
Jean-Charles Régin 

 

Univ. Nice-Sophia Antipolis, France 

Solving Problems with CP: 

Four common pitfalls to avoid 



 Constraints and Proofs team at Univ. Nice-Sophia 
Antipolis 

 Program verification with CP 

 In competition with the well known COQ Proof assistant 
program at INRIA 

 

 COQ is more formal, more theory oriented 

 is it better? 

 

 Verification is undecidable 

 



Plan 

 What kind of problem can we solve with CP? 

 4 pitfalls to avoid 

 Conclusion 



What can of problems can we solve? 

 I want to do something that could be useful in the 

future (50 years?) 

 

 Polynomial 

 Unclassified 

 NP-Complete 

 



Solving polynomial problems 

 If we know that the problem is in P 

why do we need CP? 

 If a P algorithm is known we don’t need CP 

 The problem is in P but we don’t have any P 

algorithm 

 This is rare! I don’t have any problem like that  



Solving unclassified problems 

 There are some problems like that 

 Some scheduling problems are large PERT with some 

additional constraints 

 Three possibilities 

 We will prove it is in P: no more need of CP 

 We will prove it is NP-Complete (see later) 

 We will not prove anything (good for us) 



Solving NP complete problems 

 Two possibilities 

 P = NP 

 P ≠ NP 

 

 The first case, is not good for us (see P part). 

 Let’s go for P ≠ NP 

 



P ≠ NP 

 Ok, we cannot avoid an exponential behavior 

 For some instances, each NP Complete Problem will 

required an exponential time to be solved 

 So, our only hope is to shift the exponential such 

that the problem is solvable for a size and a time 

that are acceptable 



Shifting the exponential 
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We want to solve for n=60 in less than 400s 



Shifting the exponential 

 

We want to solve for n=60 in less than 400s 
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Sports scheduling models 

# teams # fails Time (in s)

8 10 0.01

10 24 0.06

12 58 0.2

14 21 0.2

16 182 0.6

18 263 0.9

20 226 1.2

24 2702 10.5

26 5,683 26.4

30 11,895 138

40 2,834,754 6h

# teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

First Model 

Second Model 



P ≠ NP 

 We can only shift the exponential 

 We will never solve the problem in general 



CP and other techniques 

 It is not easy to compare CP with other techniques 

 It is not easy to compare techniques aiming at 
solving NP-Complete problems 

 Because the problems are hard in general 

 Some instances are easy in CP and difficult with other 
techniques and conversely : 

 2 examples: Sports scheduling (vs MIP) and Latin Square 
Completion (vs SAT) 

 SAT is able to solve some efficiently some instances of the 
Latin Square Completion but do not scale or not able to 
solve an empty problem 



Comparison with CP 

 It is difficult to define the difficulty of the resolution 

of some NP Complete problems 

 In theory: they are hard 

 In practice: the resolution uses a particular technique, so 

there is no absolute reference 



P, NP and so what? 

 Problems in P or P = NP: CP has almost no 
advantage  

 The propagation mechanism in itself is interesting  
(M. Wallace) 

 Problems in NP: try to solve it to show the 
advantage of CP wrt the other techniques 

 

 Interest of CP if we don’t try to solve some 
problems? 

 Open question  



Problem resolution 

 It is hard 

 Common problems 

 Size 

 Intrinsic difficulty of some subparts 

 Combination of subparts 

 

 Usually requires the implementation of a complex 

procedure divided into several steps 



4 common steps 

 Try to abstract some parts of the whole problem 

 Focus your attention on the difficult parts or on the 

combination of parts 

 Work on smaller parts (benchmarking) 

 Find good search strategies for the different parts 

 Define a global model (combination of parts, 

scaling …) 



Plan 

 What kind of problem can we solve with CP? 

