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Main differences between social choice 
and multi-agent AI scenarios 
¨  In multi-agent AI scenarios, we usually have 

¤  Large sets of candidates (w.r.t. number of voters) 

¤  Combinatorial structure for candidate set 
¤  Knowledge representation formalisms to model preferences 

¤  Incomparability 
¤  Uncertainty, vagueness 

¤  Computational concerns 



Large set of candidates 

¨  In AI scenarios, usually the set of decisions is much larger than 
the set of agents expressing preferences over the decisions 
¤ Many web pages, few search engines 

¨  Combinatorial structure for the set of decisions 
¤ Car (or PC, or camera) = several features, each with some 

instances 
¤ Dinner = combination of the different dishes 



Combinatorial structure for the set of 
decisions 

¨  Example: 
¤  Three friends need to decide what to cook for dinner 
¤  4 items (pasta, main, dessert, drink) 
¤  5 options for each è 54 = 625 possible dinners 

¨  In general: Cartesian product of several variable 
domains 
¤  Variables = items of the menu, domain= 5 options 

 



Formalisms to model preferences 

¨  Preference ordering over a large set of decisions 
è need to model them compactly 
¤ Otherwise too much space and time to handle such 

preferences 

¨  Two examples:  
¤  soft constraints 
¤ CP-nets 



Outline 

¨  Compact representation of preferences 
¤ Soft constraints 
¤ CP nets 

¨  Sequential voting  
¨  Stable marriage problems 



SOFT CONSTRAINTS 



Preferences vs. constraints 

 
¨  Constraints are strict requirements 
¨  Preferences as a way to provide more 
“tolerant” statements 



Constraints 

¨  Many real-life problems can be modelled via constraints 
¨  Ex.: 

¤  “I need at least two bedrooms” 
¤  “I don’t want to spend more than 100K” 

¨  Constraint = requirement = relation among objects (values for variables) of 
the problem 

¨  Solution of a constraint problem = object choice (variable assignment) such 
that all constraints are satisfied 

¨  Constraint programming offers 
¤  Natural modelling frameworks 
¤  Efficient solvers 
¤  Many application domains 

n  Scheduling, timetabling, resource allocation, vehicle routing, ... 

[Dechter, 2003; Rossi, Van Beek, Walsh, 2006] 



Constraints are not flexible   

¨  Constraints are useful when we have a clear 
yes/no idea 
¤ A constraint can either be satisfied or violated 

¨  Sometimes, we have a less precise model of the 
real-life problem 
¤ Ex.: “Both a skiing and a beach vacation are fine, but I 

prefer skiing” 
¨  If all constraints, possibly 

¤ No solution, or 
¤ Too many solutions, and equally satisfiable 



Preferences are everywhere 

¨  Under-constrained problems è many 
solutions è we want to choose among 
solutions 

¨  Over-constrained problems è no solution è 
we want to find an acceptable assignment  

¨  Problems which are naturally modelled with 
preferences  

¨  Constraints and preferences may occur 
together 
¤ Ex.: configuration, timetabling 



Example: University timetabling 
Professor	
   Administra/on	
  

I cannot teach on Wednesday 
afternoon. 
 
I prefer not to teach early in 
the morning, nor on Friday 
afternoon. 

  Lab C can fit only 120 students. 
 

Better to not leave 1-hour holes in 
the day schedule. 
 

Constraints 

Constraints  

Preferences  

Preferences 



Several kinds of  preferences 

¨  Positive (degrees of acceptance) 
¤  “I like ice cream” 

¨  Negative (degrees of rejection) 
¤  “I don’t like strawberries” 

¨  Unconditional 
¤  “I prefer taking the bus” 

¨  Conditional 
¤  “I prefer taking the bus if it’s raining” 

¨  Multi-agent 
¤  “I like blue, my husband likes green, what color do we 

buy the car?” 
 



Two main ways to model preferences  

¨  Quantitative 
¤ Numbers or ordered set of objects 
¤ “My preference for ice cream is 0.8, and for cake 

is 0.6” 
¤ E.g., soft constraints 

¨  Qualitative 
¤ Pairwise comparisons: 
“Ice cream is better than cake” 

¤ E.g., CP-nets 



Modelling preferences compactly 

¨  Preference ordering: an ordering over the 
whole set of solutions (or candidates, or 
outcomes, …) 

¨  Solution space with a combinatorial structure 
è preferences over partial assignments, from 
which to generate the preference ordering over 
the solution space 

 



Formalisms to model preferences 

 
¨  Soft Constraints 

¤  Quantitative formalism 
¤  (Negative) preferences 

¨  CP-nets (Conditional Preference Networks) 
¤  Qualitative formalism 
¤  Positive preferences 

Two different ways to model compactly a preference ordering 
over a set of objects with a combinatorial structure 



Soft  Constraints:  
the c-semiring framework 

¨  Variables {X1,…,Xn}=X 
¨  Domains {D(X1),…,D(Xn)}=D 
¨  Soft constraints 

¤  each constraint involves some of the variables 
¤  a preference is associated with each assignment of the 

variables 
¨  Set of preferences A 

¤  Totally or partially ordered (induced by +) 
¤  Combination operator (x) 
¤  Top and bottom element (1, 0) 
¤  Formally defined by a c-semiring <A,+,x,0,1> 

[Bistarelli, Montanari, Rossi, IJCAI 1995, JACM 1997] 



Soft constraints 
¨  Soft constraint: a pair c=<f,con> where: 

¤ Scope: con={Xc
1,…, Xc

k} subset of X 
¤ Preference function :  
     f:    D(Xc

1)x…xD(Xc
k) → A 

            tuple   (v1,…, vk) → p  preference 
¨  Hard constraint: a soft constraint where for 

each tuple (v1,…, vk)  
    f (v1,…, vk)=1   the tuple is allowed 
    f (v1,…, vk)=0   the tuple is forbidden  



Soft  Constraints:  
the C-semiring framework 

¨  Some properties: 
¤  for all a in A, 0 ≤ a ≤ 1 
¤  for all a,b in A, a x b ≤ a 
¤  <A,≤> lattice 

n  + is lub 
n  x is glb if x idempotent 

¤ + and x monotone on ≤  

a + b 

a 
b 

a x b 

1 

0 



Complete assignments and their 
evaluation 

¨  Complete assignment: one value for each 
variable 

¨  Global evaluation: preference associated to a 
complete assignment  

¨  How to obtain a global evaluation?  
¤ By combining (via x) the preferences of the partial 

assignments given by the constraints 
 



Example: weighted constraints 
 
¨  <A = N∪+∞, + = min, x = +,0 = +∞,1 = 0>  
¨  Values in [0,+∞] 

¤ Best value=0 
¤ Worst value=+∞ 

¨  Comparison with min 
¤ A better than B iff min(A,B)=A  

¨  Composition with + 
¤ Goal is to minimize sum 

 



Example: fuzzy constraints 
¨  <A = [0,1],+ = max,x = min,0 = 0,1 = 1>: 

¤ Preferences between 0 and 1 
¤ Higher values denote better preferences 

n 0 is the worst preference 
n 1 is the best preference 

¤ Combination is taking the smallest value  
 

 è optimization criterion = maximize the minimum preference  
 
Pessimistic approach, useful in critical application (eg., space 

and medical settings) 

[Fuzzy CSPs: Schiex UAI’92, Ruttkay FUZZ-IEEE ‘94 ] 



Fuzzy-SCSP example 

{12	
  pm,	
  1	
  pm}	
   {2	
  pm,	
  3	
  pm}	
  

Lunch	
  	
   Swim	
  

(12	
  pm,	
  3	
  pm)	
  à	
  1	
  

(12	
  pm,	
  2	
  pm)	
  à	
  1	
   	
  	
  (1	
  pm,	
  2	
  pm)	
  à	
  0	
  

	
  	
