
COMPACT PREFERENCE
REPRESENTATION AND
MATCHING PROBLEMS

Francesca Rossi

Main differences between social choice
and multi-agent AI scenarios
¨  In multi-agent AI scenarios, we usually have

¤  Large sets of candidates (w.r.t. number of voters)

¤  Combinatorial structure for candidate set
¤  Knowledge representation formalisms to model preferences

¤  Incomparability
¤  Uncertainty, vagueness

¤  Computational concerns

Large set of candidates

¨  In AI scenarios, usually the set of decisions is much larger than
the set of agents expressing preferences over the decisions
¤ Many web pages, few search engines

¨  Combinatorial structure for the set of decisions
¤ Car (or PC, or camera) = several features, each with some

instances
¤ Dinner = combination of the different dishes

Combinatorial structure for the set of
decisions

¨  Example:
¤  Three friends need to decide what to cook for dinner
¤  4 items (pasta, main, dessert, drink)
¤  5 options for each è 54 = 625 possible dinners

¨  In general: Cartesian product of several variable
domains
¤  Variables = items of the menu, domain= 5 options

Formalisms to model preferences

¨  Preference ordering over a large set of decisions
è need to model them compactly
¤ Otherwise too much space and time to handle such

preferences

¨  Two examples:
¤  soft constraints
¤ CP-nets

Outline

¨  Compact representation of preferences
¤ Soft constraints
¤ CP nets

¨  Sequential voting
¨  Stable marriage problems

SOFT CONSTRAINTS

Preferences vs. constraints

¨  Constraints are strict requirements
¨  Preferences as a way to provide more
“tolerant” statements

Constraints

¨  Many real-life problems can be modelled via constraints
¨  Ex.:

¤  “I need at least two bedrooms”
¤  “I don’t want to spend more than 100K”

¨  Constraint = requirement = relation among objects (values for variables) of
the problem

¨  Solution of a constraint problem = object choice (variable assignment) such
that all constraints are satisfied

¨  Constraint programming offers
¤  Natural modelling frameworks
¤  Efficient solvers
¤  Many application domains

n  Scheduling, timetabling, resource allocation, vehicle routing, ...

[Dechter, 2003; Rossi, Van Beek, Walsh, 2006]

Constraints are not flexible

¨  Constraints are useful when we have a clear
yes/no idea
¤ A constraint can either be satisfied or violated

¨  Sometimes, we have a less precise model of the
real-life problem
¤ Ex.: “Both a skiing and a beach vacation are fine, but I

prefer skiing”
¨  If all constraints, possibly

¤ No solution, or
¤ Too many solutions, and equally satisfiable

Preferences are everywhere

¨  Under-constrained problems è many
solutions è we want to choose among
solutions

¨  Over-constrained problems è no solution è
we want to find an acceptable assignment

¨  Problems which are naturally modelled with
preferences

¨  Constraints and preferences may occur
together
¤ Ex.: configuration, timetabling

Example: University timetabling
Professor	
 Administra/on	

I cannot teach on Wednesday
afternoon.

I prefer not to teach early in
the morning, nor on Friday
afternoon.

 Lab C can fit only 120 students.

Better to not leave 1-hour holes in
the day schedule.

Constraints

Constraints

Preferences

Preferences

Several kinds of preferences

¨  Positive (degrees of acceptance)
¤  “I like ice cream”

¨  Negative (degrees of rejection)
¤  “I don’t like strawberries”

¨  Unconditional
¤  “I prefer taking the bus”

¨  Conditional
¤  “I prefer taking the bus if it’s raining”

¨  Multi-agent
¤  “I like blue, my husband likes green, what color do we

buy the car?”

Two main ways to model preferences

¨  Quantitative
¤ Numbers or ordered set of objects
¤ “My preference for ice cream is 0.8, and for cake

is 0.6”
¤ E.g., soft constraints

¨  Qualitative
¤ Pairwise comparisons:
“Ice cream is better than cake”

¤ E.g., CP-nets

Modelling preferences compactly

¨  Preference ordering: an ordering over the
whole set of solutions (or candidates, or
outcomes, …)

¨  Solution space with a combinatorial structure
è preferences over partial assignments, from
which to generate the preference ordering over
the solution space

Formalisms to model preferences

¨  Soft Constraints

¤  Quantitative formalism
¤  (Negative) preferences

¨  CP-nets (Conditional Preference Networks)
¤  Qualitative formalism
¤  Positive preferences

Two different ways to model compactly a preference ordering
over a set of objects with a combinatorial structure

Soft Constraints:
the c-semiring framework

¨  Variables {X1,…,Xn}=X
¨  Domains {D(X1),…,D(Xn)}=D
¨  Soft constraints

¤  each constraint involves some of the variables
¤  a preference is associated with each assignment of the

variables
¨  Set of preferences A

¤  Totally or partially ordered (induced by +)
¤  Combination operator (x)
¤  Top and bottom element (1, 0)
¤  Formally defined by a c-semiring <A,+,x,0,1>

[Bistarelli, Montanari, Rossi, IJCAI 1995, JACM 1997]

Soft constraints
¨  Soft constraint: a pair c=<f,con> where:

¤ Scope: con={Xc
1,…, Xc

k} subset of X
¤ Preference function :
 f: D(Xc

1)x…xD(Xc
k) → A

 tuple (v1,…, vk) → p preference
¨  Hard constraint: a soft constraint where for

each tuple (v1,…, vk)
 f (v1,…, vk)=1 the tuple is allowed
 f (v1,…, vk)=0 the tuple is forbidden

Soft Constraints:
the C-semiring framework

¨  Some properties:
¤  for all a in A, 0 ≤ a ≤ 1
¤  for all a,b in A, a x b ≤ a
¤  <A,≤> lattice

n  + is lub
n  x is glb if x idempotent

¤ + and x monotone on ≤

a + b

a
b

a x b

1

0

Complete assignments and their
evaluation

¨  Complete assignment: one value for each
variable

¨  Global evaluation: preference associated to a
complete assignment

¨  How to obtain a global evaluation?
¤ By combining (via x) the preferences of the partial

assignments given by the constraints

Example: weighted constraints

¨  <A = N∪+∞, + = min, x = +,0 = +∞,1 = 0>
¨  Values in [0,+∞]

¤ Best value=0
¤ Worst value=+∞

¨  Comparison with min
¤ A better than B iff min(A,B)=A

¨  Composition with +
¤ Goal is to minimize sum

Example: fuzzy constraints
¨  <A = [0,1],+ = max,x = min,0 = 0,1 = 1>:

¤ Preferences between 0 and 1
¤ Higher values denote better preferences

n 0 is the worst preference
n 1 is the best preference

¤ Combination is taking the smallest value

 è optimization criterion = maximize the minimum preference

Pessimistic approach, useful in critical application (eg., space

and medical settings)

[Fuzzy CSPs: Schiex UAI’92, Ruttkay FUZZ-IEEE ‘94]

Fuzzy-SCSP example

{12	
 pm,	
 1	
 pm}	
 {2	
 pm,	
 3	
 pm}	

Lunch	
 	
 Swim	

(12	
 pm,	
 3	
 pm)	
 à	
 1	

(12	
 pm,	
 2	
 pm)	
 à	
 1	
 	
 	
 (1	
 pm,	
 2	
 pm)	
 à	
 0	

	
 	
 (1	
 pm	
 ,	
 3	
 pm)	
 à	
 1	

{Fish,	
 Meat}	
 {White,	
 red}	

Main	

Course	
 Wine	

(Fish,	
 red)	
 à	
 0.8	

(Fish,	
 white)	
 à	
 1	
 (Meat,	
 white)	
 à	
 0.3	

(Meat,	
 red)	
 à	
 0.7	

Lunch= 1 pm
Main course = meat
Wine= white
Swim = 2 pm

 Solution S

pref(S)=min(0.3,0)=0

Lunch= 12 pm
Main course = fish
Wine= white
Swim = 2 pm

 Solution S’

pref(S)=min(1,1)=1

Fuzzy semiring

SFCSP=<[0,1],max,min,0,1>

S =<A , + , x ,0,1>

Instances of semiring-based soft constraints
¨  Each instance is characterized by a c-semiring <A, +, x, 0, 1>
¨  Classical constraints: <{0,1},logical or,logical and,0,1>