 4 pitfalls to avoid 

 Conclusion 



4 common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 



4 common pitfalls 

 Undivided model 

 The global model is too much general 

 Split the resolution into different parts 

 Rigid search 

 The search strategy is too much linked to a DFS 

 Wrong part must be left quickly 

 Biased benchmarking 

 The results obtained for small size abstraction cannot be 
extrapolated for the whole problem 

 Wrong abstraction 

 The part identified as relevant are not relevant 

 The resolution of some subparts could be improved 



4 common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 



Undivided model 

 Either we directly deal with the whole problem in 

one step or we try to decompose it  

 The decomposition of the problem is a classical idea 

in MIP 

 Column generation 

 Bender’s decomposition 

 Lagrangian relaxation (close to abstraction) 



Undivided model 

 Solving some subparts and recombine them for 

solving the whole problem 

 



Pre-resolution of a part of a problem 

24 

 Configuration Problem: 

 5 types of components: {glass, plastic, steel, wood, copper} 

 3 types of bins: {red, blue, green} whose capacity is red 5, blue 
5, green 6 

 Constraints: 
- red can contain glass, cooper, wood 
- blue can contain glass, steel, cooper 
- green can contain plastic, copper, wood 
- wood require plastic; glass exclusive copper 
- red contains at most 1 of wood 
- green contains at most 2 of wood 
For all the bins there is either no plastic or at least 2 plastic 

 Given an initial supply of 12 of glass, 10 of plastic, 8 of steel, 
12 of wood and 8 of copper;  
what is the minimum total number of bins? 



Pre-resolution of a part of a problem 
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                            #bk            time 

standard model  1,361,709   430 

 GAC+allowed       12,659      9.7 

                        



Undivided model 

 Solving some subparts and recombine them for 

solving the whole problem 

 

 « Scalable Load Balancing in Nurse to Patient 

Assignment Problems », P. Schaus, P Van Hentenryck, 

J-C Régin, CPAIOR 09 



Description of the Problem 



Description of the Problem 



Description of the problem 

 The constraints 

 Each patient must be allocated to one nurse. 

 One nurse can take at most 3 patients and at least 1. 

 One nurse can only work in one zone. 

 The objective 

 Assign patients to nurses such that the nurse workload is 
balanced. 

 

 

Assigning patients to nurses in neonatal intensive care,  

C Mullinax and M Lawley, Journal of the Operational 
Research Society, 2002 

 

 

 



Minimization of the variance 



Results (2 zones instances) 

 All solved optimally within 20 minutes (the MIP 

model cannot). m = #nurses; n = #infants 



 

Observations for improving the model 

 
 The number of nurses assigned to each zone has a huge 

influence on the quality of the balancing. 

 Most of the inbalance comes from the inter-zone workloads. 

Very good balance inside each zone. 

 Optimal solutions look like this: 

 

 Ai: acuity of the zone i 

xi: number of nurses in zone i 



 

The Idea: A two steps approach 

 
 We consider a relaxation of the initial problem 

 Compute the number of nurses assigned to each zone. 

 A patient can only take the pre-computed nurses 
(modification of the domains of variables). 

 

 Optimal solutions of this relaxed problem are very 
close to optimal solutions of the general problem 

 

 How to compute the number of nurses assigned to 
each zone ? 

 



Compute the number of nurses 

assigned to each zone 

 We solve the optimally of this problem in O(p*m) 

with a greedy algorithm. (p = #zones; m = #nurses) 

 

Ai: acuity of the zone I (GIVEN) 

xi: number of nurses in zone I (UNKNOWNS) 

 



Previous results (2 zones instances) 

 All solved optimally within 20 minutes (the MIP 

model cannot). m = #nurses; n = #infants 



New results on 2 zones instances 

 Less than 10 seconds (m: #nurses; n = #infants) 



Results on 3 zones instances 

 6/10 instances solved optimally (m: #nurses; n = 

#infants) 



Good news: The decomposition can 

work 

 

 Given a precomputation of the number of nurses for 

each zone:  

 

minimizing the variance 

among all the nurses 

minimizing the variance in 

each zone separately 



2 Steps Approach with Decomposition 

 

 

 

 

 Compute the number of nurses assigned to each 

zone. 

