Presentation at CP 2011:

A hybrid approach for solving real-world nurse rostering problems

Martin Stølevik (martin.stolevik@sintef.no)
Tomas Eric Nordlander (tomas.nordlander@sintef.no)
Atle Riise (atle.riise@sintef.no)
Helle Frøyseth (hellef@gmail.com)

Technology for a better society

1

Content

- The Nurse Rostering Problem
 - Model
 - Constraints
- The Hybrid Solution method
 - Constraint Programming
 - Variable Neighbourhood Descent
 - Focal Points
 - Destruction of Rosters
- Results
 - The Developed Software

The nurse rostering problem

The nurse rostering problem (NRP)

- Producing good nurse rosters is a complex and important task.
- The demand for personnel varies over time.
- The rosters must obey
 - Labour laws
 - Union regulations
 - Hospital policies
- There are multiple stakeholders to satisfy, with, often, conflicting objectives:
 - Employees
 - Employer
 - Patients

NRP model

• Nurse rostering:

To allocate shifts to nurses over the scheduling period while satisfying hard constraints and minimizing violations to soft constraints. (...so typically an over-constrained optimization problem)

- Shifts
 - Duration
 - Competence / Groups
- Shift categories (D, E , N)
- Employees
 - Working time / Contracts
 - Wishes
 - Competence / Group
- Days

🖳 InitialSolu	tion - SINTE	F OpTu	ır2	_	_		_	_	_	-	2	_	_	_
Employee	0	1	2	3	4	5	6	7	8	9	10	11	12	13
399542381	<off></off>	D	D	E1	D3	D3	D	<off></off>	<off></off>	N	N	N	<off></off>	<off></off>
399582845	Ν	E	D3	D	<off></off>	<off></off>	<off></off>	D3	D8	<off></off>	<off></off>	<off></off>	D	D
399563055	<off></off>	E2	E1	E1	D	E1	E1	<off></off>	<off></off>	N	N	<off></off>	<off></off>	<off></off>
399568044	<off></off>	<off></off>	D	D	DH	<off></off>	<off></off>	D3	D	<off></off>	<off></off>	D3	E1	E1
399545140	Ν	Ν	E1	<off></off>	<off></off>	E1	E1	<off></off>	<off></off>	D	D3	D	<off></off>	<off></off>
399519405	<off></off>	<off></off>	<off></off>	<off></off>	<off></off>	<off></off>	<off></off>	D	E1	<off></off>	<off></off>	<off></off>	<off></off>	<off></off>
399510055	D	D	D	E1	D	<off></off>	<off></off>	N	N	E1	DH	D	<off></off>	<off></off>
399577605	D	D8	E1	DH	D8	<off></off>	<off></off>	D	D	<off></off>	<off></off>	Ν	N	N
399532310	D3	N	Ν	<off></off>	<off></off>	D	D	D	E1	D	E1	<off></off>	<off></off>	<off></off>
399576231	E1	D3	<off></off>	<off></off>	E1	D	D	<off></off>	<off></off>	D3	D	E1	<off></off>	<off></off>
399504383	D	D	D	E1	E1	<off></off>	<off></off>	D	E1	E	<off></off>	<off></off>	E1	E1
399522121	E1	D	<off></off>	E1	D	<off></off>	<off></off>	<off></off>						
399500880	<off></off>	E1	D3	D8	D8	<off></off>	<off></off>	N	N	E1	<off></off>	<off></off>	E1	E1
399544861	<off></off>	<off></off>	<off></off>	E1	D	D	D	<off></off>	<off></off>	E1	Ν	N	<off></off>	<off></off>
399530839	D3	D	<off></off>	<off></off>	<off></off>	D3	D	Ν	N	N	N	<off></off>	<off></off>	<off></off>
399590468	D	E	E1	D	<off></off>	<off></off>	<off></off>	D8	E1	E	D3	D3	<off></off>	<off></off>