  (1	
  pm	
  ,	
  3	
  pm)	
  à	
  1	
  

{Fish,	
  Meat}	
   {White,	
  red}	
  

Main	
  
Course	
   Wine	
  

(Fish,	
  red)	
  à	
  0.8	
  

(Fish,	
  white)	
  à	
  1	
   (Meat,	
  white)	
  à	
  0.3	
  

(Meat,	
  red)	
  à	
  0.7	
  

Lunch=            1 pm  
Main course =   meat 
Wine=              white 
Swim =            2 pm 

     Solution S 

pref(S)=min(0.3,0)=0 

Lunch=            12 pm  
Main course =   fish 
Wine=              white 
Swim =            2 pm 

     Solution S’ 

pref(S)=min(1,1)=1 

Fuzzy semiring 
 
 
SFCSP=<[0,1],max,min,0,1> 

S    =<A  ,  +  ,  x ,0,1> 



Instances of  semiring-based soft constraints 
¨  Each instance is characterized by a c-semiring <A, +, x, 0, 1> 
¨  Classical constraints: <{0,1},logical or,logical and,0,1> 

¤  Satisfy all constraints 
¨  Fuzzy constraints: <[0,1],max,min,0,1> 

¤  Maximize the minimum preference 
¨  Lexicographic CSPs: <[0,1]k,lex-max,min,0k,1k> 

¤  Order the preferences lexicographically and then maximize the minimum 
preference  

¨  Weighted constraints (N):<N∪+∞, min, +,+∞,0> 
¤  Minimize the sum of the costs (naturals) 

¨  Weighted constraints (R):<R∪+∞, min, +, +∞,0> 
¤  Minimize the sum of the costs (reals) 

¨  Max CSP: weight =1 if constraint is not satisfied and 0 if satisfied 
¤  Minimize the number of violated constraints 

¨  Probabilistic constraints: <[0,1], max, x, 0,1> 
¤  Maximize the joint probability of being a constraint of the real problem 

¨  Valued CSPs: any totally ordered c-semiring 
¨  Multi-criteria problems: Cartesian product of semirings 



Multi-criteria problems 
¨  One semiring for each criteria 
¨  Given n c-semirings Si = <Ai, +i, xi, 0i,1i>, we can build the c-

semiring  
<<A1,..., An>, +,x, <01,...,0n>,<11,...,1n>> 
¨  + and x obtained by pointwise application of +i and xi on each 

semiring 
¨  A tuple of values associated with each variable instantiation 
¨  A tuple is better than another if it is better or equal on all 

elements, and better in at least one 
¨  A partial order even if all the criteria are totally ordered 

¤  Pareto-like approach 



Example 
¨  The problem: choosing a route between two cities 
¨  Each piece of highway has a preference and a cost  
¨  We want to both minimize the sum of the costs and maximize the 

preference  
¨  Semiring: by putting together one fuzzy semiring and one 

weighted semiring: 
¤ <[0,1],max,min,0,1> 
¤ <N, min, +, +∞, 0> 

¨  Best solutions: routes such that there is no other route with a 
better semiring value  
¤ <0.8,$10> is better than <0.7,$15> 

¨  Two total orders, but the resulting order is partial: 
¤ <0.6, $10> and <0.4,$5> are not comparable 



Solution ordering 

¨  A soft CSP induces an ordering over the 
solutions, from the ordering of the semiring 

¨  Totally ordered semiring è total order over 
solutions (possibly with ties)  

¨  Partially ordered semiring è total or partial 
order over solutions  (possibly with ties)  

¨  Any ordering can be obtained! 



Expressive power 

¨  A       B iff from a problem P in A it is possible to 
build in polynomial time a problem P’ in B s.t. 
the optimal solutions are the same (but not 
necessarily the solution ordering!) 
¤ B is at least as expressive as A 

¨  A       B iff from a problem P in A it is possible to 
build in polynomial time a problem P’ in B s.t. 
opt(P’) ⊆ opt(P) 

 



Expressive power 

weightedR Prob 

weightedN 

Valued 

Semiring-based 

Classical 

Fuzzy Lexicographic 



Interesting questions for soft CSPs 

¨  Find an optimal solution 
¨  Find the next solution in a linearization of the 

solution ordering 
¨  Is s an optimal solution?  
¨  Is s better than s’? 



Finding an optimal solution 
¨  Difficult in general 

¤ Branch and bound + constraint propagation 
¤ Local search 
¤ Bucket elimination 
¤ … 

¨  Easy for some classes of soft constraints 
¨  Ex.: tree-shaped problems 

¤ Bucket elimination: directional arc-consistency + 
backtrack-free search 

¤ Also for problems with bounded treewidth 
 



Finding the next solution 

¨  Next where? In a linearization of the solution ordering 
¨  Ties and incomparable sets should be linearized (any 

way is fine) 
¨  Difficult for CSPs in general (so also for SCSPs) 
¨  At least as difficult as finding an optimal solution 
¨  Easy for tree-shaped CSPs and tree-shaped fuzzy CSPs 
¨  Difficult for tree-shaped weighted CSPs 

[Brafman, Rossi, Venable, Walsh, 2009] 



Is s an optimal solution?  
 

¨  Difficult in general: same complexity as finding an 
optimal solution 
¤ We have to find the optimal preference level 
¤ Easy for classical CSPs (optimal preference level is 1) 



Is s better then s’? 
 

¨  Easy: Linear in the number of constraints 
¤ Compute the two preference levels and compare them 
¤ Assumption: + and x easy to compute 



Systematic search : Branch and bound 

 
¨ Backtracking à Branch and Bound 
¨ Main idea:  

¤ visit each assignment that may be a solution 
¤ skip only assignments that are shown to be 

dominated by others 
¨ Search tree to represent the space of all 

assignments   
 



Systematic search : Branch and bound 

 
¨ Lower bound = preference of best solution so 

far (0 at the beginning) 
¨ Upper bound for each node: upper bound to 

the preference of any assignment in the 
subtree rooted at the node 

¨  If ub is worst than  lb è prune subtree 
 



SWCSP=<[0,+∞],min,+,+∞,0> 

Processing 
time  

(b, b) à 0 € 
(h, m) à 30 € 
(h,h) à 0 € 
 
 

Iron 
quality 

Wood 
quality 

high à 20 € 
bad  à 10 € 

 bad à 50 €  
medium à 200 € 
high à 300 € 

(b, 2) à 40 € 
(m,2) à 50 € 
(m,3) à 70 € 
(h,3)à  70 € 

2 days  à 0 € 
3 days  à 0 € Iron 

quality 

Wood 
quality 

Wood 
quality 

Processing 
time  

Processing 
time  

Processing 
time  

Processing 
time  

Processing 
time  

Processing 
time  

bad high 

high bad 
med med 

bad high 

2 2 2 2 2 2 3 3 3 3 3 3 

ub = x preferences from constraints 
        on assigned variables 

lb =+∞ 
ub = 0 
lb =+∞ 
ub = 10 

lb =+∞ 
ub = 60 
lb =100 
ub =100 

lb =100 
ub = 60 
lb =100 
ub = 10 
lb =100 
ub = +∞ 

Iron 
quality 

Wood 
quality 

Processing 
time  

Processing 
time  

lb =100 
ub = +∞ 



Inference:  Constraint propagation 

¨  Constraint propagation (ex.arc-consistency): 
¤ Deletes an element a from the domain of a variable x if, 

according to a constraint between x and y, it does not have 
any compatible element b in the domain of y 

¤  Iterate until stability 

¨  Polynomial time 
¨  Very useful at each node of the search tree to prune 

subtrees 



Example 

No matter what the other constraints are,  
X=b cannot participate in any solution. 
So we can delete it without changing the set of solutions. 

