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Staying Alive: System Design for Self-Sufficient Sensor Networks
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Self-sustainability is a crucial step for modern sensor networks. Here, we offer an original and comprehensive
framework for autonomous sensor networks powered by renewable energy sources. We decompose our design
into two nested optimization steps: the inner step characterizes the optimal network operating point subject
to an average energy consumption constraint, while the outer step provides online energy management
policies that make the system energetically self-sufficient in the presence of unpredictable and intermittent
energy sources. Our framework sheds new light into the design of pragmatic schemes for the control of
energy-harvesting sensor networks and permits to gauge the impact of key sensor network parameters,
such as the battery capacity, the harvester size, the information transmission rate, and the radio duty cycle.
We analyze the robustness of the obtained energy management policies in the cases where the nodes have
differing energy inflow statistics and where topology changes may occur, devising effective heuristics. Our
energy management policies are finally evaluated considering real solar radiation traces, validating them
against state-of-the-art solutions, and describing the impact of relevant design choices in terms of achievable
network throughput and battery-level dynamics.

Categories and Subject Descriptors: G.1.6 [Optimization]: Stochastic Programming

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Energy harvesting, energy self-sufficiency, protocol design, wireless
sensor networks

ACM Reference Format:
Nicola Bui and Michele Rossi. 2015. Staying alive: System design for self-sufficient sensor networks. ACM
Trans. Sensor Netw. 11, 3, Article 40 (February 2015), 42 pages.
DOI: http://dx.doi.org/10.1145/2700269

1. INTRODUCTION

The operation of wireless sensor networks powered by renewable sources is a very
lively area of research, both theoretical and applied. This is due to the increasing in-
clination toward green systems and to the need for Wireless Sensor Networks (WSNs)
that can last unattended indefinitely. In fact, despite the advances in microprocessor
fabrication and protocol design, batteries are expected to last for less than 10 years
for many applications, and their replacement is in some cases prohibitively expensive.
This problem is particularly severe for urban sensing applications, for example, sensors
placed below the street level, where the installation of new power cables is impractical.
Other examples include body sensor networks or WSNs deployed in remote geographic
areas [Wang and Liu 2011]. In contrast, WSNs powered by energy-scavenging devices
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provide potentially maintenance-free perpetual networks, which are particularly ap-
pealing, especially for the highly pervasive Internet of Things [Atzori et al. 2010].

In the past few years, a vast literature has emerged on energy-harvesting WSNs.
These networks are made of tiny sensor devices with communication capabilities, which
also have an onboard rechargeable battery (also referred to as an energy buffer) and
are capable of scavenging energy from the surrounding physical environment. Most
of the research papers that have been published so far deal with the energy-neutral
design of transmission policies, where the concept of energy neutrality accounts for the
fact that the energy used, in the long term, should be equal to that harvested. Within
this body of work, two well-established approaches have been adopted to find energy-
neutral policies, namely, offline and online. Offline solutions are concerned with finding
optimal packet transmission schedules, assuming that the nodes have full knowledge
of the harvesting and information generation processes. Although this is unrealistic, it
provides useful insights into the design of online strategies. On the other hand, online
approaches only assume some prior statistical knowledge about the energy arrival and
the input data processes.

Offline approaches: Ozel et al. [2011] consider a single sensor node transmitting
data over a wireless fading channel with additive Gaussian noise and causal channel
state information at the transmitter. They obtain optimal policies considering two
objectives: maximize the throughput by a deadline and minimize the transmission
completion time. Yang and Ulukus [2012] generalize the results of Ozel et al. [2011] by
relaxing the assumption on packet arrivals, which can now arrive during transmissions.
Also, they derive fast search algorithms leveraging structural properties of the solution.
In another recent work [Gregori and Payaró 2013] relaxes the assumption that the
battery is infinite, obtaining optimal transmission policies for given Quality of Service
(QoS) constraints while fulfilling data and energy causality constraints. To the best of
our knowledge, no papers in this category studied energy management policies for the
network of devices.

Online approaches: These approaches differ in the stochastic model considered
for the energy arrival process and in the optimization objective. Notably, only a few
contributions addressed aspects related to multiple access and routing in distributed
networks. Vigorito et al. [2007] present a decentralized strategy for the control of an
energy buffer with stochastic replenishment through the adaptation of the transmis-
sion duty cycle. They model the optimal buffer management as an online optimization
problem, estimating the system dynamics using a gradient descent update rule and
implementing energy-centric policies. Similarly, Hsu et al. [2006] present an adaptive
duty cycling algorithm for energy-harvesting sensor nodes.

Kansal et al. [2007] study fundamental properties of energy-harvesting processes
and utilize them to devise an algorithm that maximizes the throughput based on en-
ergy prediction. Fan et al. [2008] propose a solution for high throughput with fairness
guarantees, devising centralized and distributed algorithms that compute the optimal
lexicographic rate assignment for all nodes. Lei et al. [2009] develop a Markov deci-
sion analysis for a sensor node with i.i.d. stochastic replenishments (i.e., fixed energy
arrival rate) and a finite energy buffer. They devise optimal online policies that de-
pend on the importance of packets, which is modeled through a generic probability
distribution function (pdf). Sharma et al. [2010] propose throughput as well as delay
optimal online policies for a sensor node with infinite data and energy queues. They
consider stationary and ergodic arrival processes for data and energy and transmis-
sion over fading channels. Michelusi et al. [2013] generalize the results of Lei et al.
[2009]: they model energy replenishment through a two-state Markov model and asso-
ciate a cost with data transmission. Optimal and heuristic policies are characterized
considering the long-term data importance of transmitted data through a dynamic
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programming formulation. The focus of Luo et al. [2013] is instead on practical circuits
for energy-harvesting wireless transmitters and on their impact on the design of op-
timal transmission policies for TDMA channel access. They optimize the time spent
in storing energy and transmitting while accounting for QoS constraints and a TDMA
access scheme.

Other approaches dealing with multiple access channels and, in turn, considering
the simultaneous interaction of multiple sensor nodes are Gatzianas et al. [2010],
Huang and Neely [2013], Michelusi and Zorzi [2013], and Tapparello et al. [2013]. To
our knowledge, Gatzianas et al. [2010] is the first contribution that has dealt with the
distributed control of energy-harvesting WSNs. There, the authors present an online
and adaptive policy for the stabilization and optimal control of these networks using
tools from Lyapunov optimization. This line of work has been continued by Huang
and Neely [2013], who tackle the distributed routing problem using the Lyapunov
optimization theory combined with the idea of weight perturbation (see, e.g., Neely
et al. [2008]). Michelusi and Zorzi [2013] consider a single-hop WSN where each node
harvests energy from the environment and randomly accesses the channel to trans-
mit packets of random importance to a sink node. Thus, optimal distributed policies,
based on a game theoretic formulation of the random access problem, are proposed.
Tapparello et al. [2013] present a theoretical framework that extends Gatzianas et al.
[2010] and Huang and Neely [2013] by proposing joint transmission, data compression
(distributed source coding, DSC), and routing policies that minimize the long-term ex-
pected distortion of the signal reconstructed at the sink while ensuring the energetic
stability of the network.

Other research directions deal with energy-sharing networks [Zhu et al. 2010] and
laser-power beaming [Bhatti et al. 2014]. However, in the present contribution, we
look neither at the possibility of exchanging energy among nodes nor at performing
wireless energy transfer. Further extensions may involve the adoption of energy-aware
programming languages [Sorber et al. 2007].

Our contribution: Our present work belongs to the online category and considers
networks of energy-harvesting devices. Specifically, we propose a framework based on
the dynamic adaptation of two key protocol parameters, namely, the radio duty cycle dc
and the transmission frequency for the generated traffic, fU. This framework permits
us to assess the performance of energy-harvesting sensor networks while shedding new
light into the pragmatic design of energy management solutions.

Toward this end, we account for (1) the network topology; (2) the transmission of
endogenous (own packets) data; (3) the relaying of exogenous (forwarded) data; (4) the
amount of energy consumed for transmission, reception, idling, processing, and so forth;
(5) the channel access mechanism; and (6) the harvested energy inflow dynamics. For
the channel access, we consider the Low-Power Listening (LPL) MAC [Buettner et al.
2006; Bonetto et al. 2012], whereas routing dynamics are modeled through the IETF
Routing for low-Power Lossy networks (RPL) [Ko et al. 2011; Bui et al. 2012].

Technically, our first contribution is a model that, for any pair (dc, fU), returns the
associated average energy consumption of a sensor node, taking (1) through (5) as input.
We obtain (in closed form) the pair (d∗

c , f ∗
U) that maximizes the node throughput subject

to a given energy constraint. We subsequently locate the bottleneck node in the network
(the one suffering the highest amount of interference) and we carry out a further
optimization step based on (6), keeping this worst case into account. The resulting
policies dynamically select the pair (dc, fU) considering the state of the bottleneck
node along with the stochastic model of the harvested energy. Being dimensioned for
the worst case, the obtained policies can be applied at all nodes, leading to the self-
sufficient operation of the entire WSN. Hence, we comment on the behavior of the
obtained energy management policies and we compare their performance against that
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Table I. Notation

Capital letters: N, S, etc. denote system states and functional blocks.
Capital letters, italic: Iout, ITX, etc. denote average quantities.
Lower letters, italic: toff , tdc, etc. denote variables.
Calligraphic font: S, U , etc. denotes sets.
Greek letters: τ , ι, etc. denote random variables.
Bold letters: p, ρ, etc. denote vectors.

Table II. Symbol Definitions

S energy source block in the system model.
B energy buffer (battery) block in the system model.
N energy consumer (sensor node) block in the system model.
N sensor nodes set.
i harvested current.
u control policy (drained current).
dc duty cycle.
Iout average current consumption for a given network configuration.
fU packet transmission rate for endogenous traffic (reward).

of competing solutions from the state of the art. Finally, we relax each of the model
assumptions, showing that the solutions so obtained are still robust.

In summary, the main contributions of the present article are as follows:

(1) A model for the energy consumption of a network of embedded wireless devices
(2) A closed-form formula for the optimal operating point of the network
(3) A mathematical framework to maximize the throughput performance while allow-

ing the perpetual operation of the entire sensor network
(4) A performance evaluation of the proposed energy management policies
(5) A validation of the proposed solution when the model assumptions are relaxed

In Table I, we introduce the notation used in the rest of the article. Additional
definitions will be given at the beginning of each section.

The remainder of this article is organized as follows. In Section 2, we describe the
workflow of the article, detailing the objectives of our design and how these are ac-
complished by the analyses that follow. In Section 3 and Section 4, we characterize
the energy consumption of a sensor node according to the network properties and we
derive the optimal operating point for the network subject to input energy constraints.
In Section 5, we present a stochastic semi-Markov model for the harvested energy,
and in Section 6, we obtain energy management policies for self-sufficient networks of
embedded devices. In Section 7 and Section 8, we evaluate the proposed policies, and
in Section 9, we present our closing remarks.

2. PROBLEM FORMULATION

In this section, we describe the problem formulation as two nested optimization prob-
lems. The list of used symbols is given in Table II.

We consider a wireless sensor network N composed of N = |N | homogeneous em-
bedded devices, where sensor nodes transmit their readings to a data collector node
(referred to as sink). The nodes are deployed according to a certain multihop topology,
and the data packets are routed toward the sink through a predetermined collection
tree, as detailed in Section 3. Each sensor node is described through the diagram in
Figure 1. Specifically:

—Energy source (S): This block accounts for the presence of some energy-scavenging
circuitry that feeds a storage unit. The amount of harvested current is described
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Fig. 1. Sensor node diagram.

by the variable i. A detailed description of a stochastic semi-Markov model of S is
provided in Section 5. Note that while the energy scavenged is stochastic across time,
we initially assume that it is described by the same Markov source for all nodes. The
extension to heterogeneous energy sources is provided in Section 8.1.

—Battery (B): The storage unit (e.g., either a rechargeable battery or a super-
capacitor) provides an average current u to the following block N; see Section 6.

—Sensor node (N): This block models the aggregate energy consumption of a sensor
node, which is referred to as Iout. This accounts for the energy drained by the sensor
node hardware, including the network protocol stack (e.g., routing, channel access,
and physical layer), the onboard sensors, and the CPU. The energy consumption of
block N is characterized in Section 3.

The overall objective of our analysis is providing dynamic and energy-dependent (i.e.,
depending on the state of S and B) configurations for the sensor nodes in N so that the
entire network will be energetically self-sufficient.

To accomplish this, for a given network setup, we first identify the so-called bottleneck
node, which is the node experiencing the highest traffic load. This node is by definition
the one subject to the highest energy consumption (more precise details will be given
in Section 3 and Appendix D).

Our analysis develops along the following two optimization steps:

1) We first characterize the energy consumption of the bottleneck node for the given
routing topology and channel access technology. In detail, we relate its average
energy consumption, Iout (assumed constant for this first analysis), to two key pa-
rameters: the radio duty cycle, dc, and the transmission frequency for the endogenous
traffic, fU. Given this, we solve a first optimization problem P1 (the inner problem
in Figure 1), where we seek the operational point (i.e., the pair (dc, fU)) for which fU
is maximized considering u as the energy consumption constraint. To solve P1, we
model the interaction of the bottleneck node with respect to the other sensors in N ,
accounting for the transmission behavior of all nodes within range (e.g., the amount
of relay traffic from the children nodes, the total traffic that these forward on behalf
of their children, the number of interferers and their transmission rate, etc.). Sub-
sequently, we derive in closed form the optimal protocol configuration (dc, fU) for a
given average energy consumption constraint u.

