COMPACT PREFERENCE REPRESENTATION AND MATCHING PROBLEMS

Francesca Rossi

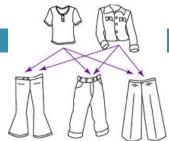
Main differences between social choice and multi-agent Al scenarios

- □ In multi-agent AI scenarios, we usually have
 - Large sets of candidates (w.r.t. number of voters)
 - Combinatorial structure for candidate set
 - Knowledge representation formalisms to model preferences
 - Incomparability
 - Uncertainty, vagueness
 - Computational concerns

Large set of candidates

- In AI scenarios, usually the set of decisions is much larger than the set of agents expressing preferences over the decisions
 Many web pages, few search engines
- Combinatorial structure for the set of decisions
 - Car (or PC, or camera) = several features, each with some instances
 - Dinner = combination of the different dishes

Combinatorial structure for the set of decisions



- Example:
 - Three friends need to decide what to cook for dinner
 - 4 items (pasta, main, dessert, drink)
 - 5 options for each \rightarrow 5⁴ = 625 possible dinners
- In general: Cartesian product of several variable domains
 - Variables = items of the menu, domain = 5 options

Formalisms to model preferences

Preference ordering over a large set of decisions

- \rightarrow need to model them compactly
- Otherwise too much space and time to handle such preferences
- □ Two examples:
 - soft constraints
 - CP-nets

Compact representation of preferences Soft constraints CD note

- CP nets
- Sequential voting
- Stable marriage problems

SOFT CONSTRAINTS

Preferences vs. constraints

 Constraints are strict requirements
 Preferences as a way to provide more "tolerant" statements

Constraints

- □ Many real-life problems can be modelled via constraints
- □ Ex.:
 - "I need at least two bedrooms"
 - "I don't want to spend more than 100K"
- Constraint = requirement = relation among objects (values for variables) of the problem
- Solution of a constraint problem = object choice (variable assignment) such that all constraints are satisfied
- Constraint programming offers
 - Natural modelling frameworks
 - Efficient solvers
 - Many application domains
 - Scheduling, timetabling, resource allocation, vehicle routing, ...

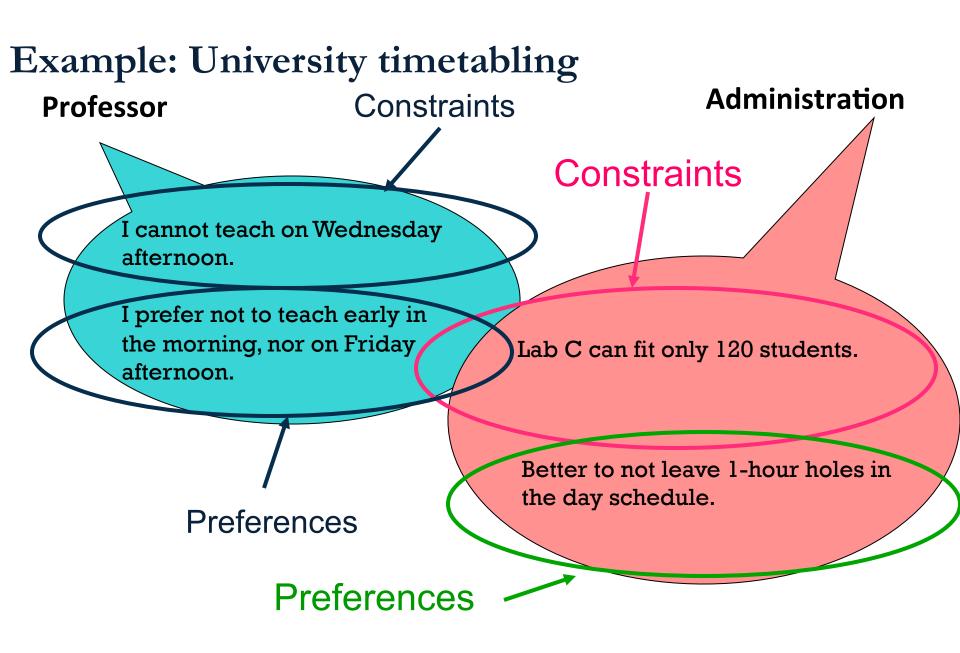
[Dechter, 2003; Rossi, Van Beek, Walsh, 2006]

Constraints are not flexible

- Constraints are useful when we have a clear yes/no idea
 - A constraint can either be satisfied or violated
- Sometimes, we have a less precise model of the real-life problem
 - Ex.: "Both a skiing and a beach vacation are fine, but I prefer skiing"
- □ If all constraints, possibly
 - No solution, or
 - Too many solutions, and equally satisfiable

Preferences are everywhere

- □ Under-constrained problems → many solutions → we want to choose among solutions
- Over-constrained problems → no solution → we want to find an acceptable assignment
- Problems which are naturally modelled with preferences
- Constraints and preferences may occur together
 - Ex.: configuration, timetabling



Several kinds of preferences

- Positive (degrees of acceptance)
 "I like ice cream"
- □ Negative (degrees of rejection)
 - "I don't like strawberries"
- Unconditional
 - "I prefer taking the bus"
- Conditional
 - "I prefer taking the bus if it's raining"
- Multi-agent
 - "I like blue, my husband likes green, what color do we buy the car?"

Two main ways to model preferences

Quantitative

- Numbers or ordered set of objects
- "My preference for ice cream is 0.8, and for cake is 0.6"
- E.g., soft constraints
- Qualitative
 - Pairwise comparisons:
 - "Ice cream is better than cake"
 - E.g., CP-nets

Modelling preferences compactly

- Preference ordering: an ordering over the whole set of solutions (or candidates, or outcomes, ...)
- Solution space with a combinatorial structure
 preferences over partial assignments, from which to generate the preference ordering over the solution space

Formalisms to model preferences

Soft Constraints

- Quantitative formalism
- (Negative) preferences

CP-nets (Conditional Preference Networks)

- Qualitative formalism
- Positive preferences

Two different ways to model compactly a preference ordering over a set of objects with a combinatorial structure

Soft Constraints: the c-semiring framework

- □ Variables $\{X_1, \dots, X_n\} = X$
- $\square \text{ Domains } \{D(X_1), \dots, D(X_n)\} = D$
- Soft constraints
 - each constraint involves some of the variables
 - a preference is associated with each assignment of the variables
- Set of preferences A
 - Totally or partially ordered (induced by +)
 - Combination operator (x)
 - **Top and bottom element (1, 0)**
 - Formally defined by a c-semiring <*A*,+,*x*,*0*,*1*>

[Bistarelli, Montanari, Rossi, IJCAI 1995, JACM 1997]

Soft constraints

Soft constraint: a pair c=<f,con> where:
 Scope: con={X^c₁,..., X^c_k} subset of X
 Preference function :

f:
$$D(X^{c}_{1})x...xD(X^{c}_{k}) \rightarrow A$$

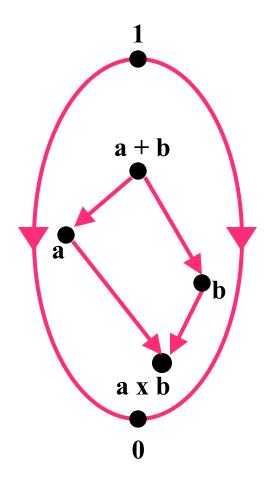
tuple $(v_{1},...,v_{k}) \rightarrow p$ preference

□ Hard constraint: a soft constraint where for each tuple $(v_1, ..., v_k)$

 $f(v_1,...,v_k)=1$ the tuple is allowed f $(v_1,...,v_k)=0$ the tuple is forbidden

Soft Constraints: the C-semiring framework

Some properties:
for all a in A, 0 ≤ a ≤ 1
for all a,b in A, a x b ≤ a
<A,≤> lattice
+ is lub
x is glb if x idempotent
+ and x monotone on ≤



Complete assignments and their evaluation

- Complete assignment: one value for each variable
- Global evaluation: preference associated to a complete assignment
- □ How to obtain a global evaluation?
 - By combining (via x) the preferences of the partial assignments given by the constraints

Example: weighted constraints

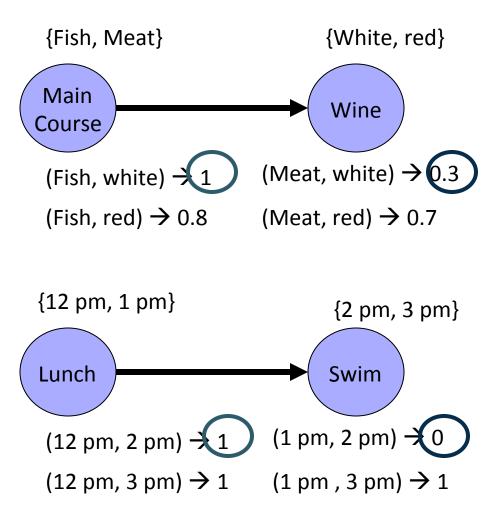
- $\Box <A = N \cup +\infty, + = \min, x = +,0 = +\infty,1 = 0>$
- □ Values in [0,+∞]
 - Best value=0
 - Worst value=+∞
- Comparison with min
 - A better than B iff min(A,B)=A
- Composition with +
 - Goal is to minimize sum

Example: fuzzy constraints

- <A = [0,1], + = max, x = min, 0 = 0, 1 = 1>:
 Preferences between 0 and 1
 Higher values denote better preferences
 0 is the worst preference
 1 is the best preference
 Combination is taking the smallest value
 - Optimization criterion = maximize the minimum preference
- Pessimistic approach, useful in critical application (eg., space and medical settings)

[Fuzzy CSPs: Schiex UAI' 92, Ruttkay FUZZ-IEEE '94]

Fuzzy-SCSP example



Fuzzy semiring $S = \langle A , + , x, 0, 1 \rangle$ $S_{FCSP} = \langle [0, 1], max, min, 0, 1 \rangle$ Solution S Lunch = 1 pm Main course = meat Wine = white Swim = 2 pm

pref(S) = min(0.3,0) = 0

Solution S'	
Lunch= Main course = Wine= Swim =	12 pm fish white 2 pm
pref(S)=min(1,1)=1	

Instances of semiring-based soft constraints

- □ Each instance is characterized by a c-semiring <A, +, x, 0, 1>
- Classical constraints: <{0,1},logical or,logical and,0,1>
 - Satisfy all constraints
- Fuzzy constraints: <[0,1],max,min,0,1>
 - Maximize the minimum preference
- □ Lexicographic CSPs: <[0,1]^k,lex-max,min,0^k,1^k>
 - Order the preferences lexicographically and then maximize the minimum preference
- □ Weighted constraints (N):<N \cup +∞, min, +,+∞,0>
 - Minimize the sum of the costs (naturals)
- □ Weighted constraints (R):<R \cup +∞, min, +, +∞,0>
 - Minimize the sum of the costs (reals)
- Max CSP: weight =1 if constraint is not satisfied and 0 if satisfied
 Minimize the number of violated constraints
- □ Probabilistic constraints: <[0,1], max, x, 0,1>
 - Maximize the joint probability of being a constraint of the real problem
- □ Valued CSPs: any totally ordered c-semiring
- Multi-criteria problems: Cartesian product of semirings

Multi-criteria problems

- One semiring for each criteria
- □ Given n c-semirings $S_i = \langle A_i, +_i, x_i, 0_i, 1_i \rangle$, we can build the c-semiring

- $\hfill\square$ + and x obtained by pointwise application of +, and x, on each semiring
- □ A tuple of values associated with each variable instantiation
- A tuple is better than another if it is better or equal on all elements, and better in at least one
- □ A partial order even if all the criteria are totally ordered
 - Pareto-like approach

Example

- □ The problem: choosing a route between two cities
- □ Each piece of highway has a preference and a cost
- We want to both minimize the sum of the costs and maximize the preference
- Semiring: by putting together one fuzzy semiring and one weighted semiring:
 - [0,1],max,min,0,1>

□ <N, min, +, +∞, 0>

Best solutions: routes such that there is no other route with a better semiring value

<0.8,\$10> is better than <0.7,\$15>

Two total orders, but the resulting order is partial:
 <0.6, \$10> and <0.4,\$5> are not comparable

Solution ordering

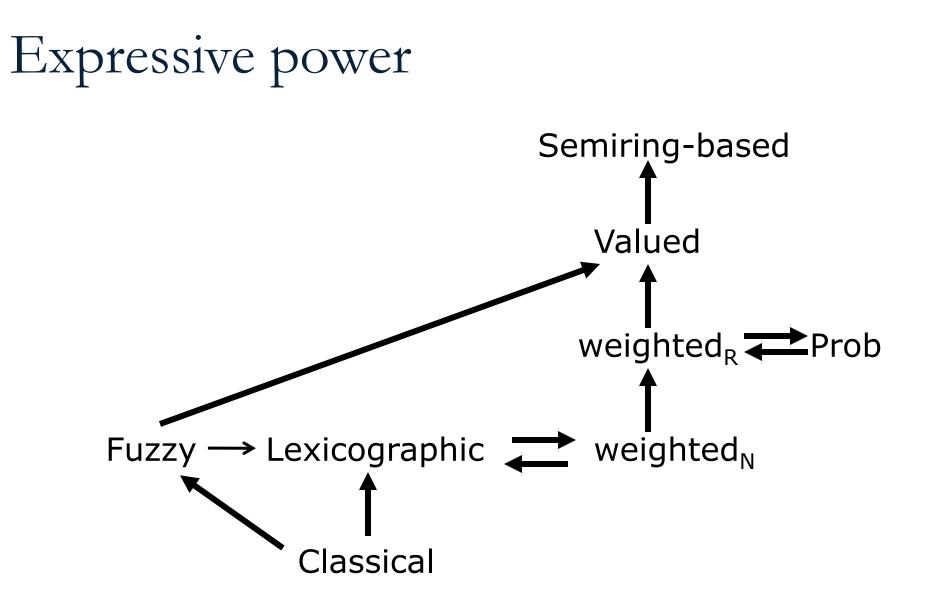
- A soft CSP induces an ordering over the solutions, from the ordering of the semiring
- □ Totally ordered semiring → total order over solutions (possibly with ties)
- Partially ordered semiring
 → total or partial order over solutions (possibly with ties)
- □ Any ordering can be obtained!

