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Abstract—We address the problem of compressing large and
distributed signals monitored by a Wireless Sensor Network
(WSN) and recovering them through the collection of a small
number of samples. We propose a sparsity model that allows
the use of Compressive Sensing (CS) for the online recovery
of large data sets in real WSN scenarios, exploiting Principal
Component Analysis (PCA) to capture the spatial and temporal
characteristics of real signals. Bayesian analysis is utilized to
approximate the statistical distribution of the principal com-
ponents and to show that the Laplacian distribution provides
an accurate representation of the statistics of real data. This
combined CS and PCA technique is subsequently integrated into
a novel framework, namely, SCoRe1: Sensing, Compression and
Recovery through ON-line Estimation for WSNs. SCoRe1 is able
to effectively self-adapt to unpredictable changes in the signal
statistics thanks to a feedback control loop that estimates, in
real time, the signal reconstruction error. We also propose an
extensive validation of the framework used in conjunction with
CS as well as with standard interpolation techniques, testing its
performance for real world signals. The results in this paper
have the merit of shedding new light on the performance limits
of CS when used as a recovery tool in WSNs.

Index Terms—Compressive sensing, wireless sensor networks,
data gathering, distributed monitoring, Bayesian estimation,
principal component analysis.

I. INTRODUCTION AND RELATED WORK

THE area of communication and protocol design for
Wireless Sensor Networks (WSNs) has been widely

researched in the past few years. One of the first studies
addressing the problem of efficiently gathering correlated data
from a wide network deployment is [1], which highlights the
interdependence among the bandwidth, the decoding delay
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and the routing strategy employed. Under certain assumptions
of regularity of the observed process, the authors claim the
feasibility of large-scale multi-hop networks from a transport
capacity perspective. Classical source coding, suitable routing
algorithms and re-encoding of data at relay nodes have been
proposed as key ingredients for joint data gathering and
compression. In fact, WSN applications often involve multiple
sources which are correlated both temporally and spatially.
Subsequent works such as [2], [3] proposed algorithms that
involve collaboration among sensors to implement classical
source coding (e.g., see [4], [5]) in a distributed fashion.

New methods for distributed sensing and compression have
been developed based on the recent theory of Compressive
Sensing (CS) [6]–[8]. CS was originally developed for the
efficient storage and compression of digital images, which
show high spatial correlation. In the very recent literature, a
Bayesian approach has been used to develop efficient and auto-
tunable algorithms for CS, see [9]. However, previous work
addressing CS from a Bayesian perspective mainly focused
on proving fundamental results and on understanding its
usefulness in the image processing field. In particular, in [10]
a hierarchical Bayesian model is considered to utilize CS for
the reconstruction of sparse images when the observations are
obtained from linear transformations and corrupted by additive
and white Gaussian noise. In [11], the authors model the
components of the CS problem using a Bayesian framework to
recover synthetic 1-D sparse signals and simple images with
high spatial correlation.

Since the pioneering work in [12], [13], there has been
a growing interest in this technique also in the networking
community. Specifically, the great interest around the use of
CS in Wireless Sensor Networks (WSNs) comes from the fact
that the CS framework lends itself to the accurate reconstruc-
tion of large sensor fields through the collection of a small
fraction of the sensor readings. However, the application of CS
to data gathered from actual WSN deployments faces several
problems. In particular, we can not assume that the distributed
signal before compression is sparse, or equivalently, we can
not assume a Laplacian prior for each element of the signal. In
this case, CS can not be successfully used without accounting
for a technique that effectively sparsifies the data.