¤  Satisfy all constraints
¨  Fuzzy constraints: <[0,1],max,min,0,1>

¤  Maximize the minimum preference
¨  Lexicographic CSPs: <[0,1]k,lex-max,min,0k,1k>

¤  Order the preferences lexicographically and then maximize the minimum
preference

¨  Weighted constraints (N):<N∪+∞, min, +,+∞,0>
¤  Minimize the sum of the costs (naturals)

¨  Weighted constraints (R):<R∪+∞, min, +, +∞,0>
¤  Minimize the sum of the costs (reals)

¨  Max CSP: weight =1 if constraint is not satisfied and 0 if satisfied
¤  Minimize the number of violated constraints

¨  Probabilistic constraints: <[0,1], max, x, 0,1>
¤  Maximize the joint probability of being a constraint of the real problem

¨  Valued CSPs: any totally ordered c-semiring
¨  Multi-criteria problems: Cartesian product of semirings

Multi-criteria problems
¨  One semiring for each criteria
¨  Given n c-semirings Si = <Ai, +i, xi, 0i,1i>, we can build the c-

semiring
<<A1,..., An>, +,x, <01,...,0n>,<11,...,1n>>
¨  + and x obtained by pointwise application of +i and xi on each

semiring
¨  A tuple of values associated with each variable instantiation
¨  A tuple is better than another if it is better or equal on all

elements, and better in at least one
¨  A partial order even if all the criteria are totally ordered

¤  Pareto-like approach

Example
¨  The problem: choosing a route between two cities
¨  Each piece of highway has a preference and a cost
¨  We want to both minimize the sum of the costs and maximize the

preference
¨  Semiring: by putting together one fuzzy semiring and one

weighted semiring:
¤ <[0,1],max,min,0,1>
¤ <N, min, +, +∞, 0>

¨  Best solutions: routes such that there is no other route with a
better semiring value
¤ <0.8,$10> is better than <0.7,$15>

¨  Two total orders, but the resulting order is partial:
¤ <0.6, $10> and <0.4,$5> are not comparable

Solution ordering

¨  A soft CSP induces an ordering over the
solutions, from the ordering of the semiring

¨  Totally ordered semiring è total order over
solutions (possibly with ties)

¨  Partially ordered semiring è total or partial
order over solutions (possibly with ties)

¨  Any ordering can be obtained!

Expressive power

¨  A B iff from a problem P in A it is possible to
build in polynomial time a problem P’ in B s.t.
the optimal solutions are the same (but not
necessarily the solution ordering!)
¤ B is at least as expressive as A

¨  A B iff from a problem P in A it is possible to
build in polynomial time a problem P’ in B s.t.
opt(P’) ⊆ opt(P)

Expressive power

weightedR Prob

weightedN

Valued

Semiring-based

Classical

Fuzzy Lexicographic

Interesting questions for soft CSPs

¨  Find an optimal solution
¨  Find the next solution in a linearization of the

solution ordering
¨  Is s an optimal solution?
¨  Is s better than s’?

Finding an optimal solution
¨  Difficult in general

¤ Branch and bound + constraint propagation
¤ Local search
¤ Bucket elimination
¤ …

¨  Easy for some classes of soft constraints
¨  Ex.: tree-shaped problems

¤ Bucket elimination: directional arc-consistency +
backtrack-free search

¤ Also for problems with bounded treewidth

Finding the next solution

¨  Next where? In a linearization of the solution ordering
¨  Ties and incomparable sets should be linearized (any

way is fine)
¨  Difficult for CSPs in general (so also for SCSPs)
¨  At least as difficult as finding an optimal solution
¨  Easy for tree-shaped CSPs and tree-shaped fuzzy CSPs
¨  Difficult for tree-shaped weighted CSPs

[Brafman, Rossi, Venable, Walsh, 2009]

Is s an optimal solution?

¨  Difficult in general: same complexity as finding an
optimal solution
¤ We have to find the optimal preference level
¤ Easy for classical CSPs (optimal preference level is 1)

Is s better then s’?

¨  Easy: Linear in the number of constraints
¤ Compute the two preference levels and compare them
¤ Assumption: + and x easy to compute

Systematic search : Branch and bound

¨ Backtracking à Branch and Bound
¨ Main idea:

¤ visit each assignment that may be a solution
¤ skip only assignments that are shown to be

dominated by others
¨ Search tree to represent the space of all

assignments

Systematic search : Branch and bound

¨ Lower bound = preference of best solution so

far (0 at the beginning)
¨ Upper bound for each node: upper bound to

the preference of any assignment in the
subtree rooted at the node

¨  If ub is worst than lb è prune subtree

SWCSP=<[0,+∞],min,+,+∞,0>

Processing
time

(b, b) à 0 €
(h, m) à 30 €
(h,h) à 0 €

Iron
quality

Wood
quality

high à 20 €
bad à 10 €

 bad à 50 €
medium à 200 €
high à 300 €

(b, 2) à 40 €
(m,2) à 50 €
(m,3) à 70 €
(h,3)à 70 €

2 days à 0 €
3 days à 0 € Iron

quality

Wood
quality

Wood
quality

Processing
time

Processing
time

Processing
time

Processing
time

Processing
time

Processing
time

bad high

high bad
med med

bad high

2 2 2 2 2 2 3 3 3 3 3 3

ub = x preferences from constraints
 on assigned variables

lb =+∞
ub = 0
lb =+∞
ub = 10

lb =+∞
ub = 60
lb =100
ub =100

lb =100
ub = 60
lb =100
ub = 10
lb =100
ub = +∞

Iron
quality

Wood
quality

Processing
time

Processing
time

lb =100
ub = +∞

Inference: Constraint propagation

¨  Constraint propagation (ex.arc-consistency):
¤ Deletes an element a from the domain of a variable x if,

according to a constraint between x and y, it does not have
any compatible element b in the domain of y

¤  Iterate until stability

¨  Polynomial time
¨  Very useful at each node of the search tree to prune

subtrees

Example

No matter what the other constraints are,
X=b cannot participate in any solution.
So we can delete it without changing the set of solutions.

X Y

a
b

a
b

a a
a b

Properties

¨ Equivalence: each step preserves the set of
solutions

¨ Termination (with finite domains)
¨ Order-independence

Fundamental operations with soft constraints

¨  Projection: eliminate one or more variables from a
constraint obtaining a new constraint preserving all the
information on the remaining variables

 Formally: If c=<f,con>, then c|I = <f', I ∩ con>
¤  f'(t') = + (f(t)) over tuples of values t s.t. t|I ∩ con = t’

¨  Combination: combine two or more soft constraints
obtaining a new soft constraint “synthesizing “ all the
information of the original ones

 Formally: If ci=<fi,coni>, then c1 x c2 = <f, con1 ∪
con2>
¤  f(t) = f1(t|con1) x f2(t|con2)

Projection: fuzzy example

{Fish,Meat} {White ,Red}

Main
Course Wine

(Fish, red) à 0.8

(Fish, white) à 1 (Meat, white) à 0.3

(Meat, red) à 0.7

SFCSP=<[0,1],max,min,0,1>

If c=<f,con>, then c|I = <f', I ∩ con>
f'(t') = + (f(t)) over tuples of values t s.t. t|I ∩ con = t’

c=<f,{mc,w}> c|mc

Main
Course

Fish à max(f(fish,white),f(fish,red))
 =max(1,0.8)=1

Meat à max(f(meat,white),f(meat,red))
 =max(0.3,0.7)=0.7

Projection: weighted example

Processing
time

Wood
quality

SWCSP=<[0,+∞],min,+,+∞,0>

(b, 2) à 40 €
(m,2) à 50 €
(m,3) à 70 €
(h,3)à 70 €

{bad,med,high}
{2,3}

c=<f,{wq,pt}>

If c=<f,con>, then c|I = <f', I ∩ con>
f'(t') = + (f(t)) over tuples of values t s.t. t|I ∩ con = t’

c|wq

Wood
quality

bad à min(f(b,2),f(b,3))=min(40,+∞)=40

med à min(f(m,2),f(m,3))=min(50,70)=50

high à min(f(h,2),f(h,3))=min(+∞,70)=70

Combination: fuzzy example
If ci=<fi,coni>, then: c1 x c2 = <f, con1 ∪ con2>

¤  f(t) = f1(t|con1) x f2(t|con2) SFCSP=<[0,1],max,min,0,1>

VGA MB

{slow ,fast} {256,512,1024}

<256,P4> → 0.5
<512,P4> → 0.7
<1024,P4> → 0.9

<s,1024> → 0.9
<s,512> → 0.7
<s,256> → 0.6

P {P4,AMD}

<f,256> → 0.1
<f,512> → 0.9
<f,1024> → 1

<256,AMD> → 0.5
<512,AMD> → 0.5
<1024,AMD> → 0.5

f(s,256,P4) = min(0.6,0.5) = 0.5
f(f,1024,P4)=min(0.9,0.9)=0.9
….