Hard constraints

- Match the cover specified per day exactly
- Working hours (over the scheduling period) must be with in given limits
- Match competence requirement on shifts to nurses
- Minimum resting time between two shifts
- Weekly free period of minimum duration
- Maximum weekly working time
- (Assign one shift per day per nurse)

P InitialSolution - SINTEF OpTur2														
Employee	0	1	2	3	4	5	6	7	8	9	10	11	12	13
399542381	<off></off>	D	D	E1	D3	D3	D	<off></off>	<off></off>	N	N	N	<off></off>	<off></off>
399582845	N	E	D3	D	<off></off>	<off></off>	<off></off>	D3	D8	<off></off>	<off></off>	<off></off>	D	D
399563055	<off></off>	E2	E1	E1	D	E1	E1	<off></off>	<off></off>	N	N	<off></off>	<off></off>	<off></off>
399568044	<off></off>	<off></off>	D	D	DH	<off></off>	<off></off>	D3	D	<off></off>	<off></off>	D3	E1	E1
399545140	N	N	E1	<off></off>	<off></off>	E1	E1	<off></off>	<off></off>	D	D3	D	<off></off>	<off></off>
399519405	<off></off>	D	E1	<off></off>	<off></off>	<off></off>	<off></off>	<off></off>						
399510055	D	D	D	E1	D	<off></off>	<off></off>	N	N	E1	DH	D	<off></off>	<off></off>
399577605	D	D8	E1	DH	D8	<off></off>	<off></off>	D	D	<off></off>	<off></off>	N	N	N
399532310	D3	Ν	N	<off></off>	<off></off>	D	D	D	E1	D	E1	<off></off>	<off></off>	<off></off>
399576231	E1	D3	<off></off>	<off></off>	E1	D	D	<off></off>	<off></off>	D3	D	E1	<off></off>	<off></off>
399504383	D	D	D	E1	E1	<off></off>	<off></off>	D	E1	E	<off></off>	<off></off>	E1	E1
399522121	E1	D	<off></off>	E1	D	<off></off>	<off></off>	<off></off>						
399500880	<off></off>	E1	D3	D8	D8	<off></off>	<off></off>	N	N	E1	<off></off>	<off></off>	E1	E1
399544861	<off></off>	<off></off>	<off></off>	E1	D	D	D	<off></off>	<off></off>	E1	N	Ν	<off></off>	<off></off>
399530839	D3	D	<off></off>	<off></off>	<off></off>	D3	D	N	N	Ν	N	<off></off>	<off></off>	<off></off>
399590468	D	E	E1	D	<off></off>	<off></off>	<off></off>	D8	E1	E	D3	D3	<off></off>	<off></off>

Soft constraints

- Max and min number of consecutive working days
- Max and min number of consecutive days of same shift category
- Max and min number of shifts
- Max and min number of shifts in shift categories
- Minimize deviation to contracted working time
- Cluster days off
- Maximise the number of wanted patterns
- Minimise the number of unwanted patterns