Expressive power

A → B iff from a problem P in A it is possible to build in polynomial time a problem P' in B s.t. the optimal solutions are the same (but not necessarily the solution ordering!)

B is at least as expressive as A

□ A \rightarrow B iff from a problem P in A it is possible to build in polynomial time a problem P' in B s.t. opt(P') ⊆ opt(P)



Interesting questions for soft CSPs

- □ Find an optimal solution
- Find the next solution in a linearization of the solution ordering
- □ Is s an optimal solution?
- \square Is s better than s'?

Finding an optimal solution

- Difficult in general
 - Branch and bound + constraint propagation
 Local search
 - Bucket elimination
 - ...
- Easy for some classes of soft constraints
- Ex.: tree-shaped problems
 - Bucket elimination: directional arc-consistency + backtrack-free search
 - Also for problems with bounded treewidth

Finding the next solution

- Next where? In a linearization of the solution ordering
- Ties and incomparable sets should be linearized (any way is fine)
- Difficult for CSPs in general (so also for SCSPs)
- At least as difficult as finding an optimal solution
- Easy for tree-shaped CSPs and tree-shaped fuzzy CSPs
- Difficult for tree-shaped weighted CSPs

Is s an optimal solution?

- Difficult in general: same complexity as finding an optimal solution
 - We have to find the optimal preference level
 - Easy for classical CSPs (optimal preference level is 1)

Is s better then s'?

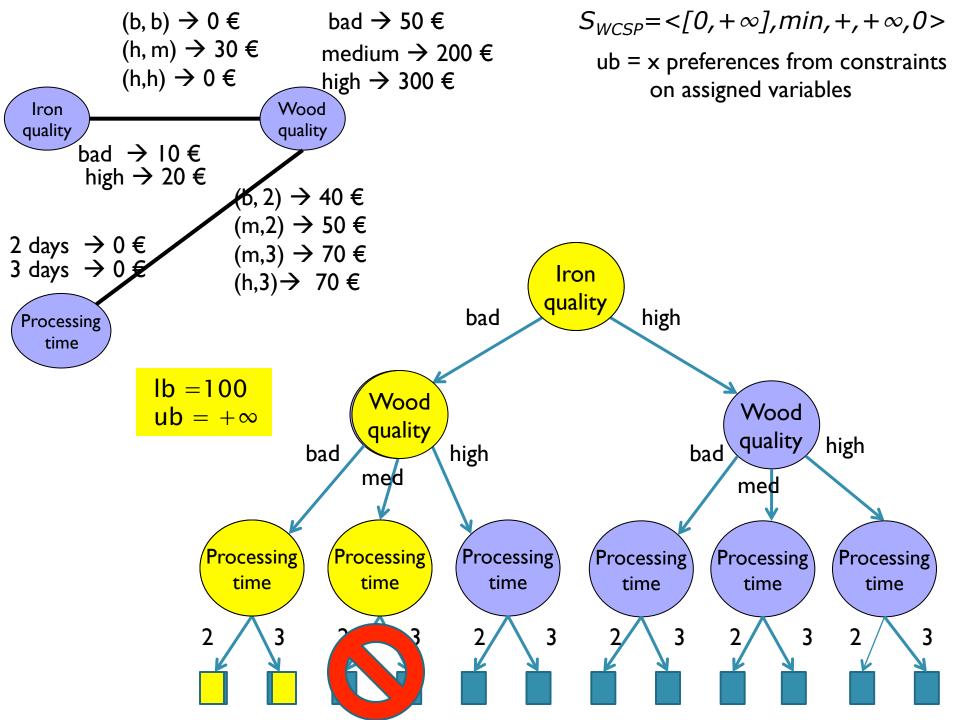
Easy: Linear in the number of constraints
 Compute the two preference levels and compare them
 Assumption: + and x easy to compute

Systematic search : Branch and bound

- □ Backtracking → Branch and Bound
- □ Main idea:
 - visit each assignment that may be a solution
 skip only assignments that are shown to be dominated by others
- Search tree to represent the space of all assignments

Systematic search : Branch and bound

- Lower bound = preference of best solution so far (0 at the beginning)
- Upper bound for each node: upper bound to the preference of any assignment in the subtree rooted at the node
- □ If **ub is worst than Ib** → prune subtree

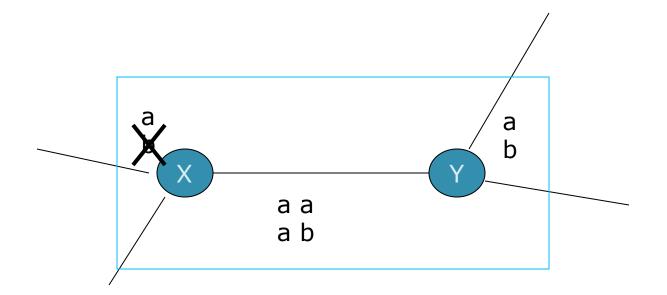


Inference: Constraint propagation

Constraint propagation (ex.arc-consistency):

- Deletes an element a from the domain of a variable x if, according to a constraint between x and y, it does not have any compatible element b in the domain of y
- Iterate until stability
- Polynomial time
- Very useful at each node of the search tree to prune subtrees

Example



No matter what the other constraints are, X=b cannot participate in any solution. So we can delete it without changing the set of solutions.

Properties

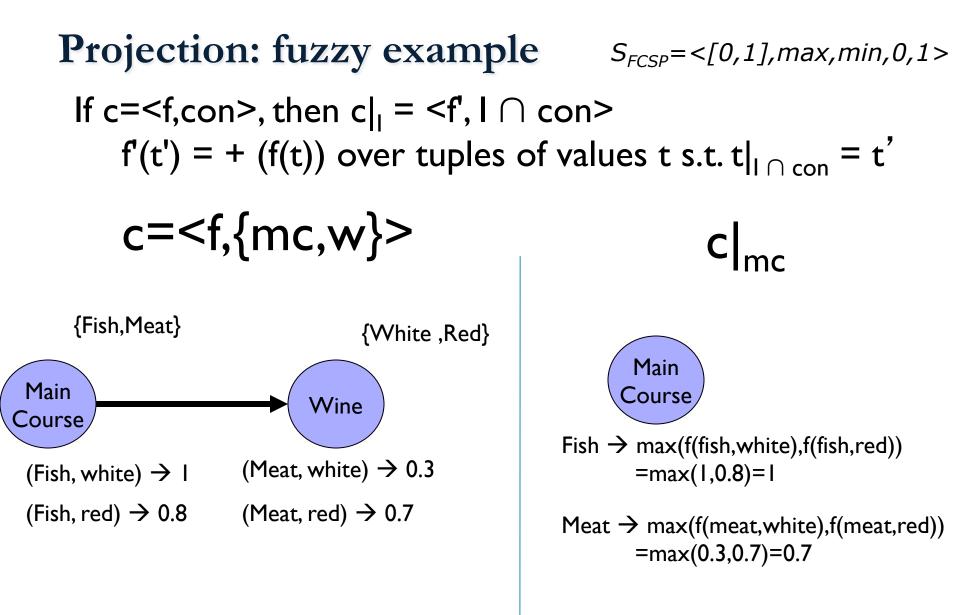
- Equivalence: each step preserves the set of solutions
- □ Termination (with finite domains)
- □ Order-independence

Fundamental operations with soft constraints

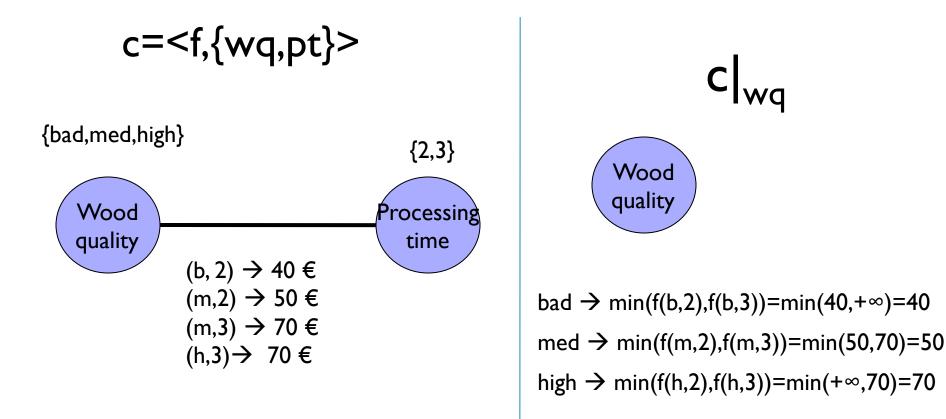
Projection: eliminate one or more variables from a constraint obtaining a new constraint preserving all the information on the remaining variables
 Formally: If c=<f,con>, then c|_I = <f', I ∩ con>
 f'(t') = + (f(t)) over tuples of values t s.t. t|_{I ∩ con} = t'

Combination: combine two or more soft constraints obtaining a new soft constraint "synthesizing " all the information of the original ones
 Formally: If ci=<fi,coni>, then c1 x c2 = <f, con1 ∪ con2>

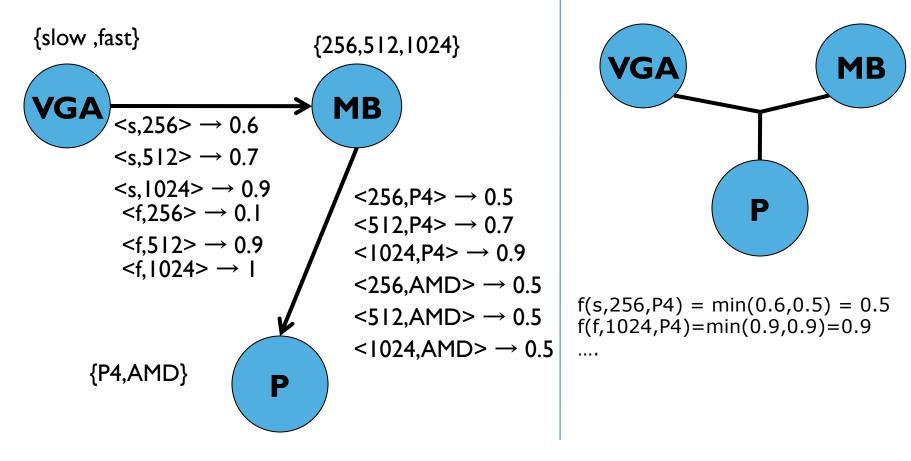
f(t) = f1(t $|_{con1}$) x f2(t $|_{con2}$)



Projection: weighted example $S_{WCSP} = <[0, +\infty], \min, +, +\infty, 0>$ If c=<f,con>, then c|₁ = <f', I \cap con> f'(t') = + (f(t)) over tuples of values t s.t. t|_{1 \cap con} = t'