VGA MB

P

Combination: weighted example
If ci=<fi,coni>, then: c1 x c2 = <f, con1 ∪ con2>

¤  f(t) = f1(t|con1) x f2(t|con2)

Iron
qiality

Wood
Quality

{bad ,high} {bad,med,high}

Processing
Time

f(b,b,2) = 0+20 = 20
f(h,m,3)=30+30=60
….

SWCSP=<[0,+∞],min,+,+∞,0>

2 days à 20 €
3 days à 30€

(b, b) à 0 €
(h, m) à 30 €
(h,h) à 0 €

Iron
qiality

Wood
Quality

Processing
Time

Soft constraint propagation

¨ Deleting a value means passing from 1 to 0 in
the semiring <{0,1},or,and,0,1>

¨  In general, constraint propagation can change
preferences to lower values in the ordering

¨ Soft arc-consistency: given cx, cxy, and cy,
compute cx := (cx x cxy x cy)|x

¨  Iterate until stability

Example: fuzzy arc-consistency

VGA MB

s=slow à 0.2
f=fast à 0.9

256 à 0.5
512 à 0.8
1024 à 0.7

<s,1024> → 0.9

<s,512> → 0.7

<s,256> → 0.6 <f,256> → 0.1

<f,512> → 0.9

<f,1024> → 1

cx := (cx x cxy x cy)|x

VGA=s à max(min(0.2,0.6,0.5),min(0.2,0.7,0.8),min(0.2,0.9,0.7))=
max(0.2,0.2,0.2) = 0.2

VGA=fà max(min(0.9,0.1,0.5),min(0.9,0.9,0.8),min(0.9,1,0.7))=
max(0.1,0.8,0.7)=0.8

Fuzzy semiring=
<[0,1],max,min,0,1>
à +=max an x=min

weighted arc-consistency ?!

X Y

aà 0
b à 0

b à 0
aà 0

<a,b> → 20
<b,b> → 10
<a,a> → 10

cx := (cx x cxy x cy)|x

Weighted semiring=
<[0,+∞],min,+,+∞,0>

X Y

aà 10
b à 10

b à 0
aà 0

<a,b> → 20
<b,b> → 10
<a,a> → 10

Not equivalent!

pref1(a,a)=10
pref2(a,a)=20

1

2

Properties
¨  If x idempotent (ex.:fuzzy,classical):

¤  Equivalence
¤  Termination
¤  Order-independence

¨  If x not idempotent (ex.: weighted CSPs, prob.), we could count
more than once the same constraint è we need to compensate
by subtracting appropriate quantities somewhere else è we
need an additional property (fairness=presence of -)
¤  Equivalence
¤  Termination
¤  Not order-independence

[Schiex, CP 2000]

References for preferences and soft constraints

¨  Semiring-based Constraint Solving and Optimization, S. Bistarelli, U.
Montanari and F. Rossi, Journal of ACM, vol.44, n.2, 1997

¨  Bucket Elimination: A Unifying Framework for Reasoning, R.
Dechter, AI Journal 113, 1-2, 1999

¨  Preference Handling for Artificial Intelligence, J. Goldsmith, U.
Junker eds, AI Magazine, 2008

¨  Handbook of constraint programming, Rossi, Van Beek, Walsh eds.,
Elsevier, 2006

¨  Possibilistic Constraint Satisfaction Problems or "How to Handle Soft
Constraints?". T. Schiex, UAI 1992

¨  Arc Consistency for Soft Constraints, Thomas Schiex, Proc. CP
2000,Springer LNCS 1894

CP NETS

Qualitative and conditional preferences
¨  Soft constraints model quantitatively unconditional

preferences
¨  Many problems need statements like

¤ “I like white wine if there is
fish” (conditional)

¤ “I like white wine better than red
wine” (qualitative)

¨  Quantitative è a level of preference for each
assignment of the variables in a soft constraint è
possibly difficult to elicitate preferences from user

Preference statements in CP nets

¨  Conditional preference statements
¤  “If it is fish, I prefer white wine to red wine”
¤  syntax:
 fish: white wine > red wine

¨  Ceteris paribus interpretation
¤  all else being equal
¤  {fish, white wine, ice cream} > (preferred to)
 {fish, red wine, ice cream}
¤  {fish, white wine, ice cream} ?
 {fish, red wine, fruit}

[Boutelier, Brafman, Domshlak, Hoos, Poole. JAIR 2004]	

[Domshlak, Brafman KR02]	

CP nets
¨  Variables {X1, … , Xn} with domains
¨  For each variable, a total order over its values
¨  Indipendent variable:

¤  X=v1 > X=v2 > ... > X=vk
¨  Conditioned variable: a total order for each combination of

values of some other variables (conditional preference table)
¤  Y=a, Z=b: X=v1 > X=v2 > ... > X=vk
¤  X depends on Y and Z (parents of X)

¨  Graphically: directed graph over X1, … , Xn
¤  Possibly cyclic

X	

X	

Y	
 Z	

CP nets: an example

Main course Wine

 fish white > red

 meat red > white

Main	
 	

course	

Independent	

	
 	
 	
 	
 feature	

Fruit	

Independent	

	
 	
 	
 	
 feature	

fish>meat	

peaches	
 >	
 strawberries	

Wine	

Dependent	

	
 	
 	
 	
 feature	

	
 	
 	
 	
 Condi/onal	
 Preference	
 Table	

CP-net semantics
¨  Worsening flip: changing the value of an attribute in a

way that is less preferred in some statement. Example:

¨  An outcome O1 is preferred to O2 iff there is a sequence of
worsening flips from O1 to O2

¨  Optimal outcome: if no other outcome is preferred

(fish,	
 white	
 wine,	
 peaches)	

(fish,	
 red	
 wine,	
 peaches)	

worsening	
 flip	

Preorder over solutions

¨  A CP net induces an ordering over the solutions
(directly)

¨  In general, a preorder
¨  Some solutions can be in a cycle: for each of

them, there is another one which is better
¨  Acyclic CP net: one optimal solution
¨  Not all orderings can be obtained with CP nets

¤ Outcomes which are one flip apart must be ordered

Solution ordering

Main course Wine

 fish white > red

 meat red > white

fish>meat	

peaches	
 >	
 strawberries	

Main	
 	

course	

Fruit	

Wine	

Fish,	
 white,	
 peaches	

Fish,	
 red,	
 peaches	
 Fish,	
 white,	
 berries	

Fish,	
 red,	
 berries	
 meat,	
 red,	
 peaches	

meat,	
 red,	
 berries	
 meat,	
 white,	
 peaches	

meat,	
 white,	
 berries	

OpJmal	
 soluJon	

Solution ordering

Main
course Wine

 fish white >
red

 meat red >
white

fish>meat	

peaches	
 >	
 strawberries	

Main	
 	

course	

Fruit	

Wine	

Fish,	
 white,	
 peaches	

Fish,	
 red,	
 peaches	
 Fish,	
 white,	
 berries	

Fish,	
 red,	
 berries	

meat,	
 red,	
 peaches	

meat,	
 red,	
 berries	
 meat,	
 white,	
 peaches	

meat,	
 white,	
 berries	

OpJmal	
 soluJon	

Interesting questions in CP nets
¨  Find an optimal outcome

¤  In general, difficult (as solving a CSP)
¤  Easy for acyclic networks

n  always have exactly one optimal solution
n  sweep forward in linear time

¨  Find the next solution in a linearization of the
solution ordering
¤  Easy for acyclic CP-nets

