
Jean-Charles Régin

Univ. Nice-Sophia Antipolis, France

Solving Problems with CP:

Four common pitfalls to avoid

 Constraints and Proofs team at Univ. Nice-Sophia
Antipolis

 Program verification with CP

 In competition with the well known COQ Proof assistant
program at INRIA

 COQ is more formal, more theory oriented

 is it better?

 Verification is undecidable

Plan

 What kind of problem can we solve with CP?

 4 pitfalls to avoid

 Conclusion

What can of problems can we solve?

 I want to do something that could be useful in the

future (50 years?)

 Polynomial

 Unclassified

 NP-Complete

Solving polynomial problems

 If we know that the problem is in P

why do we need CP?

 If a P algorithm is known we don’t need CP

 The problem is in P but we don’t have any P

algorithm

 This is rare! I don’t have any problem like that

Solving unclassified problems

 There are some problems like that

 Some scheduling problems are large PERT with some

additional constraints

 Three possibilities

 We will prove it is in P: no more need of CP

 We will prove it is NP-Complete (see later)

 We will not prove anything (good for us)

Solving NP complete problems

 Two possibilities

 P = NP

 P ≠ NP

 The first case, is not good for us (see P part).

 Let’s go for P ≠ NP

P ≠ NP

 Ok, we cannot avoid an exponential behavior

 For some instances, each NP Complete Problem will

required an exponential time to be solved

 So, our only hope is to shift the exponential such

that the problem is solvable for a size and a time

that are acceptable

Shifting the exponential

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50

pb

We want to solve for n=60 in less than 400s

Shifting the exponential

We want to solve for n=60 in less than 400s

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80

pb

Sports scheduling models

teams # fails Time (in s)

8 10 0.01

10 24 0.06

12 58 0.2

14 21 0.2

16 182 0.6

18 263 0.9

20 226 1.2

24 2702 10.5

26 5,683 26.4

30 11,895 138

40 2,834,754 6h

teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

First Model

Second Model

P ≠ NP

 We can only shift the exponential

 We will never solve the problem in general

CP and other techniques

 It is not easy to compare CP with other techniques

 It is not easy to compare techniques aiming at
solving NP-Complete problems

 Because the problems are hard in general

 Some instances are easy in CP and difficult with other
techniques and conversely :

 2 examples: Sports scheduling (vs MIP) and Latin Square
Completion (vs SAT)

 SAT is able to solve some efficiently some instances of the
Latin Square Completion but do not scale or not able to
solve an empty problem

Comparison with CP

 It is difficult to define the difficulty of the resolution

of some NP Complete problems

 In theory: they are hard

 In practice: the resolution uses a particular technique, so

there is no absolute reference

P, NP and so what?

 Problems in P or P = NP: CP has almost no
advantage

 The propagation mechanism in itself is interesting
(M. Wallace)

 Problems in NP: try to solve it to show the
advantage of CP wrt the other techniques

 Interest of CP if we don’t try to solve some
problems?

 Open question

Problem resolution

 It is hard

 Common problems

 Size

 Intrinsic difficulty of some subparts

 Combination of subparts

 Usually requires the implementation of a complex

procedure divided into several steps

4 common steps

 Try to abstract some parts of the whole problem

 Focus your attention on the difficult parts or on the

combination of parts

 Work on smaller parts (benchmarking)

 Find good search strategies for the different parts

 Define a global model (combination of parts,

scaling …)

Plan

 What kind of problem can we solve with CP?