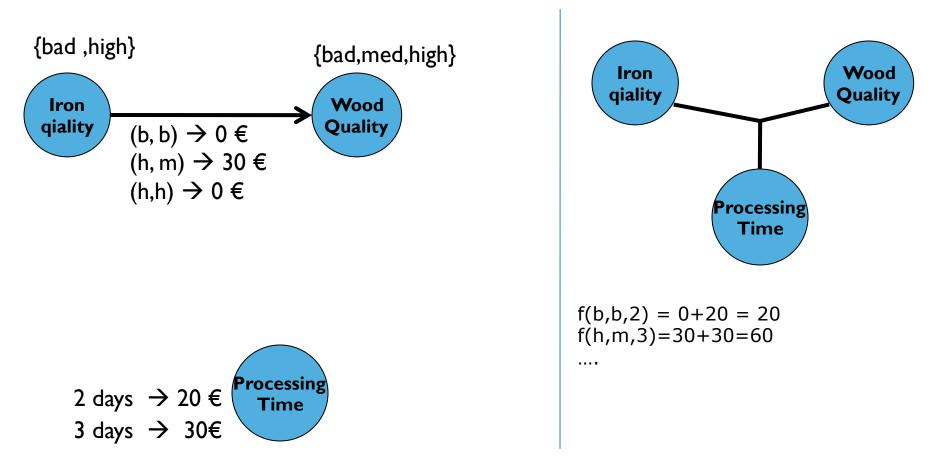


Combination: fuzzy example If ci=<fi,coni>, then: c1 x c2 = <f, con1 \cup con2> $f(t) = f1(t|_{con1}) x f2(t|_{con2})$ $S_{FCSP} = <[0,1], max, min, 0, 1>$



 $S_{WCSP} = < [0, +\infty], min, +, +\infty, 0 >$

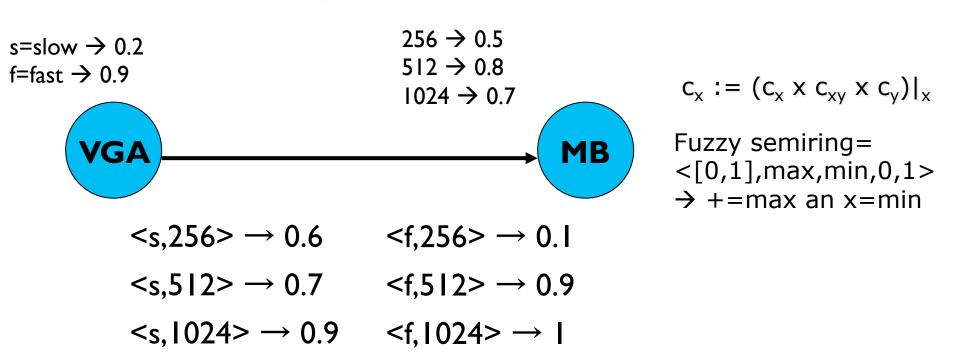
Combination: weighted example If ci=<fi,coni>, then: c1 x c2 = <f, con1 \cup con2> **a** f(t) = f1(t|_{con1}) x f2(t|_{con2})



Soft constraint propagation

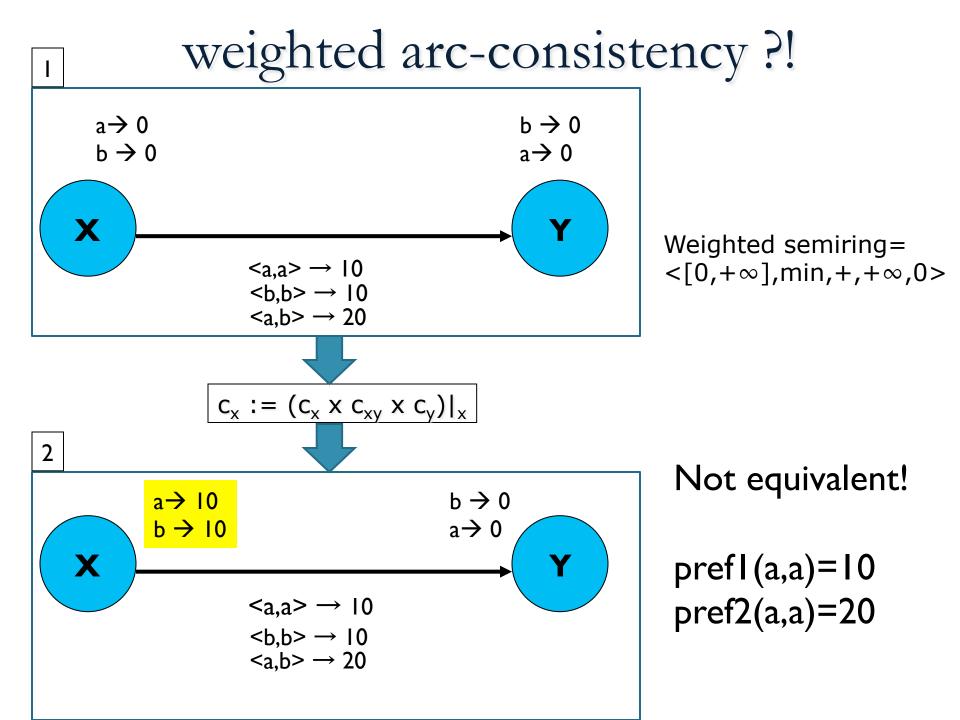
- Deleting a value means passing from 1 to 0 in the semiring <{0,1},or,and,0,1>
- In general, constraint propagation can change preferences to lower values in the ordering
- □ Soft arc-consistency: given c_x , c_{xy} , and c_y , compute $c_x := (c_x \times c_{xy} \times c_y)|_x$
- Iterate until stability

Example: fuzzy arc-consistency



VGA=s → max(min(0.2,0.6,0.5),min(0.2,0.7,0.8),min(0.2,0.9,0.7))= max(0.2,0.2,0.2) = 0.2

VGA=f→ max(min(0.9,0.1,0.5),min(0.9,0.9,0.8),min(0.9,1,0.7))= max(0.1,0.8,0.7)=0.8



Properties

- □ If x idempotent (ex.:fuzzy,classical):
 - Equivalence
 - Termination
 - Order-independence
- □ If x not idempotent (ex.: weighted CSPs, prob.), we could count more than once the same constraint → we need to compensate by subtracting appropriate quantities somewhere else → we need an additional property (fairness=presence of -)
 - Equivalence
 - Termination
 - Not order-independence

[Schiex, CP 2000]

References for preferences and soft constraints

- Semiring-based Constraint Solving and Optimization, S. Bistarelli, U. Montanari and F. Rossi, Journal of ACM, vol.44, n.2, 1997
- Bucket Elimination: A Unifying Framework for Reasoning, R. Dechter, AI Journal 113, 1-2, 1999
- Preference Handling for Artificial Intelligence, J. Goldsmith, U. Junker eds, Al Magazine, 2008
- Handbook of constraint programming, Rossi, Van Beek, Walsh eds., Elsevier, 2006
- Possibilistic Constraint Satisfaction Problems or "How to Handle Soft Constraints?". T. Schiex, UAI 1992
- Arc Consistency for Soft Constraints, Thomas Schiex, Proc. CP 2000, Springer LNCS 1894

Qualitative and conditional preferences

- Soft constraints model quantitatively unconditional preferences
- Many problems need statements like
 - "I like white wine if there is fish" (conditional)
 - "I like white wine better than red wine" (qualitative)
- □ Quantitative → a level of preference for each assignment of the variables in a soft constraint → possibly difficult to elicitate preferences from user

Preference statements in CP nets

Conditional preference statements

"If it is fish, I prefer white wine to red wine"

syntax:

fish: white wine > red wine

- Ceteris paribus interpretation
 - all else being equal
 - {fish, white wine, ice cream} > (preferred to) {fish, red wine, ice cream}
 - {fish, white wine, ice cream} ?{fish, red wine, fruit}

[Boutelier, Brafman, Domshlak, Hoos, Poole. JAIR 2004] [Domshlak, Brafman KR02]

CP nets

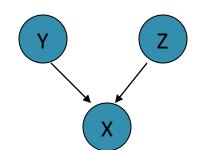
- □ Variables $\{X_1, \ldots, X_n\}$ with domains
- □ For each variable, a total order over its values
- Indipendent variable:

□ X=v1 > X=v2 > ... > X=vk

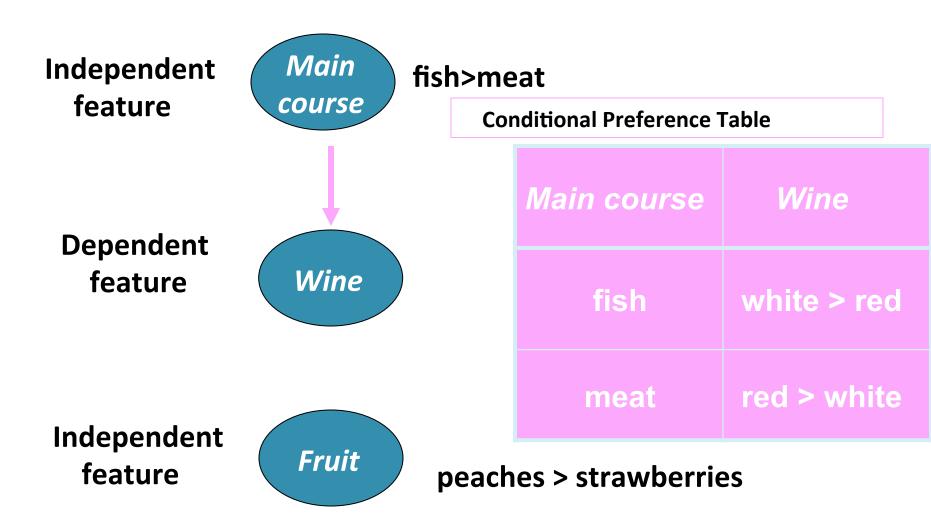
 Conditioned variable: a total order for each combination of values of some other variables (conditional preference table)

□ Y=a, Z=b: X=v1 > X=v2 > ... > X=vk

- X depends on Y and Z (parents of X)
- Graphically: directed graph over X₁, ..., X_n
 Possibly cyclic



CP nets: an example



CP-net semantics

Worsening flip: changing the value of an attribute in a way that is less preferred in some statement. Example:

```
(fish, white wine, peaches)
```

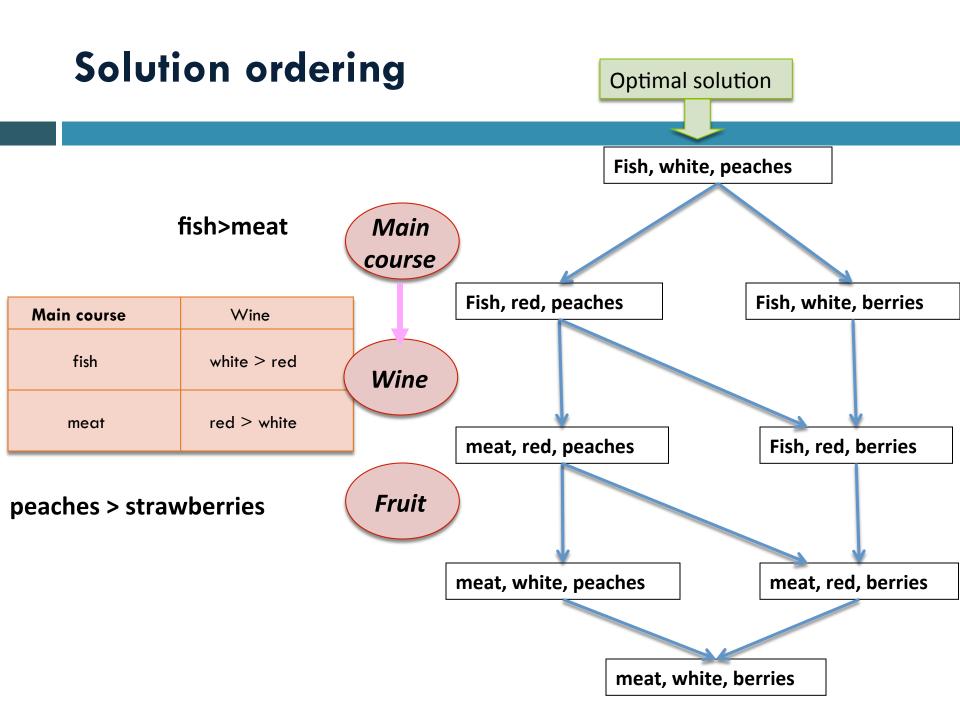
worsening flip

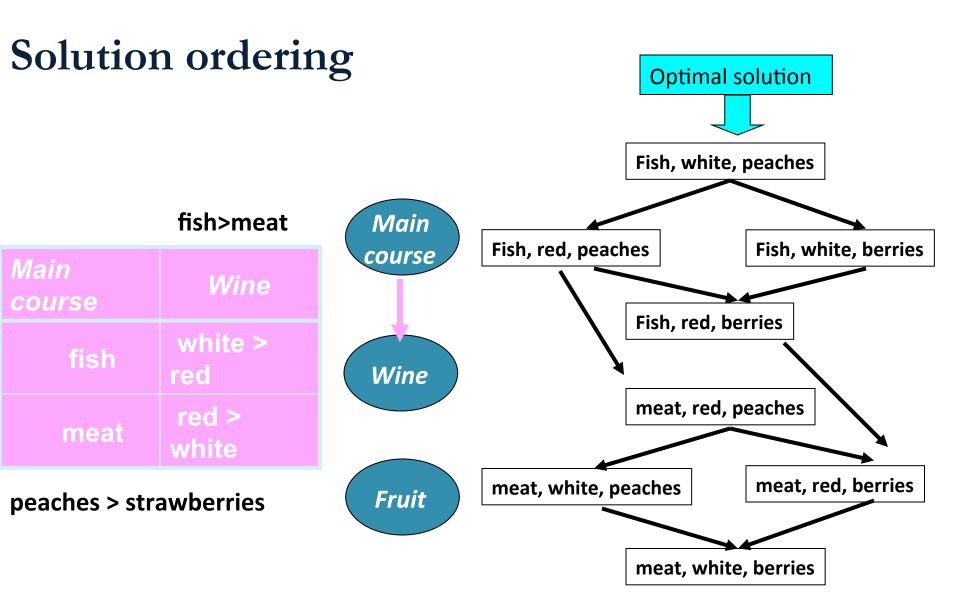
(fish, red wine, peaches)