¨  Does O1 dominate O2?
¤  Difficult even for acyclic CP nets

¨  Is O optimal?
¤  Easy: test O against a CSP

Example

Loc-­‐A,	
 Analyze,	
 St2	

Loc-­‐A,	
 Image,	
 St2	
 Loc-­‐A,	
 Analyze,	
 St1	

Loc-­‐A,	
 Image,	
 St1	
 Loc-­‐B,	
 Image,	
 St2	

Loc-­‐B,	
 Image,	
 St1	
 Loc-­‐B,	
 Analyze,	
 St2	

Loc-­‐B,	
 Analyze,	
 St1	

OpJmal	
 soluJon	

WHERE

WHAT

Loc-A >Loc-B

DLINK

St2>St1

Loc-A: Analyze> Image
Loc-B: Image> Analyze

 A rover must decide:
•  Where to go: Location A or Location B
•  What to do: Analyze a rock or Take and image
•  Which station to downlink to: Station 1 or Station 2

How to find optimal solutions in CP nets

¨  Acyclic CP-nets: sweep forward algorithm
¤ Follow the dependency graph
¤ For each variable, assign the most preferred

value in the context of the parents’ assignment

Sweep forward algorithm

Main course Wine

 fish white > red

 meat red > white

fish>meat	

peaches	
 >	
 strawberries	

Main	
 	

course	

Fruit	

Wine	

Fish,	
 white,	
 peaches	

Fish,	
 red,	
 peaches	
 Fish,	
 white,	
 berries	

Fish,	
 red,	
 berries	
 meat,	
 red,	
 peaches	

meat,	
 red,	
 berries	
 meat,	
 white,	
 peaches	

meat,	
 white,	
 berries	

OpJmal	
 soluJon	

1.  F = peaches
2.  M = fish
3.  Since M=fish, W=white

Sweep forward algorithm

Main
course Wine

 fish white >
red

 meat red >
white

fish>meat	

peaches	
 >	
 strawberries	

Main	
 	

course	

Fruit	

Wine	

Fish,	
 white,	
 peaches	

Fish,	
 red,	
 peaches	
 Fish,	
 white,	
 berries	

Fish,	
 red,	
 berries	

meat,	
 red,	
 peaches	

meat,	
 red,	
 berries	
 meat,	
 white,	
 peaches	

meat,	
 white,	
 berries	

OpJmal	
 soluJon	

1.  F = peaches
2.  M = fish
3.  Since M=fish, W=white

Cyclic CP nets

¨  Given a (cyclic) CP net, we can generate in
polynomial time a set of constraints P such
that the solutions of P coincides with the set of
optimal solutions of the CP net
¤ For each Y=a, Z=b: X=v1 > X=v2 > ... > X=vk, we build the

constraint Y=a, Z=b è X=v1

Optimal solutions in cyclic CP nets

F = peaches
M = fish è W=white
M = meat è W = red
W = white è M = fish
W = red è M = meat

peaches	
 >	
 	

strawberries	

Main	
 	

course	

Fruit	

Wine	

Fish: white > red
Meat: red > white

White: fish > meat
Red: meat > fish

Fish,	
 white,	
 peaches	

Fish,	
 red,	
 peaches	

Fish,	
 white,	
 berries	

Fish,	
 red,	
 berries	

meat,	
 red,	
 peaches	

meat,	
 red,	
 berries	

meat,	
 white,	
 peaches	

meat,	
 white,	
 berries	

OpJmal	
 soluJons	

Constraints:

The next best solution

¨  Also important: given a solution s, find the next one

¤  Top k solutions in web search
¤  Next most preferred option in stable marriage proposal-based

algorithms
¨  Next where? In a linearization of the preference ordering

¤  Compatible with the preference ordering
¤  Has to linearize incomparability

Next(P,s,l)

 P: Preference
representation

s: Solution l: Linearization of the
preference ordering

The solution following s
according to the
preferences in P
and linearization l

[Brafman, Salvagnin Rossi,Venable,Walsh
ADT 2009, KR 2010, AAAI 2011]

Next on a CP-net: example

WHERE

WHAT

Loc-A >Loc-B

DLINK

St2>St1

Loc-A: Analyze> Image
Loc-B: Image> Analyze

Loc-­‐A,	
 Analyze,	
 St2	

Loc-­‐A,	
 Image,	
 St2	
 Loc-­‐A,	
 Analyze,	
 St1	

Loc-­‐A,	
 Image,	
 St1	
 Loc-­‐B,	
 Image,	
 St2	

Loc-­‐B,	
 Image,	
 St1	
 Loc-­‐B,	
 Analyze,	
 St2	

Loc-­‐B,	
 Analyze,	
 St1	

Next on acyclic CP-nets is easy for
conditional lex linearization

¨  Acyclic CP-nets generate a partial order with one top element
¨  Assume Boolean vars (for simplicity)
¨  Main idea: Boolean vector for each solution

¤  Position i for variable xi: 0 if xi has its most preferred value given its
parents, otherwise 1

¨  Lex order over the vectors is a linearization
¨  Next is just Boolean vector incrementation

¤  Given s, compute its vector v
¤  Increment the vector obtaining v’
¤  Given v’, obtain the corresponding solution s’

[Brafman, Salvagnin Rossi,Venable,Walsh,
ADT 2009, KR 2010, AAAI 2011]

Solution Ordering

WHERE

WHAT

Loc-A >Loc-B

DLINK

St2>St1

Loc-A: Analyze> Image
Loc-B: Image> Analyze

Loc-­‐A,	
 Analyze,	
 St2	

Loc-­‐A,	
 Image,	
 St2	
 Loc-­‐A,	
 Analyze,	
 St1	

Loc-­‐A,	
 Image,	
 St1	
 Loc-­‐B,	
 Image,	
 St2	

Loc-­‐B,	
 Image,	
 St1	
 Loc-­‐B,	
 Analyze,	
 St2	

Loc-­‐B,	
 Analyze,	
 St1	

000

010 001

011 100

101 110

111
[Brafman, Salvagnin Rossi,Venable,Walsh
ADT 2009, KR 2010, AAAI 2011]

Expressive power

weightedR Prob

weightedN

Valued

Semiring-based

Classical

Fuzzy Lexicographic

CP nets

If	
 interested	
 in	
 the	
 opJmal	
 soluJons:	

CP nets à classical CSPs

¨  Given a CP net, it is always possible to build in
polynomial time a classical CSP with the same
set of optimal solutions
¤ For each Y=a, Z=b: X=v1 > X=v2 > ... > X=vk, we build the

constraint Y=a, Z=b è X=v1

¨  For some CSP, it is not possible to build a CP
net with the same set of optimals
¤ Ex.: two (optimal) solutions <X=a,Y=b,Z=c> and

<X=a,Y=b,Z=d> è they must be ordered in a CP
net

[Brafman,	
 Dimopoulos,	
 CI	
 2004]	

Expressive power

weightedR Prob

weightedN

Valued

Semiring-based

Classical

Fuzzy Lexicographic

If	
 interested	
 in	
 maintaining	
 the	
 soluJon	
 ordering:	

CP nets

CP nets vs. Soft Constraints
(solution ordering)

¨  There are CP nets whose ordering cannot be
modelled (in poly time) by a soft CSP
¤ Otherwise dominance testing would be easy in

CP-nets

¨  There are soft CSPs whose orderings cannot

be modelled by a CP net
¤ Not all orderings can be represented by CP nets

Soft constraints vs. CP-nets

all some

difficult easy

easy difficult

difficult easy

difficult easy

Soft CP nets
constraints (acyclic)

Preference orderings

Find an optinmal decision

Compare two decisions

Find the next best decision

Check if a decsion is optimal

Approximating CP nets via Soft Constraints

¨  We can approximate the ordering of a CP net
via a soft constraint problem
¤  Weighted or fuzzy soft constraints
¤  For ordered outcomes, same ordering
¤  For incomparable outcomes, tie or order è more ordered
¤  Easy dominance test

SoH	
 	

constraint	
 	

solver	

Hard	
 constraints	

SoH	
 constraints	

CP	
 statements	
 SoH	
 constraints	

op/mal	
 	

solu/ons/	

approximate	
 	

dominance	
 	

test	

[Domshlak,	
 Rossi,	
 Venable,	
 Walsh,	
 IJCAI	
 2003]	

approx.	