X Y 

a 
b 

a 
b 

a a 
a b 



Properties 

¨ Equivalence: each step preserves the set of 
solutions 

¨ Termination (with finite domains) 
¨ Order-independence 



Fundamental operations with soft constraints 

¨  Projection: eliminate one or more variables from a 
constraint obtaining a new constraint preserving all the 
information on the remaining variables 

   Formally:  If c=<f,con>, then c|I = <f', I ∩ con> 
¤  f'(t') = + (f(t)) over tuples of values t s.t. t|I ∩ con = t’ 

¨  Combination:  combine two or more soft constraints 
obtaining a new soft constraint “synthesizing “ all the 
information of the original ones 

    Formally: If ci=<fi,coni>, then c1 x c2 = <f, con1 ∪ 
con2> 
¤  f(t) = f1(t|con1) x f2(t|con2) 



Projection: fuzzy example 

{Fish,Meat} {White ,Red} 

Main 
Course Wine 

(Fish, red) à 0.8 

(Fish, white) à 1 (Meat, white) à 0.3 

(Meat, red) à 0.7 

SFCSP=<[0,1],max,min,0,1> 

If c=<f,con>, then c|I = <f', I ∩ con> 
f'(t') = + (f(t)) over tuples of values t s.t. t|I ∩ con = t’ 

c=<f,{mc,w}> c|mc 

Main 
Course 

Fish à max(f(fish,white),f(fish,red)) 
           =max(1,0.8)=1 

Meat à max(f(meat,white),f(meat,red)) 
           =max(0.3,0.7)=0.7 



Projection: weighted example  

Processing 
time  

Wood 
quality 

 
SWCSP=<[0,+∞],min,+,+∞,0> 

(b, 2) à 40 € 
(m,2) à 50 € 
(m,3) à 70 € 
(h,3)à  70 € 

{bad,med,high} 
{2,3} 

c=<f,{wq,pt}> 

If c=<f,con>, then c|I = <f', I ∩ con> 
f'(t') = + (f(t)) over tuples of values t s.t. t|I ∩ con = t’ 

c|wq 

Wood 
quality 

bad à min(f(b,2),f(b,3))=min(40,+∞)=40 

med à min(f(m,2),f(m,3))=min(50,70)=50 

high à min(f(h,2),f(h,3))=min(+∞,70)=70 



Combination: fuzzy example 
If ci=<fi,coni>, then: c1 x c2 = <f, con1 ∪ con2> 

¤  f(t) = f1(t|con1) x f2(t|con2) SFCSP=<[0,1],max,min,0,1> 

VGA MB 

{slow ,fast} {256,512,1024}  

<256,P4> → 0.5 
<512,P4> → 0.7 
<1024,P4> → 0.9  

<s,1024> → 0.9 
<s,512> → 0.7 
<s,256> → 0.6 

P {P4,AMD}  

<f,256> → 0.1 
<f,512> → 0.9 
<f,1024> → 1 

<256,AMD> → 0.5 
<512,AMD> → 0.5 
<1024,AMD> → 0.5  

f(s,256,P4) = min(0.6,0.5) = 0.5 
f(f,1024,P4)=min(0.9,0.9)=0.9 
…. 

VGA MB 

P 



Combination: weighted example 
If ci=<fi,coni>, then: c1 x c2 = <f, con1 ∪ con2> 

¤  f(t) = f1(t|con1) x f2(t|con2) 

Iron 
qiality 

Wood 
Quality 

{bad ,high} {bad,med,high}  

Processing  
Time 

f(b,b,2) = 0+20 = 20 
f(h,m,3)=30+30=60 
…. 

 
SWCSP=<[0,+∞],min,+,+∞,0> 

2 days  à 20 € 
3 days  à  30€ 

(b, b) à 0 € 
(h, m) à 30 € 
(h,h) à 0 € 

Iron 
qiality 

Wood 
Quality 

Processing  
Time 



Soft constraint propagation 

¨ Deleting a value means passing from 1 to 0 in 
the semiring <{0,1},or,and,0,1> 

¨  In general, constraint propagation can change 
preferences to lower values in the ordering 

¨ Soft arc-consistency: given cx, cxy, and cy, 
compute cx := (cx x cxy x cy)|x 

¨  Iterate until stability 



Example: fuzzy arc-consistency 

  

VGA MB 

s=slow à 0.2 
f=fast à 0.9 

256 à 0.5 
512 à 0.8 
1024 à 0.7  

<s,1024> → 0.9 

<s,512> → 0.7 

<s,256> → 0.6 <f,256> → 0.1 

<f,512> → 0.9 

<f,1024> → 1 

cx := (cx x cxy x cy)|x 

VGA=s à max(min(0.2,0.6,0.5),min(0.2,0.7,0.8),min(0.2,0.9,0.7))= 
max(0.2,0.2,0.2) = 0.2 
 
VGA=fà max(min(0.9,0.1,0.5),min(0.9,0.9,0.8),min(0.9,1,0.7))= 
max(0.1,0.8,0.7)=0.8 

Fuzzy semiring= 
<[0,1],max,min,0,1> 
à +=max an x=min 



weighted arc-consistency ?! 

  

X Y 

aà 0 
b à 0 

b à 0 
aà 0  

<a,b> → 20 
<b,b> → 10 
<a,a> → 10 

cx := (cx x cxy x cy)|x 

Weighted semiring= 
<[0,+∞],min,+,+∞,0> 

X Y 

aà 10 
b à 10 

b à 0 
aà 0  

<a,b> → 20 
<b,b> → 10 
<a,a> → 10 

Not equivalent! 
 
pref1(a,a)=10 
pref2(a,a)=20 

1 

2 



Properties 
¨  If x idempotent (ex.:fuzzy,classical): 

¤  Equivalence 
¤  Termination 
¤  Order-independence 

¨  If x not idempotent (ex.: weighted CSPs, prob.), we could count 
more than once the same constraint è we need to compensate 
by subtracting appropriate quantities somewhere else è we 
need an additional property (fairness=presence of -) 
¤  Equivalence  
¤  Termination 
¤  Not order-independence 

[Schiex, CP 2000] 
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2000,Springer LNCS 1894 



CP NETS 



Qualitative and conditional preferences 
¨  Soft constraints model quantitatively unconditional 

preferences 
¨  Many problems need statements like 

¤ “I like white wine if there is 
fish” (conditional) 

¤ “I like white wine better than red 
wine” (qualitative) 

¨  Quantitative è a level of preference for each 
assignment of the variables in a soft constraint è 
possibly difficult to elicitate preferences from user 



Preference statements in CP nets 

¨  Conditional preference statements  
¤  “If it is fish, I prefer white wine to red wine” 
¤  syntax:  
            fish: white wine > red wine 

¨  Ceteris paribus interpretation 
¤  all else being equal 
¤  {fish, white wine, ice cream} > (preferred to)  
    {fish, red wine, ice cream} 
¤  {fish, white wine, ice cream} ? 
    {fish, red wine, fruit} 

[Boutelier, Brafman, Domshlak, Hoos, Poole. JAIR 2004]	


[Domshlak, Brafman KR02]	





CP nets 
¨  Variables {X1, … , Xn} with domains 
¨  For each variable, a total order over its values 
¨  Indipendent variable: 

¤  X=v1 > X=v2 > ... > X=vk 
¨  Conditioned variable: a total order for each combination of 

values of some other variables (conditional preference table) 
¤  Y=a, Z=b: X=v1 > X=v2 > ... > X=vk 
¤  X depends on Y and Z (parents of X) 

¨  Graphically: directed graph over X1, … , Xn  
¤  Possibly cyclic 
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CP nets: an example 

Main course      Wine 

        fish  white > red 

       meat  red > white 
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CP-net semantics 
¨  Worsening flip: changing the value of an attribute in a 

way that is less preferred in some statement. Example: 

 
 

¨  An outcome O1 is preferred to O2 iff there is a sequence of 
worsening flips from O1 to O2 

¨  Optimal outcome: if no other outcome is preferred 
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Preorder over solutions 

¨  A CP net induces an ordering over the solutions 
(directly) 

¨  In general, a preorder 
¨  Some solutions can be in a cycle: for each of 

them, there is another one which is better 
¨  Acyclic CP net: one optimal solution 
¨  Not all orderings can be obtained with CP nets 

¤ Outcomes which are one flip apart must be ordered 



Solution ordering  

Main course      Wine 

        fish  white > red 

       meat  red > white 
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Solution ordering  