[14] also addresses the problem of gathering data in dis-
tributed WSNs through multi-hop routing: tree topologies are
exploited for data gathering and routing, and the Wavelet trans-
formation is used for data compression. In [15] an approach
to distributed coding and compression in sensor networks
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based on CS is presented. The authors advocate the need to
exploit the data correlation both temporally and spatially. The
projections of the signal measurements are performed at each
source node, only taking into account the temporal correlation
of the sensor readings. The spatial correlation is then exploited
at the sink by means of suitable decoders through a joint
sparsity model able to characterize different types of signals.
Additionally, and in contrast to classical approaches, where
the data is first compressed and then transmitted to a given
Data Collection Point (DCP), when CS is applied to WSNs it
is desirable to jointly compress and transmit the data. In this
way, we reduce the number of transmissions to the DCP, with
a consequent reduction of the energy consumed by the sensor
nodes. A preliminary work with this aim is [16], where the
coherence between the routing matrix and the sparsification
matrix (i.e., the matrix used to transform the signal and
make it sparse) is studied to exploit CS as a reconstruction
technique for WSNs. The results of this work are anyway
unsatisfactory, due to the fact that exploiting only the spatial
correlation of the data does not suffice to efficiently recover
the signal. In a recent work [17], the authors proposed an
interesting in-network aggregation technique and exploited CS
to reconstruct the data at the sink. Different from our approach,
the aggregation technique depends on the network topology
and the design of the sparsification matrix depends on the
type of data, thus it can not automatically adapt to complex
spatial and temporal correlation characteristics.

In this paper we address the issue of designing a technique
based on CS for the online recovery of large data sets through
the collection of a small number of sensor readings. In
particular, through the use of Principal Component Analysis
(PCA), which extracts the spatial and temporal correlation
characteristics from the past recovered signal samples, we
learn at the DCP the relevant statistics for CS. We analyze the
joint use of CS and PCA with a Bayesian framework, depicting
the probabilistic relations among all the variables involved in
the compression, transmission and recovery process through a
Bayesian Network (BN) [18].

The joint CS and PCA recovery technique is integrated in a
lightweight and self-adapting framework called SCoRe1 (Sens-
ing, Compression and Recovery through ON-line Estimation
for WSNs) for the accurate reconstruction, at the DCP, of
large data sets through the collection of a small number (sub-
sampling) of all the sensor readings. For the reconstruction of
the sub-sampled signals, SCoRe1 can accommodate diverse
interpolation techniques, which are all integrated into the
proposed framework. The main purpose of our work is that
of devising a general solution, featuring a protocol for data
recovery that is able to self-adapt to the time-varying statistical
characteristics of the signal of interest, without relying on their
prior knowledge. This is achieved utilizing a feedback control
loop that estimates, in an online fashion, the reconstruction
error and acts on the recovery process in order to keep this
error bounded.

In order to substantiate our framework, we consider dif-
ferent WSN testbeds, whose data is available on-line. We
analyze the statistics of the principal components of the
signals gathered by these WSNs, designing a Bayesian model
to approximate the statistical distribution of the principal

components. An overview on the use of Bayesian theory to
define a general framework for data modeling can be found
in [19], [20].

The main contributions of this paper include:

• the design of a joint CS and PCA technique that is able
to capture the characteristics of real signals;

• the validation of such technique, and the proof that it
is optimal, from a Bayesian point of view, under certain
assumptions;

• the design of an effective and flexible framework,
SCoRe1, for distributed sampling, data gathering and
recovery of signals from actual WSN deployments;

• the integration of CS as well as other standard interpo-
lation techniques into this framework;

• the validation of our signal reconstruction framework
when used in conjunction with different interpolation
techniques in the presence of real world signals.

The paper is structured as follows. In Section II we present
the mathematical details for the joint use of CS and PCA
and we analyze a large number of WSN testbeds and signals
in Section III. In Section IV we present the details of the
probabilistic model, that exploits a two-level Bayesian infer-
ence to estimate the best fitting distribution for such signals.
In Section V we describe our monitoring framework: the
distributed sampling method, the data collection techniques
and the signal recovery that jointly exploits CS and PCA.
The performance of the recovery techniques is presented in
Section VI for different kinds of real signals gathered from
different WSNs. Section VII concludes the paper.

II. MATHEMATICAL TOOLS FOR CS RECOVERY

In this section we first review basic tools from PCA and
CS and we subsequently illustrate a framework which jointly
exploits these two techniques.