Constrained CP-net

A Constrained CP-net on variables X={X1,…, Xn} is a
pair <N,C> where:
¤  N is a CP-net on variables X
¤  C is a set of Hard or Soft Constraints on X

Constrained CP-net semantics:
O1 ≥ O2 iff
¤  Pref(O1) > pref(O2) in C, or
¤  Pref(O1) = pref(O2) in C and there is a chain of worsening flips

from O1 to O2 through outcomes with equal or higher
preference

¤  O optimal if feasible and undominated in the CP net (not
necessarily optimal in the CP net)

Softly Constrained CP net : example

Main
course Wine

 fish white >
red

 meat red >
white

Fish, red, peaches

Fish, red, berries

meat, red, peaches

meat, red, berries

fish>meat

peaches > strawberries

Main
course

Fish, white, peaches

Fish, white, berries

meat, red, peaches

meat, red, berries meat, white, peaches

meat, white, berries

CP net

Wine white à 0.2
red à 1

Soft Constraint

0.2

0.2

0.2

1

1
1 Fruit

Wine

0.2

1

Optimal

How to obtain an optimal outcome of a
constrained CP net <N,C>

¨  From N to optimality constraints OC
¨  If Sol(OC ∪ C) is not empty, then they are

(some of the) optimal outcomes è take one of
them
è only hard constraint solving

¨  Otherwise, dominance testing between
feasible outcomes (more costly)

[Prestwich, Rossi, Venable, Walsh, AAAI 2005]

(Conditional + qualitative + quantitative)
preferences + constraints

Optimal
Solutions

Soft
constraint

Solver
(+ dominance test

in CP net)

Hard constraints

Soft constraints

CP net

References for CP-nets

¨  Extended semantics and optimization algorithms for CP-networks,
R. Brafman and Y. Dimopoulos, Computational Intelligence, 20(2),
2004

¨  CP-nets: A Tool for Representing and Reasoning with Conditional
Ceteris Paribus Preference Statements, C. Boutilier, R. Brafman, C.
Domshlak, H. Hoos, D. Poole JAIR, 21, 2004

¨  Reasoning about soft constraints and conditional preferences:
complexity results and approximation techniques, C. Domshlak, F.
Rossi, K. B. Venable, T. Walsh, Proc. IJCAI 2003

¨  CP-nets Reasoning and Consistency Testing, C. Domshlak, R.
Brafman, KR 2002

¨  Constraint-based Preferential Optimization, S. Prestwich, F. Rossi,
K. B. Venable, T. Walsh, AAAI 2005

VOTING WITH
COMBINATORIAL
DOMAINS

Multiple issues

¨  Until now we have considered voting over one issue
only

¨  Now we consider several issues
¨  Example:

¤ 3 referendum (yes/no)
¤ Each voter has to give his preferences over triples of

yes and no
¤ Such as: YYY>NNN>YNY>YNN>etc.

¨  With k issues, k-tuples (2k if binary issues)

Paradox of multiple elections

¨  13 voters are asked to each vote yes or no on 3
issues:
¤ 3 voters each vote for YNN, NYN, NNY
¤ 1 voter votes for YYY, YYN, YNY, NYY
¤ No voter votes for NNN

¨  Majority on each issue: the winner is NNN!
¤ Each issue has 7 out of 13 votes for no

What is a paradox?

¨  Given
¤ A voting rule
¤ A profile of ballots
¤ A property applicable to both profiles and outcomes

¨  Each ballot satisfies the property, but the outcome does
not

¨  Example: no ballot is for NNN, but NNN is the outcome
of the election

¨  (applies also to Condorcet paradox)

¨  What can we do then?

Plurality on combinations

¨  Ask each voter for her most preferred combination and
apply plurality
¤ Avoids the paradox, computationally light
¤ Almost random decisions
¤  Example: 10 binary issues, 20 voters è 210 = 1024

combinations to vote for but only 20 voters, so very high
probability that no combination receives more than one vote
è tie-breaking rule decides everything

¨  Similar also for voting rules that use only a small part of
the voters’ preferences (ex.: k-approval with small k)

Other rules on combinations

¨  Vote on combinations and use other voting rules that
use the whole preference ordering on combinations

¨  Avoids the arbitrariness problem of plurality
¨  Not feasible when there are large domains
¨  Example:

¤ Borda (needs the whole preference ordering)
¤ 6 binary issues è 26=64 possible combinations è

each voter has to choose amongst 64! possible ballots

Sequential voting

¨  Vote separately on each issue, but do so
sequentially

¨  This gives voters the opportunity to make their vote
for one issue depend on the decisions on previous
issues

Condorcet losers

¨  Condorcet loser (CL): candidate that loses against
any other candidate in a pairwise contest

¨  Electing a CL is very bad, but Plurality sometimes
elects it

¨  Example:
¤ 2 votes for X > Y > Z
¤ 2 votes for Y > X > Z
¤ 3 votes for Z > X > Y
¤ Z is the Plurality winner and the Condorcet loser

Sequential voting and Condorcet losers

¨  Sequential voting avoids the problem of electing
Condorcet losers

¨  Thm.: Sequential plurality voting over binary issues
never elects a Condorcet loser
¤  Proof: Consider the election for the final issue. The winning

combination cannot be a CL, since it wins at least against the
other combination that was still possible after the
penultimate election

¤  [Lacy, Niou, J. of Theoretical Politics, 2000]

¨  But no guarantee that sequential voting elects the
Condorcet winner (Condorcet consistency).

SEQUENTIAL VOTING
WITH SOFT CONSTRAINTS

Profiles via soft constraints

¨  Agents expressing preferences via soft constraints
¨  Over a common set of decisions/options

¤  options = complete variable assignments
¨  Same vars and var domains for all agents, different soft constraints
¨  Profile = preferences of all agents

¤  Explicit profile: preference orderings are given
¤  Implicit profile: compact representation of the preferences

¨  We will select a decision using a voting rule
¤  Decision = solution for the agents soft constraint satisfaction problems (sof CSP)
¤  Voting rule: function from an explicit profile to a decision

¨  In the dinner example:
¤  Each friend has his own soft CSP to express the preferences over the dinners
¤  We need to select one dinner over the 625 possible ones

Agent 1 Agent 2 Agent 3

Dinner example, three agents

Pasta

Drink

Pesto 1
Tom 0.7

(Pesto, Beer) 1
(Pesto,Wine) 0.5
(Tom ,Beer) 0.7
(Tom,Wine) 0.3

Beer 1
Wine 0.7

Pasta

Drink

Pesto 0.9
Tom 1

(Pesto, Beer) 1
(Pesto,Wine) 0.9
(Tom ,Beer) 0.9
(Tom,Wine) 0.9

Beer 1
Wine 1

Pasta

Drink

Pesto 1
Tom 0.3

(Pesto, Beer) 1
(Pesto,Wine) 0.3
(Tom ,Beer) 0.3
(Tom,Wine) 1

Beer 1
Wine 1

How to select a decision?

¨  One step approach:
¤  Given the implicit profile, compute the explicit profile and apply a voting

rule
¨  Problems:

¤  The explicit profile needs exponential space
¤  Computing the explicit profile may be very expensive in time

n  Both optimal and next solution are difficult to compute in general for soft
constraints

¨  Sequential approach
¤  For each variable

n  compute an explicit profile over the variable domain
n  apply a voting rule to this explicit profile
n  add the information about the selected variable value

¨  Similar approach used for CP-nets in [Lang, Xia, 2009]

Agent 1 Agent 2 Agent 3

Dinner example using plurality

Pasta

Drink

Pesto 1
Tom 0.7

(Pesto, Beer) 1
(Pesto,Wine) 0.5
(Tom ,Beer) 0.7
(Tom,Wine) 0.3

Beer 1
Wine 0.7

Pasta

Drink

Pesto 0.9
Tom 1

(Pesto, Beer) 1
(Pesto,Wine) 0.9
(Tom ,Beer) 0.9
(Tom,Wine) 0.9

Beer 1
Wine 1

Pasta

Drink

Pesto 1
Tom 0.3

(Pesto, Beer) 1
(Pesto,Wine) 0.3
(Tom ,Beer) 0.3
(Tom,Wine) 1

Beer 1
Wine 1

Plurality Pasta
 =
Pesto

Pesto 1
Tom 0

Pesto 0.9
Tom 0

Pesto 1
Tom 0

(Pesto, Beer) 1
(Pesto,Wine) 0.5
(Tom ,Beer) 0
(Tom,Wine) 0

(Pesto, Beer) 1
(Pesto,Wine) 0.9
(Tom ,Beer) 0
(Tom,Wine) 0

(Pesto, Beer) 1
(Pesto,Wine) 0.3
(Tom ,Beer) 0
(Tom,Wine) 0

Beer 1
Wine 0.5

Beer 1
Wine 0.9

Beer 1
Wine 0.3

Plurality Drink
 =
Beer

Winner

Local vs. sequential properties

¨  If each ri has the property, does the sequential rule
have the property?

