
Jean-Charles Régin

Univ. Nice-Sophia Antipolis, France

Solving Problems with CP:

Four common pitfalls to avoid

 Constraints and Proofs team at Univ. Nice-Sophia
Antipolis

 Program verification with CP

 In competition with the well known COQ Proof assistant
program at INRIA

 COQ is more formal, more theory oriented

 is it better?

 Verification is undecidable

Plan

 What kind of problem can we solve with CP?

 4 pitfalls to avoid

 Conclusion

What can of problems can we solve?

 I want to do something that could be useful in the

future (50 years?)

 Polynomial

 Unclassified

 NP-Complete

Solving polynomial problems

 If we know that the problem is in P

why do we need CP?

 If a P algorithm is known we don’t need CP

 The problem is in P but we don’t have any P

algorithm

 This is rare! I don’t have any problem like that

Solving unclassified problems

 There are some problems like that

 Some scheduling problems are large PERT with some

additional constraints

 Three possibilities

 We will prove it is in P: no more need of CP

 We will prove it is NP-Complete (see later)

 We will not prove anything (good for us)

Solving NP complete problems

 Two possibilities

 P = NP

 P ≠ NP

 The first case, is not good for us (see P part).

 Let’s go for P ≠ NP

P ≠ NP

 Ok, we cannot avoid an exponential behavior

 For some instances, each NP Complete Problem will

required an exponential time to be solved

 So, our only hope is to shift the exponential such

that the problem is solvable for a size and a time

that are acceptable

Shifting the exponential

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50

pb

We want to solve for n=60 in less than 400s

Shifting the exponential

We want to solve for n=60 in less than 400s

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80

pb

Sports scheduling models

teams # fails Time (in s)

8 10 0.01

10 24 0.06

12 58 0.2

14 21 0.2

16 182 0.6

18 263 0.9

20 226 1.2

24 2702 10.5

26 5,683 26.4

30 11,895 138

40 2,834,754 6h

teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

First Model

Second Model

P ≠ NP

 We can only shift the exponential

 We will never solve the problem in general

CP and other techniques

 It is not easy to compare CP with other techniques

 It is not easy to compare techniques aiming at
solving NP-Complete problems

 Because the problems are hard in general

 Some instances are easy in CP and difficult with other
techniques and conversely :

 2 examples: Sports scheduling (vs MIP) and Latin Square
Completion (vs SAT)

 SAT is able to solve some efficiently some instances of the
Latin Square Completion but do not scale or not able to
solve an empty problem

Comparison with CP

 It is difficult to define the difficulty of the resolution

of some NP Complete problems

 In theory: they are hard

 In practice: the resolution uses a particular technique, so

there is no absolute reference

P, NP and so what?

 Problems in P or P = NP: CP has almost no
advantage

 The propagation mechanism in itself is interesting
(M. Wallace)

 Problems in NP: try to solve it to show the
advantage of CP wrt the other techniques

 Interest of CP if we don’t try to solve some
problems?

 Open question 

Problem resolution

 It is hard

 Common problems

 Size

 Intrinsic difficulty of some subparts

 Combination of subparts

 Usually requires the implementation of a complex

procedure divided into several steps

4 common steps

 Try to abstract some parts of the whole problem

 Focus your attention on the difficult parts or on the

combination of parts

 Work on smaller parts (benchmarking)

 Find good search strategies for the different parts

 Define a global model (combination of parts,

scaling …)

Plan

 What kind of problem can we solve with CP?