A. Principal Component Analysis

The Karhunen-Loève expansion is the theoretical basis
for PCA. It is a method to represent through the best M -
term approximation a generic N -dimensional signal, where
N > M , given that we have full knowledge of its correlation
structure. In practical cases, i.e., when the correlation structure
of the signals is not known a priori, the Karhunen-Loève
expansion can be approximated thanks to PCA [21], which
relies on the online estimation of the signal correlation matrix.
We assume to collect measurements according to a fixed
sampling rate at discrete times k = 1, 2, . . . ,K . In detail,
let x(k) ∈ R

N be the vector of measurements, at a given
time k, from a WSN with N nodes. x(k) can be viewed as
a single sample of a stationary vector process x. The sample
mean vector x and the sample covariance matrix Σ̂ of x(k)

are defined as:

x =
1

K

K∑
k=1

x(k) , Σ̂ =
1

K

K∑
k=1

(x(k) − x)(x(k) − x)T .

Given the above equations, let us consider the orthonormal
matrix U whose columns are the unitary eigenvectors of Σ̂,
placed according to the decreasing order of the corresponding
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eigenvalues. It is now possible to project a given measure-
ment x(k) onto the vector space spanned by the columns

of U. Therefore, let us define s(k)
def
= UT (x(k) − x). If the

instances x(1),x(2), · · · ,x(K) of the process x are temporally
correlated, then only a fraction of the elements of s(k) may
be sufficient to collect the overall energy of x(k)−x. In other
words, each sample x(k) can be very well approximated in
an M -dimensional space by just accounting for M < N
coefficients. According to the previous arguments we can write
each sample x(k) as:

x(k) = x+Us(k) , (1)

where the N -dimensional vector s(k) can be seen as an M -
sparse vector, namely, a vector with at most M < N non-zero
entries. Note that the set {s(1), s(2), · · · , s(K)} can also be
viewed as a set of samples of a random vector process s. In
summary, thanks to PCA, each original point x(k) ∈ R

N can
be transformed into a point s(k), that can be considered M -
sparse. The actual value of M , and therefore the sparseness
of s, depends on the actual level of correlation among the
collected samples x(1),x(2), · · · ,x(K).

B. Compressive Sensing (CS)

CS is the technique that we exploit to recover a given N -
dimensional signal through the reception of a small number
of samples L, which should be ideally much smaller than N .

As above, we consider signals representable through one
dimensional vectors x(k) ∈ R

N , containing the sensor read-
ings of a WSN with N nodes. We further assume that there
exists an invertible transformation matrix Ψ of size N × N
such that

x(k) = Ψs(k) (2)

and that the N -dimensional vector s(k) ∈ R
N is M -sparse.

s(k) is said to be M -sparse when it has only M significant
components, while the other N−M are negligible with respect
to the average energy per component, defined1 as E

(k)
s =

1
N

√〈
s(k), s(k)

〉
. Assuming that Ψ is known, x(k) can be

recovered from s(k) by inverting Eq. (2), i.e., s(k) = Ψ−1x(k).
Also, s(k) can be obtained from a number L of random
projections of x(k), namely y(k) ∈ R

L, with M ≤ L < N ,
according to the following equation:

y(k) = Φx(k) . (3)

In our framework, Φ is referred to as routing matrix as it
captures the way in which our sensor data is gathered and
transmitted to the DCP. For the remainder of this paper Φ
will be considered as an L×N matrix of all zeros except for
a single one in each row and at most a single one in each
column (i.e., y(k) is a sampled version of x(k)).2 Now, using
Eq. (2) and Eq. (3) we can write

y(k) = Φx(k) = ΦΨs(k)
def
= Φ̃s(k) . (4)

1For any two column vectors a and b of the same length, we define
〈a,b〉 = aTb.

2This selection of Φ has two advantages: 1) the matrix is orthonormal as
required by CS, see [16], and 2) this type of routing matrix can be obtained
through realistic routing schemes.

