except for the dummy)

- Alldiff constraint on M is satisfied

- Alldiff constraint for each week is satisfied



Second model

Break symmetry: O vs 1 is the first game of the
dummy column

1) Find a round-robin. Define all the games for each
column (except for the dummy)

- Alldiff constraint on M is satisfied

- Alldiff constraint for each week is satisfied

2) set the games in order to satisfy constraints on
periods. If no solution go to 1)



Second model: strategy

M variables are instantiated

Week 1 | Week?2 [Week3 |Week4 |Week5 |Week6 |Week7

Period1 | M1l M12 M13 M14 M15 M16 M17

Period2 | M21 M22 M23 M24 M25 M26 M27

Period3 | M3l M32 M33 M34 M35 M36 M37

Period4 | M4l M42 M43 M44 M45 M46 M47




Second model: strategy

M variables are instantiated

Week1 | Week?2 [Week3 |Week4 |Week5 |Week6 |Week7

Period1 | M11 M12 M13 M14 M15 M16 M17

Period2 | M21 M22 M23 M24 M25 M26 M27

Period3 | M31 M32 M33 M34 M35 M36 M37

Period4 | M4l M42 M43 M44 M45 M46 M47




Second model: strategy

M variables are instantiated

Week 1 [Week2 |[Week3 |[Week4 |Week5 |Week6 |Week?7
Period 1
Period 2 M21 M22 M23 M24 M25 M26 M27
Period3 | M31 M32 M33 M34 M35 M36 M37
Period 4 M41 M42 M43 M44 M45 M46 M47




Second model: strategy

M variables are instantiated

Week 1 [Week2 |[Week3 |[Week4 |Week5 |Week6 |Week?7
Period 1
Period 2 M22 M23 M24 M25 M26 M27
Period 3 M32 M33 M34 M35 M36 M37
Period 4 M42 M43 M44 M45 M46 M47




Second model: strategy

M variables are instantiated

Week 1 [Week2 |[Week3 |[Week4 |Week5 |Week6 |Week?7
Period 1
Period 2
Period 3 M32 M33 M34 M35 M36 M37
Period 4 M42 M43 M44 M45 M46 M47




Sports scheduling models

Second Model

# teams # fails Time (in s)
4 2 0.01
6 12 0.03
8 32 0.08

10 417 0.8
12 41 0.2
14 3,514 9.2
16 1,112 4.2
18 8,756 36
20 72,095 338
22 6,172,672 10h
24 6,391,470 12h

First Model

# teams # fails Time (in s)

8 10 0.01
10 24 0.06
12 58 0.2
14 21 0.2
16 182 0.6
18 263 0.9
20 226 1.2
24 2702 10.5
26 5,683 26.4
30 11,895 138
40 2,834,754 6h




4 common pitfalls
S —

11 Undivided model

o Rigid search

©1 Biased benchmarking

1 Wrong abstraction



Rigid search

| notice that there are 2 kinds of people in CP

Those focused on the search strategies, who « thinks »
strategies

Those focused on constraints, who « thinks » constraints

| am not a big fan of search strategy



Rigid Search

We can deal a lot and invent a lot of strategies fro
solving a problem

Random-restart is a method
performing very well

that can be used with any strategy

Slides and work of Carla Gomes



Quasigroup completion
—
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Heavy tail distribution (Pareto 1920)
—

Power Law Decay

= 4

HEAVY TATLED DISTRIBUTTON

Exponential Decay

<z

Standard Distribution
(finite mean & variance)



Quasigroup Resolution
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Exploiting Heavy-Tailed behavior

Heavy Tailed behavior has been observed in
several domains: QCP, Graph Coloring, Planning,
Scheduling, Circuit synthesis, Decoding, etc.

Consequence for algorithm design: Use restarts
runs to exploit the extreme variance performance.



Restarts
N
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Restarts

Restarts provably eliminate heavy-tailed behavior.
(Gomes et al. 97, Hoos 929, Horvitz 99, Huberman,

Lukose and Hogg 97, Karp et al 96, Luby et al.
@3, Rish et al. 97)

This idea is implemented in ILOG CPOptimizer and
it works!

It is also implemented in ILOG Cplex under the
name “Dynamic search”

Main advantage: it is much more robust



4 common pitfalls

Undivided model
Rigid search
Biased benchmarking

Wrong abstraction



Biased Benchmarking

The identification of an interesting subpart is a first
step. The advantage is two fold:

We can focus our attention on a difficult part that we
need to solve

We can work on smaller problems
Be careful: it is also important to design some

benchmarks from which we expect to derive
general considerations



Biased Benchmarking

Represent the fact that the results obtained from a
benchmark can be not representative of the whole,
problem

Make sure that you can extrapolate your results!



Relevant and realistic Instances

Benchmarking is serious and not easy

The name of a problem is not enough (e.g. quasigroup
completion problem (QCP), latin square).
It is an hard task to find hard QCP instances for small values

(<100 or < 200).

However, there are some exceptionally hard instances (B. Smith)
for n=35

Avoid considering empty instances if you want to be able to
generalize your results

Example of biased benchmarking: the bin packing problem
(“Comparison of Bin Packing models”, JC Régin, M. Rezgui,
A. Malapert, AIDC workshop at AAAI-11)



Bin packing problem

Bin Packing Problem

Range different sizes items in @
number of bins with a limited

capacity ;




Instances

Falkenauer, Scholl and Korf mainly consider instances
with about 3 items per bins (Korf explicitly build
instances with 3 items per bins)

This lead to efficient methods.