- □ An outcome O_1 is preferred to O_2 iff there is a sequence of worsening flips from O_1 to O_2
- Optimal outcome: if no other outcome is preferred

Preorder over solutions

- A CP net induces an ordering over the solutions (directly)
- □ In general, a preorder
- Some solutions can be in a cycle: for each of them, there is another one which is better
- □ Acyclic CP net: one optimal solution
- Not all orderings can be obtained with CP nets
 - Outcomes which are one flip apart must be ordered

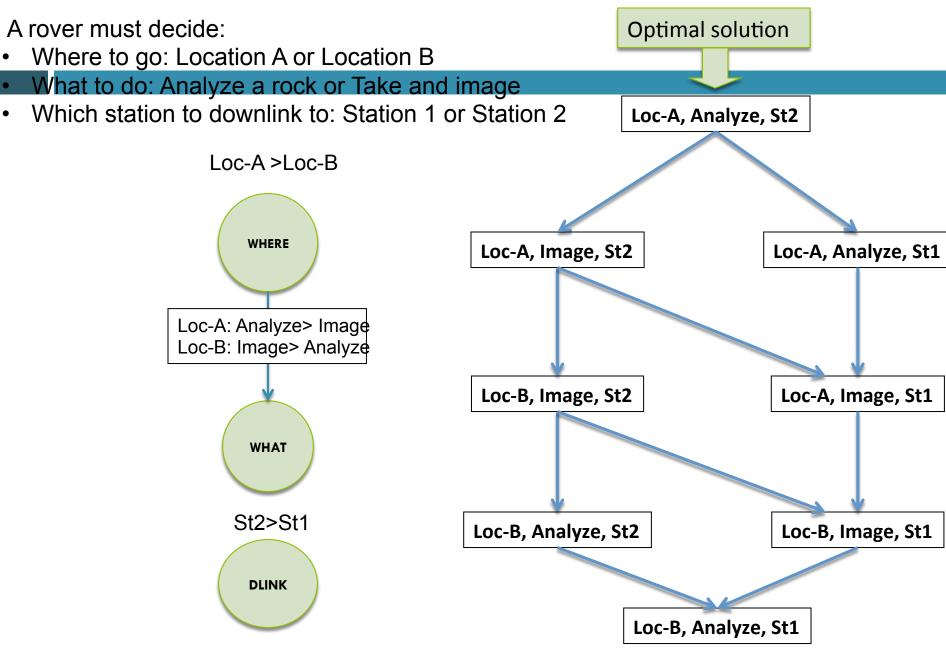




Interesting questions in CP nets

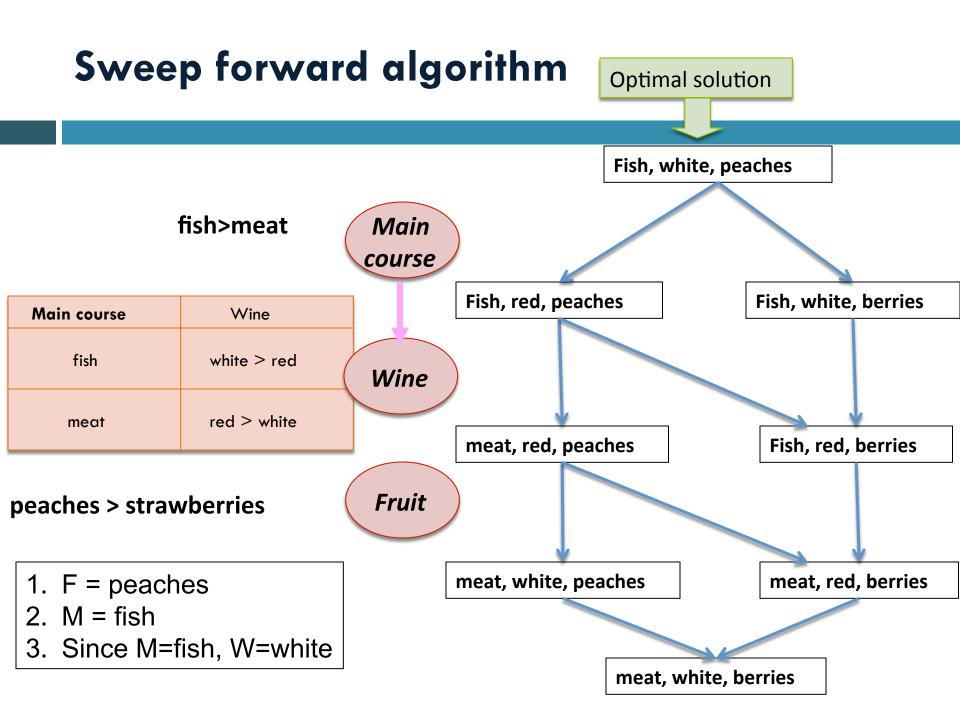
- □ Find an optimal outcome
 - In general, difficult (as solving a CSP)
 - Easy for acyclic networks
 - always have exactly one optimal solution
 - sweep forward in linear time
- Find the next solution in a linearization of the solution ordering
 Easy for acyclic CP-nets
- Does O1 dominate O2?
 Difficult even for acyclic CP nets
- \Box Is O optimal?
 - Easy: test O against a CSP

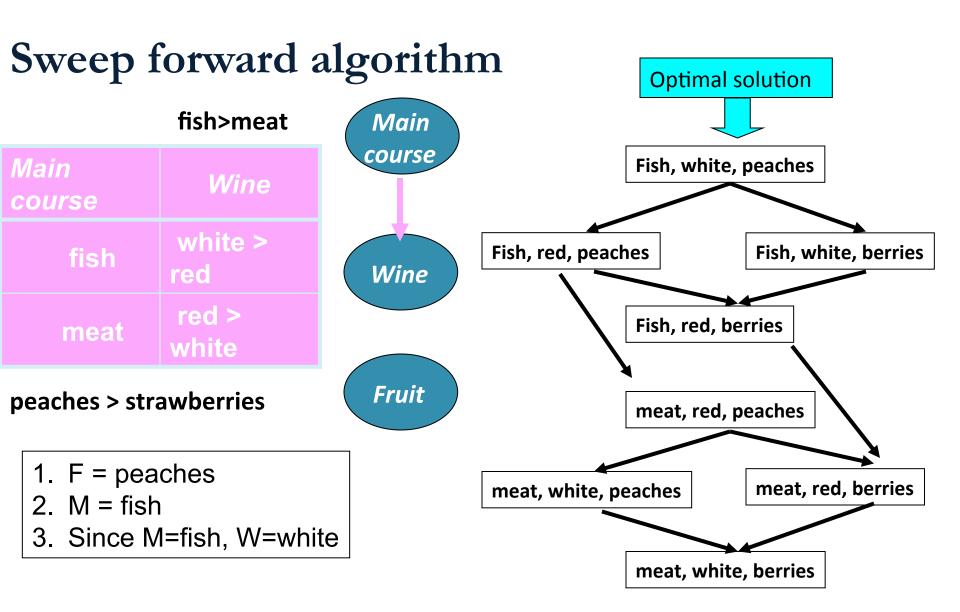
Example



How to find optimal solutions in CP nets

- Acyclic CP-nets: sweep forward algorithm
 - Follow the dependency graph
 - For each variable, assign the most preferred value in the context of the parents' assignment

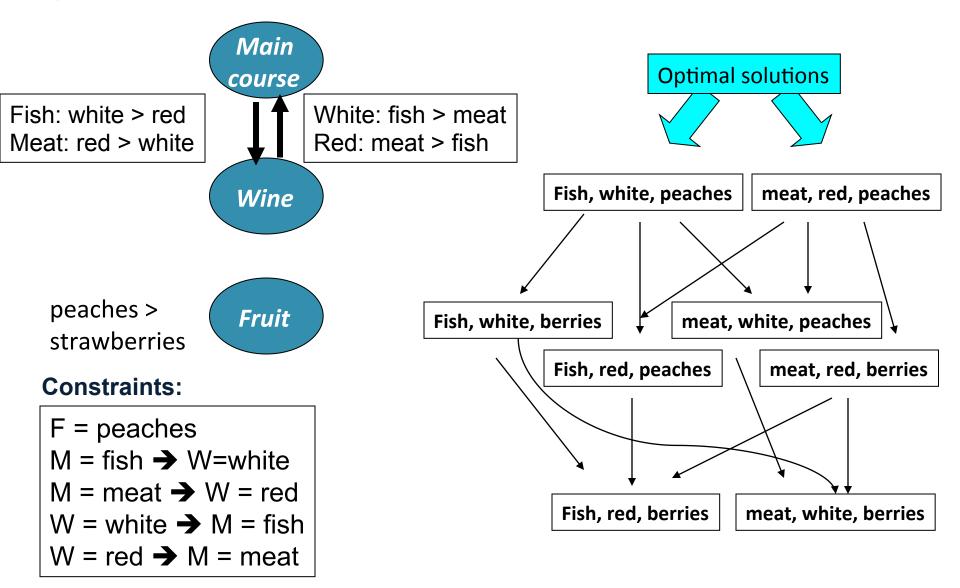




Cyclic CP nets

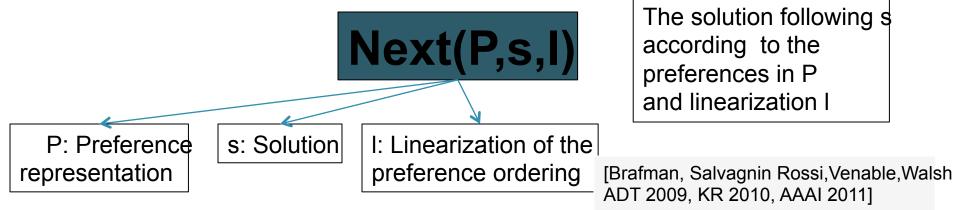
- Given a (cyclic) CP net, we can generate in polynomial time a set of constraints P such that the solutions of P coincides with the set of optimal solutions of the CP net
 - For each Y=a, Z=b: X=v₁ > X=v₂ > ... > X=v_k, we build the constraint Y=a, Z=b → X=v₁