 Solve independently the problems inside each zone. 

 



New results on the 3 zones instances 

 Easy now (less than 3 seconds) (m: #nurses; n = 

#infants) 



We can even solve 15 zones instances! 



The problem 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

• n teams and n-1 weeks and n/2 periods 

• every two teams play each other exactly once 

• every team plays one game in each week 

• no team plays more than twice in the same period 



CP model: variables 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3

For each slot: 2 variables represent the teams  

and 1 variable represents the match are defined 

1 vs 6 

T33a variable (T33a=6) 

T33h variable (T33h=1) 

M33 variable (M33=12) Mij=1 <=> 0 vs 1 or 1 vs 0 

Mij=12 <=> 1 vs 6 or 6 vs1 



CP model: T variables 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

D(Tija)=[1,n-1] 

D(Tijh)=[0,n-2] 

Tijh < Tija 



CP model: M variables 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

D(Mij)=[1,n(n-1)/2] 



CP model: constraints 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

• n teams and n-1 weeks and n/2 periods 

• every two teams play each other exactly once 

• every team plays one game in each week 

• no team plays more than twice in the same period 

Alldiff constraints defined on M variables 



CP model: constraints 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods 

• every two teams play each other exactly once 

• every team plays one game in each week 

• no team plays more than twice in the same period 

For each week w: 

Alldiff constraint defined 

on {Tpwh, p=1..4} U {Tpwa, p=1..4}  



CP model: constraints 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 T11h vs
T11a

T12h vs
T12a

T13h vs
T13a

T14h vs
T14a

T15h vs
T15a

T16h vs
T16a

T17h vs
T17a

Period 2 T21h vs
T21a

T22h vs
T22a

T23h vs
T23a

T24h vs
T24a

T25h vs
T25a

T26h vs
T26a

T27h vs
T27a

Period 3 T31h vs
T31a

T32h vs
T32a

T33h vs
T33a

T34h vs
T34a

T35h vs
T35a

T36h vs
T36a

T37h vs
T37a

Period 4 T41h vs
T41a

T42h vs
T42a

T43h vs
T43a

T44h vs
T44a

T45h vs
T45a

T46h vs
T46a

T47h vs
T47a

• n teams and n-1 weeks and n/2 periods 

• every two teams play each other exactly once 

• every team plays one game in each week 

• no team plays more than twice in the same period 

For each period p: 

Global cardinality constraint defined on 

{Tpwh, w=1..7} U {Tpwa, w=1..7} 

every team t is taken at most 2 



CP model: constraints 

 For each slot the two T variables and the M variable must be linked together; example: 

M12 = game T12h vs T12a  

 For each slot we add Cij a ternary constraint defined on the two T variables and the M 

variable; example: 

C12 defined on {T12h,T12a,M12} 

 Cij are defined by the list of allowed tuples:  
for n=4: {(0,1,1),(0,2,2),(0,3,3),(1,2,4),(1,3,5),(2,3,6)} 

(1,2,4) means game 1 vs 2 is the game number 4 

 All these constraints have the same list of allowed tuples 

 Efficient arc consistency algorithm for this kind of constraint is known 



First model 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 . vs .

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column 



First model 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 . vs .

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 . vs .

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 . vs .

Introduction of a dummy column 

We can prove that: 

• each team occurs exactly twice for each period 

 



First model 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Dummy

Period 1 0 vs 1 0 vs 2 4 vs 7 3 vs 6 3 vs 7 1 vs 5 2 vs 4 5 vs 6

Period 2 2 vs 3 1 vs 7 0 vs 3 5 vs 7 1 vs 4 0 vs 6 5 vs 6 2 vs 4

Period 3 4 vs 5 3 vs 5 1 vs 6 0 vs 4 2 vs 6 2 vs 7 0 vs 7 1 vs 3

Period 4 6 vs 7 4 vs 6 2 vs 5 1 vs 2 0 vs 5 3 vs 4 1 vs 3 0 vs 7

Introduction of a dummy column 

We can prove that: 