 4 pitfalls to avoid

 Conclusion

4 common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

4 common pitfalls

 Undivided model

 The global model is too much general

 Split the resolution into different parts

 Rigid search

 The search strategy is too much linked to a DFS

 Wrong part must be left quickly

 Biased benchmarking

 The results obtained for small size abstraction cannot be
extrapolated for the whole problem

 Wrong abstraction

 The part identified as relevant are not relevant

 The resolution of some subparts could be improved

4 common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

Undivided model

 Either we directly deal with the whole problem in

one step or we try to decompose it

 The decomposition of the problem is a classical idea

in MIP

 Column generation

 Bender’s decomposition

 Lagrangian relaxation (close to abstraction)

Undivided model

 Solving some subparts and recombine them for

solving the whole problem

Pre-resolution of a part of a problem

24

 Configuration Problem:

 5 types of components: {glass, plastic, steel, wood, copper}

 3 types of bins: {red, blue, green} whose capacity is red 5, blue
5, green 6

 Constraints:
- red can contain glass, cooper, wood
- blue can contain glass, steel, cooper
- green can contain plastic, copper, wood
- wood require plastic; glass exclusive copper
- red contains at most 1 of wood
- green contains at most 2 of wood
For all the bins there is either no plastic or at least 2 plastic

 Given an initial supply of 12 of glass, 10 of plastic, 8 of steel,
12 of wood and 8 of copper;
what is the minimum total number of bins?

Pre-resolution of a part of a problem

25

 #bk time

standard model 1,361,709 430

 GAC+allowed 12,659 9.7

Undivided model

 Solving some subparts and recombine them for

solving the whole problem

 « Scalable Load Balancing in Nurse to Patient

Assignment Problems », P. Schaus, P Van Hentenryck,

J-C Régin, CPAIOR 09

Description of the Problem

Description of the Problem

Description of the problem

 The constraints

 Each patient must be allocated to one nurse.

 One nurse can take at most 3 patients and at least 1.

 One nurse can only work in one zone.

 The objective

 Assign patients to nurses such that the nurse workload is
balanced.

Assigning patients to nurses in neonatal intensive care,

C Mullinax and M Lawley, Journal of the Operational
Research Society, 2002

Minimization of the variance

Results (2 zones instances)

 All solved optimally within 20 minutes (the MIP

model cannot). m = #nurses; n = #infants

Observations for improving the model

 The number of nurses assigned to each zone has a huge

influence on the quality of the balancing.

 Most of the inbalance comes from the inter-zone workloads.

Very good balance inside each zone.

 Optimal solutions look like this:

 Ai: acuity of the zone i

xi: number of nurses in zone i

The Idea: A two steps approach

 We consider a relaxation of the initial problem

 Compute the number of nurses assigned to each zone.

 A patient can only take the pre-computed nurses
(modification of the domains of variables).

 Optimal solutions of this relaxed problem are very
close to optimal solutions of the general problem

 How to compute the number of nurses assigned to
each zone ?

Compute the number of nurses

assigned to each zone

 We solve the optimally of this problem in O(p*m)

with a greedy algorithm. (p = #zones; m = #nurses)

Ai: acuity of the zone I (GIVEN)

xi: number of nurses in zone I (UNKNOWNS)

Previous results (2 zones instances)

 All solved optimally within 20 minutes (the MIP

model cannot). m = #nurses; n = #infants

New results on 2 zones instances

 Less than 10 seconds (m: #nurses; n = #infants)

Results on 3 zones instances

 6/10 instances solved optimally (m: #nurses; n =

#infants)

Good news: The decomposition can

work

 Given a precomputation of the number of nurses for

each zone:

minimizing the variance

among all the nurses

minimizing the variance in

each zone separately

2 Steps Approach with Decomposition

 Compute the number of nurses assigned to each

zone.

 Solve independently the problems inside each zone.

New results on the 3 zones instances

 Easy now (less than 3 seconds) (m: #nurses; n =

#infants)

We can even solve 15 zones instances!