Optimal solutions in cyclic CP nets

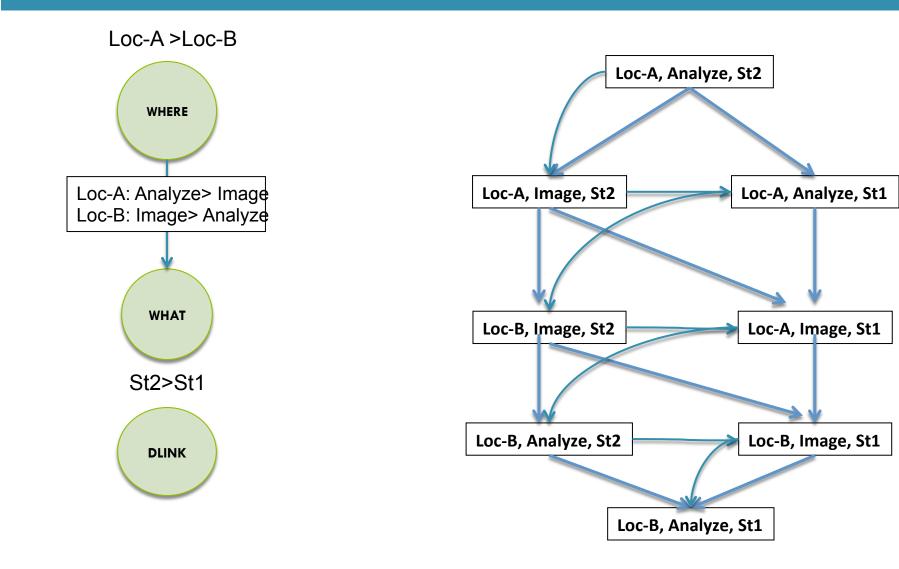


The next best solution

- □ Also important: given a solution s, find the next one
 - Top k solutions in web search
 - Next most preferred option in stable marriage proposal-based algorithms
- □ Next where? In a linearization of the preference ordering
 - Compatible with the preference ordering
 - Has to linearize incomparability



Next on a CP-net: example

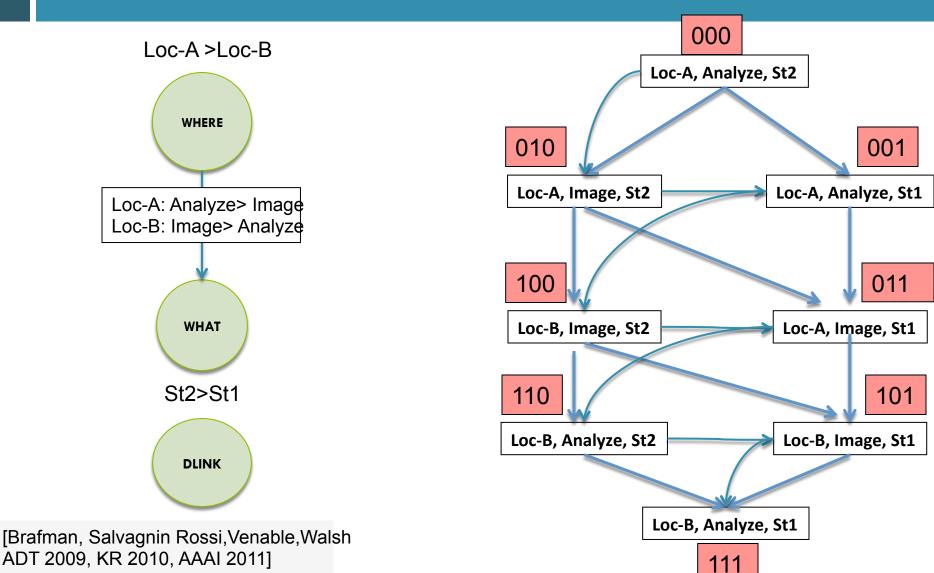


Next on acyclic CP-nets is easy for conditional lex linearization

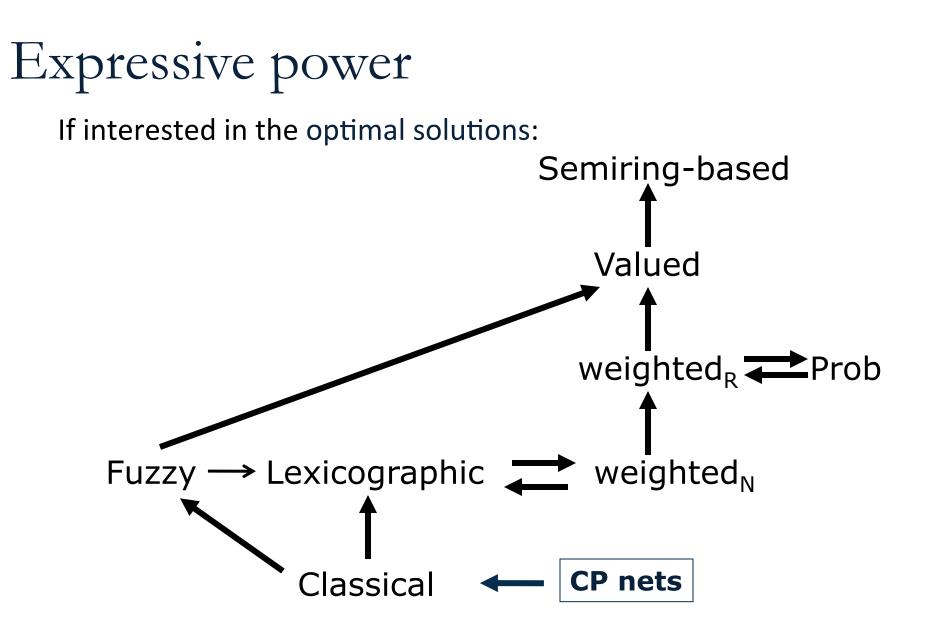
- Acyclic CP-nets generate a partial order with one top element
- □ Assume Boolean vars (for simplicity)
- Main idea: Boolean vector for each solution
 - Position i for variable xi: 0 if xi has its most preferred value given its parents, otherwise 1
- Lex order over the vectors is a linearization
- Next is just Boolean vector incrementation
 - Given s, compute its vector v
 - Increment the vector obtaining v'
 - Given v', obtain the corresponding solution s'

[Brafman, Salvagnin Rossi, Venable, Walsh, ADT 2009, KR 2010, AAAI 2011]

Solution Ordering



ADT 2009, KR 2010, AAAI 2011]

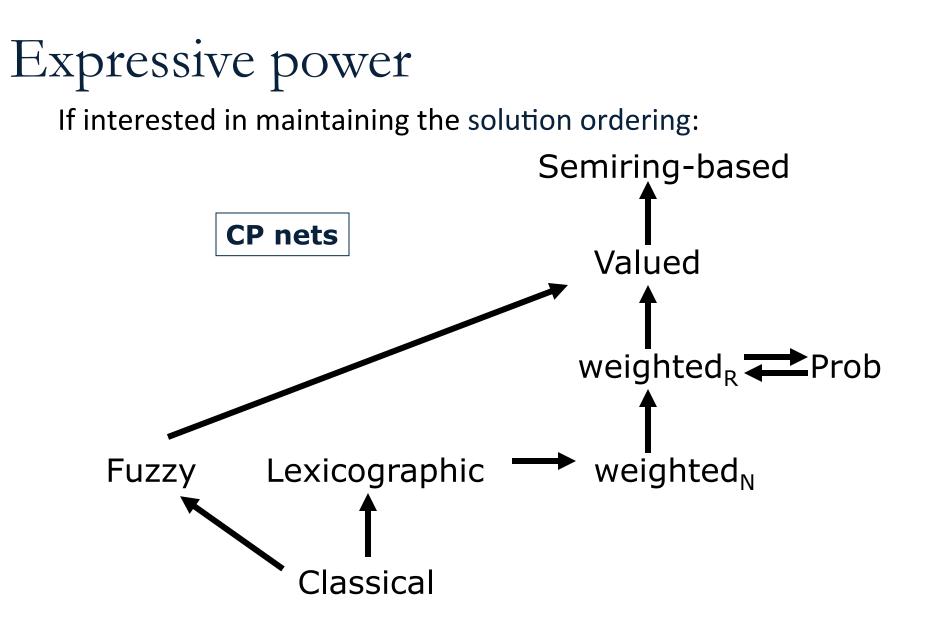


CP nets \rightarrow classical CSPs

- Given a CP net, it is always possible to build in polynomial time a classical CSP with the same set of optimal solutions
 - For each Y=a, Z=b: X=v1 > X=v2 > ... > X=vk, we build the constraint Y=a, Z=b → X=v1

[Brafman, Dimopoulos, CI 2004]

- For some CSP, it is not possible to build a CP net with the same set of optimals
 - Ex.: two (optimal) solutions <X=a,Y=b,Z=c> and <X=a,Y=b,Z=d> → they must be ordered in a CP net



- CP nets vs. Soft Constraints (solution ordering)
- There are CP nets whose ordering cannot be modelled (in poly time) by a soft CSP
 - Otherwise dominance testing would be easy in CP-nets
- There are soft CSPs whose orderings cannot be modelled by a CP net
 Not all orderings can be represented by CP nets

Soft constraints vs. CP-nets

Preference orderings Find an optinmal decision Compare two decisions

Find the next best decision

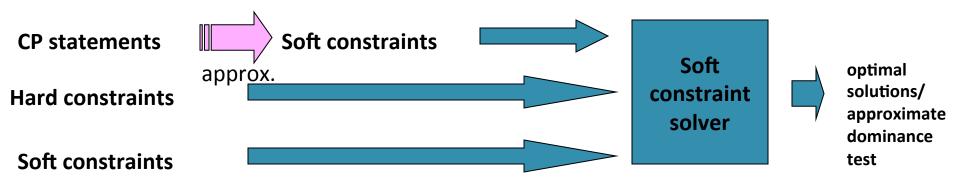
Check if a decsion is optimal

SoftCP netsconstraints(acyclic)

all	some
difficult	easy
easy	difficult
difficult	easy
difficult	easy

Approximating CP nets via Soft Constraints

- We can approximate the ordering of a CP net via a soft constraint problem
 - Weighted or fuzzy soft constraints
 - For ordered outcomes, same ordering
 - For incomparable outcomes, tie or order → more ordered
 - Easy dominance test



[Domshlak, Rossi, Venable, Walsh, IJCAI 2003]

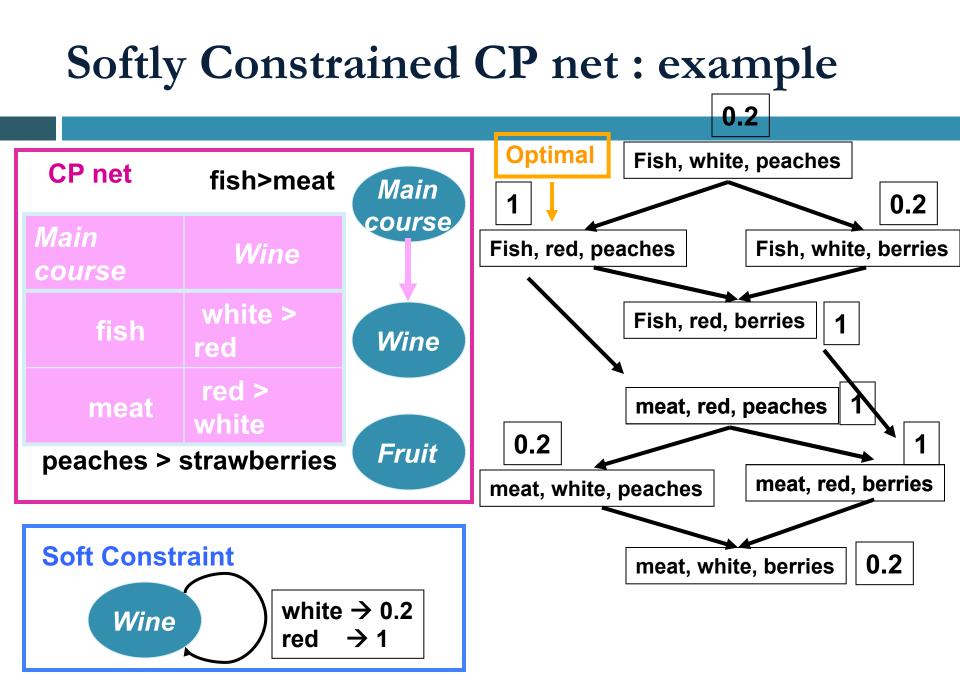
Constrained CP-net

A **Constrained CP-net** on variables X={X₁,..., X_n} is a pair <N,C> where:

- N is a CP-net on variables X
- C is a set of Hard or Soft Constraints on X

Constrained CP-net semantics:

- $O_1 \ge O_2$ iff
- Pref(O1) > pref(O2) in C, or
- Pref(O1) = pref(O2) in C and there is a chain of worsening flips from O₁ to O₂ through outcomes with equal or higher preference
- O optimal if feasible and undominated in the CP net (not necessarily optimal in the CP net)