Main 
course      Wine 

        fish  white > 
red 

       meat  red > 
white 

fish>meat	
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Interesting questions in CP nets 
¨  Find an optimal outcome 

¤  In general, difficult (as solving a CSP) 
¤  Easy for acyclic networks  

n  always have exactly one optimal solution 
n  sweep forward in linear time 

¨  Find the next solution in a linearization of the 
solution ordering 
¤  Easy for acyclic CP-nets  

¨  Does O1 dominate O2? 
¤  Difficult even for acyclic CP nets 

¨  Is O optimal? 
¤  Easy: test O against a CSP 

 



Example  

Loc-­‐A,	
  Analyze,	
  St2	
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WHERE 

WHAT 

Loc-A >Loc-B   

DLINK 

St2>St1 

Loc-A: Analyze> Image 
Loc-B: Image> Analyze 

 A rover must decide: 
•  Where to go: Location A or Location B 
•  What to do: Analyze a rock or Take and image 
•  Which station to downlink to: Station 1 or Station 2 



How to find optimal solutions in CP nets 

¨  Acyclic CP-nets: sweep forward algorithm 
¤ Follow the dependency graph 
¤ For each variable, assign the most preferred 

value in the context of the parents’ assignment 



Sweep forward algorithm  

Main course      Wine 

        fish  white > red 

       meat  red > white 
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1.  F = peaches 
2.  M = fish 
3.  Since M=fish, W=white 



Sweep forward algorithm  

Main 
course      Wine 

        fish  white > 
red 

       meat  red > 
white 

fish>meat	
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1.  F = peaches 
2.  M = fish 
3.  Since M=fish, W=white 



Cyclic CP nets 

¨  Given a (cyclic) CP net, we can generate in 
polynomial time a set of constraints P such 
that the solutions of P coincides with the set of 
optimal solutions of the CP net 
¤ For each Y=a, Z=b: X=v1 > X=v2 > ... > X=vk, we build the 

constraint Y=a, Z=b è X=v1 



Optimal solutions in cyclic CP nets  

F = peaches 
M = fish è W=white 
M = meat è W = red 
W = white è M = fish 
W = red è M = meat 
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Constraints: 



The next best solution 

 
¨  Also important: given a solution s, find the next one 

¤  Top k solutions in web search 
¤  Next most preferred option in stable marriage proposal-based 

algorithms 
¨  Next where? In a linearization of the preference ordering 

¤  Compatible with the preference ordering 
¤  Has to linearize incomparability 

Next(P,s,l) 

    P: Preference  
representation 

s: Solution l: Linearization of the  
preference ordering 

The solution following s 
according  to the  
preferences in P 
and linearization l 

[Brafman, Salvagnin Rossi,Venable,Walsh  
ADT 2009, KR 2010, AAAI 2011] 



Next on a CP-net: example 

WHERE 

WHAT 

Loc-A >Loc-B   

DLINK 

St2>St1 

Loc-A: Analyze> Image 
Loc-B: Image> Analyze 
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Next on acyclic CP-nets is easy for 
conditional lex linearization 

¨  Acyclic CP-nets generate a partial order with one top element 
¨  Assume Boolean vars (for simplicity) 
¨  Main idea: Boolean vector for each solution 

¤  Position i for variable xi: 0 if xi has its most preferred value given its 
parents, otherwise 1 

¨  Lex order over the vectors is a linearization  
¨  Next is just Boolean vector incrementation 

¤  Given s, compute its vector v 
¤  Increment the vector obtaining v’ 
¤  Given v’, obtain the corresponding solution s’ 

[Brafman, Salvagnin Rossi,Venable,Walsh,  
ADT 2009, KR 2010, AAAI 2011] 



Solution Ordering 

WHERE 

WHAT 

Loc-A >Loc-B   

DLINK 

St2>St1 

Loc-A: Analyze> Image 
Loc-B: Image> Analyze 
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010 001 

011 100 
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111 
[Brafman, Salvagnin Rossi,Venable,Walsh  
ADT 2009, KR 2010, AAAI 2011] 
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CP nets à classical CSPs 

¨  Given a CP net, it is always possible to build in 
polynomial time a classical CSP with the same 
set of optimal solutions  
¤ For each Y=a, Z=b: X=v1 > X=v2 > ... > X=vk, we build the 

constraint Y=a, Z=b è X=v1 
 

¨  For some CSP, it is not possible to build a CP 
net with the same set of optimals 
¤ Ex.: two (optimal) solutions <X=a,Y=b,Z=c> and 

<X=a,Y=b,Z=d> è they must be ordered in a CP 
net 

[Brafman,	
  Dimopoulos,	
  CI	
  2004]	
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CP nets vs. Soft Constraints  
(solution ordering) 

¨  There are CP nets whose ordering cannot be 
modelled (in poly time) by a soft CSP  
¤ Otherwise dominance testing would be easy in 

CP-nets 
 
¨  There are soft CSPs whose orderings cannot 

be modelled by a CP net 
¤ Not all orderings can be represented by CP nets 



Soft constraints vs. CP-nets 

all some 

difficult easy 

easy difficult 

difficult easy 

difficult easy 

Soft              CP nets  
constraints  (acyclic) 

Preference orderings 
 
 
Find an optinmal decision 
 
 
Compare two decisions 
 
 
Find the next best decision 
 
Check if a decsion is optimal 



Approximating CP nets via Soft Constraints 

¨  We can approximate the ordering of a CP net 
via a soft constraint problem  
¤  Weighted or fuzzy soft constraints 
¤  For ordered outcomes, same ordering 
¤  For incomparable outcomes, tie or order è more ordered  
¤  Easy dominance test 
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Constrained CP-net 

A Constrained CP-net on variables X={X1,…, Xn} is a 
pair <N,C> where: 
¤  N is a CP-net on variables X 
¤  C is a set of Hard or Soft Constraints on X 

 

Constrained CP-net semantics: 
O1 ≥ O2 iff  
¤  Pref(O1) > pref(O2) in C, or 
¤  Pref(O1) = pref(O2) in C and there is a chain of worsening flips 

from O1 to O2 through outcomes with equal or higher 
preference  

¤  O optimal if feasible and undominated in the CP net (not 
necessarily optimal in the CP net) 



Softly Constrained CP net : example  

Main 
course      Wine 

        fish  white > 
red 

       meat  red > 
white 

Fish, red, peaches 

Fish, red, berries 

meat, red, peaches 

meat, red, berries 

fish>meat 

peaches > strawberries 

Main  
course 

Fish, white, peaches 

Fish, white, berries 

meat, red, peaches 

meat, red, berries meat, white, peaches 

meat, white, berries 

CP net 

Wine white à 0.2 
red    à 1 

Soft Constraint 

0.2 

0.2 

0.2 

1 

1 
1 Fruit 

Wine 

0.2 

1 

Optimal 



How to obtain an optimal outcome of  a 
constrained CP net <N,C> 

¨  From N to optimality constraints OC 
¨  If Sol(OC ∪ C) is not empty, then they are 

(some of the) optimal outcomes è take one of 
them 
è only hard constraint solving 

¨  Otherwise, dominance testing between 
feasible outcomes (more costly) 

[Prestwich, Rossi, Venable, Walsh, AAAI 2005] 



(Conditional + qualitative + quantitative) 
preferences + constraints 

Optimal  
Solutions 

Soft  
constraint  

Solver 
(+ dominance test  

in CP net) 

Hard constraints 

Soft constraints 

CP net 
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VOTING WITH 
COMBINATORIAL 
DOMAINS 



Multiple issues 

¨  Until now we have considered voting over one issue 
only 

¨  Now we consider several issues 
¨  Example:  

¤ 3 referendum (yes/no) 
¤ Each voter has to give his preferences over triples of 

yes and no 
¤ Such as: YYY>NNN>YNY>YNN>etc. 