Some lower bounds may be used (Martello and Toth
consider items whose size is more than half or a third of
the bin capacity)

|. Gent solved by hand some instances claimed to be
difficult by Faulkenauer. He criticized the proposed
instances



Instances

l. Gent is right

It is difficult to extrapolate from these instances
4 items per bins are more difficult

Then, the difficulties of the instances decrease (in
general) when the number of item per bin is increased!



Instances
T

BILBA
BILTA
B_LTA
BI_TA
B_TA
B_TB
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Sum constraint

We have seen that the number of items per bin is
quite important

We made an interesting remark about this

Consider Diophantine equation



Sum constraint

Diophantine equation ax + by =c, solved for
natural numbers

Paoli’s Theorem
q is the quotient of c¢/ab and r the remaining part of c/ab
The number of positives (or =0) integer solutions of the
equation ax + by = cis q or g+1 depending on the fact
that the equation ax + by = r admits one or zero solution.
We set gcd(a,b)=1
If ¢ > ab : always a solution : no (or almost no) filtering!

if ¢ < ab : half of the values have a solution: almost no
filtering



Sum constraint

Diophantine equation ax + by +cz =d
Is equivalent to
ax + by =d-cORax + by =d -2c OR ...

The density of solution increases! We have less and
less chance to not be able to satisfy the constraint...

If our results are based on a sum with only few
variables then we cannot extrapolate when we will
have a lot of variables!



4 common pitfalls
S —

71 Undivided model

11 Rigid search

©1 Biased benchmarking

7 Wrong abstraction



Wrong abstraction

It is difficult to identify relevant subparts of a problems,
that is the one on which we should first focus our
attention

The wrong abstraction pitfall is the consideration of a
subpart which is interesting but which is not relevant for
the resolution of the whole problem

Considered in 1997 by C. Bessiére and J-C Régin
(CP'97)
Before writing a filtering algorithm we should study if it
could be worthwhile for solving the problem



Abstractions

Some problems are more interesting than some
others

For instance, the Golomb ruler problem is more
interesting than the allinterval series



Abstractions

Allinterval Series:

Find a permutation (x1, ..., xn) of {O,1,...,n-1} such that
the list (abs(x2-x1), abs(x3-x2), ..., abs(xn - xn-1)) is a
permutation of {1,2,...,n-1}.

Golomb Ruler:

a set of nintegers 0=x1 < x2 < ... < xn s.t. the
n(n-1)/2 differences (xk - xi) are distinct and xn is
minimized

In the allinterval series there is no mix between the
alldiff constraint and the arithmetic constraints (2

separate alldiff + absolute difference constraints),
whereas such a mix exists in the Golomb ruler



Alllnterval series

See Puget & Regin’s note in the CSPLib

2 first solutions non symmetrical:
N=2000, #fails=0, time=32s (Pentium lll, 800Mhz)
N <100 #fails=0, time < 0.02s

All solutions:
N=14, #fails=670K, time=600s, #s0l|=9912

This problem is not really difficult
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Golomb Ruler

x1,...,xn = variables; (xi-xj)= variables. Alldiff
involving all the variables.

with CP difficult forn > 13.
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Alldiff

IX1-X2| =

IX1-X3|

IX2-X3|

x1

X2

X3

Not a good solution
Bad incorporation
of constraint

IXi — xj| in alldiff



91

Alldiff

IX1-X2| ==

IX1-X3|

IX2-X3|

x1

X2

X3

Not a good solution
Bad incorporation
of constraint

IXi — xj| in alldiff



Golomb Ruler

Conclusion about the Golomb Ruler: we are not able to
integrate counting constraints and arithmetic constraints
If we want to solve such a problem:

Either we are able to do that

Or we find a completely different model
The Golomb Ruler Problem is not a subproblem of any

problem, BUT it is a good representative of a type of
combination we are not able to solve

Improving the resolution of Golomb Ruler will help us to
improve the resolution of a lot of problems



Abstraction

Consider you have a mix of symbolic and arithmetic
constraints

If | solve the golomb ruler then | will be able to
solve the allinterval series

The opposite is not true

Conclusion
The golomb ruler is a good abstraction

The allinterval series is not a good abstraction



Good abstraction

An example of good abstraction is the 1-tree for
the TSP (Traveling Salesman Problem)

P. Benchimol, J-C. Régin, L-M. Rousseau, M. Rueher and
W-J. van Hoeve: “Improving the Held and Karp Bound
with Constraint Programming”, CP-AI-OR’10, Bologna,
2010

J-C. Régin, L-M. Rousseau, M. Rueher and W-J. van
Hoeve: “The Weighted Spanning Tree Constraint
Revisited”, CP-AI-OR’10, Bologna, 2010



Held and Karp Bound for TSP

Cost = 25




Replacement costs

An edge e is inconsistent iff every spanning tree that contains e
has weight > K

Replacement edge
Replacement edge minimizes the increase of cost

Replacement edge = maximum edge on the i-j pathin T

Replacement cost of
°*(1,2)is4-2=2
°*(6,7)is5-5=0
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Replacement cost for tree edges

The replacement cost of a tree edge e is
w(T’) - w(T), where

T is a minimum spanning tree of G, and T’ is a minimum spanning tree of G \ e

In other words, it represents the minimum marginal increase if we replace e by

another edge

An edge e is mandatory iff its replacement cost + w(T) > K

Replacement cost of (1,4)2

we need to find the cheapest

edge to reconnect: 3 -1 = 2
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St70 opt = 675 upper bound 700




St70 opt=685 upper bound=675
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TSP

Good abstraction
Random-restart

Good benchmarks

Lack of decomposition?



Conclusion

When you want to solve a problem or when you are
not able to solve a problem. Think about the 4
common pitfalls

Undivided model
Rigid search
Biased benchmarking

Wrong abstraction
Try to solve some real world problems

Try to solve some well known problems (clique max,
TSP, coloring, ...)