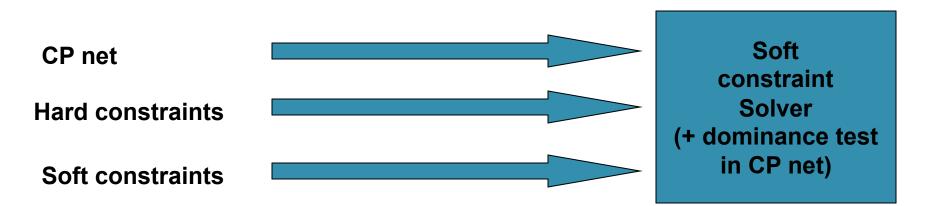


How to obtain an optimal outcome of a constrained CP net <N,C>

- □ From N to optimality constraints OC
- □ If Sol(OC ∪ C) is not empty, then they are (some of the) optimal outcomes → take one of them
 - → only hard constraint solving
- Otherwise, dominance testing between feasible outcomes (more costly)

[Prestwich, Rossi, Venable, Walsh, AAAI 2005]

(Conditional + qualitative + quantitative) preferences + constraints



Optimal Solutions

References for CP-nets

- Extended semantics and optimization algorithms for CP-networks, R. Brafman and Y. Dimopoulos, Computational Intelligence, 20(2), 2004
- CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements, C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, D. Poole JAIR, 21, 2004
- Reasoning about soft constraints and conditional preferences: complexity results and approximation techniques, C. Domshlak, F. Rossi, K. B. Venable, T. Walsh, Proc. IJCAI 2003
- CP-nets Reasoning and Consistency Testing, C. Domshlak, R. Brafman, KR 2002
- Constraint-based Preferential Optimization, S. Prestwich, F. Rossi, K. B. Venable, T. Walsh, AAAI 2005

VOTING WITH COMBINATORIAL DOMAINS

Multiple issues

- Until now we have considered voting over one issue only
- □ Now we consider several issues
- Example:
 - 3 referendum (yes/no)
 - Each voter has to give his preferences over triples of yes and no
 - Such as: YYY>NNN>YNY>YNN>etc.
- \Box With k issues, k-tuples (2^k if binary issues)

Paradox of multiple elections

- 13 voters are asked to each vote yes or no on 3 issues:
 - 3 voters each vote for YNN, NYN, NNY
 - 1 voter votes for YYY, YYN, YNY, NYY
 - No voter votes for NNN
- Majority on each issue: the winner is NNN!
 Each issue has 7 out of 13 votes for no

What is a paradox?

□ Given

- A voting rule
- A profile of ballots
- A property applicable to both profiles and outcomes
- Each ballot satisfies the property, but the outcome does not
- Example: no ballot is for NNN, but NNN is the outcome of the election
- □ (applies also to Condorcet paradox)
- □ What can we do then?

Plurality on combinations

- Ask each voter for her most preferred combination and apply plurality
 - Avoids the paradox, computationally light
 - Almost random decisions
 - Example: 10 binary issues, 20 voters → 2¹⁰ = 1024 combinations to vote for but only 20 voters, so very high probability that no combination receives more than one vote → tie-breaking rule decides everything
- Similar also for voting rules that use only a small part of the voters' preferences (ex.: k-approval with small k)

Other rules on combinations

- Vote on combinations and use other voting rules that use the whole preference ordering on combinations
- Avoids the arbitrariness problem of plurality
- □ Not feasible when there are large domains
- □ Example:
 - Borda (needs the whole preference ordering)
 - 6 binary issues

 2⁶=64 possible combinations
 each voter has to choose amongst 64! possible ballots

Sequential voting

- Vote separately on each issue, but do so sequentially
- This gives voters the opportunity to make their vote for one issue depend on the decisions on previous issues

Condorcet losers

- Condorcet loser (CL): candidate that loses against any other candidate in a pairwise contest
- Electing a CL is very bad, but Plurality sometimes elects it
- □ Example:
 - **2** votes for X > Y > Z
 - **2** votes for Y > X > Z
 - **3** votes for Z > X > Y
 - **Z** is the Plurality winner and the Condorcet loser

Sequential voting and Condorcet losers

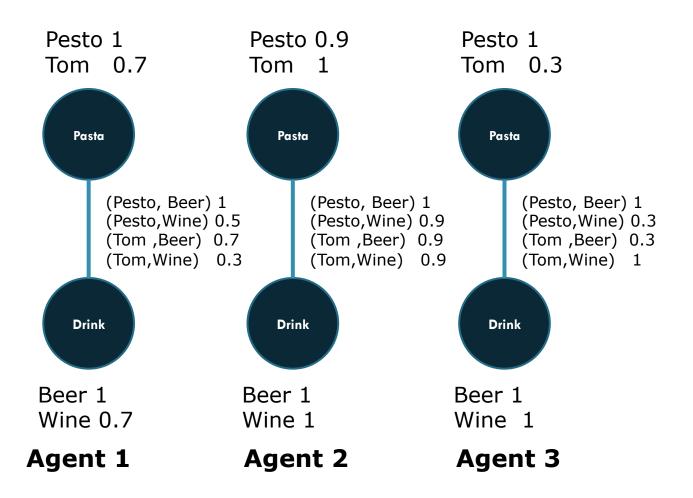
- Sequential voting avoids the problem of electing Condorcet losers
- Thm.: Sequential plurality voting over binary issues never elects a Condorcet loser
 - Proof: Consider the election for the final issue. The winning combination cannot be a CL, since it wins at least against the other combination that was still possible after the penultimate election
 - [Lacy, Niou, J. of Theoretical Politics, 2000]
- But no guarantee that sequential voting elects the Condorcet winner (Condorcet consistency).

SEQUENTIAL VOTING WITH SOFT CONSTRAINTS

Profiles via soft constraints

- □ Agents expressing preferences via soft constraints
- Over a common set of decisions/options
 - options = complete variable assignments
- Same vars and var domains for all agents, different soft constraints
- Profile = preferences of all agents
 - Explicit profile: preference orderings are given
 - Implicit profile: compact representation of the preferences
- □ We will select a decision using a voting rule
 - Decision = solution for the agents soft constraint satisfaction problems (sof CSP)
 - Voting rule: function from an explicit profile to a decision
- \Box In the dinner example:
 - Each friend has his own soft CSP to express the preferences over the dinners
 - We need to select one dinner over the 625 possible ones

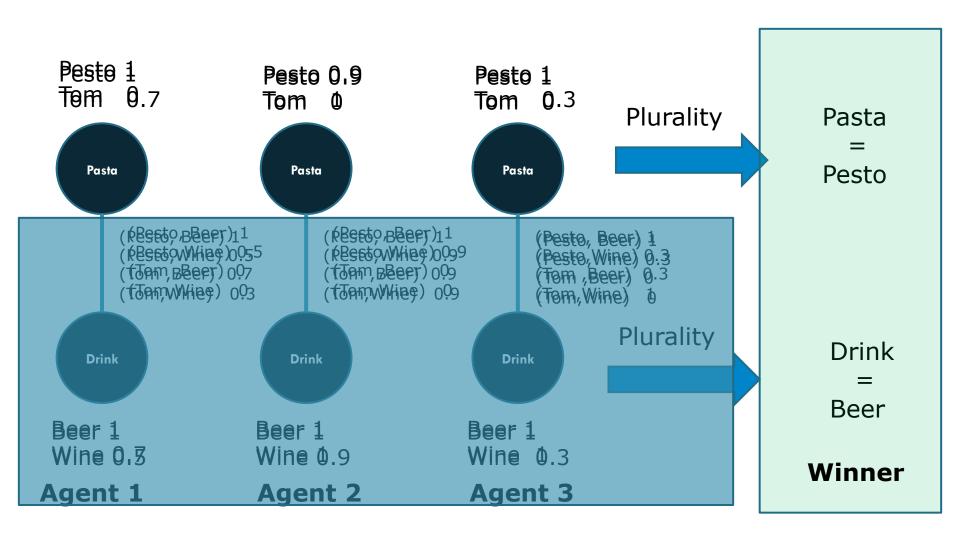
Dinner example, three agents



How to select a decision?

- One step approach:
 - Given the implicit profile, compute the explicit profile and apply a voting rule
- □ Problems:
 - The explicit profile needs exponential space
 - Computing the explicit profile may be very expensive in time
 - Both optimal and next solution are difficult to compute in general for soft constraints
- Sequential approach
 - For each variable
 - compute an explicit profile over the variable domain
 - apply a voting rule to this explicit profile
 - add the information about the selected variable value
- □ Similar approach used for CP-nets in [Lang, Xia, 2009]

Dinner example using plurality



Local vs. sequential properties

- If each r_i has the property, does the sequential rule have the property?
- If some r_i does not have the property, does the sequential rule not have it?
 - If the sequential rule has a property, do all the r_i have it?

Properties

	Local to sequential	Sequential to local
Condorcet consistency	no	yes
Anonymity	yes	yes
Neutrality	no	yes
Consistency	yes	yes
Participation	no	yes
Efficiency	yes if single most preferred option for all agents	yes
Monotonicity	yes	yes
IIA	no	yes
Non-dictatorship	yes	yes
Strategy-proofness	no	yes

[Dalla Pozza, Pini, Rossi, Venable, IJCAI 2011]

Complexity of coalitional constructive manipulation

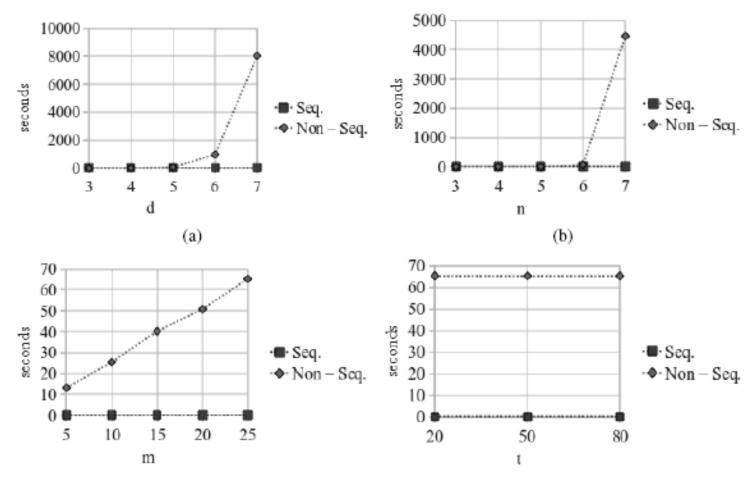
- □ Constructive Coalitional Manipulation CC(d,C,P,r)
 - Given voting rule r, how difficult it is for coalition of voters C to make candidate d win, knowing the other agents' preferences P?
 - Easy for Copeland with 3 candidates and for Plurality [Conitzer et al., 2007]
 - Difficult for Copeland [Faliszewski et al., 2008]
- □ Thms:
 - Easy for all local rules → Easy for sequential (if soft constraints are tractable)
 - \blacksquare Hard for one local rule \rightarrow Hard for the sequential procedure

[Dalla Pozza, Pini, Rossi, Venable, 2011]

Experimental setting

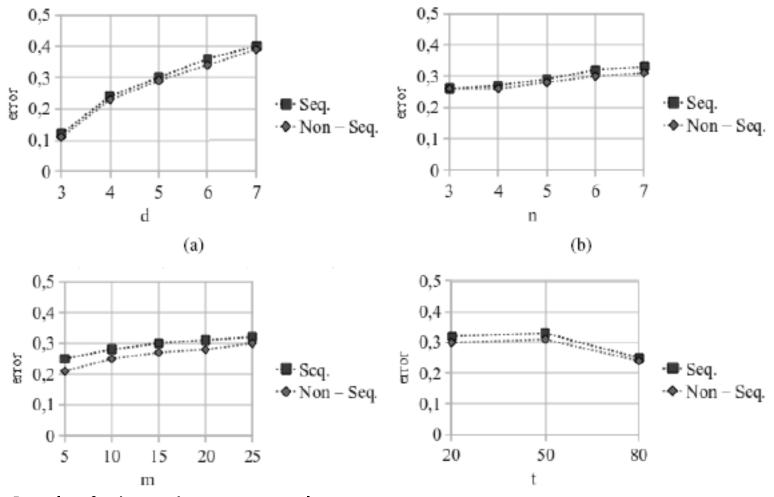
- Randomly generated tree-shaped soft implicit profiles
 - n: number of variables
 - m: number of agents
 - d: domain size
 - t: tightness
- □ Same rule r for all steps
- Comparison between two voting rules
 - seq(r), from the implicit profile to a solution
 - r, from the explicit profile to a solution
 - baseline
- □ We measure the quality of returned solution s
 - for each agent, distance between preference of s and of its most preferred solutions, averaged over all agents

Time (Borda)



Sequential rule much faster (no need to compute the explicit profile)