2) In the second optimization step (problem P2), we additionally account for the pres-
ence of blocks S and B, where S is modeled through a stochastic time-correlated
Markov model, where the harvested current i is assumed to be a time-varying, cor-
related stochastic process and u is now the control variable. Problem P2 consists
of dynamically selecting the control u (or, equivalently, the pair (dc, fU), where the
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Table III. Symbol Definitions

x ∈ XN node operational state x and state set XN .
f ′
U modified reward function accounting for retransmissions.

ton, toff , tdata, tdc, tU, tv, trpl sensor node timings.
ix , Ix instantaneous (ix), and average (Ix) currents drained in state x.
ic, it, ir, is currents drained by the cpu (ic), radio (ir, it), and sensing unit (is).
tx , rx , fx average duration, frequency and fraction of time spent in state x.
kU constant accounting for energy drained due to sensing and computation.
nc, ni, nint network topology parameters.
et, ec, ep channel error (et), collision (ec), and total error (ep) probabilities.

relation u → (dc, fU) follows from the solution of P1) for the given energy source
model, so that the bottleneck will maximize its own throughput while being ener-
getically self-sufficient.

At this point, we combine the results of P1 and P2: P1 decides the optimal operating
point for the bottleneck as a function of u, whereas P2 dictates how u should vary
as a function of the battery state and on some statistical knowledge of the energy-
harvesting process. This combined optimization amounts to a dynamic selection of the
current level u that has to be drained by the node, depending on the state of S and B,
so that the throughput is maximized (P1) and the node is energetically self-sufficient
(P2).

After solving this combined problem, the self-sufficiency of all network nodes can be
ensured by the following scheme. The time is divided into a number of slots, which de-
pend on the temporal characterization of the energy-scavenging process; see Section 5.
A decision epoch occurs at the beginning of each slot, that is, when the source model
transitions to a new state. Thus, at each epoch, the sink collects the information about
the state of the battery of the bottleneck node, computes the optimal actions (using
P1 and P2) for the next time slot for this node, and sends back a description of the
computed optimal policy to all network nodes. Thus, all nodes will implement, in the
next time slot, the policy that is optimal for the bottleneck. Consequently, the ener-
getic stability at all nodes is ensured. This can be conveniently implemented through a
practical network management and routing protocol such as RPL [Winter et al. 2010].

In this article, we look at a coarse-grained control of the protocol behavior of the
nodes. In fact, one control command has to be sent out to the nodes at the beginning
of every time slot, whose duration depends on the number of states that are used to
model the energy inflow during a typical day. While our mathematical analysis holds for
any number of energy states, practical considerations related to the network overhead
incurred in sending control actions to the nodes and to the number of states that is
sufficient to accurately model (e.g., typical solar sources) lead to slot durations on the
order of hours.

In Section 3, for a given network scenario (i.e., transmission model, topology, and data
collection tree), we characterize the energy consumption of the bottleneck node. Thus,
in Sections 4 and 6, we respectively solve problems P1 and P2 for this node, assuming
that all the remaining nodes in the network behave in the same exact manner as the
bottleneck does.

In Section 8.1, we extend our analysis to the case where the sensor nodes harvest
different amounts of energy.

3. NODE CONSUMPTION MODEL

The symbols used in this section are listed in the Table III.
In this section, we discuss the sensor node block of our architecture: this en-

tails the definition of a tractable framework to model the interactions among nodes,
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including routing and channel access (MAC). We require the model to track network
characteristics such as the topology, the adopted MAC protocol, channel errors, and
internal processing (assembling data packets, etc.). Although our framework develops
along the lines of Fischione et al. [2013], we aim at obtaining simple and meaningful re-
lationships that will make it possible to compute the optimal throughput in closed form.

For tractability, we make the following assumptions:

1) There exists a node that consumes more energy than any other sensor. This node is
referred to as the bottleneck node.

2) Every sensor operates as the bottleneck node in terms of information generation
rate, fU (expressed in packets per second), and duty cycle, dc = ton/tdc = ton/(ton+toff ),
where tdc = ton + toff , whereas ton and toff are the durations of the active and sleeping
portions of the duty cycle, respectively.

3) The sink at each decision epoch (see Section 6) collects the status of the bottleneck,
in terms of energy reserve, and broadcasts a feedback message to adapt the proto-
col behavior of all nodes. We provide practical considerations on how to deal with
dissemination delays in Section 8.

4) The sensor nodes maintain the same behavior for long enough to justify the use of
average energy consumption figures. Specifically, the time scale at which the sink
takes control actions is much coarser than that related to the radio duty cycling.

To start with, we identify the operational states of a sensor node and, for each of
them, the associated energy expenditure (expressed here in terms of the current ix
drained in each state x):

—TX: this is the transmission state. Here, both the microprocessor and the radio
transceiver are active and the current drained by these components is ic and it,
respectively.

—RX: in this state, a node receives and decodes a radio frame. As for the TX state, both
the microprocessor and the radio transceiver are on, and in this case, their energy
drainage is ic and ir, respectively.

—INT: in this state, the node receives a frame that neither is intended for it nor has
to be forwarded by it. Here, the node drains exactly the same current as in state
RX. In the following analysis, we track this state separately from RX as the rate of
interfering and successful transmissions may differ.

—CPU: the node is busy with operations that do not require any radio activity (e.g.,
sensing, data processing, encoding, etc.). In this state, the radio transceiver is off or
in a power-saving state, and thus, the consumption is just ic.

—IDLE: the node is idle and can switch to some low-power state. However, since
preamble-sampling MAC protocols, such as X-MAC [Buettner et al. 2006] or LPL
[Moss et al. 2007], need to periodically sample the radio channel while idling, it is
convenient to split this state into two substates:
—CCA: in this state, the node samples the channel (Clear Channel Assessment).

Hence, it drains the same current as in RX.
—OFF: this is the state with the lowest energy consumption. Here, the micropro-

cessor and the radio transceiver are in power-saving mode and the total current
drained by the device is is, which is much smaller than all the other energy con-
sumption figures (is � ix, x ∈ {t, r, c}).

We now formally introduce the system state set

XN = {TX, RX, INT, CPU, CCA, OFF}, (1)

where for the IDLE state it holds that IDLE = CCA ∪ OFF. The main idea behind our
model consists of computing the average current Ix = E[ix] drained by the bottleneck
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node for each state x ∈ XN for the given protocol and network parameters. Note that,
in our model, computing average currents is equivalent to computing powers, as we
assume that the sensors operate according to a fixed supply voltage. For each x ∈ XN ,
we have that Ix = ixtx fx, where ix, tx, and fx correspond to the drained current, the
average permanence time (duration) in state x, and the average rate (frequency) at
which state x is entered, respectively. In addition, we use the quantity rx = tx fx to
indicate the average fraction of time the node spends in state x. Hence, the average
output current Iout is obtained by the sum of the average currents:

Iout =
∑

x∈XN

Ix. (2)

To find fx and tx, we make the following choices:

1) The main function of the nodes is that of sensing environmental data and sending
them to the sink (Section 8 describes how to account for event-driven WSNs).

2) At the channel access, we adopt a preamble-based transmitter-initiated MAC proto-
col, such as X-MAC (that exploits a Low-Power Listening strategy) [Buettner et al.
2006].

3) Network configuration and maintenance is managed via a distributed protocol, such
as RPL (IPv6 Routing Protocol for Low-Power and Lossy Networks) [Winter et al.
2010].

From the first choice, we assume that the nodes periodically sense the environment
and generate their data at a constant rate of fU packets per second, where tU =
1/ fU is the average interpacket generation time (practical details on how to deal with
nonperiodic traffic are provided in Section 8). Also, each data packet is assembled
considering the data from kU ≥ 1 sensor readings; kU can be used to account for
additional processing of data and other operations that do not involve radio activity.
Note that fU is the nominal transmission rate, which is only obtained for a collision and
error-free channel. In practice, given that multiple nodes share the same transmission
medium, packets can be lost due to, for example, collisions or transmission errors. When
taking some error recovery into account (retransmissions), the actual transmission rate
will be f ′

U ≥ fU.
For the routing, each node forwards its data packets either to the sink or to its next-

hop node (referred to as its parent node). Also, each node sends its own information
packets (this is referred to as endogenous traffic), as well as the packets generated by
other nodes (exogenous traffic, in case the node acts as a relay for its children nodes).

To illustrate our network setting, we refer to the topology example of Figure 2, where
the bottleneck node is represented as a black dot, while the sink is placed in the center
of the network. In this figure, a possible realization of the routing tree is also shown.
In particular, the links represented with solid lines belong to the subtree rooted at the
bottleneck. White-filled dots indicate the nodes that use the bottleneck to forward their
data to the sink (these are referred to as children nodes), while white triangles indicate
the nodes whose traffic can interfere with that of the bottleneck (interfering nodes).
Crosses indicate the position of all the other nodes.

For our model, we consider the topology, the data-gathering tree, and the coverage
range as given. Also, we only track the number of children and interfering nodes,
disregarding their actual position. Given this, next we refer to the following quantities
as the input parameters for our analysis:

1) nc is the number of children nodes, that is, the total number of nodes in the subtree
rooted at the bottleneck. nc governs the total traffic that has to be relayed by the
bottleneck node.
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Fig. 2. Topology.

2) ni is the number of interfering nodes (white triangles of Figure 2). These are within
the transmission range of the bottleneck (i.e., within one hop from it), but the latter
is not their intended next hop. Any transmission from one of these ni nodes can be
either a spurious reception or a collision for the bottleneck.

3) nint corresponds to the total number of packets the bottleneck may be interfered
from, that is, the sum of the traffic load (endogenous and exogenous) from all the
interfering nodes. Note that in general, nint > ni.

Note that nc especially depends on the size of the network in terms of number of
communication hops, while ni and nint increase with the node density. Finally, in the
analysis that follows, we assume that no node in the network has larger nc, ni, and nint
than the bottleneck node, and for each node but the bottleneck, at least one of the three
parameters is strictly smaller than that of the bottleneck.

We are now ready to compute the various quantities needed to calculate Equation (2)
for the bottleneck node. We start with states TX and RX. Note that packet transmissions
and receptions depend on nc. In fact, given that all the nodes generate a packet every
tU seconds (homogeneous network behavior), on average, the bottleneck will receive nc
packets from its children nodes and will transmit nc + 1 packets (the exogenous traffic
plus its own endogenous) every tU seconds. This leads to

fTX,DG = (1 + nc)/tU, (3)

fRX,DG = nc/tU, (4)

where fRX,DG and fRX,DG are the data-gathering components of the transmission and
reception frequencies, disregarding for the moment the traffic due to RPL.

To account for the impact of the MAC protocol, we summarize here its basic func-
tionalities. The X-MAC LPL protocol specifies that each idling node periodically wakes
up to perform a clear channel assessment (CCA) operation. The duty-cycle period
lasts tdc seconds and is composed of a sleeping phase of toff seconds and a wake-up
phase lasting ton seconds, during which CCA is performed. A node wanting to send
a unicast packet transmits a burst of short request-to-send (RTS) preambles for long
enough so that the intended receiver will detect at least one of these RTSs in its next
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40:10 N. Bui and M. Rossi

Fig. 3. MAC timings for CCA (top), TX (middle), and RX phases (bottom).

wake-up period. Since the nodes are in general not synchronized, to be sure of hit-
ting the intended receiver, a node will be sending preambles for the duration of an
entire duty cycle tdc = ton + toff . Due to the lack of synchronization, the receiver can
detect an RTS at any time within this period. Whenever a node detects an incoming
RTS destined to itself, it sends a clear-to-send (CTS) message back to the sender and
waits for the transmission of the actual data packet. After the complete reception of
the data, the receiver sends an acknowledgment (ACK) to the sender. This channel
access mechanism is illustrated in Figure 3 (where we omit the transmission of the
ACK for simplicity). In this figure, the sixth RTS from the sender is detected by the
intended receiver, which immediately replies with a CTS. The node at the top of the
diagram also detects the RTS, but it does not take any action as it is not the intended
destination.

For this channel access scheme, the average time needed to carry out a successful
transmission is tTX = ton + toff/2+ tcts + tdata + tack, where the term toff/2 follows from the
fact that the time needed for the receiver to detect an incoming RTS is assumed to be
uniformly distributed in [0, toff ]. The terms tdata, tcts, and tack correspond to the durations
associated with the transmission of a data packet, a CTS, and an ACK, respectively.
The reception time is tRX = tcts + tdata + tack. Note that the RTS time is not considered in
tTX or in tRX, because it is accounted for by the CCA state. Also, to simplify the notation,
in the following analysis we include tcts and tack in tdata.

Now, if fU = 1/tU is the transmission rate (packets/second) for an error-free channel,
in the presence of packet collisions and transmission errors, the actual transmission
rate becomes f ′

U ≥ fU. For the sake of clarity, the complete characterization of the
channel access problem in this case is provided in Appendices A and B.