¨  If some ri does not have the property, does the
sequential rule not have it?
¤  If the sequential rule has a property, do all the ri have

it?

Properties
Local to sequential Sequential to local

Condorcet consistency no yes

Anonymity yes yes

Neutrality no yes

Consistency yes yes

Participation no yes

Efficiency yes if single most
preferred option for all
agents

yes

Monotonicity yes yes

IIA no yes

Non-dictatorship yes yes

Strategy-proofness no yes

[Dalla Pozza, Pini, Rossi, Venable, IJCAI 2011]

Complexity of coalitional constructive
manipulation
¨  Constructive Coalitional Manipulation CC(d,C,P,r)

¤  Given voting rule r, how difficult it is for coalition of voters C to make
candidate d win, knowing the other agents’ preferences P?
n  Easy for Copeland with 3 candidates and for Plurality [Conitzer et

al., 2007]
n  Difficult for Copeland [Faliszewski et al., 2008]

¨  Thms:
¤  Easy for all local rules à Easy for sequential (if soft constraints are

tractable)

¤  Hard for one local rule à Hard for the sequential procedure

[Dalla Pozza, Pini, Rossi, Venable, 2011]

Experimental setting

¨  Randomly generated tree-shaped soft implicit profiles
¤  n: number of variables
¤  m: number of agents
¤  d: domain size
¤  t: tightness

¨  Same rule r for all steps
¨  Comparison between two voting rules

¤  seq(r), from the implicit profile to a solution
¤  r, from the explicit profile to a solution

n  baseline

¨  We measure the quality of returned solution s
¤  for each agent, distance between preference of s and of its most preferred

solutions, averaged over all agents

Time (Borda)

¨  Sequential rule much faster (no need to compute the explicit
profile)

Error (Borda)

¨  Result of about the same quality

¨  Price to pay to search an agreement with others

The sequential approach behaves like
the non-sequential one

¨  independently of the variable ordering
¨  independently of the amount of consensus

among agents
¨  also on best and worst cases

Sequential voting with soft constraints

¨  Assume agents vote by giving a soft constraint problem
¨  One step approach:

¤  Given the implicit profile, compute the explicit profile and apply a voting
rule

¨  Problems:
¤  The explicit profile needs exponential space
¤  Computing the explicit profile may be very expensive in time

n  Both optimal and next solution are difficult to compute in general for soft
constraints

¨  Proposed solution: sequential approach
¤  For each variable

n  compute an explicit profile over the variable domain
n  apply a voting rule to this explicit profile
n  add the information about the selected variable value

¨  Similar approach used for CP-nets in [Lang, Xia, 2009]
[Dalla Pozza, Pini, Rossi, Venable, ICAART 2011, IJCAI 2011]

ROVER 1 ROVER 2 ROVER 3

Example: 3 rovers must decide where
to go and what to do

WHERE

WHAT

Loc-A 1
Loc-B 0.7

(Loc-A, Analyze) 1
(Loc-A,Image) 0.5
(Loc-B,Analyze) 0.7
(Loc-B,Image) 0.3

Analyze 1
Image 0.7

WHERE

WHAT

Loc-A 0.9
Loc-B 1

(Loc-A, Analyze) 1
(Loc-A,Image) 0.9
(Loc-B,Analyze) 0.9
(Loc-B,Image) 0.9

Analyze 1
Image 1

WHERE

WHAT

Loc-A 1
Loc-B 0.3

(Loc-A, Analyze) 1
(Loc-A,Image) 0.3
(Loc-B ,Analyze) 0.3
(Loc-B,Image) 1

Analyze 1
Image 1

Plurality WHERE
 =
Loc-A

Loc-A 1
Loc-B 0

Loc-A 0.9
Loc-B 0

Loc-A 1
Loc-B 0

(Loc-A, Analyze) 1
(Loc-A, Image) 0.5
(Loc-B ,Analyze) 0
(Loc-B,Image) 0

(Loc-A, Analyze) 1
(Loc-A,Image) 0.9
(Loc-B ,Analyze) 0
(Loc-B,Image) 0

(Loc-A, Analyze) 1
(Loc-A,Image) 0.3
(Loc-B ,Analyze) 0
(Loc-B,Image) 0

Analyze 1
Image 0.5

Analyze 1
Image0.9

Analyze 1
Image 0.3

Plurality WHAT
 =
Analyze

Winner

SEQUENTIAL VOTING
WITH CP-NETS

Profiles via compatible CP-nets

¨  n voters, voting by giving a CP-net each
¤  Same variables, different dependency graph and CP tables

¨  Compatible CP-nets: there exists a linear order on the
variables that is compatible with the dependency graph
of all CP-nets (that is, it completes the DAG)

¨  Then vote sequentially in this order
¨  Thm.: Under these assumptions, sequential voting is

Condorcet consistent if all local voting rules are
¤  (Lang and Xia, Math. Social Sciences, 2009)

ROVER 1 ROVER 2 ROVER 3

Example

WHERE

WHAT

Loc-A >Loc-B

WHERE

WHAT

Loc-B> Loc-A

St2>St1

WHERE

WHAT

Loc-A >Loc-B

Plurality WHERE
 =

Loc-A

Loc-A Loc-A Loc-A

Plurality

WHAT
 =

Image

Winner

3 Rovers must decide:
•  Where to go: Location A or Location B
•  What to do: Analyze a rock or Take a picture
•  Which station to downlink the data to: Station 1 or Station 2

Image >Analyze

DLINK

St1 >St2

DLINK DLINK

St2>St1

Loc-A: Image > Analyze
Loc-B: Analyze> Image

Plurality

DLINK
 =
 St2

Analyze >Image Image >Analyze

Loc-A: Analyze> Image
Loc-B: Image> Analyze

BRIBING CP-NETS

Bribery

¨  Given:
¤ a voting rule
¤ m candidates
¤ n voters, voting by giving a CP-net each
¤ a cost scheme describing the cost of bribing each voter
¤ a candidate p that the briber wants to make the winner
¤  the allowed bribery requests
¤ a budget B

à Can the briber make p win by spending at most B?

ROVER 1 ROVER 2 ROVER 3

Example

WHERE

WHAT

Loc-A >Loc-B

WHERE

WHAT

Loc-B> Loc-A

St2>St1

WHERE

WHAT

Loc-A >Loc-B

Plurality WHERE
 =

Loc-A

Loc-A Loc-A Loc-A

Plurality

WHAT
 =

Image

Winner

3 Rovers must decide:
•  Where to go: Location A or Location B
•  What to do: Analyze a rock or Take a picture
•  Which station to downlink the data to: Station 1 or Station 2

Image >Analyze

DLINK

St1 >St2

DLINK DLINK

St2>St1

Loc-A: Image > Analyze
Loc-B: Analyze> Image

Plurality

DLINK
 =
 St2

Analyze >Image Image >Analyze

Loc-A: Analyze> Image
Loc-B: Image> Analyze

ROVER 1 ROVER 2 ROVER 3

Bribing example

WHERE

WHAT

Loc-A >Loc-B

WHERE

WHAT

Loc-B> Loc-A

St2>St1

WHERE

WHAT

Loc-A >Loc-B

Plurality WHERE
 =

Loc-B

Loc-B Loc-B Loc-B

Plurality

WHAT
 =

Image

Winner

•  Voting rule: Sequential Plurality
•  P: (loc-B, Image, St2)
•  Candidates: all triples
•  3 voters with a CP-net each
•  Bribery requests: flips in preference orderings