Error (Borda)



- Result of about the same quality
- □ Price to pay to search an agreement with others

The sequential approach behaves like the non-sequential one

 independently of the variable ordering
 independently of the amount of consensus among agents

also on best and worst cases

Sequential voting with soft constraints

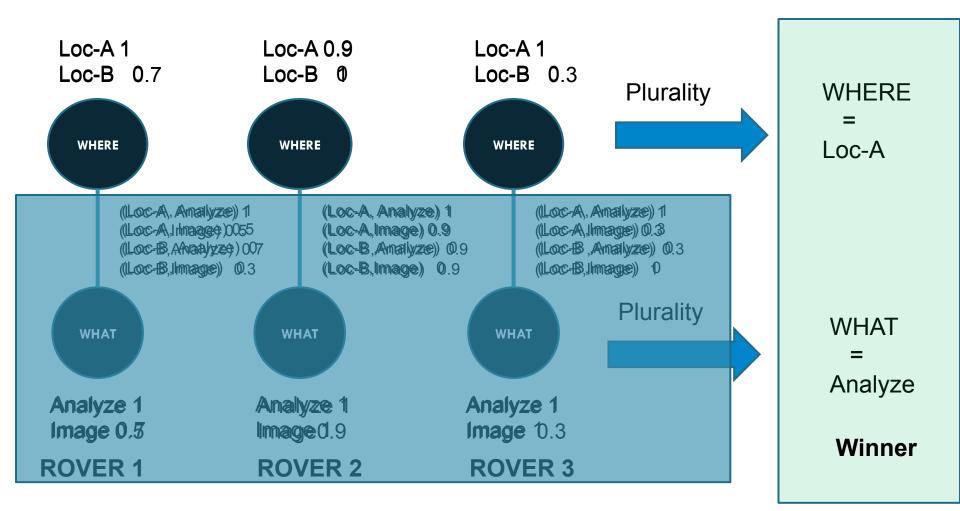
- Assume agents vote by giving a soft constraint problem
- □ One step approach:
 - Given the implicit profile, compute the explicit profile and apply a voting rule
- Problems:
 - The explicit profile needs exponential space
 - Computing the explicit profile may be very expensive in time
 - Both optimal and next solution are difficult to compute in general for soft constraints

Proposed solution: sequential approach

- For each variable
 - compute an explicit profile over the variable domain
 - apply a voting rule to this explicit profile
 - add the information about the selected variable value

Similar approach used for CP-nets in [Lang, Xia, 2009]
 [Dalla Pozza, Pini, Rossi, Venable, ICAART 2011, IJCAI 2011]

Example: 3 rovers must decide where to go and what to do



SEQUENTIAL VOTING WITH CP-NETS

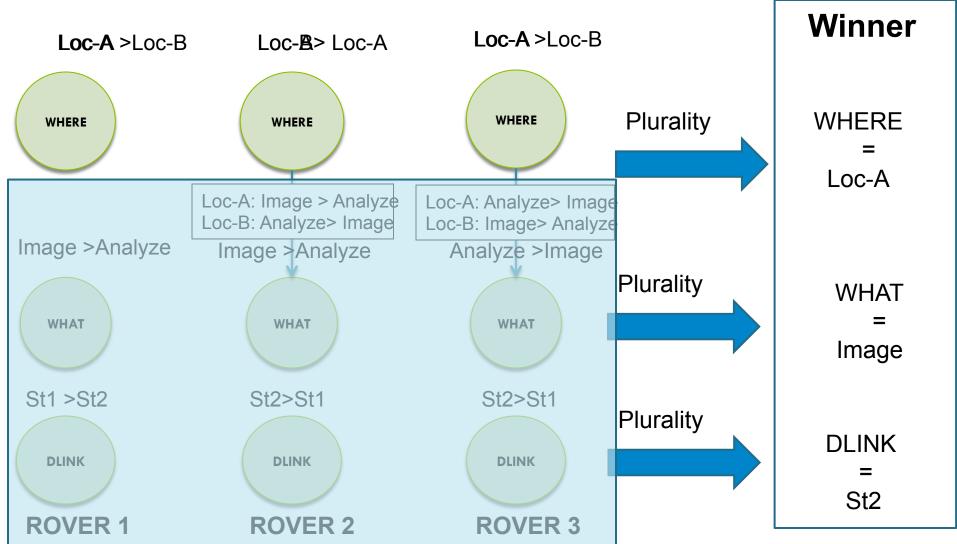
Profiles via compatible CP-nets

- n voters, voting by giving a CP-net each
 - Same variables, different dependency graph and CP tables
- Compatible CP-nets: there exists a linear order on the variables that is compatible with the dependency graph of all CP-nets (that is, it completes the DAG)
- □ Then vote sequentially in this order
- Thm.: Under these assumptions, sequential voting is Condorcet consistent if all local voting rules are
 - (Lang and Xia, Math. Social Sciences, 2009)

Example

3 Rovers must decide:

- Where to go: Location A or Location B
- What to do: Analyze a rock or Take a picture
- Which station to downlink the data to: Station 1 or Station 2



BRIBING CP-NETS

Bribery

□ Given:

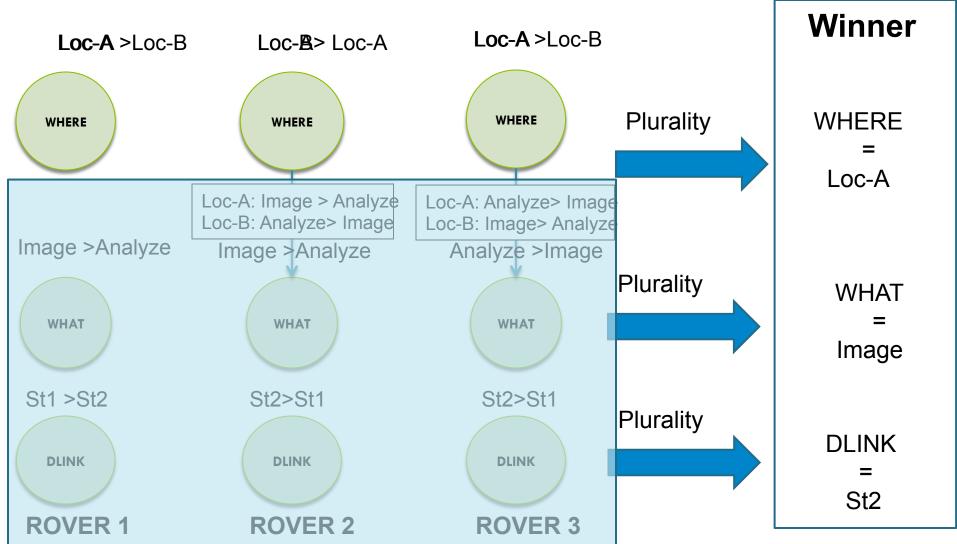
- a voting rule
- m candidates
- n voters, voting by giving a CP-net each
- a cost scheme describing the cost of bribing each voter
- a candidate p that the briber wants to make the winner
- the allowed bribery requests
- a budget B

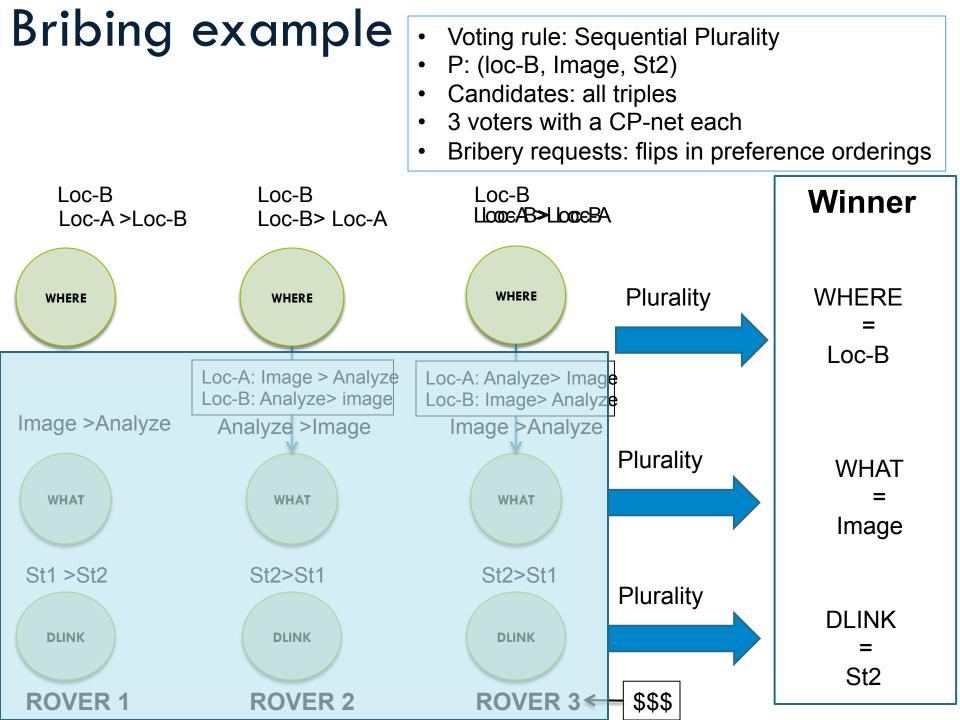
 \rightarrow Can the briber make p win by spending at most B?

Example

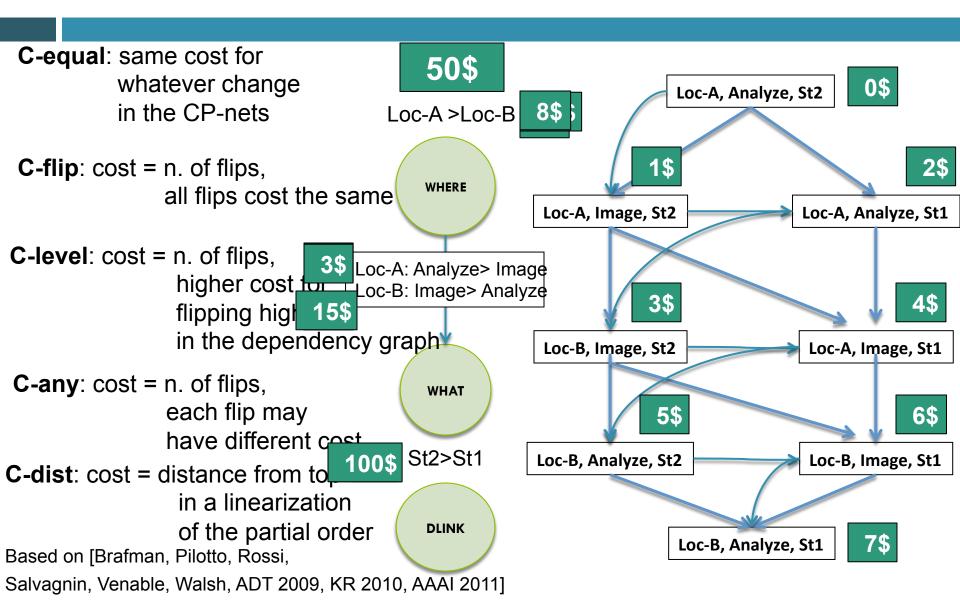
3 Rovers must decide:

- Where to go: Location A or Location B
- What to do: Analyze a rock or Take a picture
- Which station to downlink the data to: Station 1 or Station 2





Bribing cost schemes



Complexity results for bribery with CPnets

	Sequential Majority	Sequential Majority with weights	Plurality Veto K-Approval (IV)	Plurality Veto K-Approval* (DV, IV+DV)
C_EQUAL	NP-complete	NP-complete	Р	Р
C_FLIP	Р	NP-complete	Р	Р
C_LEVEL	Р	NP-complete	Р	Ś
C_ANY	Р	NP-complete	Ś	Ś
C_DIST	Ś	NP-complete	Р	Р

STABLE MARRIAGE PROBLEMS

Preferences over agents

- Until now, agents expressed preferences over alternative decisions (different from the agents)
- Goal: to choose one of the decisions based on the agents' preferences
- Now, we consider agents expressing preferences over other agents

Bipartite set of agents

- Goal: to choose a matching among the agents based on their preferences
 - Matching: set of pairs (A1,A2), where A1 comes from the first set and A2 from the second one

Looking for a job

- □ Assume
 - As many positions as the number of people looking for them
 - Each person sends his cv to all companies
- Preferences
 - Each person will rank all the openings
 - Each company will rank all the students
- How to do the matching in such a way that "everybody is happy"?
- Notice
 - Bipartite set of agents
 - Preferences over other agents, not over alternatives