Thus, the average transmission time can be expressed as

tTX = ton + toff/2 + tdata + ( f ′
U/ fU − 1)tdc, (5)

where the factor f ′
U/ fU − 1 represents the average number of retransmissions. Note

that Equation (5) implies a stop-and-wait retransmission policy, where an infinite
number of retransmissions is allowed for each data packet. Instead, we assume that
the impact of channel errors and collisions on spurious receptions and interfering
packets is negligible as, in these cases, the intended receiver does not stay awake to
receive the data packet and, thus, its energy expenditure is already accounted for by
the CCA state.
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We now model the energy expenditure associated with the maintenance of the routing
topology. The selected routing algorithm, RPL, consists of a proactive technique that
periodically disseminates network information through DODAG1 information objects
(DIO) and, subsequently, builds a routing tree by sending destination advertisement
objects (DAOs) toward the sink. RPL timing is governed by the trickle timer, which
exponentially increases up to a maximum value for a static topology. In this article,
we analyze the steady-state phase of RPL, considering static networks. This implies
the following operations: for every trickle timer epoch, which lasts trpl seconds, the
bottleneck node must send its own DIO message and its own DAO and has to forward
nc DAOs for its children. This leads to a transmission frequency for RPL messages of

fTX,RPL = (2 + nc)/trpl. (6)

In addition, the bottleneck node will receive nc DAOs from its children and ni DIOs
from its interfering nodes (note that DIOs are not treated as interference, as they are
broadcast). Thus, the reception frequency for RPL messages is

fRX,RPL = (1 + ni + nc)/trpl, (7)

where fTX,RPL and fTX,RPL are the contributions of RPL to the transmission and recep-
tion frequencies, respectively.

Finally, our model accounts for the energy expenditure due to the reception of mes-
sages that are detected during CCA but are not destined to the receiver. In this case,
the receiver behaves as during a reception, but, as soon as it decodes the packet header,
it recognizes that the message is not intended for itself. At this point, the node drops
the message and goes back to sleep. Interfering messages can be due either to data
gathering or to networking traffic and occur at a rate proportional to nint. Thus, we
have

fINT = nint(1/tU + 1/trpl). (8)

Also, we refer to tint < tRX as the time needed to decode the packet header and therefore
detect whether a node is the intended destination for that message.

From these reasonings, we are able to express the average current consumption for
each state:

ITX = (ic + it)[tdc/2 + ton/2 + tdata + ( f ′
U/ fU − 1)tdc]

× [(1 + nc)/tU + (2 + nc)/trpl] (9)

IRX = (ic + ir)tdata[nc/tU + (1 + nc + ni)/trpl] (10)

IINT = (ic + ir)tintnint(1/tU + 1/trpl) (11)

ICPU = ictcpukU/tU (12)

ICCA = (ic + ir)dc rIDLE (13)

IOFF = is(1 − dc)rIDLE, (14)

where tcpu is the average time spent in operations that do not involve the radio and
rIDLE is the fraction of time that the node spends in the IDLE state, which is computed
as one minus the fraction of time spent in the remaining states:

rIDLE = 1 − rTX − rRX − rINT − rCPU. (15)

1Destination-oriented directed acyclic graph (DODAG).
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Table IV. Symbol Definitions

t∗x optimal values for the variable tx .
xlim optimal values for the variable x, computed assuming no energy constraint.
xmin optimal values for the variable x, computed assuming zero reward (zero throughput).
ai , bi , ci , di , ei , fi coefficients. See Appendix C and Table X for their complete definition.
umax maximum allowed energy consumption for a sensor node.
umin minimum required energy consumption so that the system remains operational.
ρ node density.

The total energy consumption is finally given by

Iout = ITX + IRX + IINT + ICPU + ICCA + IOFF. (16)

4. NODE CONSUMPTION ANALYSIS

In this section, we present the solution of problem P1: identifying the optimal network’s
operating point given a target consumption Iout = u. The symbols used in this section
are listed in Table IV.

Problem P1 can be formally written as follows:
Problem P1:

maximize
tU,tdc

fU

subject to: Iout ≤ u,

rx ≥ 0, ∀x ∈ XN ,

tU ≥ 0, tdc ≥ ton. (17)

P1 (Equation (17)) amounts to finding the optimal pair (t∗
U, t∗

dc) that maximizes the
node throughput, fU = 1/tU, subject to the maximum allowed consumption u and to
time and frequency constraints. The problem can be numerically solved through two
nested dichotomic searches (as shown in Bui and Rossi [2013]): the inner search looks
for the optimal t∗

off given tU,2 while the outer search looks for the optimal t∗
U. Instead,

our objective here is to obtain the solution in closed form. This will permit us to solve
problem P2 in a reasonable amount of time while also facilitating the implementation
of optimal energy management policies on constrained sensor devices.

Despite the simple problem formulation, Equation (5) introduces a polynomial of
the nith degree on the independent variable tU, which makes it difficult to express the
solution through tractable and still meaningful equations. Thus, we solve the problem
for a collision-free channel and we subsequently adapt the results to keep collisions
into account through a heuristic.

In fact, removing collisions allows for a simpler expression for f ′
U, that is, f ′

U =
fU/(1 − et), which removes the nith degree polynomial on tU. In order to illustrate
that this approach is reasonable within the solution space, in Figure 4, we show some
preliminary results.

Figure 4 shows contour lines in the (dc, fU) plane for different output current levels
(Iout ∈ {5, 10, 30} mA): dotted lines represent the numerical solution for the complete
problem, while dash-dotted lines represent the solution for a collision-free channel for
the same Iout levels. The locations of the optimal operating points in these two cases are
also plotted for comparison (white squares and white circles for the complete problem
and that without collisions, respectively). For a given Iout, the maximum throughput
is achieved for a unique value of the duty cycle dc. Hence, it is not possible to find

2Note that in this article, we consider ton as a constant that depends on the considered sensor architecture,
whereas the nodes can adapt the duration of their off phase, toff , of the duty cycle. Hence, optimizing over
dc = ton/(ton + toff ), tdc = ton + toff or toff is equivalent.
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Fig. 4. Contour lines in the (d, fU) plane for different output current levels (Iout ∈ {5, 10, 30} mA): dotted
lines represent the numerical solution to the complete problem Equation (17), while dash-dotted lines show
the solution for a collision-free channel for the same Iout levels. The optimal working points are also plotted
for both problems (using white squares for the complete problem and white circles to indicate the solution
for a collision-free channel).

a feasible solution with higher throughput or one with the same throughput and a
different duty cycle.

From Figure 4, we deduce the following facts:

—The impact of collisions increases with Iout, which implies that the difference between
the optimal working points with and without collisions is an increasing function of
the energy consumption Iout.

—The maximum allowed fU increases with Iout, which is expected and means that the
transmission rate for the endogenous data is an increasing function of the energy
consumption Iout.

—The duty cycle dc has a critical point, beyond which the throughput fU suddenly
drops, which implies that tdc has a critical point too.

—The search for the optimal operating point involves the joint optimization of the
transmission rate fU (tU) and the duty-cycle period (tdc) as these two quantities are
intertwined.

For the sake of readability, the full derivation of the closed-form solution in the
collision-free case is given in Appendix C. In what follows, we confine ourselves to
a discussion of the adopted approach and of the main results. First, Iout has been
rewritten as a function of tdc and tU, which makes it possible to find the mathematical
expression of t∗

dc (as a function of tU, which is still a free parameter). This is achieved by
taking the partial derivative of Iout with respect to tdc, equating it to zero, and solving
for tdc. In doing so, we observe that ∂ IRX/∂tdc = 0, ∂ IINT/∂tdc = 0, and ∂ ICPU/∂tdc = 0, as
they do not depend on tdc. This leads to

∂ Iout(tU, tdc)
∂tdc

= ∂

∂tdc
(ITX(tU, tdc) + ICCA(tU, tdc) + IOFF(tU, tdc)) = 0

⇒ t∗
dc(tU) =

√
d6/tU + d5

d1/tU + d3
, (18)

where coefficients d1, d3, d5, and d6 are given in Table X.
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Fig. 5. Dashed lines represent Iout(tU, tdc) as a function of tdc, considering a fixed interpacket transmission
time tU ∈ {5, 10, 25} seconds. The locus of the optimal solutions t∗dc, obtained through Equation (18), is plotted
as a solid line.

To illustrate the behavior of Equation (18), in Figure 5 we show Iout by varying tdc
and keeping tU fixed in the set tU ∈ {5, 10, 25} seconds (see dashed lines). The locus
of the optimal solutions t∗

dc, obtained through Equation (18), is plotted as a solid line.
The closed form for the optimal tdc crosses Iout (without collisions) where the latter is
minimized, as requested.

At this point, it is possible to replace tdc with t∗
dc(tU) in Iout(tU, tdc) (see Equation (16))

expressing the output current as Iout(tU, t∗
dc(tU)), which becomes a function of the single

independent variable tU. Since fU increases with Iout, the maximum achievable fU for
a given target current u is obtained at the equality point Iout(tU, t∗

dc(tU)) = u.
Also, u cannot be increased indefinitely, because, beyond a given threshold

tU ≤ tlim
U , the problem becomes bound by the frequency constraint rIDLE ≥ 0. In this re-

gion, the system drains the maximum current umax, which cannot be further increased
as the channel is saturated. tlim

U is the smallest feasible interpacket transmission
time for the considered system and can be analytically derived by observing that the
optimality condition (see Equation (18)) and the frequency constraint rIDLE(tU, tdc) = 0
must concurrently hold for tU = tlim

U . Thus, from rIDLE(tlim
U , tdc) = 0, we obtain the

relationship between tlim
U and tdc, that is, tlim

U (tdc) = (a1tdc + a11)/(a10 − a3tdc), whereas
replacing tU with tlim

U in Equation (18) leads to tlim
dc = t∗

dc(t
lim
U ). Using tlim

U (tlim
dc ) in place

of tlim
U in the latter equation returns a third-order polynomial in the only variable tlim

dc ,
which allows the calculation of tlim

dc and, in turn, of tlim
U . The coefficients {a1, a3, a10, a11}

are given in Table IX, whereas the involved mathematical derivations are detailed
in Appendix C. Computing Iout(tU, tdc) for (tlim

U , tlim
dc ) returns the maximum current

that can be consumed by the bottleneck node using an optimal configuration, that is,
Ilim
out = Iout(tlim

U , tlim
dc ). The maximum control is therefore given by umax = Ilim

out .
Conversely, there is a minimum current Imin

out that has to be drained in order to keep
the system running and operational. Imin

out is found as Imin
out = limtU→+∞ Iout(tU, t∗

dc), which
amounts to solely considering the energy consumption due to the periodic transmission
of control traffic (taken into account through trpl). The minimum energy consumption
also corresponds to the smallest control action umin = Imin

out .
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Fig. 6. Comparison between closed-form and exact solution of Equation (17). The dashed line shows the
results obtained with the closed-form solution considering a collision-free channel, the dots represent the
numerical solution of the problem with collisions, and the solid line corresponds to the closed-form solution,
heuristically adapted to keep collisions into account. In addition, the constraint rIDLE(tU, tdc) = 0 is also
shown (crosses indicate the exact bound obtained numerically, the dash-dotted line is obtained using the
heuristically adapted closed-form).

Finally, the optimal working point, t∗
U, is found as the solution of Iout(tU, t∗

dc(tU)) = u
with u ∈ [umin, umax], which can be expressed as

(t∗
U, t∗

dc) =

⎧⎪⎨
⎪⎩

(+∞,
√

d5/d3) if u < umin

(t∗
U, t∗

dc(t
∗
U)) if umin ≤ u ≤ umax

(tlim
U , tlim

dc ) if u > umax,

(19)

where t∗
U is the positive solution of the quadratic equation e2t2

U + e1tU + e0 = 0 and tlim
dc

is the largest solution of the cubic equation f3t3
dc + f2t2

dc + f1tdc + f0 = 0. The reader
is referred again to Appendix C for mathematical insights and the definition of the
coefficients (see Table X).

Figure 6 shows the optimal operating point (t∗
U, t∗

dc) by varying the control u as the
independent parameter. The dashed line corresponds to the result of Equation (17)
for a collision-free channel, the white-filled circles represent the numerical results of
the complete problem with collisions, and the solid line shows the results achieved
from the closed-form solution, which has been adapted through a heuristic to keep
collisions into account. In addition, the crosses and the dash-dotted line illustrate the
solution of rIDLE(tU, tdc) = 0 obtained for the complete problem and using the closed-form
heuristically modified, respectively.

The adopted heuristic is a rigid translation of the closed form for a collision-free
channel so that the latter equals the numerical solution with collisions for the maxi-
mum allowed control umax. The error introduced through this approach is very small
for high values of u and increases for decreasing u. However, this error is negligible
throughout most of the solution space, as it grows slower than tU does and it always
provides a feasible solution for the system.

Finally, in Figure 7, we plot the reward function:

r(u) = 1/t∗
U(u). (20)
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Fig. 7. Reward function r(u) for different network topologies.

Table V. Network Parameters
R is the radio coverage range.

N ρ [nodes/R2] nc [nodes] ni [nodes] nint [packets]
3-hop sparse 15 0.53 5 4 16
3-hop medium 25 0.88 5 8 32
3-hop dense 38 1.35 5 13 54
5-hop sparse 42 0.53 15 4 48
5-hop medium 68 0.86 15 8 96
5-hop dense 106 3.23 15 13 160

Table VI. System Parameters

ton tdata tint tcpu trpl it ir ic is
6 ms 14 ms 10 ms 40 ms 6 h 14 mA 12.3 mA 42 mA 31 μA

r(u) corresponds to the maximum achievable throughput for the given multihop net-
work. In Figure 7, we show results for dense, medium, and sparse networks (rep-
resented with squares, circles, and triangles, respectively) of three and five hops
(solid and dashed lines, respectively). The parameters of these networks are given in
Table V, where N is the total number of nodes and ρ is the network density. Increasing
the number of hops has a much larger impact on the reward function than increas-
ing the node density. All the graphs of this article have been obtained considering a
sensor platform characterized by the energy consumption and timing parameters of
Table VI. The optimal throughput of Equation (20) will be used in Section 6 as the
reward function for problem P2, which considers a stochastic energy source.