 4 pitfalls to avoid

 Conclusion

4 common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

4 common pitfalls

 Undivided model

 The global model is too much general

 Split the resolution into different parts

 Rigid search

 The search strategy is too much linked to a DFS

 Wrong part must be left quickly

 Biased benchmarking

 The results obtained for small size abstraction cannot be
extrapolated for the whole problem

 Wrong abstraction

 The part identified as relevant are not relevant

 The resolution of some subparts could be improved

4 common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

Undivided model

 Either we directly deal with the whole problem in

one step or we try to decompose it

 The decomposition of the problem is a classical idea

in MIP

 Column generation

 Bender’s decomposition

 Lagrangian relaxation (close to abstraction)

Undivided model

 Solving some subparts and recombine them for

solving the whole problem

Pre-resolution of a part of a problem

24

 Configuration Problem:

 5 types of components: {glass, plastic, steel, wood, copper}

 3 types of bins: {red, blue, green} whose capacity is red 5, blue
5, green 6

 Constraints:
- red can contain glass, cooper, wood
- blue can contain glass, steel, cooper
- green can contain plastic, copper, wood
- wood require plastic; glass exclusive copper
- red contains at most 1 of wood
- green contains at most 2 of wood
For all the bins there is either no plastic or at least 2 plastic

 Given an initial supply of 12 of glass, 10 of plastic, 8 of steel,
12 of wood and 8 of copper;
what is the minimum total number of bins?

Pre-resolution of a part of a problem

25

 #bk time

standard model 1,361,709 430

 GAC+allowed 12,659 9.7

Undivided model

 Solving some subparts and recombine them for

solving the whole problem

 « Scalable Load Balancing in Nurse to Patient

Assignment Problems », P. Schaus, P Van Hentenryck,

J-C Régin, CPAIOR 09

Description of the Problem

Description of the Problem

Description of the problem

 The constraints

 Each patient must be allocated to one nurse.

 One nurse can take at most 3 patients and at least 1.

 One nurse can only work in one zone.

 The objective

 Assign patients to nurses such that the nurse workload is
balanced.

Assigning patients to nurses in neonatal intensive care,

C Mullinax and M Lawley, Journal of the Operational
Research Society, 2002

Minimization of the variance

Results (2 zones instances)

 All solved optimally within 20 minutes (the MIP

model cannot). m = #nurses; n = #infants

Observations for improving the model

 The number of nurses assigned to each zone has a huge

influence on the quality of the balancing.

 Most of the inbalance comes from the inter-zone workloads.

Very good balance inside each zone.

 Optimal solutions look like this:

 Ai: acuity of the zone i

xi: number of nurses in zone i

The Idea: A two steps approach

 We consider a relaxation of the initial problem

 Compute the number of nurses assigned to each zone.

 A patient can only take the pre-computed nurses
(modification of the domains of variables).

 Optimal solutions of this relaxed problem are very
close to optimal solutions of the general problem

 How to compute the number of nurses assigned to
each zone ?

Compute the number of nurses

assigned to each zone

 We solve the optimally of this problem in O(p*m)

with a greedy algorithm. (p = #zones; m = #nurses)

Ai: acuity of the zone I (GIVEN)

xi: number of nurses in zone I (UNKNOWNS)

Previous results (2 zones instances)

 All solved optimally within 20 minutes (the MIP

model cannot). m = #nurses; n = #infants

New results on 2 zones instances

 Less than 10 seconds (m: #nurses; n = #infants)

Results on 3 zones instances

 6/10 instances solved optimally (m: #nurses; n =

#infants)

Good news: The decomposition can

work

 Given a precomputation of the number of nurses for

each zone:

minimizing the variance

among all the nurses

minimizing the variance in

each zone separately

2 Steps Approach with Decomposition

 Compute the number of nurses assigned to each

zone.

 Solve independently the problems inside each zone.

New results on the 3 zones instances

 Easy now (less than 3 seconds) (m: #nurses; n =

#infants)

We can even solve 15 zones instances!