• each team occurs exactly twice for each period 

• each team occurs exactly once in the dummy column 



First model: strategies 

 Break symmetries: 0 vs w appears in week w 

 Teams are instantiated: 

- the most instantiated team is chosen 

- the slots that has the less remaining possibilities 

(Tijh or Tija is minimal) is instantiated with that team 



First model: results 

# teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

MIPLIB 



Second model 

 Break symmetry: 0 vs 1 is the first game of the 

dummy column 



Second model 

 Break symmetry: 0 vs 1 is the first game of the 

dummy column 

 1) Find a round-robin. Define all the games for each 

column (except for the dummy) 

- Alldiff constraint on M is satisfied 

- Alldiff constraint for each week is satisfied 



Second model 

 Break symmetry: 0 vs 1 is the first game of the 

dummy column 

 1) Find a round-robin. Define all the games for each 

column (except for the dummy) 

- Alldiff constraint on M is satisfied 

- Alldiff constraint for each week is satisfied 

 2) set the games in order to satisfy constraints on 

periods. If no solution go to 1) 



Second model: strategy 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated 
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Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated 
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M variables are instantiated 



Second model: strategy 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated 



Second model: strategy 

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7

Period 1 M11 M12 M13 M14 M15 M16 M17

Period 2 M21 M22 M23 M24 M25 M26 M27

Period 3 M31 M32 M33 M34 M35 M36 M37

Period 4 M41 M42 M43 M44 M45 M46 M47

M variables are instantiated 



Sports scheduling models 

# teams # fails Time (in s)

8 10 0.01

10 24 0.06

12 58 0.2

14 21 0.2

16 182 0.6

18 263 0.9

20 226 1.2

24 2702 10.5

26 5,683 26.4

30 11,895 138

40 2,834,754 6h

# teams # fails Time (in s)

4 2 0.01

6 12 0.03

8 32 0.08

10 417 0.8

12 41 0.2

14 3,514 9.2

16 1,112 4.2

18 8,756 36

20 72,095 338

22 6,172,672 10h

24 6,391,470 12h

First Model 

Second Model 



4 common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 



Rigid search 

 I notice that there are 2 kinds of people in CP 

 Those focused on the search strategies, who « thinks » 

strategies 

 Those focused on constraints, who « thinks » constraints 

 

 I am not a big fan of search strategy 



Rigid Search 

 We can deal a lot and invent a lot of strategies fro 

solving a problem 

 Random-restart is a method  

 performing very well 

 that can be used with any strategy 

 

 Slides and work of Carla Gomes  



Quasigroup completion 

 

Median = 1! 

3500! 

500 

2000 



Heavy tail distribution (Pareto 1920) 

 

Standard Distribution 

(finite mean & variance) 

Power Law Decay 

Exponential  Decay 



Quasigroup Resolution 

 

18% 

unsolved 

0.002% 

unsolved 



Exploiting Heavy-Tailed behavior 

 Heavy Tailed behavior has been observed in 

several domains: QCP, Graph Coloring, Planning, 

Scheduling, Circuit synthesis, Decoding, etc. 

 

 Consequence for algorithm design: Use restarts 

runs to exploit the extreme variance performance. 

 



Restarts 

 

no restarts 

restart every 4 backtracks 

0.001% 

unsolved 

70% 

unsolved 



Restarts 

 Restarts provably eliminate heavy-tailed behavior. 

(Gomes et al. 97, Hoos 99, Horvitz 99, Huberman, 

Lukose and Hogg 97, Karp et al  96, Luby et al.  

93, Rish et al. 97) 

 This idea is implemented  in ILOG CPOptimizer and 

it works! 