¨  With k issues, k-tuples (2k if binary issues) 



Paradox of multiple elections 

¨  13 voters are asked to each vote yes or no on 3 
issues: 
¤ 3 voters each vote for YNN, NYN, NNY 
¤ 1 voter votes for YYY, YYN, YNY, NYY 
¤ No voter votes for NNN 

¨  Majority on each issue: the winner is NNN! 
¤ Each issue has 7 out of 13 votes for no 



What is a paradox? 

¨  Given  
¤ A voting rule 
¤ A profile of ballots 
¤ A property applicable to both profiles and outcomes 

¨  Each ballot satisfies the property, but the outcome does 
not 

¨  Example: no ballot is for NNN, but NNN is the outcome 
of the election 

¨  (applies also to Condorcet paradox) 

¨  What can we do then? 



Plurality on combinations 

¨  Ask each voter for her most preferred combination and 
apply plurality 
¤ Avoids the paradox, computationally light 
¤ Almost random decisions 
¤  Example: 10 binary issues, 20 voters è 210 = 1024 

combinations to vote for but only 20 voters, so very high 
probability that no combination receives more than one vote 
è tie-breaking rule decides everything 

¨  Similar also for voting rules that use only a small part of 
the voters’ preferences (ex.: k-approval with small k) 



Other rules on combinations 

¨  Vote on combinations and use other voting rules that 
use the whole preference ordering on combinations 

¨  Avoids the arbitrariness problem of plurality 
¨  Not feasible when there are large domains  
¨  Example:  

¤ Borda (needs the whole preference ordering) 
¤ 6 binary issues è 26=64 possible combinations è 

each voter has to choose amongst 64! possible ballots 



Sequential voting 

¨  Vote separately on each issue, but do so 
sequentially  

¨  This gives voters the opportunity to make their vote 
for one issue depend on the decisions on previous 
issues 



Condorcet losers 

¨  Condorcet loser (CL): candidate that loses against 
any other candidate in a pairwise contest 

¨  Electing a CL is very bad, but Plurality sometimes 
elects it 

¨  Example:  
¤ 2 votes for X > Y > Z 
¤ 2 votes for Y > X > Z 
¤ 3 votes for Z > X > Y 
¤ Z is the Plurality winner and the Condorcet loser 



Sequential voting and Condorcet losers 

¨  Sequential voting avoids the problem of electing 
Condorcet losers 

¨  Thm.: Sequential plurality voting over binary issues 
never elects a Condorcet loser 
¤  Proof: Consider the election for the final issue. The winning 

combination cannot be a CL, since it wins at least against the 
other combination that was still possible after the 
penultimate election 

¤  [Lacy, Niou, J. of Theoretical Politics, 2000] 

¨  But no guarantee that sequential voting elects the 
Condorcet winner (Condorcet consistency). 



SEQUENTIAL VOTING 
WITH SOFT CONSTRAINTS 



Profiles via soft constraints 

¨  Agents expressing preferences via soft constraints  
¨  Over a common set of decisions/options 

¤  options = complete variable assignments 
¨  Same vars and var domains for all agents, different soft constraints 
¨  Profile = preferences of all agents 

¤  Explicit profile: preference orderings are given 
¤  Implicit profile: compact representation of the preferences 

¨  We will select a decision using a voting rule 
¤  Decision = solution for the agents soft constraint satisfaction problems (sof CSP) 
¤  Voting rule: function from an explicit profile to a decision 

¨  In the dinner example: 
¤  Each friend has his own soft CSP to express the preferences over the dinners 
¤  We need to select one dinner over the 625 possible ones 



Agent 1 Agent 2 Agent 3 

Dinner example, three agents 

Pasta 

Drink 

Pesto 1 
Tom   0.7 

(Pesto, Beer) 1 
(Pesto,Wine) 0.5 
(Tom ,Beer)  0.7 
(Tom,Wine)   0.3 

Beer 1 
Wine 0.7 

Pasta 

Drink 

Pesto 0.9 
Tom   1 

(Pesto, Beer) 1 
(Pesto,Wine) 0.9 
(Tom ,Beer)  0.9 
(Tom,Wine)   0.9 

Beer 1 
Wine 1 

Pasta 

Drink 

Pesto 1 
Tom   0.3 

(Pesto, Beer) 1 
(Pesto,Wine) 0.3 
(Tom ,Beer)  0.3 
(Tom,Wine)   1 

Beer 1 
Wine  1 



How to select a decision? 

¨  One step approach: 
¤  Given the implicit profile, compute the explicit profile and apply a voting 

rule 
¨  Problems:  

¤  The explicit profile needs exponential space 
¤  Computing the explicit profile may be very expensive in time 

n  Both optimal and next solution are difficult to compute in general for soft 
constraints 

¨  Sequential approach 
¤  For each variable 

n  compute an explicit profile over the variable domain 
n  apply a voting rule to this explicit profile 
n  add the information about the selected variable value 

¨  Similar approach used for CP-nets in [Lang, Xia, 2009] 



Agent 1 Agent 2 Agent 3 

Dinner example using plurality 

Pasta 

Drink 

Pesto 1 
Tom   0.7 

(Pesto, Beer) 1 
(Pesto,Wine) 0.5 
(Tom ,Beer)  0.7 
(Tom,Wine)   0.3 

Beer 1 
Wine 0.7 

Pasta 

Drink 

Pesto 0.9 
Tom   1 

(Pesto, Beer) 1 
(Pesto,Wine) 0.9 
(Tom ,Beer)  0.9 
(Tom,Wine)   0.9 

Beer 1 
Wine 1 

Pasta 

Drink 

Pesto 1 
Tom   0.3 

(Pesto, Beer) 1 
(Pesto,Wine) 0.3 
(Tom ,Beer)  0.3 
(Tom,Wine)   1 

Beer 1 
Wine  1 

Plurality Pasta 
   = 
Pesto 

Pesto 1 
Tom   0 

Pesto 0.9 
Tom   0 

Pesto 1 
Tom   0 

(Pesto, Beer) 1 
(Pesto,Wine) 0.5 
(Tom ,Beer)  0 
(Tom,Wine)   0 

(Pesto, Beer) 1 
(Pesto,Wine) 0.9 
(Tom ,Beer)  0 
(Tom,Wine)   0 

(Pesto, Beer) 1 
(Pesto,Wine) 0.3 
(Tom ,Beer)  0 
(Tom,Wine)   0 

Beer 1 
Wine 0.5 

Beer 1 
Wine 0.9 

Beer 1 
Wine  0.3 

Plurality Drink 
   = 
Beer 

Winner 



Local vs. sequential properties 

¨  If each ri has the property, does the sequential rule 
have the property? 

¨  If some ri does not have the property, does the 
sequential rule not have it? 
¤  If the sequential rule has a property, do all the ri have 

it? 



Properties 
Local to sequential Sequential to local 

Condorcet consistency no yes 

Anonymity yes yes 

Neutrality no yes 

Consistency yes yes 

Participation no yes 

Efficiency yes if single most 
preferred option for all 
agents 

yes 

Monotonicity yes yes 

IIA no yes 

Non-dictatorship yes yes 

Strategy-proofness no yes 

[Dalla Pozza, Pini, Rossi, Venable, IJCAI 2011] 



Complexity of coalitional constructive 
manipulation 
¨  Constructive Coalitional Manipulation CC(d,C,P,r) 

¤  Given voting rule r, how difficult it is for coalition of voters C to make 
candidate d win, knowing the other agents’ preferences P? 
n  Easy for Copeland with 3 candidates and for Plurality [Conitzer et 

al., 2007] 
n  Difficult for Copeland [Faliszewski et al., 2008] 

¨  Thms: 
¤  Easy for all local rules à Easy for sequential (if soft constraints are 

tractable) 

¤  Hard for one local rule à Hard for the sequential procedure  

[Dalla Pozza, Pini, Rossi, Venable, 2011] 



Experimental setting 

¨  Randomly generated tree-shaped soft implicit profiles 
¤  n: number of variables 
¤  m: number of agents 
¤  d: domain size 
¤  t: tightness 