5. OPTIMIZATION FRAMEWORK

The objective of the following sections is to solve problem P2, which translates into
finding optimal and online energy consumption strategies for the sensor nodes, given
the energy consumption model (see problem P1), their current energy reserve, and a
statistical characterization of future energy arrivals (i.e., of the energy source S). This
requires one to link the energy consumed to that harvested and to the instantaneous
energy buffer state. In the analysis that follows, we assume that the amount of charge in
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Table VII. Symbols Used in the Energy Source Model

xs ∈ S energy source state xs and the set of all energy states, S.
tk, �k transition time tk and epoch duration �k.
τxs , fτ (t|xs) r.v. and pdf describing the permanence time in state xs.
ιxs , fι(i|xs) r.v. and pdf describing the current harvested in state xs.
pij transition probabilities of the source model’s embedded Markov chain.
δ = δin − δout r.v.s. describing the total variation (δ), the harvested (δin),

and the consumed (δout) charge in a decision epoch.
fδ(d|u, xs) pdf of the variation of charge in state xs when the control is u.

the energy buffer is a known quantity or, equivalently, that it can be reliably estimated
at the sensor nodes. Based on this, we formulate our optimal control as a Markov
Decision Process (MDP). We observe that heuristic approaches, which base their energy
consumption policies on energy estimates, are also possible but are not considered here
and are left as a future work. Nevertheless, in Section 7.2, the performance of the
obtained policies is compared against that of heuristic solutions from the literature.

Here, we present the stochastic model that will be used to describe the source S, as
per our sensor diagram of Figure 1. This will be used in Section 6 to solve problem P2.
The resulting energy management policies are validated in Section 7.

In Table VII, we define the symbols used in this section.

Energy source: The energy source dynamics are captured by a continuous-time
Markov chain with NS states xs ∈ S = {0, 1, . . . , NS − 1}. We refer to tk, with k ≥ 0, as
the time instant where the source transitions between states and to �k = tk−tk−1 as the
time elapsed between two subsequent transitions. Also, the system between tk−1 and tk
is said to be in stage k, and its duration �k is described by an r.v. τxs ∈ [tmin(xs), tmax(xs)],
depending on the source state xs in the stage. τxs has an associated probability dis-
tribution function (pdf) fτ (t|xs). Moreover, during stage k, the source provides a con-
stant current ik that is fed into the battery and is assumed to remain constant until
the next transition, occurring at time tk. This input current is described by the r.v.
ιxs ∈ [imin(xs), imax(xs)] with pdf fι(i|xs). We assume that τxs and ιxs have bounded sup-
port. pij = Prob{xs(k) = j|xs(k − 1) = i} with i, j ∈ S are the transition probabilities of
the associated embedded Markov chain, which are invariant with respect to k.

Discrete-time formulation: We describe the energy source model through an
equivalent discrete-time Markov process. This will make it possible to conveniently
characterize the optimal policies through a Discrete-Time Constrained Markov Deci-
sion Process (DT-CMDP) in Section 6. For improved clarity of exposition and concise-
ness, in the remainder of this article we omit the time index k from the symbols, unless
explicitly stated otherwise.

To describe the energy source through a discrete-time model, for any given k, we
map the random nature of the stage duration into the corresponding variation of
charge during the stage. To do this, we define the two r.v.s δin and δout that respectively
describe the amount of charge that enters the system during the stage (stored in the
energy buffer) and the amount of charge consumed by the sensor node. δ = δin − δout is
the r.v. describing the overall variation of charge during the stage. We recall that u is
our control variable, corresponding to the current drained by the sensor node during
the stage. u for a given policy is a known quantity and it will be considered as a constant
in the following derivations. We have that

δin = τ ι, δout = τu, δ = δin − δout = τ (ι − u). (21)

Hence, the r.v. δ is obtained as the product of the two r.v.s τ and ι − u. From the theory
in Papoulis and Pillai [2002], the pdf of δ when the source is in state xs and the control
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Table VIII. Symbols Used in the MDP Analysis

xb ∈ B = [0, bmax] buffer state xb, buffer state set B, and buffer size bmax.
x = (xs, xb) ∈ X = S × B system state x in the current decision epoch, system state set X ,

source state set S, and buffer state set B.
y = (ys, yb) ∈ X system state in the next decision epoch.
u ∈ U = [umin, umax] action (control) u and action set U .
π , μ policy π and mapping μ between states x and actions u.
r(u) reward associated with action u.
R(x, u), C(x, u) single-stage expected reward R(x, u) and cost C(x, u).
JR(x), JC (x) optimal expected reward JR(x) and cost JC (x).
Cth threshold on the cost for the admissibility of the solution.
α discount factor.
λ, Lλ(x, u) Lagrangian multiplier λ and Lagrangian reward Lλ(x, u).

is u, fδ(d|u, xs), is obtained as:

fδ(d|u, xs) =
∫ tmax(xs)

tmin(xs)
fτ (t|xs) fι(d/t + u|xs)|t|−1dt , d ∈ R. (22)

Henceforth, the energy source is equivalently characterized by a discrete-time Markov
chain with NS states and transition probabilities pij , i, j ∈ S. Moreover, when the
current state is xs ∈ S and the control is u, the corresponding variation of charge
during a stage is accounted for by the r.v. δ with pdf given by Equation (22).

6. MARKOV DECISION PROCESS ANALYSIS

This section presents our analysis of the outer optimization problem P2, which is
framed as a Markov Decision Process. For improved clarity, this analysis is split
into four subsections: in Section 6.1, we define the basic ingredients of the MDP; in
Section 6.2, we formulate the optimal policy, discussing its properties and detailing an
algorithm for its computation (see Section 6.3). Finally, in Section 6.4, we report our
considerations on computational complexity and on the usage model for the computed
policies. The list of symbols used in the MDP analysis is given in Table VIII.

6.1. Definitions

We consider the sensor system of Figure 1 and we assume without loss of generality
that the system evolves in discrete time. Hereafter, at time k ≥ 0, the system is said
to be in stage k and the terms “time” and “stage” will be used interchangeably in the
following analysis. The source S feeds energy into the energy buffer B and is modeled
according to the discrete-time Markov chain presented in the previous section. At any
time k, the source S is in a certain state xs, whereas the energy buffer hosts an amount
of charge xb ∈ B = [0, bmax], where bmax is the buffer capacity. At the generic time k, we
define the system state as x = (xs, xb) ∈ X , where X = S × B. The system state at the
following time k + 1, defined as y = (ys, yb) ∈ X , depends on the dynamics of S, on the
control u for the current stage k, and on the total variation of charge δ during stage k.
For the battery at the beginning of the next stage k + 1, yb, we have

yb = min{max{xb + δ, 0}, bmax} = [xb + δ]+, (23)

where δ is expressed in Equation (21) and depends on the control u for the current
stage k, whereas [a]+ is defined as [a]+ = min{max{a, 0}, bmax}, with a ∈ R.

We model the sensor system through a discrete-time MDP. At every stage k, a decision
uhas to be made based on the current state x ∈ X . In addition to the system state and its
dynamics, a Markov decision process is characterized by a control set U = [umin, umax],
where umin = Imin

out and umax = Ilim
out . U contains all the feasible current consumption
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levels for the sensor (see Section 4). In this article, we consider mixed and stationary
Markov (i.e., history-independent) policies. The term mixed means that there exists
a mapping μ that, for any possible state x ∈ X , returns a vector of pairs (u(i), p(i)),
of size M ≥ 1, with

∑M
i=1 p(i) = 1. This vector represents the decision to be made

when the system state is x and indicates that control u(i) must be implemented with
the associated probability p(i). A mixed policy π is a collection of such mappings π =
{μ0, μ1, μ2, . . . } for all stages. Our problem belongs to the class of MDPs with unichain
structure, bounded costs, and rewards. For these, it is sufficient to consider the set of
admissible Markov policies as the optimal policy can always be found within this class;
see Derman and Strauch [1966] and Altman [1999], or Theorem 13.2 of Feinberg and
Shwartz [1995]. The boundedness of rewards and costs follows from the finite support
of τ , ι, and from the fact that the instantaneous reward function is also bounded. Thus,
for the problem addressed in this article, it is sufficient to restrict our attention to
Markov stationary policies, which means that μk only depends on the system state at
time k (past stages 0, . . . , k − 1 are not considered) and that the mapping functions do
not depend on k, that is, π = {μ,μ,μ, . . . }.

Reward: The reward function takes into account the throughput of the system.
Specifically, from the derivations in Section 4, we know that for a given control u
the optimal instantaneous throughput of a sensor node is given by r(u), as defined in
Equation (20). Now, let x = (xb, xs), with x ∈ X , be the system state at the beginning of
a generic decision stage k. Moreover, let t and i respectively represent the realization
of the r.v. τxs , describing the duration of the stage, and the realization of the r.v. ιxs ,
quantifying the input current from the source. Taking Equation (21) into account and
recalling that the input current i and the control u are both constant during the stage,
we have that the amount of charge varies linearly within a stage until it either hits
the buffer capacity bmax or drops to 0, depending on the sign of i − u. Hence, during the
stage, the total variation of charge is d = t(i − u) (see Equation (21)) and the amount
of time the level of charge in the energy buffer is greater than zero is given by the
following function:

g>0(d, t, u, xb) =
⎧⎨
⎩

t d ≥ 0

min
{−xbt

d
, t

}
d < 0.

(24)

Furthermore, as long as the buffer level is above zero, the throughput remains constant
and equal to r(u), whereas it drops to zero in case the energy buffer gets empty. Given
this, the single-stage expected reward, when the system state at the beginning of the
stage is x = (xb, xs) and the control is u, is computed as

R(x, u) = E[r(u)g>0(ξ, t, u, xb)|x, u]

=
∫ +∞

−∞

∫ tmax(xs)

tmin(xs)
r(u)g>0(ξ, t, u, xb) fτ (t|xs) fι(ξ/t + u|xs)|t|−1dtdξ

= r(u) E[g>0(d, t, u, xb)|x, u], (25)

where E[g>0(d, t, u, xb)] represents the average amount of time the energy buffer con-
tains a positive amount of charge during the stage. In the previous equation, r(u)
remains constant during a stage when u is given. The actual average throughput is
then modulated through the average amount of time the energy buffer state is greater
than zero in the stage, that is, E[g>0(d, t, u, xb)|x, u].

Cost: For the cost, we account for a penalty whenever the energy buffer drops below a
given threshold bth ∈ (0, bmax]. This threshold is a design parameter that may be related
to the minimum energy reserve that is required to keep the system operational and
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responsive. Also, bth is in general implementation dependent, and besides depending
on application requirements, it depends on hardware constraints. In fact, too low a
charge may not be sufficient to guarantee the correct operation of the sensor nodes.

The cost is obtained as the average time spent with the energy buffer level below
bth. The amount of time the energy buffer level is below bth is given by the following
function:

g<bth (d, t, u, xb) =

⎧⎪⎪⎨
⎪⎪⎩

max
{

0, min
{

(bth − xb)t
d

, t
}}

d ≥ 0

min
{

max
{

0,

(
1 − (bth − xb)

d

)
t
}

, t
}

d < 0.

(26)

Hence, the single-stage expected cost when the system state at the beginning of the
stage is x = (xb, xs) and the control is u is obtained as

C(x, u) = E[g<bth (ξ, t, u, xb)|x, u]

=
∫ +∞

−∞

∫ tmax(xs)

tmin(xs)
g<bth (ξ, t, u, xb) fτ (t|xs) fι(ξ/t + u|xs)|t|−1dtdξ. (27)

6.2. Optimal Policy: Formulation

We now formulate our optimal control problem as a DT-CMDP. The total expected
reward that is earned over an infinite horizon by a feasible policy π is expressed as

JR(xo) = lim
N→+∞

E

[
N−1∑
k=0

αkR(x(k), u(k))

∣∣∣∣∣ x(0) = xo, π

]
, (28)

where α ∈ [0, 1) is the discount factor, x(k) and u(k) are respectively the system state
and the control at stage k, and xo is the initial state. If we disregard the cost, having
the sole objective of maximizing the throughput (reward), the optimal policy is the one
that solves the following Bellman optimality equation:

JR(x) = max
u∈U

⎧⎨
⎩R(x, u) + α

∑
ys∈S

pxs ys

∫ +∞

−∞
fδ(ξ |u, xs)JR(y)dξ

⎫⎬
⎭ ,

with: y = (yb, ys), yb = [xb + ξ ]+, (29)

where if the current state is x, JR(x) represents the optimal expected reward from the
current stage onward and is obtained, maximizing over the admissible controls, by the
sum of the single-stage expected reward (the immediate reward, accrued in the present
stage) and the expected optimal reward from the next stage onward (where future
rewards JR(y) are weighted accounting for the system dynamics, i.e., fδ(·) and pxs ys ).
Equation (29) can be solved through Value Iteration (VI), as detailed in Section 1.3.1 of
Bertsekas [2012]. In short, VI amounts to using Equation (29) as an update rule, which
is iterated for all states starting from an initial estimate of JR(x).3 It can be shown that
the optimality equation JR(x) is a contraction mapping. This property ensures that the
VI iterations converge, at which point the optimal estimates JR(x) computed in the
previous step equal the new ones, which are obtained using the right-hand side (RHS)
of Equation (29). Hence, the optimal policy, for any given x ∈ X, is given by the control u
that maximizes the RHS of Equation (29). Note that the optimal control corresponding
to Equation (29) is a pure policy whereby a single control u is associated with each state

3Setting JR(x) = 0, ∀ x in the first iteration of the algorithm also ensures convergence.
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x ∈ X ; that is, there exists a mapping function μ(x) such that u(x) = μ(x) for each state
x ∈ X and u(x) is unique for each x.