au InitialSolution - SINTEF OpTur2														-
Employee	0	1	2	3	4	5	6	7	8	9	10	11	12	13
399542381	<off></off>	D	D	E1	D3	D3	D	<off></off>	<off></off>	N	N	N	<off></off>	<off></off>
399582845	N	E	D3	D	<off></off>	<off></off>	<off></off>	D3	D8	<off></off>	<off></off>	<off></off>	D	D
399563055	<off></off>	E2	E1	E1	D	E1	E1	<off></off>	<off></off>	N	N	<off></off>	<off></off>	<off></off>
399568044	<off></off>	<off></off>	D	D	DH	<off></off>	<off></off>	D3	D	<off></off>	<off></off>	D3	E1	E1
399545140	Ν	N	E1	<off></off>	<off></off>	E1	E1	<off></off>	<off></off>	D	D3	D	<off></off>	<off></off>
399519405	<off></off>	D	E1	<off></off>	<off></off>	<off></off>	<off></off>	<off></off>						
399510055	D	D	D	E1	D	<off></off>	<off></off>	Ν	N	E1	DH	D	<off></off>	<off></off>
399577605	D	D8	E1	DH	D8	<off></off>	<off></off>	D	D	<off></off>	<off></off>	N	N	N
399532310	D3	Ν	N	<off></off>	<off></off>	D	D	D	E1	D	E1	<off></off>	<off></off>	<off></off>
399576231	E1	D3	<off></off>	<off></off>	E1	D	D	<off></off>	<off></off>	D3	D	E1	<off></off>	<off></off>
399504383	D	D	D	E1	E1	<off></off>	<off></off>	D	E1	E	<off></off>	<off></off>	E1	E1
399522121	E1	D	<off></off>	E1	D	<off></off>	<off></off>	<off></off>						
399500880	<off></off>	E1	D3	D8	D8	<off></off>	<off></off>	N	N	E1	<off></off>	<off></off>	E1	E1
399544861	<off></off>	<off></off>	<off></off>	E1	D	D	D	<off></off>	<off></off>	E1	N	N	<off></off>	<off></off>
399530839	D3	D	<off></off>	<off></off>	<off></off>	D3	D	N	Ν	Ν	N	<off></off>	<off></off>	<off></off>
399590468	D	E	E1	D	<off></off>	<off></off>	<off></off>	D8	E1	E	D3	D3	<off></off>	<off></off>

7

About constraints

- One vertical constraint; Cover
- One constraint handled implicitly by solution method design; One shift per day
- The rest of the (soft and hard) constraints are "horizontal and per nurse"
- Easy to compute the impact of each roster (nurse) on the overall solution quality

au InitialSolution - SINTEF OpTur2														
Employee	0	1	2	3	4	5	6	7	8	9	10	11	12	13
399542381	<off></off>	D	D	E1	D3	D3	D	<off></off>	<off></off>	N	N	N	<off></off>	<off></off>
399582845	N	Е	D3	D	<off></off>	<off></off>	<off></off>	D3	D8	<off></off>	<off></off>	<off></off>	D	D
399563055	<off></off>	E2	E1	E1	D	E1	E1	<off></off>	<off></off>	N	N	<off></off>	<off></off>	<off></off>
399568044	<off></off>	<off></off>	D	D	DH	<off></off>	<off></off>	D3	D	<off></off>	<off></off>	D3	E1	E1
399545140	N	N	E1	<off></off>	<off></off>	E1	E1	<off></off>	<off></off>	D	D3	D	<off></off>	<off></off>
399519405	<off></off>	D	E1	<off></off>	<off></off>	<off></off>	<off></off>	<off></off>						
399510055	D	D	D	E1	D	<off></off>	<off></off>	Ν	N	E1	DH	D	<off></off>	<off></off>
399577605	D	D8	E1	DH	D8	<off></off>	<off></off>	D	D	<off></off>	<off></off>	N	N	N
399532310	D3	N	N	<off></off>	<off></off>	D	D	D	E1	D	E1	<off></off>	<off></off>	<off></off>
399576231	E1	D3	<off></off>	<off></off>	E1	D	D	<off></off>	<off></off>	D3	D	E1	<off></off>	<off></off>
399504383	D	D	D	E1	E1	<off></off>	<off></off>	D	E1	E	<off></off>	<off></off>	E1	E1
399522121	E1	D	<off></off>	E1	D	<off></off>	<off></off>	<off></off>						
399500880	<off></off>	E1	D3	D8	D8	<off></off>	<off></off>	N	N	E1	<off></off>	<off></off>	E1	E1
399544861	<off></off>	<off></off>	<off></off>	E1	D	D	D	<off></off>	<off></off>	E1	N	N	<off></off>	<off></off>
399530839	D3	D	<off></off>	<off></off>	<off></off>	D3	D	N	N	N	N	<off></off>	<off></off>	<off></off>
399590468	D	E	E1	D	<off></off>	<off></off>	<off></off>	D8	E1	E	D3	D3	<off></off>	<off></off>