¨  Same rule r for all steps 
¨  Comparison between two voting rules 

¤  seq(r), from the implicit profile to a solution 
¤  r, from the explicit profile to a solution 

n  baseline 

¨  We measure the quality of returned solution s 
¤  for each agent, distance between preference of s and of its most preferred 

solutions, averaged over all agents 



Time (Borda) 

¨  Sequential rule much faster (no need to compute the explicit 
profile) 



Error (Borda) 

¨  Result of about the same quality 

¨  Price to pay to search an agreement with others 



The sequential approach behaves like 
the non-sequential one 

 
¨  independently of the variable ordering 
¨  independently of the amount of consensus 

among agents 
¨  also on best and worst cases 



Sequential voting with soft constraints 

¨  Assume agents vote by giving a soft constraint problem 
¨  One step approach: 

¤  Given the implicit profile, compute the explicit profile and apply a voting 
rule 

¨  Problems:  
¤  The explicit profile needs exponential space 
¤  Computing the explicit profile may be very expensive in time 

n  Both optimal and next solution are difficult to compute in general for soft 
constraints 

¨  Proposed solution: sequential approach 
¤  For each variable 

n  compute an explicit profile over the variable domain 
n  apply a voting rule to this explicit profile 
n  add the information about the selected variable value 

¨  Similar approach used for CP-nets in [Lang, Xia, 2009] 
[Dalla Pozza, Pini, Rossi, Venable,  ICAART 2011, IJCAI 2011] 



ROVER 1 ROVER 2 ROVER 3 

Example: 3 rovers must decide where 
to go and what to do 

WHERE 

WHAT 

Loc-A 1 
Loc-B   0.7 

(Loc-A, Analyze) 1 
(Loc-A,Image) 0.5 
(Loc-B,Analyze)  0.7 
(Loc-B,Image)   0.3 

Analyze 1 
Image 0.7 

WHERE 

WHAT 

Loc-A 0.9 
Loc-B   1 

(Loc-A, Analyze) 1 
(Loc-A,Image) 0.9 
(Loc-B,Analyze)  0.9 
(Loc-B,Image)   0.9 

Analyze 1 
Image 1 

WHERE 

WHAT 

Loc-A 1 
Loc-B   0.3 

(Loc-A, Analyze) 1 
(Loc-A,Image) 0.3 
(Loc-B ,Analyze)  0.3 
(Loc-B,Image)   1 

Analyze 1 
Image 1 

Plurality WHERE 
   = 
Loc-A 

Loc-A 1 
Loc-B   0 

Loc-A 0.9 
Loc-B   0 

Loc-A 1 
Loc-B   0 

(Loc-A, Analyze) 1 
(Loc-A, Image) 0.5 
(Loc-B ,Analyze)  0 
(Loc-B,Image)   0 

(Loc-A, Analyze) 1 
(Loc-A,Image) 0.9 
(Loc-B ,Analyze)  0 
(Loc-B,Image)   0 

(Loc-A, Analyze) 1 
(Loc-A,Image) 0.3 
(Loc-B ,Analyze)  0 
(Loc-B,Image)   0 

Analyze 1 
Image 0.5 

Analyze 1 
Image0.9 

Analyze 1 
Image  0.3 

Plurality WHAT 
   = 
Analyze 

Winner 



SEQUENTIAL VOTING 
WITH CP-NETS 



Profiles via compatible CP-nets 

¨  n voters, voting by giving a CP-net each 
¤  Same variables, different dependency graph and CP tables 

¨  Compatible CP-nets: there exists a linear order on the 
variables that is compatible with the dependency graph 
of all CP-nets (that is, it completes the DAG) 

¨  Then vote sequentially in this order 
¨  Thm.: Under these assumptions, sequential voting is 

Condorcet consistent if all local voting rules are 
¤  (Lang and Xia, Math. Social Sciences, 2009) 

 



ROVER 1 ROVER 2 ROVER 3 

Example 

WHERE 

WHAT 

Loc-A >Loc-B   

WHERE 

WHAT 

Loc-B> Loc-A   

St2>St1 

WHERE 

WHAT 

Loc-A >Loc-B   

Plurality WHERE 
   = 

Loc-A 

Loc-A     Loc-A Loc-A  

Plurality 

WHAT 
   = 

Image 

Winner 

3 Rovers must decide: 
•  Where to go: Location A or Location B 
•  What to do: Analyze a rock or Take a picture 
•  Which station to downlink the data to: Station 1 or Station 2 

Image >Analyze   

DLINK 

St1 >St2   

DLINK DLINK 

St2>St1 

Loc-A: Image > Analyze 
Loc-B: Analyze> Image 

Plurality 

DLINK 
     = 
   St2 

Analyze >Image   Image >Analyze   

Loc-A: Analyze> Image 
Loc-B: Image> Analyze 



BRIBING CP-NETS 



Bribery 

¨  Given: 
¤ a voting rule 
¤ m candidates 
¤ n voters, voting by giving a CP-net each 
¤ a cost scheme describing the cost of bribing each voter   
¤ a candidate p that the briber wants to make the winner 
¤  the allowed bribery requests 
¤ a budget B 

à Can the briber make p win by spending at most B? 



ROVER 1 ROVER 2 ROVER 3 

Example 

WHERE 

WHAT 

Loc-A >Loc-B   

WHERE 

WHAT 

Loc-B> Loc-A   

St2>St1 

WHERE 

WHAT 

Loc-A >Loc-B   

Plurality WHERE 
   = 

Loc-A 

Loc-A     Loc-A Loc-A  

Plurality 

WHAT 
   = 

Image 

Winner 

3 Rovers must decide: 
•  Where to go: Location A or Location B 
•  What to do: Analyze a rock or Take a picture 
•  Which station to downlink the data to: Station 1 or Station 2 

Image >Analyze   

DLINK 

St1 >St2   

DLINK DLINK 

St2>St1 

Loc-A: Image > Analyze 
Loc-B: Analyze> Image 

Plurality 

DLINK 
     = 
   St2 

Analyze >Image   Image >Analyze   

Loc-A: Analyze> Image 
Loc-B: Image> Analyze 



ROVER 1 ROVER 2 ROVER 3 

Bribing example 

WHERE 

WHAT 

Loc-A >Loc-B   

WHERE 

WHAT 

Loc-B> Loc-A   

St2>St1 

WHERE 

WHAT 

Loc-A >Loc-B   

Plurality WHERE 
   = 

Loc-B 

Loc-B     Loc-B Loc-B  

Plurality 

WHAT 
   = 

Image 

Winner 

•  Voting rule: Sequential Plurality 
•  P: (loc-B, Image, St2) 
•  Candidates: all triples 
•  3 voters with a CP-net each 
•  Bribery requests: flips in preference orderings 

Image >Analyze   

DLINK 

St1 >St2   

DLINK DLINK 

St2>St1 

Loc-A: Image > Analyze 
Loc-B: Analyze> image 

Plurality 

DLINK 
     = 
   St2 

Image >Analyze   Analyze >Image   

Loc-A: Analyze> Image 
Loc-B: Image> Analyze 

$$$ 

Loc-B> Loc-A   



Bribing cost schemes  

WHERE 

WHAT 

Loc-A >Loc-B   

DLINK 

St2>St1 

Loc-A: Analyze> Image 
Loc-B: Image> Analyze 

C-equal: same cost for  
               whatever change  
               in the CP-nets  

C-flip: cost = n. of flips,  
                      all flips cost the same  

C-level: cost = n. of flips, 
                         higher cost for  
                         flipping higher  
                         in the dependency graph 

C-any: cost = n. of flips,  
                       each flip may  
                       have different cost  
                      C-dist: cost = distance from top  

                          in a linearization  
                          of the partial order 
Based on [Brafman, Pilotto, Rossi, 
Salvagnin, Venable, Walsh, ADT 2009, KR 2010, AAAI 2011] 
 
                      

Loc-­‐A,	
  Analyze,	
  St2	
  

Loc-­‐A,	
  Image,	
  St2	
   Loc-­‐A,	
  Analyze,	
  St1	
  

Loc-­‐A,	
  Image,	
  St1	
  Loc-­‐B,	
  Image,	
  St2	
  

Loc-­‐B,	
  Image,	
  St1	
  Loc-­‐B,	
  Analyze,	
  St2	
  

Loc-­‐B,	
  Analyze,	
  St1	
  

50$ 
 1$  

 1$  

 1$  

 1$  

 10$  

 10$  
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 5$  
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 100$  
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Complexity results for bribery with CP-
nets 

Sequential 
Majority 

Sequential 
Majority 
with weights 

Plurality  
Veto 
K-Approval 
(IV) 

Plurality 
Veto  
K-Approval* 
 (DV, IV+DV) 

C_EQUAL NP-complete NP-complete P P 

C_FLIP P NP-complete P P 

C_LEVEL P NP-complete P ? 