This system is ill-posed since the number of equations L
is smaller than the number of variables N . It may also be
ill-conditioned, i.e., a small variation of the output y(k) can
produce a large variation of the input signal [22]. However,
if s(k) is sparse and the matrix product ΦΨ satisfies the
RIP condition [8], it has been shown that Eq. (4) can be
inverted with high probability through the use of specialized
optimization techniques [23]. These allow to retrieve s(k),
from which the original signal x(k) is found through Eq. (2).

C. Joint CS and PCA

We have seen that PCA is a method to represent through the
best M -term approximation a generic N -dimensional signal,
where N > M , and we have introduced CS, a technique to
recover an N -dimensional signal through the reception of a
small number of samples L, with L < N . In this section
we propose a technique that jointly exploits PCA and CS to
reconstruct a signal x(k) at each time k. Assume that the signal
is correlated both in time and in space, but that in general it is
non-stationary. This means that the statistics that we have to
use in our solution (i.e., sample mean and covariance matrix)
must be learned at runtime and might not be valid throughout
the entire time frame in which we want to reconstruct the
signal. We also make the following assumptions, that will be
justified in the next sections: (1.) at each time k we have per-
fect knowledge of the previous K process samples, namely we
perfectly know the set X (k) =

{
x(k−1),x(k−2), · · · ,x(k−K)

}
,

referred to in what follows as training set;3 (2.) there is a
strong temporal correlation between x(k) and the set X (k) that
will be explicated in the next section via a Bayesian network.
The size K of the training set is chosen according to the
temporal correlation of the observed phenomena to validate
this assumption.

Using PCA, from Eq. (1) at each time k we can map our
signal x(k) into a sparse vector s(k). The matrix U and the
average x can be thought of as computed iteratively from the
set X (k), at each time sample k. Accordingly, at time k we
indicate matrix U as U(k) and we refer to the temporal mean
and covariance of X (k) as x(k) and Σ̂(k), respectively. Hence,
we can write:

x(k) − x(k) = U(k)s(k) . (5)

Now, using equations Eq. (3) and Eq. (5), we can write:

y(k) −Φ(k)x(k) = Φ(k)(x(k) − x(k)) = Φ(k)U(k)s(k) , (6)

where with the symbol Φ(k) we make explicit that also the
routing matrix Φ can change over time. The form of Eq. (6)
is similar to that of Eq. (4) with Φ̃ = Φ(k)U(k). The original
signal x(k) is approximated as follows: 1) finding a good
estimate4 of s(k), namely ŝ(k), using the techniques in [8]
or [24] and 2) applying the following calculation:

x̂(k) = x(k) +U(k)ŝ(k) . (7)

3In Section V we present a practical scheme that does not need this
assumption in order to work.

4In this paper we refer to a good estimate of s(k) as ŝ(k) such that
‖s(k) − ŝ(k)‖2 ≤ ε. Note that by keeping ε arbitrarily small, assumption
(1.) above is very accurate.
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III. DESCRIPTION OF CONSIDERED SIGNALS AND WSNS

The ultimate aim of WSN deployments is to monitor the
evolution of certain physical phenomena over time. Exam-
ples of applications that require such infrastructure include
monitoring for security, health-care or scientific purposes.
Many different types of signals can be sensed, processed and
stored, e.g., the motion of objects and beings, heart beats,
or environmental signals like the values of temperature and
humidity, indoor or outdoor. Very often both the density of
sensor network deployments and the sampling rate are very
high, and therefore sensor observations are strongly correlated
in space and time.

The spatial and temporal correlation represents a huge
potential that can be exploited in the design of collaborative
protocols for WSNs. In this perspective, we can think of
reducing the energy consumption of the network by tuning
the overall number of transmissions required to monitor the
evolution of a given phenomenon over time. The appeal of the
techniques presented in Section II follows from the fact that
CS enables us to significantly reduce the number of samples
needed to estimate a signal of interest with a certain level
of accuracy. Clearly, the effectiveness of CS is subject to the
knowledge of a transformation basis for which the observed
signals result sparse.