Solution method

Iterated Local Search

- The solution method framework is Iterated Local Search (ILS)
 - CP used for initial solution construction (only hard constraints)
 - Iterate between
 - Variable Neighbourhood Descent (VND) and
 - destroy part of the solution and rebuild using CP

ILS with CP hybrid - Pseudo code

 $_{1}$ IteratedLocalSearch

2	$\mathbf{x}^* \leftarrow \mathbf{x} \leftarrow \operatorname{CPBuild}(\mathbf{x}_0)$
3	repeat
4	$\mathbf{x} \leftarrow \text{VariableNeighborhoodDescent}(\mathbf{x})$
5	$\mathbf{x}^* \leftarrow \operatorname{Accept}(\mathbf{x}, \mathbf{x}^*)$
6	repeat // Diversification
7	$\mathbf{x}' \leftarrow \text{DestroyPartsOfSolution}(\mathbf{x})$
8	$\mathbf{x}' \leftarrow \operatorname{CPBuild}(\mathbf{x}')$
9	until \mathbf{x}' is a legal solution
10	$\mathbf{x} \leftarrow \mathbf{x}'$
11	until some termination condition is met
12	$\mathbf{return} \ \mathbf{x}^{*}$

Constraint Programming

- One variable per day and nurse.
- Domain of the variables: the possible shifts.
- Only need to satisfy the hard constraints
- Aiming for any feasible solution, as fast as possible:
- 1. First try to solve with all constraints
- 2. Second with just cover and working time
- 3. More and more of the hard constraints

InitialSolution - SINTEF OpTur2																	
Employee	0	1	2	3	4	5	6	7	8	9	10	11	12	13			
399542381	<off></off>	D	D	E1	D3	D3	D	<off></off>	<off></off>	N	N	N	<off></off>	<off></off>			
399582845	N	E	D3	D	<off></off>	<off></off>	<off></off>	D3	D8	<off></off>	<off></off>	<off></off>	D	D			
399563055	<off></off>	E2	E1	E1	D	E1	E1	<off></off>	<off></off>	N	N	<off></off>	<off></off>	<off></off>			
399568044	<off></off>	<off></off>	D	D	DH	<off></off>	<off></off>	D3	D	<off></off>	<off></off>	D3	E1	E1			
399545140	N	Ν	E1	<off></off>	<off></off>	E1	E1	<off></off>	<off></off>	D	D3	D	<off></off>	<off></off>			
399519405	<off></off>	D	E1	<off></off>	<off></off>	<off></off>	<off></off>	<off></off>									
399510055	D	D	D	E1	D	<off></off>	<off></off>	N	N	E1	DH	D	<off></off>	<off></off>			
399577605	D	D8	E1	DH	D8	<off></off>	<off></off>	D	D	<off></off>	<off></off>	Ν	N	N			
399532310	D3	Ν	N	<off></off>	<off></off>	D	D	D	E1	D	E1	<off></off>	<off></off>	<off></off>			
399576231	E1	D3	<off></off>	<off></off>	E1	D	D	<off></off>	<off></off>	D3	D	E1	<off></off>	<off></off>			
399504383	D	D	D	E1	E1	<off></off>	<off></off>	D	E1	E	<off></off>	<off></off>	E1	E1			
399522121	E1	D	<off></off>	E1	D	<off></off>	<off></off>	<off></off>									
399500880	<off></off>	E1	D3	D8	D8	<off></off>	<off></off>	N	N	E1	<off></off>	<off></off>	E1	E1			
399544861	<off></off>	<off></off>	<off></off>	E1	D	D	D	<off></off>	<off></off>	E1	N	N	<off></off>	<off></off>			
399530839	D3	D	<off></off>	<off></off>	<off></off>	D3	D	N	N	N	N	<off></off>	<off></off>	<off></off>			
399590468	D	E	E1	D	<off></off>	<off></off>	<off></off>	D8	E1	E	D3	D3	<off></off>	<off></off>			