The problem

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

• n teams and n-1 weeks and n/2 periods

• every two teams play each other exactly once

• every team plays one game in each week

• no team plays more than twice in the same period

CP model: variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

For each slot: 2 variables represent the teams

and 1 variable represents the match are defined

1 vs 6

T33a variable (T33a=6)

T33h variable (T33h=1)

M33 variable (M33=12) Mij=1 <=> 0 vs 1 or 1 vs 0

Mij=12 <=> 1 vs 6 or 6 vs1

CP model: T variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

D(Tija)=[1,n-1]

D(Tijh)=[0,n-2]

Tijh < Tija

CP model: M variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

D(Mij)=[1,n(n-1)/2]

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

• n teams and n-1 weeks and n/2 periods

• every two teams play each other exactly once

• every team plays one game in each week

• no team plays more than twice in the same period

Alldiff constraints defined on M variables

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods

• every two teams play each other exactly once

• every team plays one game in each week

• no team plays more than twice in the same period

For each week w:

Alldiff constraint defined

on {Tpwh, p=1..4} U {Tpwa, p=1..4}

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods

• every two teams play each other exactly once

• every team plays one game in each week

• no team plays more than twice in the same period

For each period p:

Global cardinality constraint defined on

{Tpwh, w=1..7} U {Tpwa, w=1..7}

every team t is taken at most 2

CP model: constraints

 For each slot the two T variables and the M variable must be linked together; example:

M12 = game T12h vs T12a

 For each slot we add Cij a ternary constraint defined on the two T variables and the M

variable; example:

C12 defined on {T12h,T12a,M12}

 Cij are defined by the list of allowed tuples:
for n=4: {(0,1,1),(0,2,2),(0,3,3),(1,2,4),(1,3,5),(2,3,6)}

(1,2,4) means game 1 vs 2 is the game number 4

 All these constraints have the same list of allowed tuples

 Efficient arc consistency algorithm for this kind of constraint is known

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 . vs .

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column

We can prove that:

• each team occurs exactly twice for each period

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column

We can prove that:

• each team occurs exactly twice for each period

• each team occurs exactly once in the dummy column

First model: strategies

 Break symmetries: 0 vs w appears in week w

 Teams are instantiated:

- the most instantiated team is chosen

- the slots that has the less remaining possibilities

(Tijh or Tija is minimal) is instantiated with that team

First model: results

teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

MIPLIB

Second model

 Break symmetry: 0 vs 1 is the first game of the

dummy column

Second model

 Break symmetry: 0 vs 1 is the first game of the

dummy column

 1) Find a round-robin. Define all the games for each

column (except for the dummy)

- Alldiff constraint on M is satisfied

- Alldiff constraint for each week is satisfied

Second model

 Break symmetry: 0 vs 1 is the first game of the

dummy column

 1) Find a round-robin. Define all the games for each

column (except for the dummy)

- Alldiff constraint on M is satisfied

- Alldiff constraint for each week is satisfied

 2) set the games in order to satisfy constraints on

periods. If no solution go to 1)

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Sports scheduling models

teams # fails Time (in s)

8 10 0.01

10 24 0.06

12 58 0.2

14 21 0.2

16 182 0.6

18 263 0.9

20 226 1.2

24 2702 10.5

26 5,683 26.4

30 11,895 138

40 2,834,754 6h

teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

First Model

Second Model

4 common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

Rigid search

 I notice that there are 2 kinds of people in CP

 Those focused on the search strategies, who « thinks »

strategies

 Those focused on constraints, who « thinks » constraints

 I am not a big fan of search strategy

Rigid Search

 We can deal a lot and invent a lot of strategies fro

solving a problem

 Random-restart is a method

 performing very well

 that can be used with any strategy

 Slides and work of Carla Gomes

Quasigroup completion

Median = 1!

3500!

500

2000

Heavy tail distribution (Pareto 1920)

Standard Distribution

(finite mean & variance)

Power Law Decay

Exponential Decay

Quasigroup Resolution

18%

unsolved

0.002%

unsolved

Exploiting Heavy-Tailed behavior

 Heavy Tailed behavior has been observed in

several domains: QCP, Graph Coloring, Planning,

Scheduling, Circuit synthesis, Decoding, etc.

 Consequence for algorithm design: Use restarts

runs to exploit the extreme variance performance.

Restarts

no restarts

restart every 4 backtracks

0.001%

unsolved

70%

unsolved

Restarts

 Restarts provably eliminate heavy-tailed behavior.