C_ANY P NP-complete ? ? 

C_DIST ? NP-complete P P 



STABLE MARRIAGE 
PROBLEMS 



Preferences over agents 

¨  Until now, agents expressed preferences over 
alternative decisions (different from the agents) 

¨  Goal: to choose one of the decisions based on the 
agents’ preferences 

¨  Now, we consider agents expressing preferences 
over other agents 
¤  Bipartite set of agents 

¨  Goal: to choose a matching among the agents 
based on their preferences 
¤  Matching: set of pairs (A1,A2), where A1 comes from the 

first set and A2 from the second one 



Looking for a job 

¨  Assume  
¤  As many positions as the number of people looking for 

them 
¤  Each person sends his cv to all companies 

¨  Preferences 
¤  Each person will rank all the openings 
¤  Each company will rank all the students 

¨  How to do the matching in such a way that 
“everybody is happy”?  

¨  Notice 
¤  Bipartite set of agents 
¤  Preferences over other agents, not over alternatives 

 



Other practical scenarios 

n  Assigning projects 
n  Job hunting 
n  Matching students with schools 
n  Matching doctors with hospitals 
n  Matching sailors to ships 
n  Matching producers to consumers 
n  Choosing roomates 
n … 



Stable marriage formulation 

 
n  Two sets of agents: men and women 
n  Idealized model 

q  Same number of men and women 
q  All men totally order all women, and vice-versa 
 



Stable marriage 

n  Given preferences of n men 
q  Greg:  Amy>Bertha>Clare 
q  Harry: Bertha>Amy>Clare 
q  Ian:     Amy>Bertha>Clare 

n  Given preferences of n women 
q  Amy:     Harry>Greg>Ian 
q  Bertha:  Greg>Harry>Ian 
q  Clare:    Greg>Harry>Ian 

n   Find a stable marriage 



Stable marriage 

q  Assignment of men to women (or equivalently of 
women to men) 
n  Idealization: everyone marries at the same time 

q  No pair (man,woman) not married to each other 
would prefer to run off together 
n  Blocking pair: pair (m,w) such that the marriage contains 

(m,w’) and (m’,w), but m prefers w to w’, and w prefers m 
to m’ 



An example of  an unstable marriage 

q  Greg:  Amy>Bertha>Clare 
q  Harry: Bertha>Amy>Clare 
q  Ian:     Amy>Bertha>Clare 

 
q  Amy:     Harry>Greg>Ian 
q  Bertha:  Greg>Harry>Ian 
q  Clare:    Greg>Harry>Ian 
 

Bertha	
  &	
  Greg	
  would	
  prefer	
  to	
  be	
  together	
  



An example of  a stable marriage 

 
q  Greg:  Amy>Bertha>Clare 
q  Harry: Bertha>Amy>Clare 
q  Ian:     Amy>Bertha>Clare 

 
q  Amy:     Harry>Greg>Ian 
q  Bertha:  Greg>Harry>Ian 
q  Clare:    Greg>Harry>Ian 
 Men	
  do	
  ok,	
  women	
  less	
  well	
  



Another stable marriage 

q  Greg:  Amy>Bertha>Clare 
q  Harry: Bertha>Amy>Clare 
q  Ian:     Amy>Bertha>Clare 

 
q  Amy:     Harry>Greg>Ian 
q  Bertha:  Greg>Harry>Ian 
q  Clare:    Greg>Harry>Ian 

Women	
  do	
  ok,	
  men	
  less	
  well	
  



Many stable marriages 

¨  Given any stable marriage problem 
¤ There is at least one stable marriage! 
¤ There may be many stable marriages 
¤ They form a lattice, ordered according to men’s 

(or women’s) preferences 
n The higher in the lattice, the more men are happy: 

SM1 > SM2 if in SM1 all men are at least as happy as 
in SM2 

n At least as happy: married to the same or a more 
preferred woman 



Gale Shapley algorithm 

n  Initialize every person to be free 
n  While exists a free man 

q  Find best woman he hasn’t proposed to yet 
q  If this woman is free, declare them engaged 

n  Else, if this woman prefers this proposal to her current 
partner, then declare them engaged (and “free” her 
current partner) 

n  Else, this woman prefers her current partner and she 
rejects the proposal 



Gale Shapley algorithm 
n  Initialize every person to be free 
n  While exists a free man 

q  Find best woman he hasn’t 
proposed to yet 

q  If this woman is free, declare 
them engaged 
n  Else if this woman prefers this 

proposal to her current partner 
then declare them engaged (and 
“free” her current partner)‏ 

n  Else this woman prefers her 
current partner and she rejects 
the proposal 

 
 
Greg:  Amy>Bertha>Clare 
Harry: Bertha>Amy>Clare 
Ian:     Amy>Bertha>Clare 

 
Amy:     Harry>Greg>Ian 
Bertha:  Greg>Harry>Ian 
Clare:    Greg>Harry>Ian 



Gale Shapley algorithm 
n  Greg proposes to Amy, who 

accepts è (G,A) 
n  Harry proposes to Bertha, who 

accepts è (H,B) 
n  Ian proposes to Amy 
n  Amy is with Greg, and she prefers 

Greg to Ian, so she refuses 
n  Ian proposes to Bertha 
n  Bertha is with Harry, and she 

prefers Harry to Ian, so she 
refuses 

n  Ian proposes to Claire, who 
accepts è (I,C) 

 
 
Greg:  Amy>Bertha>Clare 
Harry: Bertha>Amy>Clare 
Ian:     Amy>Bertha>Clare 

 
Amy:     Harry>Greg>Ian 
Bertha:  Greg>Harry>Ian 
Clare:    Greg>Harry>Ian 



 
 
 

Gale Shapley algorithm terminates 
with everyone married 
n  Suppose some man is not married at the end 
n  Then some woman is also unmarried 
n  But once a woman is married, she only “trades” 

up 
n  Hence this woman was never proposed to 

q  But if a man is unmarried, he has proposed to 
and been rejected by every woman 

n  This is a contradiction as he has never proposed 
to the unmarried woman! 

 



Gale Shapley algorithm terminates 
with a stable marriage 
q  Suppose there is a blocking pair m-w not married 

q  Marriage contains (m,w’) and (m’,w) 
q  m prefers w to w’, and w prefers m to m’ 

q  Case 1. m never proposed to w 
q  Not possible because men move down with the 

proposals, and w’ is less preferred than w 
q  Case 2. m had proposed to w 

n  But w rejected m, or left him later  
n  However, women only ever trade up 
n  Hence w prefers m’ to m  
n  So the current pairing is stable! 