Constraint programing (2)

- Variables; X_{ed}.
- Handling the competence constraint by initial reduction of the domain of variables.
- Many constraints are handled by expressions. Example: workload.
- Initial propagation (arc consistency).
- During search we maintain arc consistency (MAC).
- Search heuristic: Depth-first search with dynamic variable and value ordering.
 - Select day (partially selecting variable); X_{ed}
 - Select shift category and choose random shift in that category (value)
 - Select nurse (variable); X_{ed}

Variable Neighbourhood Search

- No moves that violate hard constraints.
- Cover constraint is obeyed by neighbourhood design (only vertical swaps).
- In each iteration, apply first move that decreases penalty.
- Search the neighbourhoods in sequence.
- Need to focus on the "problematic" areas of the current solution.

	Mon	Tue	Wed	Thu	Fri	Sat	Sun
Employee 1	\overline{E}_{∇}	D	\mathbb{N}		Ε	100	$/E_{\nabla}$
Employee 2	()		D	(E)r	Ν	$\langle \rangle$	$\left(\begin{array}{c} \mathbf{D} \end{array} \right)$
Employee 3		Ν		$\left(\begin{array}{c} \mathbf{D} \end{array} \right)$			
Employee 4	1 N	Е		Z		YE/	¥)
Employee 5			Ε		D	Ν	Ν

Focal points

- The neighbourhood to search for each of the three local moves quickly become very large
 - Even the smallest one, the simple swap, has the size of $|E|^2|D|$.
 - We must focus on the most promising moves.
- Focal points are features ("places"/variables) in the current solution where changes are likely to yield improvements.
- We create one focal point per variable involved in soft constraint violation

a InitialSolution - SINTEF OpTur2													_	_
Employee	0	1	2	3	4	5	6	7	8	9	10	11	12	13
399542381	<off></off>	D	D	E1	D3	D3	D	<off></off>	<off></off>	N	N	N	<off></off>	<off></off>
399582845	N	E	D3	D	<off></off>	<off></off>	<off></off>	D3	D8	<off></off>	<off></off>	<off></off>	D	D
399563055	<off></off>	E2	E1	E1	D	E1	E1	<off></off>	<off></off>	N	N	<off></off>	<off></off>	<off></off>
399568044	<off></off>	<off></off>	D	D	DH	<off></off>	<off></off>	D3	D	<off></off>	<off></off>	D3	E1	E1
399545140	N	N	E1	<off></off>	<off></off>	E1	E1	<off></off>	<off></off>	D	D3	D	<off></off>	<off></off>
399519405	<off></off>	D	E1	<off></off>	<off></off>	<off></off>	<off></off>	<off></off>						
399510055	D	D	D	E1	D	<off></off>	<off></off>	N	N	E1	DH	D	<off></off>	<off></off>
399577605	D	D8	E1	DH	D8	<off></off>	<off></off>	D	D	<off></off>	<off></off>	N	N	N
399532310	D3	N	N	<off></off>	<off></off>	D	D	D	E1	D	E1	<off></off>	<off></off>	<off></off>
399576231	E1	D3	<off></off>	<off></off>	E1	D	D	<off></off>	<off></off>	D3	D	E1	<off></off>	<off></off>
399504383	D	D	D	E1	E1	<off></off>	<off></off>	D	E1	E	<off></off>	<off></off>	E1	E1
399522121	E1	D	<off></off>	E1	D	<off></off>	<off></off>	<off></off>						
399500880	<off></off>	E1	D3	D8	D8	<off></off>	<off></off>	N	N	E1	<off></off>	<off></off>	E1	E1
399544861	<off></off>	<off></off>	<off></off>	E1	D	D	D	<off></off>	<off></off>	E1	N	N	<off></off>	<off></off>
399530839	D3	D	<off></off>	<off></off>	<off></off>	D3	D	N	N	N	N	<off></off>	<off></off>	<off></off>
399590468	D	E	E1	D	<off></off>	<off></off>	<off></off>	D8	E1	Е	D3	D3	<off></off>	<off></off>