Other practical scenarios

- Assigning projects
- Job hunting
- Matching students with schools
- Matching doctors with hospitals
- Matching sailors to ships
- Matching producers to consumers
- Choosing roomates

Stable marriage formulation

- Two sets of agents: men and women
- Idealized model
 - Same number of men and women
 - All men totally order all women, and vice-versa

Stable marriage

Given preferences of n men

- Greg: Amy>Bertha>Clare
- Harry: Bertha>Amy>Clare
- Ian: Amy>Bertha>Clare
- Given preferences of n women
 - Amy: Harry>Greg>lan
 - Bertha: Greg>Harry>lan
 - Clare: Greg>Harry>lan
- Find a stable marriage

Stable marriage

- Assignment of men to women (or equivalently of women to men)
 - Idealization: everyone marries at the same time
- No pair (man,woman) not married to each other would prefer to run off together
 - Blocking pair: pair (m,w) such that the marriage contains (m,w') and (m',w), but m prefers w to w', and w prefers m to m'

An example of an unstable marriage

- Greg: Amy>Bertha>Clare
- Harry: Bertha>Amy>Clare
- Ian: Amy>Bertha>Clare
- Amy: Harry>Greg>lan
- Bertha: Greg>Harry>lan
- Clare: Greg>Harry>lan

Bertha & Greg would prefer to be together

An example of a stable marriage

- Greg: Amy>Bertha>Clare
- Harry: Bertha>Amy>Clare
- Ian: Amy>Bertha>Clare
- Amy: Harry>Greg>lan
- Bertha: Greg>Harry>lan
- □ Clare: Greg>Harry>lan

Men do ok, women less well

Another stable marriage

- Greg: Amy>Bertha>Clare
- Harry: Bertha>Amy>Clare
- Ian: Amy>Bertha>Clare
- Amy: Harry>Greg>lan
- Bertha: Greg>Harry>lan
- Clare: Greg>Harry>lan

Women do ok, men less well

Many stable marriages

- □ Given any stable marriage problem
 - There is at least one stable marriage!
 - There may be many stable marriages
 - They form a lattice, ordered according to men's (or women's) preferences
 - The higher in the lattice, the more men are happy: SM1 > SM2 if in SM1 all men are at least as happy as in SM2
 - At least as happy: married to the same or a more preferred woman

Gale Shapley algorithm

- Initialize every person to be free
- While exists a free man
 - Find best woman he hasn't proposed to yet
 - □ If this woman is free, declare them engaged
 - Else, if this woman prefers this proposal to her current partner, then declare them engaged (and "free" her current partner)
 - Else, this woman prefers her current partner and she rejects the proposal

Gale Shapley algorithm

- Initialize every person to be free
- While exists a free man
 - Find best woman he hasn't proposed to yet
 - If this woman is free, declare them engaged
 - Else if this woman prefers this proposal to her current partner then declare them engaged (and "free" her current partner)
 - Else this woman prefers her current partner and she rejects the proposal

Greg: Amy>Bertha>Clare Harry: Bertha>Amy>Clare Ian: Amy>Bertha>Clare

Amy:Harry>Greg>lanBertha:Greg>Harry>lanClare:Greg>Harry>lan

Gale Shapley algorithm

- Greg proposes to Amy, who accepts → (G,A)
- Harry proposes to Bertha, who accepts → (H,B)
- Ian proposes to Amy
- Amy is with Greg, and she prefers Greg to lan, so she refuses
- Ian proposes to Bertha
- Bertha is with Harry, and she prefers Harry to lan, so she refuses
- Ian proposes to Claire, who accepts → (I,C)

Greg: Amy>Bertha>Clare Harry: Bertha>Amy>Clare Ian: Amy>Bertha>Clare

Amy:Harry>Greg>lanBertha:Greg>Harry>lanClare:Greg>Harry>lan

Gale Shapley algorithm terminates with everyone married

- Suppose some man is not married at the end
- Then some woman is also unmarried
- But once a woman is married, she only "trades" up
- Hence this woman was never proposed to
 - But if a man is unmarried, he has proposed to and been rejected by every woman
- This is a contradiction as he has never proposed to the unmarried woman!

Gale Shapley algorithm terminates

with a stable marriage

- Suppose there is a blocking pair m-w not married
 - Marriage contains (m,w') and (m',w)
 - □ m prefers w to w', and w prefers m to m'
- □ Case 1. m never proposed to w
 - Not possible because men move down with the proposals, and w' is less preferred than w
- Case 2. m had proposed to w
 - But w rejected m, or left him later
 - However, women only ever trade up
 - Hence w prefers m' to m
 - So the current pairing is stable!

Other features of Gale Shapley algorithm

Each of n men can make at most (n-1) proposals Hence GS runs in O(n²) time

There may be more than one stable marriage

•

- GS finds man optimal solution: there is no stable matching in which any man does better
 - GS finds woman pessimal solution: in all stable marriages, every woman does at least as well or better

Gale Shapley finds the male optimal solution

- S1: marriage found by GS
- In S1, consider first step where a man is rejected by his best feasible woman
- Man M has proposed and been rejected by his best feasible woman W, since W prefers her current partner Z
 - Note: W prefers Z to M
 - Note: There exists another stable marriage S2 with man M married to woman W (and man Z to woman W')
- Man Z has not yet been rejected by his best possible woman
 - \rightarrow Z must prefer W at least as much as his best possible woman
- S2 contains (M,W) (Z,W') and is not a stable marriage as Z and W would prefer to be together
 - Z prefers W to W'
 - W prefer Z to M

Gale Shapley finds the woman pessimal solution

- Consider stable marriage S1 returned by GS
- Let (M,W) be married in S1 but M is not the worst possible man for woman W
- There exists another stable marriage S2 with (M',W) (M,W') and M' worse than M for W
- By male optimality of S1, M prefers W to W'
- Also, W prefers M to M'
- Then (M,W) is a blocking pair for S2

Other stable marriages

- GS finds male-optimal (or female-optimal) marriage
- □ A set of agents is favored over the other one
- □ Other algorithms find "fairer" marriages
- Ex.: stable marriage which minimizes the maximum regret [Gusfield 1989]
 - regret of a man/woman = distance between his partner in the marriage and his most preferred woman/man

Extensions: ties

- Cannot always make up our minds
- Preference ordering: total order with ties
- Two notions of stability:
 - Weak stability: no pair m-w not married where m strictly prefers w to his partner, and w strictly prefers m to her partner
 - Strong stability: no pair m-w not married where m strictly prefers w to his partner, and w prefers m at least as much as her partner

Existence of stable marriage with ties

- Strongly stable marriage may not exist
 - O(n⁴) algorithm for deciding existence
- Weakly stable marriage always exists
 - Just break ties arbitrarily
 - Run GS
 - Resulting marriage is weakly stable

Extensions: incomplete preferences

- There are some people we may be unwilling to marry
- (m,w) blocking pair iff
 - m and w do not find each other unacceptable
 - m is unmarried or prefers w to current partner
 - □ w is unmarried or prefers m to current partner

Solving stable marriage problems with incomplete preferences

Just apply GS algorithm

Extends easily

- Men and woman partition into two sets
 - Those who have partners in all stable marriages
 - Those who do not have partners in any stable marriage
- □ In all stable marriages, the same people are married
- ➔ Stable marriages have all the same number of pairs

Extensions: ties + incomplete prefs

- Weakly stable marriages may have different sizes
 - Unlike with just ties, where they are all complete
- Finding weakly stable marriage of max. cardinality is NP-hard
 - Even if only women declare ties

Strategy proofness

GS is strategy proof for men

- Assuming GS male optimal algorithm
- No man can do better than the male optimal solution
- However, women can profit from lying
 - Assuming male optimal algorithm is run
 - And they know complete preference lists

Manipulation by women

- Greg: Amy>Bertha>Clare
- Harry: Bertha>Amy>Clare
- Ian: Amy>Bertha>Clare

Amy lies

- Amy: Harry>Greg>lan
- □ Bertha: Greg>Harry>lan
- Clare: Greg>Harry>lan

- Amy: Harry>lan>Greg
- Bertha: Greg>Harry>Ian
- □ Clare: Greg>Harry>lan

Manipulation by women

- Greg: Amy>Bertha>Clare
- Harry: Bertha>Amy>Clare
- Ian: Amy>Bertha>Clare
- Greg proposes to Amy, who accepts
- Harry proposes to Bertha, who accepts
- Ian proposes to Amy, who accepts (Greg left alone)
- Greg proposes to Bertha, who accepts (Harry left alone)
- Harry proposes to Amy, who accepts (lan left alone)
- Ian proposes to Bertha, who rejects
- Ian proposes to Claire, who accepts
- Stable matching obtained: (Greg,Bertha), (Harry,Amy), (Ian,Claire)

Amy: Harry>Greg>lan Bertha: Greg>Harry>lan Clare: Greg>Harry>lan

- Amy lies
 - Amy: Harry>lan>Greg
 - Bertha: Greg>Harry>Ian
 - Clare: Greg>Harry>lan

Impossibility of strategy proofness

- GS can be manipulated
- Every stable marriage procedure can be manipulated if preference lists can be incomplete [Roth '82]

Impossibility of strategy proofness

- Consider
 - Greg: Amy>Bertha
 - Harry: Bertha>Amy

Amy: Harry>Greg Bertha: Greg>Harry

- Two stable marriages:
 - (Greg,Amy)(Harry,Bertha) or (Greg,Bertha)(Harry,Amy)
- Suppose we get the male optimal solution
 - (Greg,Amy)(Harry,Bertha)
 - If Amy lies and says Harry is her only acceptable partner
 - Then, with any sm procedure, we must get (Harry,Amy) (Greg,Bertha), as this is the only stable marriage
- Other cases can be manipulated in a similar way

Making manipulation hard

- □ For some sm procedure, finding the manipulation is easy
 - Example: GS algorithm
- □ For others, it is difficult
- Can we make the manipulation hard to find?
 - As with voting, this may be a barrier to mis-reporting of preferences

Gender swapping

Basic idea

- Men have no incentive to manipulate GS
- But women do
- Construct SM procedure that may swap men with women

Gender swapping: non-deterministic solution

Toss a coin

- Heads: men stay men
- Tails: men become women and vice versa
- No incentive to mis-report preferences
 - 50% chance that it will hurt
- Not everyone likes
 - Randomized procedures
 - Probabilistic guarantees

A deterministic solution

- □ Pick a set of stable marriages
- Choose between them based on agents' preferences
 - Make this choice difficult to manipulate!
 - Choice based on voting
 - Complexity of manipulating voting rule => complexity of manipulating SM procedure

A deterministic solution: use STV

- Pick a set of stable marriages
- □ Choose between them based on agents' preferences
 - Run a STV election to order men by women's preferences (and women by men's preferences)
 - For each SM, compute a male (female) score: vector where position j contains i if man (woman) j is married to the i-th most preferred woman (man)
 - Take lex largest between the two vectors
 - Pick SM with lex smallest vector
- □ Thm.: NP-hard to manipulate and gender neutral
 - NP-hardness inherited from hardness of manipulating STV
 - [Pini, Rossi, Venable, Walsh, AAMAS 2009]
- Also for other voting rules but not a general result

References for stable marriages

- Gale, Shapley. College Admissions and the Stability of Marriage. Amer. Math. Monthly, 69:9-14, 1981
- Roth. The Economics of Matching: Stability and Incentives. Mathematics of Operational Research, 7:617-628, 1982
- Gusfield, Irving. The Stable Marriage Problem: Structure and Algorithms. MIT Press, 1989
- Gale, Sotomayor. Machiavelli and the stable matching problem. Amer. Math. Monthly, 92:261-268, 1985
- Gusfield. Three fast algorithms for four problems in stable marriage. SIAM J. of Computing, 16(1), 1987
- Teo, Sethuraman, Tan. Gale-Shapley Stable Marriage Problem Revisited: Stategic Issues and Applications. Management Science, 47(9): 1252-1267, 2001
- Pini, Rossi, Venable, Walsh. Manipulation and gender neutrality in stable marriage procedures. AAMAS-2009.

Conclusions

- Compact preference modelling
- Comparison of their expressive power and computational properties
- Ability to reason with more than one formalism in the same problem

Conclusions

- Voting theory can be useful for preference aggregation in the context of AI
- Exploit axiomatic approach to choose the rule to use
- Adapt voting concepts to the AI context

Conclusions

- Computational complexity is an important issue in
 - Manipulation
 - Preference elicitation
- Complexity can be a friend
 - Ideally want it to be hard to find manipulation but easy to decide when to stop eliciting preferences!
- But NP-hardness is only worst case