Image >Analyze

DLINK

St1 >St2

DLINK DLINK

St2>St1

Loc-A: Image > Analyze
Loc-B: Analyze> image

Plurality

DLINK
 =
 St2

Image >Analyze Analyze >Image

Loc-A: Analyze> Image
Loc-B: Image> Analyze

$$$

Loc-B> Loc-A

Bribing cost schemes

WHERE

WHAT

Loc-A >Loc-B

DLINK

St2>St1

Loc-A: Analyze> Image
Loc-B: Image> Analyze

C-equal: same cost for
 whatever change
 in the CP-nets

C-flip: cost = n. of flips,
 all flips cost the same

C-level: cost = n. of flips,
 higher cost for
 flipping higher
 in the dependency graph

C-any: cost = n. of flips,
 each flip may
 have different cost
 C-dist: cost = distance from top

 in a linearization
 of the partial order
Based on [Brafman, Pilotto, Rossi,
Salvagnin, Venable, Walsh, ADT 2009, KR 2010, AAAI 2011]

Loc-­‐A,	
 Analyze,	
 St2	

Loc-­‐A,	
 Image,	
 St2	
 Loc-­‐A,	
 Analyze,	
 St1	

Loc-­‐A,	
 Image,	
 St1	
 Loc-­‐B,	
 Image,	
 St2	

Loc-­‐B,	
 Image,	
 St1	
 Loc-­‐B,	
 Analyze,	
 St2	

Loc-­‐B,	
 Analyze,	
 St1	

50$
 1$

 1$

 1$

 1$

 10$

 10$

 5$

 5$

 8$

 100$

 15$

 3$

 0$

 1$ 2$

 3$ 4$

 5$ 6$

 7$

Complexity results for bribery with CP-
nets

Sequential
Majority

Sequential
Majority
with weights

Plurality
Veto
K-Approval
(IV)

Plurality
Veto
K-Approval*
 (DV, IV+DV)

C_EQUAL NP-complete NP-complete P P

C_FLIP P NP-complete P P

C_LEVEL P NP-complete P ?

C_ANY P NP-complete ? ?

C_DIST ? NP-complete P P

STABLE MARRIAGE
PROBLEMS

Preferences over agents

¨  Until now, agents expressed preferences over
alternative decisions (different from the agents)

¨  Goal: to choose one of the decisions based on the
agents’ preferences

¨  Now, we consider agents expressing preferences
over other agents
¤  Bipartite set of agents

¨  Goal: to choose a matching among the agents
based on their preferences
¤  Matching: set of pairs (A1,A2), where A1 comes from the

first set and A2 from the second one

Looking for a job

¨  Assume
¤  As many positions as the number of people looking for

them
¤  Each person sends his cv to all companies

¨  Preferences
¤  Each person will rank all the openings
¤  Each company will rank all the students

¨  How to do the matching in such a way that
“everybody is happy”?

¨  Notice
¤  Bipartite set of agents
¤  Preferences over other agents, not over alternatives

Other practical scenarios

n  Assigning projects
n  Job hunting
n  Matching students with schools
n  Matching doctors with hospitals
n  Matching sailors to ships
n  Matching producers to consumers
n  Choosing roomates
n …

Stable marriage formulation

n  Two sets of agents: men and women
n  Idealized model

q  Same number of men and women
q  All men totally order all women, and vice-versa

Stable marriage

n  Given preferences of n men
q  Greg: Amy>Bertha>Clare
q  Harry: Bertha>Amy>Clare
q  Ian: Amy>Bertha>Clare

n  Given preferences of n women
q  Amy: Harry>Greg>Ian
q  Bertha: Greg>Harry>Ian
q  Clare: Greg>Harry>Ian

n  Find a stable marriage

Stable marriage

q  Assignment of men to women (or equivalently of
women to men)
n  Idealization: everyone marries at the same time

q  No pair (man,woman) not married to each other
would prefer to run off together
n  Blocking pair: pair (m,w) such that the marriage contains

(m,w’) and (m’,w), but m prefers w to w’, and w prefers m
to m’

An example of an unstable marriage

q  Greg: Amy>Bertha>Clare
q  Harry: Bertha>Amy>Clare
q  Ian: Amy>Bertha>Clare

q  Amy: Harry>Greg>Ian
q  Bertha: Greg>Harry>Ian
q  Clare: Greg>Harry>Ian

Bertha	
 &	
 Greg	
 would	
 prefer	
 to	
 be	
 together	

An example of a stable marriage

q  Greg: Amy>Bertha>Clare
q  Harry: Bertha>Amy>Clare
q  Ian: Amy>Bertha>Clare

q  Amy: Harry>Greg>Ian
q  Bertha: Greg>Harry>Ian
q  Clare: Greg>Harry>Ian
 Men	
 do	
 ok,	
 women	
 less	
 well	

Another stable marriage

q  Greg: Amy>Bertha>Clare
q  Harry: Bertha>Amy>Clare
q  Ian: Amy>Bertha>Clare

q  Amy: Harry>Greg>Ian
q  Bertha: Greg>Harry>Ian
q  Clare: Greg>Harry>Ian

Women	
 do	
 ok,	
 men	
 less	
 well	

Many stable marriages

¨  Given any stable marriage problem
¤ There is at least one stable marriage!
¤ There may be many stable marriages
¤ They form a lattice, ordered according to men’s

(or women’s) preferences
n The higher in the lattice, the more men are happy:

SM1 > SM2 if in SM1 all men are at least as happy as
in SM2

n At least as happy: married to the same or a more
preferred woman

Gale Shapley algorithm

n  Initialize every person to be free
n  While exists a free man

q  Find best woman he hasn’t proposed to yet
q  If this woman is free, declare them engaged

n  Else, if this woman prefers this proposal to her current
partner, then declare them engaged (and “free” her
current partner)

n  Else, this woman prefers her current partner and she
rejects the proposal

Gale Shapley algorithm
n  Initialize every person to be free
n  While exists a free man

q  Find best woman he hasn’t
proposed to yet

q  If this woman is free, declare
them engaged
n  Else if this woman prefers this

proposal to her current partner
then declare them engaged (and
“free” her current partner)‏

n  Else this woman prefers her
current partner and she rejects
the proposal

Greg: Amy>Bertha>Clare
Harry: Bertha>Amy>Clare
Ian: Amy>Bertha>Clare

Amy: Harry>Greg>Ian
Bertha: Greg>Harry>Ian
Clare: Greg>Harry>Ian

Gale Shapley algorithm
n  Greg proposes to Amy, who

accepts è (G,A)
n  Harry proposes to Bertha, who

accepts è (H,B)
n  Ian proposes to Amy
n  Amy is with Greg, and she prefers

Greg to Ian, so she refuses
n  Ian proposes to Bertha
n  Bertha is with Harry, and she

prefers Harry to Ian, so she
refuses

n  Ian proposes to Claire, who
accepts è (I,C)

Greg: Amy>Bertha>Clare
Harry: Bertha>Amy>Clare
Ian: Amy>Bertha>Clare

Amy: Harry>Greg>Ian
Bertha: Greg>Harry>Ian
Clare: Greg>Harry>Ian

Gale Shapley algorithm terminates
with everyone married
n  Suppose some man is not married at the end
n  Then some woman is also unmarried
n  But once a woman is married, she only “trades”

up
n  Hence this woman was never proposed to

q  But if a man is unmarried, he has proposed to
and been rejected by every woman

n  This is a contradiction as he has never proposed
to the unmarried woman!

Gale Shapley algorithm terminates
with a stable marriage
q  Suppose there is a blocking pair m-w not married

q  Marriage contains (m,w’) and (m’,w)
q  m prefers w to w’, and w prefers m to m’

q  Case 1. m never proposed to w
q  Not possible because men move down with the

proposals, and w’ is less preferred than w
q  Case 2. m had proposed to w

n  But w rejected m, or left him later
n  However, women only ever trade up
n  Hence w prefers m’ to m
n  So the current pairing is stable!

