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Motivation 
•  Is there any free lunch for EH WSNs? 
 

•  Challenge: 
Energy source is there but … 
… it is unreliable, erratic and intermittent 
 

•  Need for intelligent designs 
– Adaptive energy mangement 
– Transmission vs Storage vs Scavenger Size 
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Reference Scenario (1/2) 
Sensor Model 
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Reference Scenario (2/2) 
Network Model 
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SINK 

coverage range  
(node density) 

Scenario 
•  Multi-hop routing 
•  Data collection @ the sink 
•  Energy harvesting nodes 
 
Aspects to model 
•  MAC (channel access) 
•  Routing 
•  Energy consumption 
•  Energy arrival 



ENERGY SOURCE MODEL 
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Energy Source Model 
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Solar Radiation Maps 
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Time [hour] 

Example 
 
Solar Irradiation for 
Los Angeles in 2010 
 
From NREL: 
http://www.nrel.gov/rredc/ 
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NREL, National Renewable Energy Laboratory, “Renewable Resource Data Center,” http://www.nrel.gov/rredc/ 



Harvested energy [2] 
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Solar radiation maps: 
•  Latitude, longitude 
•  Orientation, tilt of the panel 
•  Day of year 
 
PV technology:  
•  Material 
•  Efficiency 
•  Panel size 

DC/DC:  
•  Efficiency 
•  Optimal working point for the 

panel IV curve is assumed 
 
  

Statistical characterization of DC/DC out current 
•  Current intensity [A] 
•  Energy states (morning, afternoon, night, etc.) 

ui
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night 

day 

Statistics (pdf) 
•  LA – August 1999-2010 
•  Day/Night data clustering 
•  Duration of “energy states” 
•  Current income in each 
 

night 

data for the  
month of August 



Semi-Markov Model (SMM) 
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p10 = p01 = 1

p00 = p11 = 0

Embedded chain probs 

p00

p01

p11

p10

fc(i|xs)

fd(⌧ |xs)

the approach has been generalized to any number of states 

harvested current 

permanence time 



Statistics – input current 
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Solar module: 
6x6 square-cm 
 
State xs= 0: day 

LA - from data collected in [1999-2010] 

fc(x|xs)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04  0.045  0.05

PD
F

Harvested current [A]

Feb
Aug
Dec



Statistics – input current cdf 
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State xs= 0: day 

LA - from data collected in [1999-2010] 
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Statistics – duration 

11-‐04-‐2014	   Dept.	  of	  Mathema4cs,	  UNIPD	   14	  

fd(x|xs)

LA - from data collected in [1999-2010] 
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Statistics – duration cdf 
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LA - from data collected in [1999-2010] 

State xs= 0: day 
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Stage 
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Stage 
–  time τ during which the SMM remains in one state 

Energy income 
–  r.v. drawn @ beginning of stage from 

Duration 
–  r.v. drawn @ beginning of stage from 

Decision 
–  u: chosen @ beginning of stage 

fc(i|xs)

fd(⌧ |xs)



Δ-charge (q) in stage k 
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Balance between 
–  Control u (current drained) 
–  Input current i (from panel) 
–  Stage duration τ  

q = (i� u)⌧

h(q|xs, u) =

Z +1

�1

1

|⌧ |fd(⌧ |xs)fc(q/⌧ + u|xs)d⌧

The resulting pdf h(q | xs,u) of the variation of charge in a stage is: 

(for a given u, q is given by 
the product of two r.v.s.) 



From SMM to DTMC 
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With h(q | xs,u) we 
•  Define an equivalent Discrete Time Markov Chain (DTMC) 

•  DTMC: time is slotted and slot duration is fixed 

•  When going from stage k-1 to stage k: 
–  The resulting Δ-charge is modeled through q (pdf h(q|xs,u)) 
–  u is the control for the current stage k 
–  xs is the source state in the current stage k 
–  q is the variation of charge in the battery: 

xb(k) = max{0,min{xb(k � 1) + q,Q

max

}}



SYSTEM MODEL 
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Topology, Routing & Bottleneck 
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Optimization Framework 
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S B N 

Energy Source Energy Buffer Sensor Node i u

IOUT

optimal working point for N 

P1 : maximizefU

given IOUT  u
optimal energy-neutral policies 

P2 : maximize reward

given source model S



P1] optimal operational point, given 
–  (inter-pkt TX time, duty cycle) 

P2] energetically self-sufficient policies 
–  Online energy management 
–  Optimal behavior given the solution of P1 
–  Results 

Presentation Flow 
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u
! (t⇤U, t

⇤
dc)



PROBLEM P1 
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Energy Consumption Model 

•  MAC (channel access)  
•  Network topology 
•  Data gathering  
•  Networking 
•  Processing 
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IX = iXtXfX