In this section we illustrate the WSNs and the gathered
signals that will be used in Section VI to test, using the
Bayesian model presented in Section IV-A, whether the
SCoRe1 technique, that integrates CS and PCA, is effective
for compression and recovery of real signals.

A. WSN deployments

We consider five different WSN deployments, whose sensor
reading datasets were kindly provided to the authors. A brief
technical overview of each of these five experimental networks
follows.
T1 WSN testbed of the Department of Information Engineer-
ing (DEI) at the University of Padova, collecting data from 68
TmoteSky wireless sensor nodes [25]. The node hardware fea-
tures an IEEE 802.15.4 Chipcon wireless transceiver working
at 2.4 GHz and allowing a maximum data rate of 250 Kbps.
These sensors have a TI MSP430 micro-controller with 10
Kbytes of RAM and 48 Kbytes of internal FLASH;
T2 LUCE (Lausanne Urban Canopy Experiment) WSN
testbed at the Ecole Polytechnique Fédérale de Lausanne
(EPFL), [26]. This measurement system exploits 100 Sen-
sorScope weather sensors deployed across the EPFL campus.
The node hardware is based on a TinyNode module equipped
with a Xemics XE1205 radio transceiver operating in the
433, 868 and 915 MHz license-free ISM (Industry Scientific
and Medical) frequency bands. Also these sensors have a TI
MSP430 micro-controller;
T3 St-Bernard WSN testbed at EPFL, [27]. This experimental
WSN deployment is made of 23 SensorScope stations de-
ployed at the Grand St. Bernard pass at 2400 m, between
Switzerland and Italy. See point T2 for a brief description of
the related hardware;
T4 CitySense WSN testbed, developed by Harvard University
and BBN Technologies, [28]. CitySense is an urban scale

TABLE I
DETAILS OF THE CONSIDERED WSN AND GATHERED SIGNALS FOR EACH

CAMPAIGN CONSIDERED (A, B, C).

WSN Testbed T1 (DEI)
# of frame # of start time stop time signal

nodes length frames (G.M.T) (G.M.T)
A 37 5 min 783 13/03/09 16/03/09 S1 S2

09:05:22 18:20:28 S3 S6
B 45 5 min 756 19/03/09 22/03/09 S1 S2

10:00:34 17:02:54 S3 S6
C 31 5 min 571 24/03/09 26/03/09 S1 S2

11:05:10 10:15:42 S3 S6

WSN Testbed T2 (EPFL LUCE)
# of frame # of start time stop time signal

nodes length frames (G.M.T) (G.M.T)
A 85 5 min 865 12/01/07 15/01/07 S1 S2

15:09:26 15:13:26 S4 S5
B 72 5 min 841 06/05/07 09/05/07 S1 S2

16:09:26 14:13:26 S4 S5
C 83 30 min 772 02/02/07 18/02/09 S6

17:09:26 19:09:26

WSN Testbed T3 (EPFL St Bernard)
# of frame # of start time stop time signal

nodes length frames (G.M.T) (G.M.T)
A 23 5 min 742 03/10/07 06/10/07 S1 S2

12:35:37 02:35:37 S4 S5
B 22 5 min 756 19/10/07 22/10/07 S1 S2

12:35:37 03:35:37 S4 S5
C 22 30 min 778 02/10/2007 19/10/2007 S6

07:06:05 12:06:50

WSN Testbed T4 (CitySense)
# of frame # of start time stop time signal

nodes length frames (G.M.T) (G.M.T)
A 8 60 min 887 14/10/09 21/11/09 S1

14:01:57 00:01:57
B 8 60 min 888 14/10/09 21/11/09 S5

13:00:01 00:00:01 S5

WSN Testbed T5 (Sense&Sensitivity)
# of frame # of start time stop time signal

nodes length frames (G.M.T) (G.M.T)
A 77 15 min 65 26/08/08 27/08/08 S1 S3

14:46:46 07:31:07 S6

deployment that will consist of 100 wireless sensor nodes
equipped with an ALIX 2d2 single-board computer. The
transmitting interface operates in 802.11b/g ad hoc mode at
2.4 GHz, and is reconfigurable by the user. Nowadays this
WSN deployment counts about 25 nodes;
T5 The Sense&Sensitivity [29] testbed is a WSN of 86 nodes,
which embed Texas Instrument Inc. technology: a MSP430
micro-controller and a CC1100 radio chip operating in the
ISM band (from 315 to 915 MHz).