The problem

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

• n teams and n-1 weeks and n/2 periods

• every two teams play each other exactly once

• every team plays one game in each week

• no team plays more than twice in the same period

CP model: variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

For each slot: 2 variables represent the teams

and 1 variable represents the match are defined

1 vs 6

T33a variable (T33a=6)

T33h variable (T33h=1)

M33 variable (M33=12) Mij=1 <=> 0 vs 1 or 1 vs 0

Mij=12 <=> 1 vs 6 or 6 vs1

CP model: T variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

D(Tija)=[1,n-1]

D(Tijh)=[0,n-2]

Tijh < Tija

CP model: M variables

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

D(Mij)=[1,n(n-1)/2]

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

• n teams and n-1 weeks and n/2 periods

• every two teams play each other exactly once

• every team plays one game in each week

• no team plays more than twice in the same period

Alldiff constraints defined on M variables

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods

• every two teams play each other exactly once

• every team plays one game in each week

• no team plays more than twice in the same period

For each week w:

Alldiff constraint defined

on {Tpwh, p=1..4} U {Tpwa, p=1..4}

CP model: constraints

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods

• every two teams play each other exactly once

• every team plays one game in each week

• no team plays more than twice in the same period

For each period p:

Global cardinality constraint defined on

{Tpwh, w=1..7} U {Tpwa, w=1..7}

every team t is taken at most 2

CP model: constraints

 For each slot the two T variables and the M variable must be linked together; example:

M12 = game T12h vs T12a

 For each slot we add Cij a ternary constraint defined on the two T variables and the M

variable; example:

C12 defined on {T12h,T12a,M12}

 Cij are defined by the list of allowed tuples:
for n=4: {(0,1,1),(0,2,2),(0,3,3),(1,2,4),(1,3,5),(2,3,6)}

(1,2,4) means game 1 vs 2 is the game number 4

 All these constraints have the same list of allowed tuples

 Efficient arc consistency algorithm for this kind of constraint is known

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 . vs .

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column

We can prove that:

• each team occurs exactly twice for each period

First model

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column

We can prove that:

• each team occurs exactly twice for each period

• each team occurs exactly once in the dummy column

First model: strategies

 Break symmetries: 0 vs w appears in week w

 Teams are instantiated:

- the most instantiated team is chosen

- the slots that has the less remaining possibilities

(Tijh or Tija is minimal) is instantiated with that team

First model: results

teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

MIPLIB

Second model

 Break symmetry: 0 vs 1 is the first game of the

dummy column

Second model

 Break symmetry: 0 vs 1 is the first game of the

dummy column

 1) Find a round-robin. Define all the games for each

column (except for the dummy)

- Alldiff constraint on M is satisfied

- Alldiff constraint for each week is satisfied

Second model

 Break symmetry: 0 vs 1 is the first game of the

dummy column

 1) Find a round-robin. Define all the games for each

column (except for the dummy)

- Alldiff constraint on M is satisfied

- Alldiff constraint for each week is satisfied

 2) set the games in order to satisfy constraints on

periods. If no solution go to 1)

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Second model: strategy

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated

Sports scheduling models

teams # fails Time (in s)

8 10 0.01

10 24 0.06

12 58 0.2

14 21 0.2

16 182 0.6

18 263 0.9

20 226 1.2

24 2702 10.5

26 5,683 26.4

30 11,895 138

40 2,834,754 6h

teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

First Model

Second Model

4 common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

Rigid search

 I notice that there are 2 kinds of people in CP

 Those focused on the search strategies, who « thinks »

strategies

 Those focused on constraints, who « thinks » constraints

 I am not a big fan of search strategy

Rigid Search

 We can deal a lot and invent a lot of strategies fro

solving a problem

 Random-restart is a method

 performing very well

 that can be used with any strategy

 Slides and work of Carla Gomes

Quasigroup completion

Median = 1!

3500!

500

2000

Heavy tail distribution (Pareto 1920)

Standard Distribution

(finite mean & variance)

Power Law Decay

Exponential Decay

Quasigroup Resolution

18%

unsolved

0.002%

unsolved

Exploiting Heavy-Tailed behavior

 Heavy Tailed behavior has been observed in

several domains: QCP, Graph Coloring, Planning,

Scheduling, Circuit synthesis, Decoding, etc.

 Consequence for algorithm design: Use restarts

runs to exploit the extreme variance performance.

Restarts

no restarts

restart every 4 backtracks

0.001%

unsolved

70%

unsolved

Restarts

 Restarts provably eliminate heavy-tailed behavior.