(Gomes et al. 97, Hoos 99, Horvitz 99, Huberman,

Lukose and Hogg 97, Karp et al 96, Luby et al.

93, Rish et al. 97)

 This idea is implemented in ILOG CPOptimizer and

it works!

 It is also implemented in ILOG Cplex under the

name “Dynamic search”

 Main advantage: it is much more robust

4 common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

Biased Benchmarking

 The identification of an interesting subpart is a first

step. The advantage is two fold:

 We can focus our attention on a difficult part that we

need to solve

 We can work on smaller problems

 Be careful: it is also important to design some

benchmarks from which we expect to derive

general considerations

Biased Benchmarking

 Represent the fact that the results obtained from a

benchmark can be not representative of the whole,

problem

 Make sure that you can extrapolate your results!

Relevant and realistic Instances

 Benchmarking is serious and not easy

 The name of a problem is not enough (e.g. quasigroup
completion problem (QCP), latin square).

 It is an hard task to find hard QCP instances for small values
(<100 or < 200).

 However, there are some exceptionally hard instances (B. Smith)
for n=35

 Avoid considering empty instances if you want to be able to
generalize your results

 Example of biased benchmarking: the bin packing problem
(“Comparison of Bin Packing models”, JC Régin, M. Rezgui,
A. Malapert, AIDC workshop at AAAI-11)

Bin packing problem

 Bin Packing Problem

 Range different sizes items in a

number of bins with a limited

capacity

Instances
78

 Falkenauer, Scholl and Korf mainly consider instances
with about 3 items per bins (Korf explicitly build
instances with 3 items per bins)

 This lead to efficient methods.

 Some lower bounds may be used (Martello and Toth
consider items whose size is more than half or a third of
the bin capacity)

 I. Gent solved by hand some instances claimed to be
difficult by Faulkenauer. He criticized the proposed
instances

Instances
79

 I. Gent is right

 It is difficult to extrapolate from these instances

 4 items per bins are more difficult

 Then, the difficulties of the instances decrease (in

general) when the number of item per bin is increased!

Instances
80

Sum constraint
81

 We have seen that the number of items per bin is

quite important

 We made an interesting remark about this

 Consider Diophantine equation

Sum constraint

 Diophantine equation ax + by =c, solved for
natural numbers

 Paoli’s Theorem

 q is the quotient of c/ab and r the remaining part of c/ab

 The number of positives (or =0) integer solutions of the
equation ax + by = c is q or q+1 depending on the fact
that the equation ax + by = r admits one or zero solution.

 We set gcd(a,b)=1

 If c > ab : always a solution : no (or almost no) filtering!

 if c < ab : half of the values have a solution: almost no
filtering

Sum constraint

 Diophantine equation ax + by +cz =d

 Is equivalent to

 ax + by = d-c OR ax + by = d -2c OR …

 The density of solution increases! We have less and

less chance to not be able to satisfy the constraint…

 If our results are based on a sum with only few

variables then we cannot extrapolate when we will

have a lot of variables!

4 common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

Wrong abstraction

 It is difficult to identify relevant subparts of a problems,
that is the one on which we should first focus our
attention

 The wrong abstraction pitfall is the consideration of a
subpart which is interesting but which is not relevant for
the resolution of the whole problem

 Considered in 1997 by C. Bessière and J-C Régin
(CP’97)

 Before writing a filtering algorithm we should study if it
could be worthwhile for solving the problem

Abstractions

 Some problems are more interesting than some

others

 For instance, the Golomb ruler problem is more

interesting than the allinterval series

Abstractions

 Allinterval Series:
Find a permutation (x1, ..., xn) of {0,1,...,n-1} such that
the list (abs(x2-x1), abs(x3-x2), ... , abs(xn - xn-1)) is a
permutation of {1,2,...,n-1}.