 It is also implemented in ILOG Cplex under the 

name “Dynamic search” 

 Main advantage: it is much more robust 

 



4 common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 



Biased Benchmarking 

 The identification of an interesting subpart is a first 

step. The advantage is two fold: 

 We can focus our attention on a difficult part that we 

need to solve  

 We can work on smaller problems 

 Be careful: it is also important to design some 

benchmarks from which we expect to derive 

general considerations 

 



Biased Benchmarking 

 Represent the fact that the results obtained from a 

benchmark can be not representative of the whole, 

problem 

 Make sure that you can extrapolate your results! 

 



Relevant and realistic Instances 

 Benchmarking is serious and not easy 

 The name of a problem is not enough (e.g. quasigroup 
completion problem (QCP), latin square).  

 It is an hard task to find hard QCP instances for small values 
(<100 or < 200).  

 However, there are some exceptionally hard instances (B. Smith) 
for n=35 

 Avoid considering empty instances if you want to be able to 
generalize your results 

 Example of biased benchmarking: the bin packing problem 
(“Comparison of Bin Packing models”, JC Régin, M. Rezgui, 
A. Malapert, AIDC workshop at AAAI-11)  



Bin packing problem 

 

 Bin Packing Problem 

 

 Range different sizes items in a 

number of bins with a limited 

capacity 

 

 

 

 

 

 

 



Instances 
78 

 Falkenauer, Scholl and Korf mainly consider instances 
with about 3 items per bins (Korf explicitly build 
instances with 3 items per bins) 

 This lead to efficient methods. 

 Some lower bounds may be used (Martello and Toth 
consider items whose size is more than half or a third of 
the bin capacity) 

 

 I. Gent solved by hand some instances claimed to be 
difficult by Faulkenauer. He criticized the proposed 
instances  



Instances 
79 

 I. Gent is right 

 It is difficult to extrapolate from these instances 

 4 items per bins are more difficult 

 Then, the difficulties of the instances decrease (in 

general) when the number of item per bin is increased!  



Instances 
80 



Sum constraint 
81 

 We have seen that the number of items per bin is 

quite important 

 We made an interesting remark about this 

 Consider Diophantine equation 

 

 



Sum constraint 

 Diophantine equation ax + by =c, solved for 
natural numbers 

 Paoli’s Theorem 

 q is the quotient of c/ab and r the remaining part of c/ab  

 The number of positives (or =0) integer solutions of the 
equation ax + by = c is  q or q+1 depending on the fact 
that the equation ax + by = r admits one or zero solution. 

 We set gcd(a,b)=1 

 If c > ab : always a solution : no (or almost no) filtering!  

 if c < ab : half of the values have a solution: almost no 
filtering 



Sum constraint 

 Diophantine equation ax + by +cz =d 

 Is equivalent to 

 ax + by = d-c OR ax + by = d -2c OR … 

 The density of solution increases! We have less and 

less chance to not be able to satisfy the constraint… 

 

 If our results are based on a sum with only few 

variables then we cannot extrapolate when we will 

have a lot of variables! 



4 common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 



Wrong abstraction 

 It is difficult to identify relevant subparts of a problems, 
that is the one on which we should first focus our 
attention 

 The wrong abstraction pitfall is the consideration of a 
subpart which is interesting but which is not relevant for 
the resolution of the whole problem 

 

 Considered in 1997 by C. Bessière and J-C Régin 
(CP’97)  

 Before writing a filtering algorithm we should study if it 
could be worthwhile for solving the problem 



Abstractions 

 Some problems are more interesting than some 

others 

 For instance, the Golomb ruler problem is more 

interesting than the allinterval series 



Abstractions 

 Allinterval Series:  
Find a permutation (x1, ..., xn) of {0,1,...,n-1} such that 
the list (abs(x2-x1), abs(x3-x2), ... , abs(xn - xn-1)) is a 
permutation of {1,2,...,n-1}. 