Other features of Gale Shapley
algorithm
Each of n men can make at most (n-1) proposals
•  Hence GS runs in O(n2) time

There may be more than one stable marriage
•  GS finds man optimal solution: there is no stable

matching in which any man does better
•  GS finds woman pessimal solution: in all stable

marriages, every woman does at least as well or
better

Gale Shapley finds the male optimal
solution

q  S1: marriage found by GS
q  In S1, consider first step where a man is rejected by his best

feasible woman
q  Man M has proposed and been rejected by his best feasible woman

W, since W prefers her current partner Z
q  Note: W prefers Z to M
q  Note: There exists another stable marriage S2 with man M

married to woman W (and man Z to woman W’)
n  Man Z has not yet been rejected by his best possible woman

n  è Z must prefer W at least as much as his best possible woman
n  S2 contains (M,W) (Z,W’) and is not a stable marriage as Z and W

would prefer to be together
n  Z prefers W to W’
n  W prefer Z to M

Gale Shapley finds the woman
pessimal solution
q  Consider stable marriage S1 returned by GS
q  Let (M,W) be married in S1 but M is not the worst possible man

for woman W
n  There exists another stable marriage S2 with (M’,W) (M,W’) and

M’ worse than M for W
n  By male optimality of S1, M prefers W to W’
n  Also, W prefers M to M’
n  Then (M,W) is a blocking pair for S2

Other stable marriages

¨  GS finds male-optimal (or female-optimal)
marriage

¨  A set of agents is favored over the other one
¨  Other algorithms find “fairer” marriages
¨  Ex.: stable marriage which minimizes the

maximum regret [Gusfield 1989]

¤  regret of a man/woman = distance between his
partner in the marriage and his most preferred
woman/man

Extensions: ties
n  Cannot always make up our minds
n  Preference ordering: total order with ties
n  Two notions of stability:

q  Weak stability: no pair m-w not married
where m strictly prefers w to his partner,
and w strictly prefers m to her partner

q  Strong stability: no pair m-w not married
where m strictly prefers w to his partner,
and w prefers m at least as much as her
partner

Existence of stable marriage with ties

q  Strongly stable marriage may not exist

n  O(n4) algorithm for deciding existence
q  Weakly stable marriage always exists

n  Just break ties arbitrarily
n  Run GS
n  Resulting marriage is weakly stable

Extensions: incomplete preferences

n  There are some people we may be unwilling to
marry

n  (m,w) blocking pair iff
q  m and w do not find each other unacceptable
q  m is unmarried or prefers w to current partner
q  w is unmarried or prefers m to current partner

Solving stable marriage problems with
incomplete preferences
n  Just apply GS algorithm

q  Extends easily

n  Men and woman partition into two sets

q  Those who have partners in all stable marriages
q  Those who do not have partners in any stable

marriage
q  In all stable marriages, the same people are married
è Stable marriages have all the same number of pairs

Extensions: ties + incomplete prefs

n  Weakly stable marriages may have different
sizes
q  Unlike with just ties, where they are all complete

n  Finding weakly stable marriage of max.
cardinality is NP-hard
q  Even if only women declare ties

Strategy proofness

n  GS is strategy proof for men
q  Assuming GS male optimal algorithm
q  No man can do better than the male optimal

solution
n  However, women can profit from lying

q  Assuming male optimal algorithm is run
q  And they know complete preference lists

Manipulation by women

q  Greg: Amy>Bertha>Clare
q  Harry: Bertha>Amy>Clare
q  Ian: Amy>Bertha>Clare

q  Amy: Harry>Greg>Ian
q  Bertha: Greg>Harry>Ian
q  Clare: Greg>Harry>Ian

q  Amy lies

q  Amy: Harry>Ian>Greg
q  Bertha: Greg>Harry>Ian
q  Clare: Greg>Harry>Ian

Manipulation by women

q  Greg: Amy>Bertha>Clare
q  Harry: Bertha>Amy>Clare
q  Ian: Amy>Bertha>Clare

q  Greg proposes to Amy, who accepts
q  Harry proposes to Bertha, who accepts
q  Ian proposes to Amy, who accepts

(Greg left alone)
q  Greg proposes to Bertha, who accepts

(Harry left alone)
q  Harry proposes to Amy, who accepts

(Ian left alone)
q  Ian proposes to Bertha, who rejects
q  Ian proposes to Claire, who accepts
q  Stable matching obtained:

(Greg,Bertha), (Harry,Amy), (Ian,Claire)

Amy: Harry>Greg>Ian
Bertha: Greg>Harry>Ian
Clare: Greg>Harry>Ian

q  Amy lies

q  Amy: Harry>Ian>Greg
q  Bertha: Greg>Harry>Ian
q  Clare: Greg>Harry>Ian

Impossibility of strategy proofness

n  GS can be manipulated
n  Every stable marriage procedure can be

manipulated if preference lists can be
incomplete [Roth ’82]

Impossibility of strategy proofness

q  Consider
n  Greg: Amy>Bertha Amy: Harry>Greg
n  Harry: Bertha>Amy Bertha: Greg>Harry

q  Two stable marriages:
n  (Greg,Amy)(Harry,Bertha) or (Greg,Bertha)(Harry,Amy)

q  Suppose we get the male optimal solution
n  (Greg,Amy)(Harry,Bertha)
n  If Amy lies and says Harry is her only acceptable partner
n  Then, with any sm procedure, we must get (Harry,Amy)

(Greg,Bertha), as this is the only stable marriage
q  Other cases can be manipulated in a similar way

Making manipulation hard

¨  For some sm procedure, finding the manipulation is easy
¤  Example: GS algorithm

¨  For others, it is difficult
¨  Can we make the manipulation hard to find?

¤  As with voting, this may be a barrier to mis-reporting of
preferences

[Pini,	
 Rossi,	
 Venable,	
 Walsh,	
 AAMAS	
 09]	

Gender swapping

¨  Basic idea
¤  Men have no incentive to

manipulate GS
¤  But women do

¨  Construct SM procedure
that may swap men with
women

Gender swapping: non-deterministic solution

¨  Toss a coin
¤  Heads: men stay men
¤  Tails: men become women

and vice versa
¨  No incentive to mis-report

preferences
¤  50% chance that it will hurt

¨  Not everyone likes
¤  Randomized procedures
¤  Probabilistic guarantees

A deterministic solution

¨  Pick a set of stable marriages
¨  Choose between them based on agents’

preferences
¤  Make this choice difficult to manipulate!
¤  Choice based on voting

n  Complexity of manipulating voting rule => complexity of
manipulating SM procedure

A deterministic solution: use STV

¨  Pick a set of stable marriages
¨  Choose between them based on agents’ preferences

¤  Run a STV election to order men by women’s preferences
(and women by men’s preferences)

¤  For each SM, compute a male (female) score: vector where
position j contains i if man (woman) j is married to the i-th
most preferred woman (man)

¤  Take lex largest between the two vectors
¤  Pick SM with lex smallest vector

¨  Thm.: NP-hard to manipulate and gender neutral
¤  NP-hardness inherited from hardness of manipulating STV
¤  [Pini, Rossi, Venable, Walsh, AAMAS 2009]

¨  Also for other voting rules but not a general result

References for stable marriages
¤  Gale, Shapley. College Admissions and the Stability of Marriage. Amer. Math.

Monthly, 69:9-14, 1981
¤  Roth. The Economics of Matching: Stability and Incentives. Mathematics of

Operational Research, 7:617-628, 1982
¤  Gusfield, Irving. The Stable Marriage Problem: Structure and Algorithms. MIT

Press, 1989
¤  Gale, Sotomayor. Machiavelli and the stable matching problem. Amer. Math.

Monthly, 92:261-268, 1985
¤  Gusfield. Three fast algorithms for four problems in stable marriage. SIAM J. of

Computing, 16(1), 1987
¤  Teo, Sethuraman, Tan. Gale-Shapley Stable Marriage Problem Revisited: Stategic

Issues and Applications. Management Science, 47(9): 1252-1267, 2001
¤  Pini, Rossi, Venable, Walsh. Manipulation and gender neutrality in stable marriage

procedures. AAMAS-2009.

Conclusions

¨  Compact preference modelling
¨  Comparison of their expressive power and

computational properties
¨  Ability to reason with more than one formalism

in the same problem

Conclusions

¨  Voting theory can be useful for preference
aggregation in the context of AI

¨  Exploit axiomatic approach to choose the rule
to use

¨  Adapt voting concepts to the AI context

Conclusions

¨  Computational complexity is an important issue
in
¤ Manipulation
¤ Preference elicitation

¨  Complexity can be a friend
¤  Ideally want it to be hard to find manipulation but

easy to decide when to stop eliciting preferences!
¨  But NP-hardness is only worst case