Energy Consumption Model 

•  MAC (channel access) 
•  Network topology 
•  Data gathering  
•  Networking 
•  Processing 
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average	  4me	  spent	  
in	  state	  X	  upon	  a	  
transi4on	  to	  that	  state	  

IX = iXtXfX



Energy Consumption Model 

•  MAC (channel access) 
•  Network topology 
•  Data gathering  
•  Networking 
•  Processing 
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average	  4me	  spent	  …	  

visits	  per	  second	  to	  
state	  X	  (frequency)	  

IX = iXtXfX



Energy Consumption Model 

•  MAC (channel access)  
•  Network topology 
•  Data gathering  
•  Networking 
•  Processing 

11-‐04-‐2014	   Dept.	  of	  Mathema4cs,	  UNIPD	   27	  

average	  4me	  spent…	  

visits	  per	  second…	  

current	  drawn	  

IX = iXtXfX



Energy Consumption Model 

•  MAC (channel access)  
•  Network topology 
•  Data gathering  
•  Networking 
•  Processing 
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average	  4me	  spent…	  

visits	  per	  second…	  

current	  drawn	  

average	  current	  drained	  
IX = iXtXfX



Energy Consumption Model 

11-‐04-‐2014	   Dept.	  of	  Mathema4cs,	  UNIPD	   29	  

rX = tXfX

Adding up the contributions from all states 

IX = iXtXfX

IOUT =
X

i2X
Ii

= ITX + IRX + IINT + ICPU + IIDLE�ON + IIDLE�OFF

Average amount of current drained in state X  

Fraction of time spent in state X  



-  Energy consumption in TX, RX and IDLE is comparable 
-  Energy consumption is dominated by the PHY (radio) 
-  Commonly nodes are operated according to a duty-cycled approach 
-  The duty cycle d [%] is defined as: 

-  d usually ranges between 0.01 à 0.1 (nodes are awake 1 to 10% of the time) 

MAC: duty-cycled WSN 

TX/RX	   TX/RX	  

t
on

t
o↵

d =
t
on

t
on

+ t
o↵

Wake Sleep 

time duty cycle time

t
dc

= t
on

+ t
o↵

time 



MAC: access protocol 
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X-‐MAC	  is	  considered	  as	  the	  channel	  access	  technique	  
-‐  allows	  asynchronous	  communica4on	  
-‐  preamble-‐based	  
-‐  transmi[er	  ini4ated	  



Optimization Problem P1 
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tU ! average inter-packet transmission time

tdc ! duty cycle period (tdc = ton + to↵)

IOUT ! average current drained

u ! maximum current drained

(u ! control action set by P2)



Optimization Problem P1 
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maximize

tU,tdc

fU

subject to: IOUT  u,

r

x

� 0, 8x 2 �

N

,

tU � 0, tdc � ton.

•  Constraints are posynomials à convex optimization is possible 
•  Closed-form solution is also possible 

fU = 1/tU : pkt-TX rate [pkt/s]



Optimization Problem P1 
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•  We fix a network topology 
•  We fix a MAC protocol 
•  We fix a routing tree 
•  We specify all energy consumption figures (TX, RX, etc.) 

 
 
 
 
- pair that maximizes the throughput [pkts/s] 
- keeping the average energy consumption equal to 

 

(t⇤U, t
⇤
dc)

u

result 



System Parameters 
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Timings Energy figures 

t
on

= 6 ms

t
o↵

= 14 ms

t
int

= 10 ms

t
CPU

= 40 ms

t
RPL

= 6 h

iTX = 10 mA

iRX = 8.7 mA

iCPU = 26.6 mA

iS = 0.015 mA

KU = 10
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P1: Problem Solution 
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Fixed IOUT no collisions
Fixed IOUT with collisions
Optimal operating point no collision
Optimal operating point with collision

increasing IOUT = u (at optimality)



Energy Consumption Share 
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PROBLEM P2 
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System state S(k)=(xb(k),xs(k)) 
–  Energy buffer state xb(k) @ beginning of stage k 
–  Energy source state xs(k) during stage k 

Control uk 
–  Current drained by the node (Iout) 
–  Immediate reward R(uk,S(k)) (throughput [pkt/s]) 

Stage-Cost C(uk,S(k)) 
–  Average time spent with xb(k)<xth(k) (tunable threshold) 

Stage-Reward R(uk,S(k)) 
–  Total reward: integral of R(uk,S(k)) over the solution path 

Problem formulation 
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Single Stage Cost 
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xs(k)=0 xs(k)=1 xs(k+1)=1 

xb(k) C(uk, S(k))

Average single-stage cost: duration of time interval where xb(k) < xth 
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Average reward over a 
single stage k: 
 

•  R(uk,Sk) multipled by 
the time during which 
xb>0 (non-empty buffer) 