 Golomb Ruler:  
a set of n integers 0=x1 < x2 < … < xn s.t. the  
n(n-1)/2 differences (xk - xi) are distinct and xn is 
minimized 

 In the allinterval series there is no mix between the 
alldiff constraint and the arithmetic constraints (2 
separate alldiff + absolute difference constraints), 
whereas such a mix exists in the Golomb ruler 



AllInterval series 

 See Puget & Regin’s note in the CSPLib 

 2 first solutions non symmetrical: 

 N=2000, #fails=0, time=32s (Pentium III, 800Mhz) 

 N <100 #fails=0, time < 0.02s 

 All solutions: 

 N=14, #fails=670K, time=600s, #sol=9912 

 This problem is not really difficult 



Golomb Ruler 
89 

 x1,…,xn = variables; (xi-xj)= variables. Alldiff 

involving all the variables. 

 with CP difficult for n > 13. 

 

   



Alldiff 
90 

 
|x1-x2| 

 

|x1-x3| 

 

|x2-x3| 

 

x1 

 

x2 

 

x3 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

Not a good solution 

Bad incorporation 

of constraint 

|xi – xj| in alldiff 



Alldiff 
91 

 
|x1-x2| 

 

|x1-x3| 

 

|x2-x3| 

 

x1 

 

x2 

 

x3 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

Not a good solution 

Bad incorporation 

of constraint 

|xi – xj| in alldiff 



Golomb Ruler 

 Conclusion about the Golomb Ruler: we are not able to 
integrate counting constraints and arithmetic constraints 

 If we want to solve such a problem: 

 Either we are able to do that 

 Or we find a completely different model 

 The Golomb Ruler Problem is not a subproblem of any 
problem, BUT it is a good representative of a type of 
combination we are not able to solve 

 Improving the resolution of Golomb Ruler will help us to 
improve the resolution of a lot of problems   



Abstraction 

 Consider you have a mix of symbolic and arithmetic 

constraints 

 If I solve the golomb ruler then I will be able to 

solve the allinterval series 

 The opposite is not true 

 Conclusion 

 The golomb ruler is a good abstraction  

 The allinterval series is not a good abstraction 



Good abstraction 

 An example of good abstraction is the 1-tree for 

the TSP (Traveling Salesman Problem) 

 P. Benchimol, J-C. Régin, L-M. Rousseau, M. Rueher and 

W-J. van Hoeve: “Improving the Held and Karp Bound 

with Constraint Programming”, CP-AI-OR’10, Bologna, 

2010 

 J-C. Régin, L-M. Rousseau, M. Rueher and W-J. van 

Hoeve: “The Weighted Spanning Tree Constraint 

Revisited”, CP-AI-OR’10, Bologna, 2010 
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Replacement costs 

 An edge e is inconsistent iff every spanning tree that contains e 

has weight > K 

 Replacement edge 

 Replacement edge minimizes the increase of cost 

 Replacement edge =  maximum edge on the i-j path in T 

Replacement cost of 

• (1,2) is 4 - 2 = 2 

• (6,7) is 5 - 5 = 0 
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Replacement cost for tree edges 

 The replacement cost of a tree edge e is  

 w(T’) - w(T), where 

 T is a minimum spanning tree of G, and T’ is a minimum spanning tree of G \ e 

 In other words, it represents the minimum marginal increase if we replace e by 

another edge 

 An edge e is mandatory iff its replacement cost + w(T) > K 

Replacement cost of (1,4)? 

we need to find the cheapest 

edge to reconnect: 3 - 1 = 2 



St70 opt = 675 upper bound 700 

 



St70 opt=685 upper bound=675 

 



TSP: results 

 



TSP: results 

 



TSP 

 Good abstraction 

 Random-restart 

 Good benchmarks 

 

 Lack of decomposition? 

 



Conclusion 

 When you want to solve a problem or when you are 
not able to solve a problem. Think about the 4 
common pitfalls 

 Undivided model 

 Rigid search 

 Biased benchmarking 

 Wrong abstraction 

 Try to solve some real world problems 

 Try to solve some well known problems (clique max, 
TSP, coloring, …) 

 