Destruction of rosters

- We destroy or unassign, a number of rosters to achieve diversification.
- The destroyed rosters are rebuilt by using CP, keeping the other rosters locked (variables fixed).
- The number of rosters to ruin is picked randomly (between limits) as a mix of
 - the worst rosters (cf. focal points) and
 - some picked at random.

- InitialSolution	- SINTE	F OpTu	r2	_	_	2	_	_	_		~	_	_	_
Employee	0	1	2	3	4	5	6	7	8	9	10	11	12	13
399542381	<off></off>	D	D	E1	D3	D3	D	<off></off>	<off></off>	N	N	N	<off></off>	<off></off>
399582845														
399563055	<off></off>	E2	E1	E1	D	E1	E1	<off></off>	<off></off>	Ν	N	<off></off>	<off></off>	<off></off>
399568044	<off></off>	<off></off>	D	D	DH	<off></off>	<off></off>	D3	D	<off></off>	<off></off>	D3	E1	E1
399545140														
399519405	<off></off>	D	E1	<off></off>	<off></off>	<off></off>	<off></off>	<off></off>						
399510055														
399577605														
399532310														
399576231	E1	D3	<off></off>	<off></off>	E1	D	D	<off></off>	<off></off>	D3	D	E1	<off></off>	<off></off>
399504383	D	D	D	E1	E1	<off></off>	<off></off>	D	E1	E	<off></off>	<off></off>	E1	E1
399522121	E1	D	<off></off>	E1	D	<off></off>	<off></off>	<off></off>						
399500880	<off></off>	E1	D3	D8	D8	<off></off>	<off></off>	N	N	E1	<off></off>	<off></off>	E1	E1
399544861	<off></off>	<off></off>	<off></off>	E1	D	D	D	<off></off>	<off></off>	E1	N	Ν	<off></off>	<off></off>
399530839														
399590468	D	E	E1	D	<off></off>	<off></off>	<off></off>	D8	E1	E	D3	D3	<off></off>	<off></off>

Results

Software

- Software for solving this class of NRPs was built on top of SINTEFs SCOOP library that contains a CP/CSP library.
- The development was an industry project financed by a software vendor:
 - Should "always" work needed robust method over large variety of problems
- Development started as early as 2004, first deployment in 2006.
- Research and software development have continued since.
- The system is currently in use in several Norwegian hospitals.
- Interest outside hospitals (newspapers, counties) + interest in Sweden.
- Currently we're developing a more generic model, capable of handling generic pattern and work load constraints.

Results

- Huge problems solved; up to 80 employees and 168 days. Typically 9 different shift types, in three categories.
- It is necessary with a powerful diversification step when doing (iterated) local search – CP is a good tool.
- The use of CP quickly finds a feasible solution in the first phase, and in the rebuild phase.
- CP is efficient;
 - Initial solution found in a few seconds on small to medium cases, up to one minute on the largest cases (~2 mill backtracks)
 - In the rebuild of the diversification step usually a fraction of a second is used.
- We can solve a large range of real-world NRPs in reasonable time.

Thank you for your attention!

- Detailed model description (MIP style) can be found at: <u>http://www.comihc.org/index.php/Models/</u> <u>sintef-ict-nurserostering-model.html</u>
- The test cases can be found at: <u>http://www.comihc.org/index.php/Test-Beds/</u> <u>sintef-ictnurse-rostering-data.html</u>