•  R(uk,Sk) is obtained 
from the static energy 
consumption analysis 
of part A 

Accounts for network 
& protocol interactions 

R(uk, S(k)) = 1/t⇤U



Optimal Policies 
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maximize

⇡

(
lim

N!+1
E

"
N�1X

k=0

↵kR(uk, S(k))

����S(0)
#)

subject to: lim

N!+1
E

"
N�1X

k=0

↵kC(uk, S(k))

����S(0)
#
 Cth

Meaning 
•  Find the policy π: uk(S(k), for all S(k) that maximizes the expected long-term 

throughput (reward) 
•  Subject to the fact that the long-term expected cost is smaller than a threshold 
 
Remember: cost=fraction of time during which the energy buffer state is below xth 
Discount factor: control the look-ahead capability of the optimal policy 



Lagrangian Reward 
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A lagrangian λ is introduced to balance 
•  Costs C(uk,S(k)) 
•  Rewards R(uk,S(k)) 

The lagrangian is part of the solution 
1.  Choose λ
2.  Solve optimal problem for this λ 
3.  Iterate over λ to find global optimum 

RL(uk, S(k)) = R(uk, S(k))� �C(uk, S(k))



Lagrangian Reward - rationale 
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•  Large λ: cost prevails 
–  Small reward 
–  Small cost  à cost constraint is satisfied whp 

  à λ can be decreased 
•  Small λ: reward prevails 

–  High reward (more aggressive policies) 
–  Large cost  à cost constraint is not satisfied 

à	  λ	  has	  to	  be	  increased	  
à dichotomic search over λ

RL(uk, S(k)) = R(uk, S(k))� �C(uk, S(k))



Lagrangian Bellman Equation 
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J(S(k)) = max

uk2U(S(k))

⇢
E[RL(uk, S(k))] + ↵

Z +1

�1
J(S

0
(k + 1))h(q|xs(k), uk)

�

Single-stage 
expected Lag. reward 

Discounted future expected  
reward (from k+1 onwards) 

J(S(k)): expected reward 
 from stage k onwards 

Accounts for min and max 
energy buffer size 

S

0
(k + 1) = (xs(k + 1), xb(k + 1))

= (1� xs(k),max{min{q + xb, Q}, 0})

Here!!!!! 



Results 
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Results – Policies vs α (discount) 
state xs=0 (day) 
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Results – Policies vs α (discount) 
state xs=1 (night) 
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Throughput vs Panel Size 
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Outage vs Panel Size 
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Energy Outage vs Panel Size 
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Problem 1: 
Mathematical Details 



Problem 1: topology 
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nc

ni

nint

number of children nodes, i.e., total number of nodes in the sub-
tree rooted at the bottleneck 

number of interfering nodes (within the transmission range of the 
bottleneck) 

accumulated number of interfering packets from interfering nodes, 
accounting for endogenous (their own transmissions) and 
exogenous (transmissions of their children nodes) traffic 



Problem 1: DATA TX, RX 
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t
TX

= t
on

+ t
o↵

/2 + t
data

+ (f 0
U

/f
U

� 1)t
dc

f 0
U : TX frequency with collisions

fU : TX frequency wo collisions

fTX,DG = (1 + nc)/tU

fRX,DG = nc/tU

Transmitted and received packets per 
second due to Data Gathering (DG) 

Packet transmission time (including collisions) 



Problem 1: RPL & DODAG 
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- RPL defines new ICMPv6 messages: 
 

•  Dag Information Object (DIO): carries information that 
allows nodes to discover an DODAG instance, learn its 
config pars and select a parent node 

•  Destination Advertisement Object (DAO): used to 
propagate destination information upwards the DODAG 

•  Dag Information Solicitation (DIS): to solicitate the TX of a 
DODAG object from an RPL node (not used in the 
analysis) 

 

- Destination Oriented Directed Acyclic Graph (DODAG) 



Problem 1: DODAG upward routes 
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•  Nodes periodically send link-local (broadcast) DIO 
messages 

•  Nodes listen for DIOs and use the information therein to 
construct a DODAG or maintain an existing one 

•  Based on the info on the DIOs a node chooses its parent 
so as to minimize the cost toward the DODAG root 

•  Analysis: DIOs are periodically sent by the nodes at a rate 

 1/trpl



Problem 1: DODAG downward routes 
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•  Nodes inform parents of their present and reachability to 
their descendants by sending a DAO message 

•  DAOs are aggregated at intermediate nodes while sent 
upstream 

•  DAOs propagate from the leaves to the DODAG root node 

•  Analysis: DAOs are sent by the leaf nodes at a rate 1/trpl



Problem 1: RPL TX, RX 
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fTX,RPL = (2 + nc)/trpl

fRX,RPL = (1 + ni + nc)/trpl

1 DIO and 1 DAO msg from bottleneck, nc DAOs from its children nodes: 

1 DIO from parent, nc DAOs from children nodes, ni DIOs from inter. nodes: 

NOTE: DIOs are not treated as interference as they are broadcast (ergo 
they are received and treated as legitimate packets) 