(Gomes et al. 97, Hoos 99, Horvitz 99, Huberman,

Lukose and Hogg 97, Karp et al 96, Luby et al.

93, Rish et al. 97)

 This idea is implemented in ILOG CPOptimizer and

it works!

 It is also implemented in ILOG Cplex under the

name “Dynamic search”

 Main advantage: it is much more robust

4 common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

Biased Benchmarking

 The identification of an interesting subpart is a first

step. The advantage is two fold:

 We can focus our attention on a difficult part that we

need to solve

 We can work on smaller problems

 Be careful: it is also important to design some

benchmarks from which we expect to derive

general considerations

Biased Benchmarking

 Represent the fact that the results obtained from a

benchmark can be not representative of the whole,

problem

 Make sure that you can extrapolate your results!

Relevant and realistic Instances

 Benchmarking is serious and not easy

 The name of a problem is not enough (e.g. quasigroup
completion problem (QCP), latin square).

 It is an hard task to find hard QCP instances for small values
(<100 or < 200).

 However, there are some exceptionally hard instances (B. Smith)
for n=35

 Avoid considering empty instances if you want to be able to
generalize your results

 Example of biased benchmarking: the bin packing problem
(“Comparison of Bin Packing models”, JC Régin, M. Rezgui,
A. Malapert, AIDC workshop at AAAI-11)

Bin packing problem

 Bin Packing Problem

 Range different sizes items in a

number of bins with a limited

capacity

Instances
78

 Falkenauer, Scholl and Korf mainly consider instances
with about 3 items per bins (Korf explicitly build
instances with 3 items per bins)

 This lead to efficient methods.

 Some lower bounds may be used (Martello and Toth
consider items whose size is more than half or a third of
the bin capacity)

 I. Gent solved by hand some instances claimed to be
difficult by Faulkenauer. He criticized the proposed
instances

Instances
79

 I. Gent is right

 It is difficult to extrapolate from these instances

 4 items per bins are more difficult

 Then, the difficulties of the instances decrease (in

general) when the number of item per bin is increased!

Instances
80

Sum constraint
81

 We have seen that the number of items per bin is

quite important

 We made an interesting remark about this

 Consider Diophantine equation

Sum constraint

 Diophantine equation ax + by =c, solved for
natural numbers

 Paoli’s Theorem

 q is the quotient of c/ab and r the remaining part of c/ab

 The number of positives (or =0) integer solutions of the
equation ax + by = c is q or q+1 depending on the fact
that the equation ax + by = r admits one or zero solution.

 We set gcd(a,b)=1

 If c > ab : always a solution : no (or almost no) filtering!

 if c < ab : half of the values have a solution: almost no
filtering

Sum constraint

 Diophantine equation ax + by +cz =d

 Is equivalent to

 ax + by = d-c OR ax + by = d -2c OR …

 The density of solution increases! We have less and

less chance to not be able to satisfy the constraint…

 If our results are based on a sum with only few

variables then we cannot extrapolate when we will

have a lot of variables!

4 common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

Wrong abstraction

 It is difficult to identify relevant subparts of a problems,
that is the one on which we should first focus our
attention

 The wrong abstraction pitfall is the consideration of a
subpart which is interesting but which is not relevant for
the resolution of the whole problem

 Considered in 1997 by C. Bessière and J-C Régin
(CP’97)

 Before writing a filtering algorithm we should study if it
could be worthwhile for solving the problem

Abstractions

 Some problems are more interesting than some

others

 For instance, the Golomb ruler problem is more

interesting than the allinterval series

Abstractions

 Allinterval Series:
Find a permutation (x1, ..., xn) of {0,1,...,n-1} such that
the list (abs(x2-x1), abs(x3-x2), ... , abs(xn - xn-1)) is a
permutation of {1,2,...,n-1}.