Other features of  Gale Shapley 
algorithm 
Each of n men can make at most (n-1) proposals 
•  Hence GS runs in O(n2) time 
 
There may be more than one stable marriage 
•  GS finds man optimal solution: there is no stable 

matching in which any man does better 
•  GS finds woman pessimal solution: in all stable 

marriages, every woman does at least as well or 
better   

 

 
 
 



Gale Shapley finds the male optimal 
solution 
 
q  S1: marriage found by GS 
q  In S1, consider first step where a man is rejected by his best 

feasible woman  
q  Man M has proposed and been rejected by his best feasible woman 

W, since W prefers her current partner Z  
q  Note: W prefers Z to M  
q  Note: There exists another stable marriage S2 with man M 

married to woman W (and man Z to woman W’) 
n  Man Z has not yet  been rejected by his best possible woman  

n  è Z must prefer W at least as much as his best possible woman 
n  S2 contains (M,W) (Z,W’) and is not a stable marriage as Z and W 

would prefer to be together 
n  Z prefers W to W’ 
n  W prefer Z to M 



Gale Shapley finds the woman 
pessimal solution 
q  Consider stable marriage S1 returned by GS  
q  Let (M,W) be married in S1 but M is not the worst possible man 

for woman W 
n  There exists another stable marriage S2 with (M’,W) (M,W’) and 

M’ worse than M for W 
n  By male optimality of S1, M prefers W to W’ 
n  Also, W prefers M to M’ 
n  Then (M,W) is a blocking pair for S2 

 
 



Other stable marriages 

¨  GS finds male-optimal (or female-optimal) 
marriage 

¨  A set of agents is favored over the other one 
¨  Other algorithms find “fairer” marriages 
¨  Ex.: stable marriage which minimizes the 

maximum regret [Gusfield 1989] 

¤  regret of a man/woman = distance between his 
partner in the marriage and his most preferred 
woman/man 



Extensions: ties 
n  Cannot always make up our minds 
n  Preference ordering: total order with ties 
n  Two notions of stability: 

q  Weak stability: no pair m-w not married 
where m strictly prefers w to his partner, 
and w strictly prefers m to her partner  

q  Strong stability: no pair m-w not married 
where m strictly prefers w to his partner, 
and w prefers m at least as much as her 
partner 



Existence of  stable marriage with ties 

 
q  Strongly stable marriage may not exist 

n  O(n4) algorithm for deciding existence 
q  Weakly stable marriage always exists 

n  Just break ties arbitrarily 
n  Run GS 
n  Resulting marriage is weakly stable 



Extensions: incomplete preferences 

n  There are some people we may be unwilling to 
marry 

n  (m,w) blocking pair iff  
q  m and w do not find each other unacceptable 
q  m is unmarried or prefers w to current partner 
q  w is unmarried or prefers m to current partner 



Solving stable marriage problems with 
incomplete preferences 
n  Just apply GS algorithm 

q  Extends easily 
 
n  Men and woman partition into two sets 

q  Those who have partners in all stable marriages 
q  Those who do not have partners in any stable 

marriage 
q  In all stable marriages, the same people are married 
è Stable marriages have all the same number of pairs 



Extensions: ties + incomplete prefs 

n  Weakly stable marriages may have different 
sizes 
q  Unlike with just ties, where they are all complete 

n  Finding weakly stable marriage of max. 
cardinality is NP-hard 
q  Even if only women declare ties 



Strategy proofness 

n  GS is strategy proof for men 
q  Assuming GS male optimal algorithm 
q  No man can do better than the male optimal 

solution 
n  However, women can profit from lying 

q  Assuming male optimal algorithm is run 
q  And they know complete preference lists 



Manipulation by women 

 
q  Greg:  Amy>Bertha>Clare 
q  Harry: Bertha>Amy>Clare 
q  Ian:     Amy>Bertha>Clare 

 
 

q  Amy:     Harry>Greg>Ian 
q  Bertha:  Greg>Harry>Ian 
q  Clare:    Greg>Harry>Ian 

 

 
 
 

 
q  Amy lies 
 
q  Amy:     Harry>Ian>Greg 
q  Bertha:  Greg>Harry>Ian 
q  Clare:    Greg>Harry>Ian 

 
 



Manipulation by women 
 
q  Greg:  Amy>Bertha>Clare 
q  Harry: Bertha>Amy>Clare 
q  Ian:     Amy>Bertha>Clare 

 
q  Greg proposes to Amy, who accepts 
q  Harry proposes to Bertha, who accepts 
q  Ian proposes to Amy, who accepts 

(Greg left alone) 
q  Greg proposes to Bertha, who accepts 

(Harry left alone) 
q  Harry proposes to Amy, who accepts 

(Ian left alone) 
q  Ian proposes to Bertha, who rejects 
q  Ian proposes to Claire, who accepts 
q  Stable matching obtained: 

(Greg,Bertha), (Harry,Amy), (Ian,Claire) 
 

 
Amy:     Harry>Greg>Ian 
Bertha:  Greg>Harry>Ian 
Clare:    Greg>Harry>Ian 

q  Amy lies 
 
q  Amy:     Harry>Ian>Greg 
q  Bertha:  Greg>Harry>Ian 
q  Clare:    Greg>Harry>Ian 

 
 



Impossibility of  strategy proofness 

n  GS can be manipulated 
n  Every stable marriage procedure can be 

manipulated if preference lists can be 
incomplete [Roth ’82] 



Impossibility of  strategy proofness 
 

q  Consider 
n  Greg:  Amy>Bertha                Amy:    Harry>Greg 
n  Harry: Bertha>Amy                Bertha: Greg>Harry 

q  Two stable marriages:  
n  (Greg,Amy)(Harry,Bertha) or (Greg,Bertha)(Harry,Amy) 

q  Suppose we get the male optimal solution 
n  (Greg,Amy)(Harry,Bertha)  
n  If Amy lies and says Harry is her only acceptable partner 
n  Then, with any sm procedure, we must get (Harry,Amy)

(Greg,Bertha), as this is the only stable marriage 
q  Other cases can be manipulated in a similar way 



Making manipulation hard 

¨  For some sm procedure, finding the manipulation is easy 
¤  Example: GS algorithm 

¨  For others, it is difficult 
¨  Can we make the manipulation hard to find? 

¤  As with voting, this may be a barrier to mis-reporting of 
preferences 

[Pini,	
  Rossi,	
  Venable,	
  Walsh,	
  AAMAS	
  09]	
  



Gender swapping 

¨  Basic idea 
¤  Men have no incentive to 

manipulate GS 
¤  But women do 

¨  Construct SM procedure 
that may swap men with 
women 



Gender swapping: non-deterministic solution 

¨  Toss a coin 
¤  Heads: men stay men 
¤  Tails: men become women 

and vice versa 
¨  No incentive to mis-report 

preferences 
¤  50% chance that it will hurt 

¨  Not everyone likes 
¤  Randomized procedures 
¤  Probabilistic guarantees 
 



A deterministic solution 

¨  Pick a set of stable marriages 
¨  Choose between them based on agents’ 

preferences 
¤  Make this choice difficult to manipulate! 
¤  Choice based on voting 

n  Complexity of manipulating voting rule => complexity of 
manipulating SM procedure 



A deterministic solution: use STV 

¨  Pick a set of stable marriages 
¨  Choose between them based on agents’ preferences 

¤  Run a STV election to order men by women’s preferences 
(and women by men’s preferences) 

¤  For each SM, compute a male (female) score: vector where 
position j contains i if man (woman) j is married to the i-th 
most preferred woman (man) 

¤  Take lex largest between the two vectors 
¤  Pick SM with lex smallest vector 

¨  Thm.: NP-hard to manipulate and gender neutral  
¤  NP-hardness inherited from hardness of manipulating STV 
¤  [Pini, Rossi, Venable, Walsh, AAMAS 2009] 

¨  Also for other voting rules but not a general result 
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Conclusions 

¨  Compact preference modelling 
¨  Comparison of their expressive power and 

computational properties 
¨  Ability to reason with more than one formalism 

in the same problem 



Conclusions 

¨  Voting theory can be useful  for preference 
aggregation in the context of AI 

¨  Exploit axiomatic approach to choose the rule 
to use 

¨  Adapt voting concepts to the AI context 
 



Conclusions 

¨  Computational complexity is an important issue 
in 
¤ Manipulation 
¤ Preference elicitation 

¨  Complexity can be a friend 
¤  Ideally want it to be hard to find manipulation but 

easy to decide when to stop eliciting preferences! 
¨  But NP-hardness is only worst case 