B. Signals

From the above WSNs, we obtained six different types
of signals: S1) Temperature; S2) Humidity; S3) Luminosity
in the range 320 − 730 nm; S4) Solar Radiation; S5) Wind
Direction; and S6) Voltage. A subset of the sensor reading
datasets have been rearranged in a Matlab structure to be
processed. These signals can be downloaded from [30]. Con-
cerning the signals gathered from our testbed T1, we collected
measurements from all nodes every 5 minutes for 3 days. We
repeated the data collection for three different measurement
campaigns, choosing different days of the week. Regarding
the data collection from WSNs T2–T5, we studied the raw
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Fig. 1. Inter-node correlation for the signals (S1)–(S6) gathered from testbeds
T1–T5. Not all the signals are present in each testbed, e.g., Humidity (S2)
is present in only three testbeds. If we have the same signal in multiple
campaigns with the same testbed, we average the value of ρs among them.

data available on-line with the aim of identifying a portion
of data that could be used as a suitable benchmark for our
research purposes. This task has turned out to be challenging
due to packet losses, device failures and battery consumption
that are very common and frequent with currently available
technology. For the acquisition of the signals we divided the
time axis in frames (or time slots) such that each of the
working nodes was able to produce a new sensed data per
frame. Details of the signals extracted from the records of
T1–T5, and organized in different campaigns, are reported
schematically in Table I.

C. Correlation properties

From each signal described above, named x(k) ∈ R
N

(where N is the total number of sensors in the testbed) we
calculated the average inter-node (spatial) correlation ρs(x

(·)),
defined as the average correlation between the one dimensional
signal sensed by node i, i.e., xi(k), and the one sensed by node
j, i.e., xj(k), for all the node pairs i, j, formally:

ρs(x
(·)) =

KT∑
k=1

1

KT

N∑
i=1

∑
j>i

(
x
(k)
i − E[xi]

)(
x
(k)
j − E[xj ]

)
((N2 −N)/2)σxiσxj

,

(8)
where the time varies with k = 1, . . . ,KT . ρs(x(·)) gives us a
measure of the expected sparsity of the principal components
s(k) ∈ R

N . In a real scenario (with realistic measurements), if
we calculate the principal components of a signal with maxi-
mum inter-node correlation, i.e., ρs(x(·)) = 1, we will obtain
a signal s(k) with only the first component different from
zero. Conversely, if we calculate the principal components of a
signal with minimum inter-node correlation ρs(x

(·)) = 0, we
will obtain a signal s(k) with no negligible components (with
respect to the overall energy of the signal). In Fig. 1 we depict
the inter-node correlation for all the signals considered (S1–
S6). We note that Temperature (S1), Humidity (S2) and Solar
Radiation (S4) have, on average, a high inter-node correlation
(ρs(x(·)) � 0.7), while Luminosity (S3), Wind Direction
(S5) and Voltage (S6) have a lower inter-node correlation
(ρs(x(·)) � 0.4). To further analyze these signals, we consider

1 2 3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1

m

 m
()

 

 

Temperature
Humidity
Solar
Luminosity
Wind
Voltage

Fig. 2. Intra-node correlation for the signals chosen among the signals
considered in Fig. 1 (one signal per type).

the intra-node (temporal) correlation ρm(x(·)), that is the
correlation of the one dimensional signal x

(k)
i sensed by a

single node with the same signal shifted by m time samples,
i.e., x(k+m)

i , averaged for all the N signals of x(k) ∈ R
N . It

is defined as

ρm(x(·)) =
N∑
i=1

1

N

∑KT

k=1

(
x
(k)
i − E[xi]

)(
x
(k+m)
i − E[xi]

)
KTσ2

xi

.