 Golomb Ruler:
a set of n integers 0=x1 < x2 < … < xn s.t. the
n(n-1)/2 differences (xk - xi) are distinct and xn is
minimized

 In the allinterval series there is no mix between the
alldiff constraint and the arithmetic constraints (2
separate alldiff + absolute difference constraints),
whereas such a mix exists in the Golomb ruler

AllInterval series

 See Puget & Regin’s note in the CSPLib

 2 first solutions non symmetrical:

 N=2000, #fails=0, time=32s (Pentium III, 800Mhz)

 N <100 #fails=0, time < 0.02s

 All solutions:

 N=14, #fails=670K, time=600s, #sol=9912

 This problem is not really difficult

Golomb Ruler
89

 x1,…,xn = variables; (xi-xj)= variables. Alldiff

involving all the variables.

 with CP difficult for n > 13.

Alldiff
90

|x1-x2|

|x1-x3|

|x2-x3|

x1

x2

x3

1

2

3

4

5

6

7

Not a good solution

Bad incorporation

of constraint

|xi – xj| in alldiff

Alldiff
91

|x1-x2|

|x1-x3|

|x2-x3|

x1

x2

x3

1

2

3

4

5

6

7

Not a good solution

Bad incorporation

of constraint

|xi – xj| in alldiff

Golomb Ruler

 Conclusion about the Golomb Ruler: we are not able to
integrate counting constraints and arithmetic constraints

 If we want to solve such a problem:

 Either we are able to do that

 Or we find a completely different model

 The Golomb Ruler Problem is not a subproblem of any
problem, BUT it is a good representative of a type of
combination we are not able to solve

 Improving the resolution of Golomb Ruler will help us to
improve the resolution of a lot of problems

Abstraction

 Consider you have a mix of symbolic and arithmetic

constraints

 If I solve the golomb ruler then I will be able to

solve the allinterval series

 The opposite is not true

 Conclusion

 The golomb ruler is a good abstraction

 The allinterval series is not a good abstraction

Good abstraction

 An example of good abstraction is the 1-tree for

the TSP (Traveling Salesman Problem)

 P. Benchimol, J-C. Régin, L-M. Rousseau, M. Rueher and

W-J. van Hoeve: “Improving the Held and Karp Bound

with Constraint Programming”, CP-AI-OR’10, Bologna,

2010

 J-C. Régin, L-M. Rousseau, M. Rueher and W-J. van

Hoeve: “The Weighted Spanning Tree Constraint

Revisited”, CP-AI-OR’10, Bologna, 2010

Held and Karp Bound for TSP
0

0

0

0

-5

0

5

0

-

5

0

5

0

-

2

0

2

0

Β = 5

Β = 3

10 10

10

5

5

5

5 5

10

10

5

10

Cost = 25

Cost = 25

5 5

10

10

5

10

8 8

1

0

7

5

7

Cost = 30

96

Replacement costs

 An edge e is inconsistent iff every spanning tree that contains e

has weight > K

 Replacement edge

 Replacement edge minimizes the increase of cost

 Replacement edge = maximum edge on the i-j path in T

Replacement cost of

• (1,2) is 4 - 2 = 2

• (6,7) is 5 - 5 = 0

97

Replacement cost for tree edges

 The replacement cost of a tree edge e is

 w(T’) - w(T), where

 T is a minimum spanning tree of G, and T’ is a minimum spanning tree of G \ e

 In other words, it represents the minimum marginal increase if we replace e by

another edge

 An edge e is mandatory iff its replacement cost + w(T) > K

Replacement cost of (1,4)?

we need to find the cheapest

edge to reconnect: 3 - 1 = 2

St70 opt = 675 upper bound 700

St70 opt=685 upper bound=675

TSP: results

TSP: results

TSP

 Good abstraction

 Random-restart

 Good benchmarks

 Lack of decomposition?

Conclusion

 When you want to solve a problem or when you are
not able to solve a problem. Think about the 4
common pitfalls

 Undivided model

 Rigid search

 Biased benchmarking

 Wrong abstraction

 Try to solve some real world problems

 Try to solve some well known problems (clique max,
TSP, coloring, …)