Analogously, solely taking the cost into account, the total expected and discounted
cost of a given policy π for an initial state x is obtained as the solution of the following
Bellman equation:

JC(x) = max
u∈U

⎧⎨
⎩C(x, u) + α

∑
ys∈S

pxs ys

∫ +∞

−∞
fδ(ξ |u, xs)JC(y)dξ

⎫⎬
⎭ ,

with: y = (yb, ys), yb = [xb + ξ ]+. (30)

The DT-CMDP problem for our controlled sensor node is thus written as follows:

Problem P2:

maximize
π

Ex[JR(x)|π ]

subject to: Ex[JC(x)|π ] ≤ Cth, (31)

where the maximization is taken over the set of all feasible policies and Ex[·] represents
the expectation taken with respect to the steady-state distribution of x ∈ X induced
by policy π . Cth is a positive constant and a policy is termed feasible if its average cost
satisfies the constraint of Equation (31). For the selection of Cth, note that, as shown
in Altman [1999], the average cost per stage corresponding to a total expected cost Cth
and a discount factor α is obtained as C ′

th = Cth(1 − α). Moreover, from the definition of
the cost (see Equation (26)), this quantity corresponds to the average amount of time in
a stage where the amount of charge in the energy buffer is below bth. Thus, dividing C ′

th
by the average stage duration, T = E[τxs ], returns the maximum tolerable fraction of
time in a stage during which the amount of charge in the energy buffer can be smaller
than bth; that is, a buffer outage occurs. Thus, the average fraction of time in a stage
that the buffer is in outage is found as

tout = Cth(1 − α)
T

. (32)

This relation facilitates the tuning of Cth, associating it to a tangible concept.
The inequality constraint in Equation (31) limits the maximum energy consumption

by imposing a maximum expected cost Cth. The optimal policy is thus tunable through
α and Cth. The former determines how much we look ahead in the optimization; for
instance, α = 0 represents a myopic decision maker where the control is uniquely cho-
sen based on the current stage and the future system evolution is disregarded. Higher
values of α generate optimal policies with better look-ahead capabilities. In particular,
as α → 1, the associated optimal policies converge to the policy that maximizes the
average reward over an infinite time horizon; see White [1993]. Instead, decreasing Cth
generates less aggressive policies, which will be more parsimonious in the consumption
of the energy stored in the buffer.

6.3. Optimal Policy: Computation

From the analysis in Beutlerand and Ross [1985] (Theorem 4.3) and Altman [1999]
(Theorem 12.7), we know that Equation (31) can be solved through the definition of a
Lagrangian reward Lλ(x, u) (referred to as Lagrangian relaxation):

Lλ(x, u) = R(x, u) − λC(x, u), (33)

where λ ≥ 0 is the Lagrangian, whereas R(x, u) and C(x, u) are respectively defined
in Equations (25) and (27). Thus, we define an unconstrained discounted problem
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depending on λ and having the following Bellman optimality equation:

Jλ(x) = max
u∈U

{Q(x, u, λ)},

with: Q(x, u, λ) def= Lλ(x, u) + α
∑
ys∈S

pxs ys

∫ +∞

−∞
fδ(ξ |u, xs)Jλ(y)dξ,

and: y = (yb, ys), yb = [xb + ξ ]+. (34)

For a fixed λ, Equation (34) represents a standard discrete-time Markov Decision
problem and can be solved through VI obtaining the corresponding pure optimal policy
πλ. For a given λ, the function Jλ(x) returns the optimal Lagrangian reward associated
with the optimal policy πλ. We denote the expected log-term Lagrangian reward of this
optimal policy by Jλ = Ex[Jλ(x)|πλ], where the expectation is taken over the steady-
state distribution of x induced by the optimal policy πλ.

Intuitively, considering Equation (33), one can easily see that an increasing λ puts
more weight on the cost C(x, u), making the policy more conservative, while a smaller
λ will instead put more weight on the reward R(x, u), giving a higher priority to the
throughput. These facts are used in the algorithm later to exploit λ to search within
the solution space. The optimal λ is the one that achieves the maximum reward while
leading to an average cost smaller than or equal to Cth; see Equation (31).

Next, we propose an efficient algorithm that exploits a dichotomic search over λ.
Note that this search strategy is possible because, as proven in Lemmas 3.1 and 3.2 of
Beutlerand and Ross [1985], for our discounted MDP, the optimal Lagrangian reward
Jλ(x) is a uniformly absolutely continuous, monotone, and nonincreasing function of λ.
This means that the reward Jλ(x) is well behaved as a function of λ; that is, it does not
have local minima or maxima.

Moreover, the results in Beutlerand and Ross [1985] (see Theorems 4.3 and 4.4) guide
us in the search for the optimal λ. In fact, for the optimal policy, there can only be the
following two possibilities: (1) an optimal λ, termed λ∗, exists such that the average
cost of πλ∗ is equal to Cth, and in this case, πλ∗ is the optimal policy that we are looking
for and belongs to the class of pure policies; or (2) there exist two values of λ, say, λ−
and λ+ with λ− < λ+, for which the cost of πλ− is larger than Cth, whereas that of πλ+ is
smaller than Cth, and the two policies differ in at most one state and the optimal policy
we are looking for is a mixed policy that consists of using, at every decision epoch, πλ−

with a certain probability p and πλ+ with probability 1 − p. Case 2 is always verified,
even when a pure policy exists, whereas a pure policy may or may not exist, depending
on the structure of the MDP.

Given this, our algorithm seeks a mixed policy that maximizes the total expected
Lagrangian reward Jλ = Ex[Jλ(x)|πλ] while satisfying the constraint Ex[JC(x)|πλ] ≤
Cth, where we define Cλ = Ex[JC(x)|πλ]. The algorithm is described next:

(1) Pick the initial values for λ− and λ+, where λ+ is a small value for which Cλ− > Cth
and Cλ+ is such that Cλ+ < Cth.

(2) Compute λ = (λ+ + λ−)/2 and apply VI to Equation (34) for this λ. This returns the
optimal Lagrangian reward function Jλ(x) (∀ x ∈ X ), which is the unique solution
of Equation (34). Once Jλ(x) is known, the associated optimal policy πλ is described
by the mapping u(x) = μλ(x), where:

μλ(x) = argmax
u∈U

{Q(x, u, λ)}, (35)

where Q(x, u, λ) is defined in the second line of Equation (34).
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(3) Obtain the stationary distribution of x induced by πλ, referred to as P(x), which is
computed by numerically solving the recursion

P(y) =
∫

x∈X
P(x) f (y|x, u(x))dx (36)

under the constraint
∫

x∈X P(x)dx = 1, where P(x) represents the steady-state dis-
tribution evaluated in state x = (xb, xs) ∈ X , whereas f (y|x, u(x)) is the conditional
probability distribution function that the system moves to y = (yb, ys) ∈ X at
the end of a given stage, given that the initial state is x and the action taken is
u(x) = μλ(x). For our problem, Equation (36) specializes to

P(y) =
∑
xs∈S

pxs ys

∫
xb∈B

P(x)
∫

I(xb,yb)
fδ(ξ |μλ(x), xs)dξdxb, (37)

where x = (xb, xs), y = (yb, ys) and I(xb, yb) = {yb − xb} if yb > 0 and b < bmax,
whereas I(xb, yb) = [yb − xb,+∞) if yb = bmax and I(xb, yb) = [−∞, yb − xb] if yb = 0.

(4) At this point, the average long-term cost performance JC(x) associated with policy
πλ is obtained by solving Equation (30) through VI, where maxu∈U is replaced with
maxu∈{μλ(x)}, which means that the single optimal action μλ(x) is used in place of set
U , so the maximization reduces to the evaluation of the RHS of Equation (30) for the
optimal action only. Now, using P(x) and JC(x), we obtain the expected long-term
discounted cost Cλ as

Cλ = Ex[JC(x)|πλ] =
∫

x∈X
P(x)JC(x)dx. (38)

(5) Now, we can have three cases: (C1) Cλ = Cth, (C2) Cλ < Cth, or (C3) Cλ > Cth.
In case C1, the algorithm terminates and the optimal policy is the pure policy πλ.
Otherwise, the algorithm continues as follows. In case C2, we update λ+ as λ+ = λ,
whereas in case C3, we set λ− = λ and we initiate a new iteration, going back to
step (2) earlier, using the new values of λ− and λ+ (which represent our dynamically
adapted search interval). If, instead, the difference between Cλ− and Cλ+ is smaller
than a small constant ε > 0, the algorithm stops returning πλ− , πλ+ , and the value
of the mixing probability p, which is obtained as follows:

pCλ− + (1 − p)Cλ+ = Cth ⇒ p = Cth − Cλ+

Cλ− − Cλ+
. (39)

Hence, the optimal policy that solves Equation (31) is a mixed policy that, at the
beginning of each stage, uses policy πλ− with probability p and policy πλ+ with
probability 1 − p.

6.4. Optimal Policy: Complexity and Usage

Let ε be the desired numerical precision. The number of iterations involved in the
dichotomic search for the optimal λ is O(log2(λmax/ε)), where λmax is the upper end
of the related search interval. A tight upper bound on the complexity of the value
iteration algorithm (see Equation (35)), which is executed once for each value of λ, is
O(1/((1−α)2ε)2n+m), where in our case n = 2 and m = 1; see Chow and Tsitsiklis [1989].
The complexities associated with solving Equations (36) and (38) are dominated by
that of value iteration.

In general, the proposed algorithm substantially reduces the complexity associated
with finding the optimal policy, which would be infeasible through an exhaustive search.
Although the computational complexity is rather high, the energy management policies
neither have to be computed at runtime nor have to be obtained by the sensor nodes.
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Instead, we propose the following. First of all, for the considered location, time of
year, and type of solar module, we must derive an energy source model according to the
procedure described in Section 5 (see also Miozzo et al. [2014]). This model must then
be used with the algorithm of Section 6.3 to obtain online optimal energy management
policies for the considered settings. This algorithm is executed offline and only once for
a given source model. The resulting policies will correspond to simple tables associating
the (quantized) amount of charge in the battery with a corresponding optimal action
(control u). Note that they can be conveniently stored in memory arrays, preloaded
into the nodes’ memory, and looked up in O(1) time. Also, note that the policies will be
nondecreasing piecewise linear functions of the battery state xb and, as such, a further
compression of the memory required for their storage is possible through numerical
fitting.

The sensor nodes will only have to execute at runtime the action dictated by the
current policy, which corresponds to retrieving the optimal action from the policy table.

7. NUMERICAL RESULTS

In this section, we comment on the numerical results of the solution of the combined
optimization described in Section 2, which includes P1, which finds a suitable reward
function r(u) (throughput as a function of the energy consumption u), and P2, which
uses r(u) to obtain optimal online energy management policies that maximize the
throughput while keeping the bottleneck node (and, as a consequence, all other nodes
in the network) energetically self-sufficient. In particular, Section 7.1 discusses the
general behavior of the optimal policies; Section 7.2 provides simulation results on
their throughput and outage time, comparing our solution with that proposed in Kansal
et al. [2007]; Section 8.1 discusses the robustness of our solution when the amount of
charge harvested by the sensor nodes differ; and Section 8 considers the relaxation of
further assumptions.

Network setup: In the following subsections, we consider a network of N = 48
sensor nodes that transmit their data to a sink through a multihop topology of five
hops. Problem P1 for this network has been solved in Section 4, where it is referred
to as “five-hop medium-network.” The corresponding reward function r(u) is plotted in
Figure 7 and the corresponding network parameters are given in Table V.

For the energy inflow, we have considered a photovoltaic outdoor power source, adopt-
ing the framework of Miozzo et al. [2014] with two states xs ∈ S = {0, 1}, where xs = 0
is the high-energy state (i.e., modeling daytime), and xs = 1 is a state where the energy
harvested is nearly zero (night). For the transition probabilities, we have pij = 1 if
i �= j and pij = 0 if i = j with i, j ∈ S. The probability distribution functions fι(i|xs)
and fτ (t|xs) are derived using the SolarStat tool as detailed in Miozzo et al. [2014] using
their “night-day clustering approach.” We have selected Los Angeles as the installa-
tion location, considering a tilt of 45◦ and an azimuthal displacement with respect to
the real South of 30◦ for the solar panels (Solarbotics SCC-3733 Monocrystalline solar
technology [Solarbotics Ltd. 2013]). Irradiance data from years 1999–2010 available at
National Renewable Energy Laboratory [2013] have been employed for the calculation
of fι(i|xs) and fτ (t|xs).

For the characterization of the optimal policies, we have considered square solar pan-
els with sides going from 3 to 12 centimeters (in steps of 1 centimeter), considering the
irradiance data collected for the months of August and December as these respectively
correspond to the best and worst case in terms of amount of energy harvested.

The energy buffer size has been taken in bmax ∈ {100, 250, 500, 1,000}mAh, whereas
the buffer threshold has been set to bth = 50mAh, imposing an outage of 1%, that is,
tout = 0.01 (see Equation (32)).
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Fig. 8. Optimal policy u(x) = μ(x) and associated steady-state distribution P(x) for the energy state xs = 0,
α ∈ {0.01, 0.5, 0.9}, bmax = 250mAh, bth = 50mAh.

Fig. 9. Optimal policy u(x) = μ(x) and associated steady-state distribution P(x) for the energy state xs = 1,
α ∈ {0.01, 0.5, 0.9}, bmax = 250mAh, bth = 50mAh.