 Golomb Ruler:
a set of n integers 0=x1 < x2 < … < xn s.t. the
n(n-1)/2 differences (xk - xi) are distinct and xn is
minimized

 In the allinterval series there is no mix between the
alldiff constraint and the arithmetic constraints (2
separate alldiff + absolute difference constraints),
whereas such a mix exists in the Golomb ruler

AllInterval series

 See Puget & Regin’s note in the CSPLib

 2 first solutions non symmetrical:

 N=2000, #fails=0, time=32s (Pentium III, 800Mhz)

 N <100 #fails=0, time < 0.02s

 All solutions:

 N=14, #fails=670K, time=600s, #sol=9912

 This problem is not really difficult

Golomb Ruler
89

 x1,…,xn = variables; (xi-xj)= variables. Alldiff

involving all the variables.

 with CP difficult for n > 13.

Alldiff
90

|x1-x2|

|x1-x3|

|x2-x3|

x1

x2

x3

1

2

3

4

5

6

7

Not a good solution

Bad incorporation

of constraint

|xi – xj| in alldiff

Alldiff
91

|x1-x2|

|x1-x3|

|x2-x3|

x1

x2

x3

1

2

3

4

5

6

7

Not a good solution

Bad incorporation

of constraint

|xi – xj| in alldiff

Golomb Ruler

 Conclusion about the Golomb Ruler: we are not able to
integrate counting constraints and arithmetic constraints

 If we want to solve such a problem:

 Either we are able to do that

 Or we find a completely different model

 The Golomb Ruler Problem is not a subproblem of any
problem, BUT it is a good representative of a type of
combination we are not able to solve

 Improving the resolution of Golomb Ruler will help us to
improve the resolution of a lot of problems

Abstraction

 Consider you have a mix of symbolic and arithmetic

constraints

 If I solve the golomb ruler then I will be able to

solve the allinterval series

 The opposite is not true

 Conclusion

 The golomb ruler is a good abstraction

 The allinterval series is not a good abstraction

Good abstraction

 An example of good abstraction is the 1-tree for

the TSP (Traveling Salesman Problem)

 P. Benchimol, J-C. Régin, L-M. Rousseau, M. Rueher and

W-J. van Hoeve: “Improving the Held and Karp Bound

with Constraint Programming”, CP-AI-OR’10, Bologna,

2010

 J-C. Régin, L-M. Rousseau, M. Rueher and W-J. van

Hoeve: “The Weighted Spanning Tree Constraint

Revisited”, CP-AI-OR’10, Bologna, 2010

Held and Karp Bound for TSP
0

0

0

0

-5

0

5

0

-

5

0

5

0

-

2

0

2

0

Β = 5

Β = 3

10 10

10

5

5

5

5 5

10

10

5

10

Cost = 25

Cost = 25

5 5

10

10

5

10

8 8

1

0

7

5

7

Cost = 30

96

Replacement costs

 An edge e is inconsistent iff every spanning tree that contains e

has weight > K

 Replacement edge

 Replacement edge minimizes the increase of cost

 Replacement edge = maximum edge on the i-j path in T

Replacement cost of

• (1,2) is 4 - 2 = 2

• (6,7) is 5 - 5 = 0

97

Replacement cost for tree edges

 The replacement cost of a tree edge e is

 w(T’) - w(T), where

 T is a minimum spanning tree of G, and T’ is a minimum spanning tree of G \ e

 In other words, it represents the minimum marginal increase if we replace e by

another edge

 An edge e is mandatory iff its replacement cost + w(T) > K

Replacement cost of (1,4)?

we need to find the cheapest

edge to reconnect: 3 - 1 = 2

St70 opt = 675 upper bound 700

St70 opt=685 upper bound=675

TSP: results

TSP: results

TSP

 Good abstraction

 Random-restart

 Good benchmarks

 Lack of decomposition?

Conclusion

 When you want to solve a problem or when you are
not able to solve a problem. Think about the 4
common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

 Try to solve some real world problems

 Try to solve some well known problems (clique max,
TSP, coloring, …)