Problem 1: interference 
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Rate of interfering packets: 

TX rate for data packets 

fINT = nint(1/tU + 1/trpl)

1/tU

1/trpl TX rate for RPL DODAG control packets 



Problem 1: current consumption figures 
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ITX = (ic + it)[tdc/2 + ton/2 + tdata + (f 0
U/fU � 1)tdc]⇥

⇥ [(1 + nc)/tU + (2 + nc)/trpl]

IRX = (ic + ir)tdata[nc/tU + (1 + nc + ni)/trpl]

IINT = (ic + ir)tintnint(1/tU + 1/trpl)

ICPU = ictcpuKU/tU

ICCA = (ic + ir)dcrIDLE

IOFF = is(1� dc)rIDLE

TX time for a single pkt transmission 

transmissions rate [pkt/sec] 



Problem 1: current consumption figures 
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ITX = (ic + it)[tdc/2 + ton/2 + tdata + (f 0
U/fU � 1)tdc]⇥

⇥ [(1 + nc)/tU + (2 + nc)/trpl]

IRX = (ic + ir)tdata[nc/tU + (1 + nc + ni)/trpl]

IINT = (ic + ir)tintnint(1/tU + 1/trpl)

ICPU = ictcpuKU/tU

ICCA = (ic + ir)dcrIDLE

IOFF = is(1� dc)rIDLE

CPU time due to pkt generation (own traffic) 

CPU time due to IDLING – RADIO ON 

CPU time due to IDLING – RADIO OFF 

rIDLE = 1� rTX � rRX � rINT � rCPUwith 



Problem 1: closed-form solution 
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@IOUT(tU, tdc)

@tdc
= 0 ! t⇤dc(tU)

IOUT(tU, tdc) =
X

i2X
Ii

Max. current budget u 2 [u
min

, u
max

]

1) 

2) 

3) 

Total power consumption  

Optimal duty-cycle à min. 
energy consumption for a 
given tU

IOUT(tU, t
⇤
dc(tU))� u = 0 ! t⇤U(u)

t⇤U(u) Min. inter-packet TX time for given current budget  u
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Optimal Policies: 
Additional Results 



Results – Policies vs α (discount) 
state xs=0 (day) 
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Optimal policy vs Buffer size Corresponding stationary distribution 
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Results – Policies vs α 
state xs=1 (night) 
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Optimal policy vs Buffer size Corresponding stationary distribution 
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Results – Policies vs Buffer size 
2-state EM - state xs=0 (day) 
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Results – Policies vs Buffer size 
2-state EM - state xs=1 (night) 
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Optimal policy vs Buffer size Corresponding stationary distribution 
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Heuristic for Heterogeneous  
Energy Sources 



Heuristic (1/2) 

11-‐04-‐2014	   Dept.	  of	  Mathema4cs,	  UNIPD	   72	  

 

•  DAOs are used to periodically report data (status of the 
nodes, etc.) to the DODAG root (i.e., the sink) 

•  We use these messages to periodically collect the energy 
buffer status of all nodes 

•  The sink decides which policy to adopt based on the 
minimum among all buffer states, mini (Bi) 



Heuristic (2/2) 
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•  The optimal policy is computed for the bottleneck node 
(worst case network parameters) 

•  This policy is used to decide the maximum energy 
consumption level for all nodes… 

•  …based on the minimum among all buffer states, mini (Bi) 
 

Outcome 
•  Policy will be suboptimal  
•  But will assure energy sustainability at all nodes 



Heuristic – Results (1/2) 
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•  BN: bottleneck node 

•  SBN: second-bottleneck node  
–  Located in the sub-tree originating from the BN 
–  With the second-highest energy consumption 

•  Worst case assumption 
–  The BN has the same parameters ni, nint as the BN 
–  As just one node less as its number of children, i.e., nc-1 



Heuristic – Results (2/2) 
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Energy Source Model: 
Additional Results 



Slot-based clustering 
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•  LA – January 1999-2010 
•  Slot-based data clustering 

•  Duration of “energy states” 
•  constant 

•  Current harvested in each 
•  Variable 

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
x 10−3

Time of the day [h]

C
ur

re
nt

 [A
]

 

 
Slot 1
Slot 2
Slot 3
Slot 4
Slot 5
Slot 6
Slot 7
Slot 8
Slot 9
Slot 10
Slot 11
Slot 12

Dept.	  of	  Mathema4cs,	  UNIPD	  



Auto Correlation Function 
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•  LA – January 1999-2010 
•  Slot-based data clustering 

•  Semi-MC with 2,4,6,12 states 
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