7.1. Evaluation of the Policies

As an illustrative example, in Figures 8 and 9, we show the optimal action u(x) = μ(x)
and P(x), where μ(x) is defined as μ(x) = pμλ−(x)+ (1− p)μλ+(x) and P(x) is the steady-
state distribution induced by the optimal policy; see Section 6. Note that the policies
shown in these figures are all feasible as they satisfy the cost constraint while also
providing the maximum possible throughput for the corresponding value of the discount
factor α. For these plots, we have considered α ∈ {0.01, 0.5, 0.9}, a maximum buffer size
bmax = 250mAh, bth = 0.2bmax = 50mAh, and tout = 0.01.

With α = 0.9 and xs = 0 (see Figure 8(a)), the optimal policy does not transmit when
the buffer state xb is below or close to bth, whereas for higher values of xb, the optimal
action u(x) increases linearly. With our network parameters, the maximum energy
consumption is umax � 34mA, which for the considered example is never reached by
the optimal policy with α = 0.9, even for a full buffer. This is due to the constraint on
the minimum buffer level. To see this, we recall that the sensor node has to make its
decision u(x) at the beginning of each stage and the amount of energy that will actually
be harvested during the stage is only known statistically through fι(i|xs) and fτ (t|xs).
In our case, for xs = 0 and xb = 100%, picking u(x) = umax would lead to a violation of
the constraint on the buffer. In fact, the optimal policy for each xb picks the maximum
u(x) that, on average, satisfies the constraint with equality. For this example, this value
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Fig. 10. Optimal policy u(x) = μ(x) and associated steady-state distribution P(x) for the energy state xs = 0,
α = 0.9, bmax ∈ {100, 250, 500, 1,000}mAh, bth = 0.2bmax.

for xb = 100% is about 24mA (referred in the following as maximum admissible energy
expenditure). This means that in the very favorable cases, where the energy inflow is
abundant, the optimal policy may leave some of the harvested energy unused (energy
wastage). As we discuss shortly, this is avoided by increasing the buffer size bmax.

By looking at the steady-state distribution for xs = 0 and α = 0.9 (see Figure 8(b)),
we observe that P(x) remains low for xb < bth and is instead maximum for xb = bmax.
This means that adopting the optimal policy allows the nodes to maximize the time
spent with a full buffer and operating according to the maximum admissible energy
expenditure. For state xs = 1, we see that the optimal policy spends the minimum
allowed energy consumption, umin, which corresponds to the energy required to keep
the network operational, Imin

out . In this way, the network saves energy during the low-
energy state (xs = 1), resuming the transmission of data packets in the high-energy
state (xs = 0). To summarize, each energy management policy induces a steady-state
distribution of the buffer state. The optimal policy in this case makes it so that the
steady-state probability of operating with a full buffer is maximized when the system
is in the high-energy state (see Figure 8(a)); this is a desirable property as the sensor
nodes can then maximize the time during which the maximum admissible energy
expenditure is allocated. On the other hand, in the low-energy state, the node will only
allocate umin. This leads to a modest energy consumption, which, in turn, implies that
the steady-state distribution of the buffer state is preserved during the low-energy
state (e.g., night) so that the node at the beginning of the next high-energy state (e.g.,
day) has a full buffer and can transmit right away using the maximum allowed rate.

As discussed in Section 6, a small α corresponds to a greedy transmission behavior.
This is evident from the policies in Figures 8(a) (xs = 0) and 9(a) (xs = 1) for α ∈
{0.01, 0.5}. The increased greediness reshapes the steady-state distribution P(x). In
particular, for α ∈ {0.01, 0.5} and xs = 0, P(x) assumes negligible values when xb > 50%.
Hence, although the optimal policies would dictate to transmit using umax for these
values of xb, the time spent in these states is negligible. As a result, the throughput
achieved by the greedier policies is smaller (the throughput reduction is as large as
23% for the considered example).

In Figures 10 and 11, we look at the same performance for a fixed discount factor
α = 0.9 and a varying buffer size bmax ∈ {100, 250, 500, 1,000}mAh. In particular, from
Figure 10(a), we observe that the buffer size greatly affects the shape of the optimal
policy. In fact, an increasing bmax also implies that the excess energy that is harvested
during a stage can always be accumulated. Also, whenever the buffer is full or above
50/60%, with large buffers it is possible to transmit allocating the maximum energy
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Fig. 11. Optimal policy u(x) = μ(x) and associated steady-state distribution P(x) for the energy state xs = 1,
α = 0.9, bmax ∈ {100, 250, 500, 1,000}mAh, bth = 0.2bmax.

consumption umax, as the buffer is sufficiently large to ensure that the constraint will
be satisfied at the end of the stage, irrespective of the amount of energy that will be
harvested. While a big leap in performance is observed as we go from bmax = 100mAh
to bmax = 500mAh (the throughput is about three times larger), increasing bmax to
1,000mAh only leads to marginal throughput improvements, smaller than 10%. This
is because a buffer size of 500mAh is already sufficient to absorb unexpected energy
peaks during the day (therefore minimizing the energy wastage) and to allow for the
consumption of the maximum current umax while satisfying the buffer constraint. The
fact that a buffer of 500mAh suffices in our scenario is also shown by the steady-
state distribution in Figure 10(b), where we see that a buffer size of 1, 000mAh has a
negligible probability of getting filled beyond 58%. Finally, we discuss the impact of bth.
The energy buffer is allowed to decrease below this threshold to an extent controlled by
tout (see Equation (32)). When tout → 0, optimal policies effectively maintain the buffer
above bth, and this is equivalent to having a reduced battery capacity (of size bmax −bth).
This, in turn, leads to less aggressive policies (see Figure 10(a)) that result in a smaller
throughput. As an example, for the considered setup and bmax = 500, when bth goes
from 100 to 300, we observe a throughput reduction of about 35%. This reduction is
nonlinear in bmax − bth (a linear relation would imply a reduction of 50%).

7.2. Performance Analysis

In this section, we evaluate the performance of the proposed solution focusing on
a single network instance and considering the setup discussed at the beginning of
Section 7. Also, we implemented the technique proposed in Kansal et al. [2007], re-
ferred to here as “Kansal,” comparing it against our approach for the same network
topology and energy arrival trace, obtained from real data for the city of Los Ange-
les; see Miozzo et al. [2014]. For a fair comparison, we implemented Kansal’s energy
prediction model with parameter α = 0.5 and setting the ρmin and ρmax parameters as
our optimal working points for the minimum and maximum drained current, that is,
(tmin

U , tmin
dc ) and (tlim

U , tlim
dc ), respectively. In addition, we implemented their dynamic duty-

cycle adaptation strategy not only by letting it change the duty cycle but also by letting
it set the new optimal working point according to the new desired energy expenditure.
Finally, for the energy buffer, we set bmax = 250mAh, bth = 50mAh; for the computation
of our optimal policies, we set α = 0.9,4 and the same reward function r(u) (defined in

4Not to be confounded with Kansal’s α = 0.5 mentioned earlier.
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Fig. 12. Performance comparison between our proposed technique (solid line) and that proposed by Kansal
et al. (dashed line) for the months of August and December and varying the panel size.

Section 4, see Figure 7) was used to compute the throughput for both techniques. For
the comparison, we choose bmax to evaluate which solution is preferable with different
system configurations: in particular, we show that our approach is robust regardless of
the amplitude of the energy variations.

Figure 12 shows the average throughput (Figure 12(a)) and the outage probability
(Figure 12(b)) for the two schemes. Our solution is represented through solid lines,
whereas dashed lines are used for Kansal’s. Also, we denote the results related to
August and December with square and round markers, respectively. In both figures,
the x-axis shows the panel side length in centimeters.

Our solution is outperformed in terms of throughput, but, on the other hand, it effec-
tively maintains the outage probability within the prescribed threshold, while Kansal’s
scheme spends up to 44% of the time in outage (i.e., with a buffer charge xb smaller
than bth) and up to 32% of the time with an empty battery (not shown due to space
constraints). This is because our scheme delivers the maximum throughput, subject to
the given buffer outage constraint. As further evidence of the different behaviors of the
two techniques, in Figure 13 we show their energy consumption and battery variations
for the same energy arrival trace during a time span of 3 days.

In this figure, we show the hourly variations of the harvested current, i; the chosen
action (or control), u; and the instantaneous battery state, xb, for both solutions. Here,
i is represented for both approaches through shaded areas, while the control u is
indicated with a solid line for Kansal and with a dash-dotted line for our approach.
Similarly, the two battery states are represented with dashed and dotted lines for
Kansal and our approach, respectively.

Two differences can be observed from Figure 13: the first is that the policy adopted in
the low-energy state (night) by our solution is always more conservative than Kansal’s,
while the same policy is adopted during the day by the two schemes. The second
observation is that Kansal’s more aggressive behavior leads to battery outages. In fact,
while during the second day Kansal successfully maintains energy neutrality, on the
first and third days its battery got depleted for about one-third of the time.

In conclusion, we can say that our approach gives priority to the network sustain-
ability, while Kansal’s privileges its throughput. This is also reflected by the fact that
our control is decided based on the amount of available charge in the battery, while
Kansal tries to predict the future current availability to exploit it as efficiently as
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Fig. 13. Performance comparison between our solution and Kansal’s during three simulated days for the
month of August, considering a panel side of 10cm. The x-axis shows the simulation time, whereas the y-axis
is used to visualize the amount of current harvested, drained, and the battery state.

possible. However, large variations in the energy availability are likely to lead to high
prediction errors that, in turn, negatively affect the outage probability of Kansal. In
conclusion, the adaptability of our scheme to the battery state also makes it robust to
the degradation of the battery performance.

8. RELAXATION OF THE ASSUMPTIONS

Here, we address the relaxation of the assumptions made during the analysis: namely,
the homogeneity of energy sources, the transmission periodicity, the instantaneous
network parameter update, and the fixed topology.

8.1. Heterogeneous Energy Sources

The stochastic MDP analysis of Section 6 leads to optimal online policies in the case
where the energy arrival process is homogeneous; that is, all nodes have the same
energy-harvesting statistics. However, as pointed out in Jeong and Culler [2012], in
actual deployments different sensor nodes may be affected by slightly differing condi-
tions such as blockage effects due to the surrounding objects that may partially shade
the nodes, obstructing the direct sunlight.

In this section, we adapt our analysis to the case where the energy-harvesting statis-
tics at the nodes differ. We do so following a two-step approach: (1) we extend the
energy source model to account for the diversity in the harvested energy and we reuse
the analysis of Section 6 with the new source model to obtain a new set of energy con-
sumption policies, and (2) we use these new policies according to a simple and practical
heuristic. Simulation results that prove the effectiveness of this approach are provided
at the end of this section.

Energy source. For the energy sources, we account for an additional parameter vector
p, which includes parameters related to the deployment of the solar modules (such as
the azimuthal angle, the tilt, the presence of obstructing objects, etc.). Hence, the
new statistics for a given node are redefined as fι(i|xs, p) and fτ (t|xs, p) for the input
current i and the permanence time t when in state xs ∈ S, respectively. Equation (22)
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Fig. 14. Pdfs fι(i|xs, p) and fτ (t|xs, p) obtained for p ∈ D, state xs = 0 (daytime) for Los Angeles in the
month of August. A thick solid line is used to indicate the mixture densities.

generalizes to

fδ(d|u, xs, p) =
∫ tmax(xs)

tmin(xs)
fτ (t|xs, p) fι(d/t + u|xs, p)|t|−1dt , d ∈ R. (40)

Now, referring to ρ as the random vector associated with p(its realization), we indicate
with fρ( p) the pdf describing the parameter space. Hence, the new pdf of the harvested
charge in state xs is obtained as

fδ(d|u, xs) =
∫
D(ρ)

fδ(d|u, xs, p) fρ( p)d p, (41)

where D(ρ) is the parameter space.
As a practical example, for the results that follow, we consider a scalar r.v. ρ describing

the amount of shade received during the day by a particular sensor node. In fact, in
accordance with Jeong and Culler [2012], we found that this is the parameter that
affects the most the amount of harvested energy during the day. Here, we assume that
the r.v. ρ can take four distinct values, that is, D(ρ) = {0.4, 0.6, 0.8, 1}, which indicate
the fraction of sunlight that hits the sensor node. Hence, p = 1 means that the solar
module receives all the available sunlight for the considered location, whereas with
p = 0.4, only 40% of the sunlight is absorbed, while the remaining 60% is blocked.
Moreover, we considered a mass distribution function fρ(p) that assigns a probability
0.55 to p = 1 and 0.15 to each of the remaining cases p ∈ {0.4, 0.6, 0.8}.

In this case, Equation (41) reduces to the following probability mixture:

fδ(d|u, xs) =
∑

p∈D(ρ)

fδ(d|u, xs, p) fρ(p) . (42)

We have used the SolarStat tool to obtain fδ(d|u, xs, p) for all p ∈ D(ρ). Figure 14
shows the resulting pdfs fι(i|xs, p) (Figure 14(a)) and fτ (t|xs, p) (Figure 14(b)) for xs = 0
and p ∈ D(ρ). Also, a thick solid line is used to indicate the mixture densities.

Note that this approach makes it possible to account for heterogeneity in the solar
source statistics, modeling our uncertainty on the actual amount of shade that will be
received by each sensor node. This uncertainty is then embedded into the source model
and the algorithm of Section 6.3 is reused with this new source model to generate new
energy management policies.
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Fig. 15. Microscopic behavior of the heuristic policy in three simulated days. The x-axis shows the simulation
time, whereas the y-axis represents, for the SBN node, the amount of current harvested, drained, and the
battery state. The comparison is between the best (pSBN = 1) and the worst (pSBN = 0.4) case for the SBN
node, considering p = 1 (no shading) for the bottleneck node.

Heuristic and results. First, we define the second bottleneck node (SBN) as the node
located in the subtree originating from the bottleneck node (BN) that has the second-
highest energy consumption, the node with the highest being the BN. The worst case
for our control policies is when the BN has a shading coefficient equal to 1 (the available
solar radiation is absorbed in full), while the SBN has the smallest shading coefficient
0.4. In this case, the BN is more likely to experience the most abundant energy inflow
(see Figure 14). Thus, its energy buffer will be likely fuller than that of the SBN
and, in turn, the BN might choose too aggressive a policy than what the SBN can
efficiently adopt. Although this problem may be partially mitigated by the smaller
energy consumption of the SBN with respect to that of the bottleneck node, it is still
possible that the SBN experiences some battery outages.

To make the entire network self-sustainable, an additional expedient is in order. RPL
DAO messages are used to periodically report relevant data to the sink, such as the
location of the nodes, and so forth. Thus, it is possible to leverage these messages to
collect, at the sink, additional information such as the battery state of all nodes and let
the sink choose the policy based on the minimum among all buffer states (instead of
solely using the energy buffer state of the BN). This worst-case control strategy makes
the adopted policy slightly suboptimal due to the delay associated with the delivery of
RPL messages but ensures that the entire network is self-sustainable.

Next, we show some simulation results considering that the BN has no shading, that
is, p = 1, whereas we assume that the SBN has either p = 0.4 or p = 1. Moreover, we
set the topology parameters of the SBN so as to reproduce the worst-case scenario in
terms of energy consumption; that is, we assume that the SBN has the same number
of interfering nodes (ni) and packets (nint) as the BN and just one node less (nc − 1) for
the number of children. In Figure 15, we show the corresponding simulation results
considering real solar traces for a time span of 3 days for the best (p = 1) and worst
(p = 0.4) case in terms of energy harvested by the SBN. Note that for p = 0.4, the energy
collected by the SBN (dark shaded area) is only 40% of that harvested (light shaded
area) for p = 1. In both cases, our heuristic scheme opts for a rather aggressive policy
during the high-energy state (solid and dash-dotted lines for the worst and best case,
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Fig. 16. Performance of the heuristic policy by varying the shade parameter p ∈ [0.4, 1] (x-axis). On the left
y-axis we show the outage probability for the SBN node (solid line), while in the right y-axis we show the
throughput.

respectively), whereas in the worst case (p = 0.4), it adopts much more conservative
policies during the low-energy state. In fact, in this case the battery level used for the
selection of the policy is much lower due to the lower amount of current harvested by
the SBN. Compare, for instance, the buffer state in the best case (dotted line) with
that of the worst case (dashed line) at about time 1.6 days: for p = 0.1, the battery is
completely filled up during the day, while for p = 0.4, the battery is only filled to about
half of its capacity and should then be sparingly used to endure a full night.

Finally, in Figure 16, we show the average throughput (dashed line) for the network
and the outage probability (solid line) for the SBN varying the shading conditions
p ∈ [0.4, 1]. In all the tested cases, we used p = 1 for the bottleneck node. Note that
the outage probability is always very small and almost always smaller than 0.1%. As
expected, using our conservative approach may impact the throughput performance:
this impact is negligible (less than 5%) for p > 0.6 but becomes substantial (up to 30%)
in the most unfavorable case, that is, where the SBN has p = 0.4.

8.2. Transmission Periodicity

In Section 3, we assumed that nodes periodically sense the environment and generate
their data at a constant rate of fU packets per second. However, this is not strictly
necessary; in fact, what really impacts the energy consumption is the total number of
packets sent during a decision epoch. We preferred to study a periodic transmission
process because it allows for a simpler mathematical analysis, leading to a closed-form
solution for problem P1.

In addition, the transmission periodicity can be enforced at the application level by
adopting a traffic shaping technique (i.e., by spacing out subsequent packets) through
the user of transmission timers, so that the transmission rate will be no higher than
fU packets per second (see, e.g., Castellani et al. [2014]). This implementation trick
can be useful to reduce the collision probability. In fact, reducing the traffic burstiness
helps maintain the ratio 1/ f ′

U large, which translates into a low number of collisions.
In the article, we considered the network application to periodically sample environ-

mental parameters. However, from the previous discussion, it is easy to see that our
solution can also be applied to networks where the objective is that of communicating
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alarms or events to the sink. In this case, our scheme supports up to �k/tU events per
epoch per node, where �k is the decision epoch duration.

Finally, note that the latency in the communication from the nodes to the sink is not
governed by tU, but by tdc. In fact, as soon as an event occurs, the node detecting it
can send the alarm to its next hop within at most tTX seconds, which is dominated by
toff in the low-energy period and by tdata in the high-energy period.5 Thus, delivering
an alarm or an event from a node located h-hops away from the sink will take about
hmax(tdata, toff ) seconds, independently of tU.

8.3. Instantaneous Update

Our solution requires that all the nodes change their working point as soon as the
energy source transitions to a new state. Although this is infeasible instantaneously,
a simple and effective approximation can be employed. In particular, it is possible to
exploit the information dissemination service provided by RPL to let the sink broadcast
the new working point to all the sensor nodes. This procedure takes a finite amount of
time and eventually terminates with all nodes knowing the new working point. During
this lapse of time, different nodes in the network may use a different working point.

Soon after the energy source transition, as a consequence of the adoption of new
parameters, two different configurations will coexist in the network: a group of nodes
will have a rather high duty cycle and another group will instead have a smaller one.
Many solutions have been proposed in the literature to allow the interaction of nodes
with differing duty cycles. Here, we advocate the use of a very simple technique based
on a grace period. During the grace period, nodes will wake up according to the highest
between the two duty cycles and will send preambles using the toff associated with the
smallest of the two.

As a drawback of this procedure, nodes will consume a higher amount of energy
during the grace period. However, RPL can disseminate the new configuration to the
entire network in about htdc seconds if the longest path is at most h hops long. Since the
length of a grace period is related to RPL dissemination time, the worst-case duration
is obtained when the duty cycle is smaller (low-energy state) and for bigger networks;
for instance, with our settings and a duty cycle dc = 1%, the longest grace period is
shorter than 1 second, which is negligible compared to the duration of decision epochs.
Nevertheless, to overcome this limitation, more advanced techniques can be used, along
the lines of Vigorito et al. [2007].

8.4. Fixed Topology

Our reward function, r(u), inherently depends on the topology through nc, ni, and nint.
Thus, the topology must remain static in order for a policy to maintain its optimality.
However, this does not mean that the topology cannot change. In fact, note that topology
information is periodically reported to the sink through RPL DAO messages. Hence,
the impact of a changed topology can be estimated at the sink through the calculation
of new topology parameters. At this point, if the throughput degradation is deemed too
high or certain nodes are likely to deplete their batteries due to their increased load,
the adoption of a new energy management policy at all nodes can be triggered. In this
case, the sink will send a new policy to the nodes as if a transition of the energy source
had occurred. When new nodes are added to the network, we let these behave as if they
were in a grace period (see our discussion earlier) until they receive the new policy.

5We recall that tTX = ton + toff + tdata + ( f ′
U/ fU − 1)tdc.
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9. CONCLUSIONS

In this article, we have provided a comprehensive mathematical framework for the de-
sign of energy-scavenging wireless sensor networks. Specifically, we have investigated
the general class of problems related to the long-term and self-sufficient operation
of wireless sensor networks powered by renewable energy sources. Our approach con-
sisted of two nested optimization processes: the inner one (P1) characterizes the optimal
operating point of the network subject to a given energy consumption figure (assumed
constant), while the outer (P2) provides optimal energy management policies to make
the system energetically self-sufficient, given the result of the inner problem and the
statistical description of the energy source.

As a first step, we have defined an original energy consumption model describing the
behavior of the bottleneck node (i.e., the node consuming the highest amount of energy)
for a given routing topology and channel access technology. Second, we have proven that
it is sufficient to grant the self-sufficiency of the bottleneck to ensure that all network
nodes are also self-sufficient. Thus, we have solved P1 analytically, by deriving a closed-
form expression for the optimal duty cycle and the optimal information generation rate
that are to be used by all nodes to guarantee their perpetual and autonomous operation.
This result was derived by neglecting packet collisions at first, and it was subsequently
extended through a heuristic to take the effect of packet collisions into account.

Hence, using the solution of P1 and a statistical description of the energy source,
we have formulated P2, a DT-CMDP, returning the online policies that maximize the
long-term average throughput of the network while ensuring its self-sufficiency in
the presence of a stochastic energy source. We have solved P2 using a Lagrangian
relaxation technique, which permits a convenient exploration of the solution space.
Also, we described how the obtained policies can be implemented to overcome the
computational complexity of the approach at the sensor nodes.

We have then used our framework to explore the impact of key system parame-
ters on the design of energy-harvesting sensor networks. In detail, we have assessed
the impact of network topologies on the reward function, also studying the impact of
battery and photovoltaic panel sizes on the optimal energy consumption strategies.
Thus, the framework has been utilized to derive the long-term average network per-
formance, which includes the network throughput and the steady-state probabilities of
the battery charge state when the optimal policies are adopted by the nodes. Finally,
we thoroughly validated our optimal policies against state-of-the-art approaches, also
proving its robustness when our main assumptions are relaxed. Our solution proved to
be more conservative than the state of the art, and, although at the price of a slightly
lower throughput, it ensures the self-sustainability of all sensor nodes for all battery
sizes and environmental conditions.

APPENDIX

A. CHANNEL ACCESS MODELING IN THE PRESENCE OF PACKET COLLISIONS

To take collisions and channel transmission errors into account, we derived the follow-
ing fixed-point analysis. Note that our collision model is similar to the one considered
in previous work (see, e.g., Yang and Heinzelman [2012]). The analysis that we present
in what follows differs in the fact that we consider the transmission of periodic endoge-
nous traffic, and this allows for a closed-form expression of the collision probability,
which is derived next. We refer to the packet error probability for the transmission of
the bottleneck node as et, which depends on the selected modulation and coding scheme
and on the channel impairments (attenuation, noise, etc.); see, for example, Chapter 6
of Goldsmith [2005]. Here, we consider et fixed. Also, we refer to ni ≥ 0 as the number
of interfering nodes and to ec as the packet collision probability.
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Fig. 17. Graphical example of a collision: the first sender (top) starts sending periodical RTSs; before the
vulnerability time, tv, has elapsed, the second sender starts sending RTSs too. Since none of them is aware
of the other, they keep on transmitting RTSs for tdc seconds (the duration of the RTS burst). When one of the
intended destinations wakes up, it will receive a corrupted RTS (collision).

Given that a packet is successful when no channel errors occur (w.p. 1 − et) and
it is not collided (w.p. 1 − ec), the total packet error probability is obtained as ep =
ec + et − ecet. Now, note that when ep ≥ 0, due to the increased number of packet
losses and the associated retransmissions, we have that the packet transmission rate
of the bottleneck node increases to f ′

U ≥ fU, where fU is the original information
rate. Hence, one packet is transmitted on average every 1/ f ′

U seconds, where 1/ f ′
U

is the new average intertransmission time. We assume that the transmission within
this time period occurs by picking a transmission instant uniformly at random in
[0, 1/ f ′

U]. Moreover, given our LPL MAC, whenever a packet is transmitted, there
exists a vulnerability period6 of tv seconds and a collision event occurs whenever any of
the ni interferers picks its own transmission time within this interval; the probability
of this event to occur is pc = f ′

Utv (see Figure 17 for a graphical example). Note that pc
corresponds to the probability that a given interferer picks its transmission time within
period tv, given that this transmission instant is (assumed) uniformly distributed in
[0, t′

U], where t′
U = 1/ f ′

U is the interpacket transmission interval in the presence of
retransmissions.

Given this, the probability that a collision event is due to k ∈ {1, . . . , ni} interferers
is given by

(ni
k

)
pk

c (1 − pc)(ni−k) and the probability that the packet sent by the bottleneck
node collides is finally obtained as ec = 1 − (1 − pc)ni = 1 − (1 − f ′

Utv)ni , which corre-
sponds to the probability that at least one of the interferers transmits in the vulnerable
interval. Note that the previous equation can be solved for f ′

U, expressing the latter as
a function, g1(·), of the other parameters:

f ′
U = g1(ec, tv, ni) = [1 − (1 − ec)(1/ni)]t−1

v . (43)

On the other hand, for a packet error rate ep, f ′
U can be related to fU through the

following function g2(·):
f ′
U = g2(ec, et, fU) = fU(1 − ep)−1 = fU(1 − ec − et + ecet)−1. (44)

Observing that fU is given, tv is a (hardware-dependent) constant and et and ni are also
constant for a given transmission scenario (topology, modulation, and channel model),
we have that the only unknown parameter is the collision probability ec. Since g1(·)
6The vulnerability period is a tunable parameter reflecting the time needed for practical architectures to put
the radio into the RX state and detect incoming packets.
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and g2(·) both return the packet transmission rate f ′
U, the working point for the system

is obtained by imposing g1(·) = g2(·), solving for ec and retaining the smallest real
solution to the previous equality. The steady-state transmission rate f ′

U is attained
using this value of the collision probability with either g1(·) or g2(·). This is a practical
method to obtain f ′

U at equilibrium, in the presence of channel errors and collisions.
Note, however, that a solution is not always guaranteed to exist, and this occurs when
the offered traffic exceeds the maximum capacity of the considered access channel. In
Appendix B, we provide an approximated formula to conveniently calculate ec and a
stability analysis to mathematically assess when the channel access admits a solution.

B. COLLISION PROBABILITY AND FEASIBILITY CONDITION FOR THE CHANNEL ACCESS

Collision probability approximation: Here we derive a closed-form approximation
for the collision probability ec at equilibrium. As discussed in Appendix A, this is
obtained by looking at the points where g1(·) and g2(·) intersect (see later for the
necessary condition for this to occur). When these functions do intersect, they have
two real solutions in the range ec ∈ [0, 1] and the ec at equilibrium is the smallest real
solution. From the equality g2(ec, et, fU) = g1(ec, tv, ni), using x = ec, we get

(1 − et − x + etx)(1 − (1 − x)1/ni ) − fUtv = 0. (45)

Now, we employ the Taylor expansion of (1 − x)1/ni , around the point x0 = 0:

(1 − x)1/ni = 1 − x
ni

+ O(x2), (46)

which, used in Equation (45) leads to

x2(1 − et) − x(1 − et) + fUtvni = 0. (47)

The discriminant of Equation (47) is � = 1−4( fUtvni)/(1−et); thus, the condition � ≥ 0
implies ni ≤ �(1 − et)/(4 fUtv)�. When the latter is verified, the solution for the collision
probability is given by the smallest solution of Equation (47), that is:

ec � 1 − √
�

2
. (48)

For illustrative purpose, considering et ≤ 0.3 and fUtv ≤ 0.001, which is largely verified
in practice,7 Equation (48) is accurate up to the third decimal place for ni ≤ 20 and
up to the second decimal place for ni ≤ 50. Note that these settings for et and fUtv
are rather extreme and more accurate results are achieved for the practical network
examples of this article. For these, we have that fUtv = 0.0004, et = 0.1, and ni = 5, and
with these parameters, the gap between the actual average number of retransmissions
n′

retx = ep/(1 − ep) (considering the impact of packet collisions) and the approximation
nretx = et/(1− et) (considering ec = 0) leads to a relative error of 100(n′

retx −nretx)/n′
retx =

2.18%.

Feasibility collision for the channel access: In what follows, we examine the
condition under which the channel access problem of Appendices A and B, whereby
ni nodes transmit over the same medium, is feasible. Intuitively, a random access
channel has a limited “hosting capacity.” When too many users transmit over it at too
high a rate, exceeding the capacity limit, the random access system becomes unstable.
In this case, the collision probability tends to increase indefinitely, leading to a zero
throughput for all users. Next, we mathematically derive the condition under which

7As shown in Section 7, feasible values for fU are typically larger than one packet per minute that, considering
tv ≤ 0.01 s, leads to fUtv ≤ 1.6 · 10−4.
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the channel access system of Section 3 is stable as a function of the parameters fU,
the transmission rate of the node (of their endogenous traffic, without considering
collisions); tv, the vulnerability period; and ni, the number of nodes that transmit over
the same medium (interferers).

Mathematically, a finite solution for ec exists only when the two curves g1(·) (see
Equation (43)) and g2(·) (see Equation (44)) intersect. Through a more accurate in-
spection of the behavior of Equations (43) and (44), it is easy to see that a solution to
g1(·) = g2(·) does not exist when we have that g2(ec, et, fU) > g1(ec, tv, ni), for all values
of ec ∈ [0, 1]. Through some algebra, it is easy to verify that this condition corresponds
to

fUtv > (1 − et)(1 − ec)(1 − (1 − ec)1/ni )
def= g3(ec, et, ni), ∀ ec ∈ [0, 1] . (49)

Now, the LHS of Equation (49) is a constant, whereas the RHS is a continuous function
of ec that has a maximum in ec,max, where

ec,max = 1 −
(

ni

1 + ni

)ni

. (50)

Note that Condition (49) is verified if the LHS is strictly greater than the RHS
(g3(ec, et, ni)) for all values of ec and this must also hold for ec = ec,max. In this case,
g1(·) and g2(·) do not intersect and, in turn, the system does not admit a stable work-
ing point. The previous reasonings formally prove that the feasibility condition for the
channel access is

fUtv ≤ g3(ec,max, et, ni) = (1 − et)
(

1
1 + ni

) (
ni

1 + ni

)ni

, (51)

as when Equation (51) is verified, g1(·) and g2(·) intersect in at least one point.

C. PROBLEM P1: DERIVATION OF THE CLOSED-FORM SOLUTION

In what follows, we derive the closed-form expression of the optimal working point
(t∗

U, t∗
dc) for a collision-free channel. The first step is to rewrite Equation (9) by neglecting

packet collisions, that is, ec = 0, which implies f ′
U/ fU − 1 = et/(1 − et) and, in turn:

ITX = (ic + it)[tdc/2 + ton/2 + tdata + (et/(1 − et))tdc]
×[(1 + nc)/tU + (2 + nc)/trpl]. (52)

Subsequently, we rewrite Equations (9) through (14) isolating the terms depending on
tU and tdc and introducing coefficients {c1, . . . , c5} and {a1, . . . , a11} (see Table IX):

ITX = c1(tdca1/tU + a2/tU + tdca3 + a4) (53)

IRX = c2(a5tU + a6) (54)

IINT = c2(a7tU + a8) (55)

ICPU = c3a9tU (56)

rIDLE = 1 − rTX − rRX − rINT − rCPU

= a10 − a1tdc/tU − a3tdc − a11/tU (57)

IIDLE = rIDLE(c4 + c5ton/tdc). (58)
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Table IX. Coefficients a, b, and c

a1 = (1 + nc)(1/2 + et/(1 − et)) b1 = c1a1
a2 = (1 + nc)(tdata + ton/2) b2 = c1a2
a3 = (2 + nc)(1/2 + et/(1 − et))/trpl b3 = c1a3
a4 = (2 + nc)(tdata + ton/2)/trpl b4 = c1a4
a5 = nctdata b5 = c2a5
a6 = (1 + nc + ni)tdata/trpl b6 = c2a6
a7 = tintnint b7 = c2a7
a8 = tintnint/trpl b8 = c2a8
a9 = tcpukU b9 = c3a9
a10 = 1 − a4 − a6 − a8 b10 = −a1c4
a11 = a2 + a5 + a7 + a9 b11 = −a1tonc5 − a11c4
c1 = ic + it b12 = −a3c4
c2 = ic + ir b13 = −a3tonc5 + a10c4
c3 = ic b14 = a10c5ton
c4 = is b15 = −a11c5ton
c5 = ic + ir − is

Table X. Coefficients d, e, and f

d1 = b1 + b10 e0 = 4d1d6 − d2
2

d2 = b2 + b5 + b7 + b9 + b11 e1 = 4d1d5 + 4d3d6 − 2d7d2
d3 = b3 + b12 e2 = 4d5d3 − d2

7

d4 = b4 + b6 + b8 + b13 f0 = −a10d6 − a11d5
d5 = b14 f1 = a3d6 − a1d5
d6 = b15 f2 = d1a10 + d3a11
d7 = d4 − u f3 = −d1a3 + a1d3

Rewriting Equations (53) through (58) and introducing coefficients {b1, . . . , b15} (see
Table IX) lead to:

ITX = b1tdc/tU + b2/tU + b3tdc + b4 (59)

IRX = b5tU + b6 (60)

IINT = b7tU + b8 (61)

ICPU = b9tU (62)

IIDLE = b10tdc/tU + b11/tU + b12tdc + b13 + b14/tdc + b15/(tdctU). (63)

Iout(tU, tdc) is thus obtained using Equation (2). For compactness, Iout(tU, tdc) is expressed
using a fourth set of coefficients ({d1, . . . , d6} of Table X):

Iout(tU, tdc) = d1tdc/tU + d2/tU + d3tdc + d4 + d5/tdc + d6/(tdctU). (64)

Now, taking the first order derivative of Equation (64) with respect to tdc, we obtain

∂ Iout(tU, tdc)
∂tdc

= d3 + d1/tU − (d5 + d6/tU)/t2
dc, (65)

which leads to the following result:

∂ Iout(tU, tdc)
∂tdc

= 0 ⇒ t∗
dc(tU) = ±

√
d6/tU + d5

d1/tU + d3
, (66)
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where the wanted solution is the one with the plus sign. Note that t∗
dc(tU) is the optimal

duty cycle, which minimizes the power consumption for a given interpacket transmis-
sion time tU (endogenous traffic). At this point, we compute Equation (64) for t∗

dc(tU),
subtracting u (i.e., the target current budget) and equating to zero:

Iout(tU, t∗
dc(tU)) − u = t∗

dc(tU)2(d1/tU + d3) + (d6/tU + d5)
t∗
dc(tU)

+ d2/tU + d4 − u = 0. (67)

Now, raising Equation (67) to the second power and reordering leads to

(4d1d6 − d2
2 )/t2

U + (4d1d5 + 4d3d6 − 2d2d7)/tU + 4d3d5 − d2
7 = e0/t2

U + e1/tU + e2 = 0. (68)

Note that Equation (68) is solved for tU, with u ∈ [umin, umax], with Imin
out = umin and

umax = Ilim
out . It is easy to verify that the solution of problem P1, t∗

U, is the only positive
solution of the previous equation.

For the calculation of Imin
out and Ilim

out , we proceed as follows. First, for what concerns
the minimum current consumption Imin

out , we first obtain the optimal duty cycle for
the case where no data-gathering operations are performed (i.e., tU goes to infinity),
tmin
dc = limtU→+∞ t∗

dc(tU) = √
d5/d3. Hence, we use this result together with Equation (64)

to compute Imin
out :

Imin
out = lim

tU→+∞ Iout(tU, t∗
dc(tU)) = d3

√
d5/d3 + d4 + d5

√
d3/d5. (69)

To obtain Ilim
out , we first define tlim

dc = t∗
dc(t

lim
U ), where tlim

U is obtained from rIDLE(tlim
U , tdc) = 0

(meaning that the node is always busy and maximizes its transmission activity). From
the latter equality we get

tlim
U (tdc) = a1tdc + a11

a10 − a3tdc
, (70)

which, together with Equation (66), leads to

tlim
dc =

√
d6/tlim

U + d5

d1/tlim
U + d3

=
√

d6(a10 − a3tlim
dc ) + d5(a1tlim

dc + a11)

d1(a10 − a3tlim
dc ) + d3(a1tlim

dc + a11)
, (71)

where the equality in the second line follows from replacing tlim
U with Equation (70).

Thus, raising Equation (71) to the second power and solving for tlim
dc leads to the third-

order equation:

f3
(
tlim
dc

)3 + f2
(
tlim
dc

)2 + f1tlim
dc + f0 = 0, (72)

and tlim
dc is the largest solution of Equation (72). Finally, tlim

U is obtained by plugging tlim
dc

into Equation (70) and Ilim
out = Iout(tlim

U , tlim
dc ) is finally calculated from Equation (64).

D. ON THE CORRECTNESS OF THE BOTTLENECK ANALYSIS

In this appendix, we analyze the network stability given that the system is tuned on
the bottleneck node and all other nodes use the same operating point of the latter. To
prove that when the bottleneck node is energetically self-sufficient, the same holds true
for all the other nodes in the network, we will show that Iout(nc, ni, nint) is an increasing
function of nc, ni, and nint (all the other parameters remaining fixed). To this end, let
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nb
c , nb

i , nb
int, and Ib

out respectively be the topology parameters and the output current of
the bottleneck node. Given that for all nodes the following inequalities hold:

nc ≤ nb
c , ni ≤ nb

i , nint ≤ nb
int, (73)

for any sensor node in the network, we have that Iout ≤ Ib
out, which proves our claim.

In what follows, we only show that Iout(nc, ni, nint) is an increasing function of nc, as the
proof for the other variables develops along the same lines.

First of all, we take the first-order derivative of Iout(nc, ni, nint) with respect to nc:

∂ Iout

∂nc
= ∂ ITX

∂nc
+ ∂ IRX

∂nc
+ ∂ IIDLE

∂nc

= c1
∂rTX

∂nc
+ c2

∂rRX

∂nc
+

(
c4 + c5

ton

tdc

)
∂rIDLE

∂nc

= c1
∂rTX

∂nc
+ c2

∂rRX

∂nc
−

(
c4 + c5

ton

tdc

) (
∂rTX

∂nc
+ ∂rRX

∂nc

)

= ∂rTX

∂nc

(
c1 − c4 − c5

ton

tdc

)
+ ∂rTX

∂nc

(
c2 − c4 − c5

ton

tdc

)
. (74)

Hence, we proceed showing that ∂rTX/∂nc, ∂rRX/∂nc, (c1 − c4 − c5ton/tdc), and (c2 − c4 −
c5ton/tdc) are all positive quantities. For the two derivatives the following holds:

∂rTX

∂nc
= tdc/2 + ton/2 + tdata + ( f ′

U/ fU − 1)
1/tU + 1/trpl

∂rRX

∂nc
= tdata

1/tU + 1/trpl
, (75)

and it is easy to show that all the addends of the two sums are positive, because all of
them are either time or frequency quantities that are positive by definition. The term
f ′
U/ fU − 1 is also positive since f ′

U is the arrival rate in the presence of channel errors,
which implies that f ′

U ≥ fU.
Finally, for what concerns the other two terms, they can be rewritten as

c1 − c4 − c5ton/tdc = it + ic − is − (ir + ic − is)ton/(ton + toff )
≥ (ir + ic − is)toff/(ton + toff )

c2 − c4 − c5ton/tdc = ir + ic − is − (ir + ic − is)ton/(ton + toff )
= (ir + ic − is)toff/(ton + toff ), (76)

where the inequality in the second line holds since it ≥ ir for all radio technologies.
Also, note that is � ir, ir + ic − is > 0, and toff/(ton + toff ) are by definition positive,
which proves that both terms in Equation (76) are greater than or equal to zero. Thus,
∂ Iout/∂nc is the sum of positive terms, which implies that Iout(nc, ni, nint) is an increasing
function of nc and that Iout ≤ Ib

out for every sensor node.
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