(9)
For representation purposes, we choose one signal for each
type, within the signals depicted in Fig. 1, and we represent
for each chosen signal the temporal correlation ρm(x(·)), for
m = 1, . . . , 8 in Fig. 2. We notice that Temperature (S1),
Humidity (S2) and Solar Radiation (S4) show a high intra-
node correlation even for m = 8 (ρ8(x(·)) ≥ 0.85), while
for Luminosity (S3) and Wind Direction (S5) the temporal
correlation quickly decreases (ρ8(x(·)) ≤ 0.65). The Voltage
(S6) signal, instead, has different characteristics, since even
though it has inter-node and intra-node correlation similar to
Luminosity and Wind Direction, it is a nearly constant signal.

Among all considered data sets, for our experimental analy-
sis in Sections V and VI we picked a subset of the signals that
is representative of the different statistical characteristics. To
this end, our final choice has been to use the signals gathered
from the WSN testbed deployed on the ground floor of the
Department of Information Engineering at the University of
Padova [25], from N = 68 TmoteSky wireless nodes equipped
with IEEE 802.15.4 compliant radio transceivers. We have
chosen these signals because: 1) they are representative of
the entire data set in terms of signal statistics, and 2) we
have full control on the WSN from which they have been
gathered, which allowed the collection of meaningful traces
for the performance evaluation of SCoRe1. Specifically, we
considered 5 signals divided in classes according to their
statistical characteristics: C1) two signals with high temporal
and spatial correlation, i.e., (S1) ambient temperature [°C]
and (S2) ambient humidity [%]; C2) a signal with lower
correlation, i.e., (S3) luminosity [A/W] in the range 320−730
nm; and C3) the battery level [V] of the sensor nodes (S6)
during all the signal collection campaigns. Over time, each
signal has been collected every 5 minutes. The results have
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been obtained from 100 independent simulation runs over
these traces and by averaging the data collection performance
over all signals in each class.

IV. SPARSITY ANALYSIS OF REAL SIGNAL PRINCIPAL

COMPONENTS

In this section we first introduce a model to represent a
broad range of environmental signals. Then, we infer the
statistical distribution of the vector random process s from
the samples {s(1), s(2), . . . , s(T )}, which are obtained from
the WSN signals presented in Section III; the parameter T
is the duration (number of time samples) of each monitoring
campaign in Table I. Finally, we use the obtained statistical
distribution to legitimate the use of CS in WSNs when it is
exploited according to our framework.

A. Sparse Signal Model

In the following, we propose a graphical model which
links together all the variables involved in our analysis, i.e.,
those required to define the monitoring framework, and those
involved in the stochastic model for the signal s. We have
chosen to represent such variables with a Bayesian Network
(BN) [18], i.e., a Directed Acyclic Graph (DAG) where nodes
represent random variables and arrows represent conditional
dependencies among them. With this approach it is possible
to determine the conditional independence between two vari-
ables, applying a set of rules known as d-separation rules,
e.g., see [31] for a detailed description about BN properties.

In detail, in the sparse signal model box of Fig. 3 we in-
troduce a Bayesian model to describe the statistical properties
of the elements of s(k). In the monitoring framework box of
Fig. 3, instead, we depict the whole considered framework that
involves the following variables for each time sample k: the
training set X (k), the WSN signal x(k), its compressed version
y(k), obtained sampling x(k) according to matrix Φ(k) as in
Eq. (3), the invertible matrix U(k), obtained through PCA, and
the sparse representation s(k), introduced in Eq. (1). Analyzing
the DAG in Fig. 3 according to the d-separation rules, we can
describe our signal model as follows:

• data gathering: the WSN signal x(k) is independent
of the stochastic sampling matrix Φ(k), whose nature
is detailed in Section V, but the observation of the
measurements in y(k) reveals a link between these two
variables;

• PCA transformation: this is the core of our model,
that describes how the system learns the statistics of the
signal of interest x(k). U(k) can be seen as the state of
a dynamic system, since it summarizes at each instant
k all the past history of the system, represented by the
set X (k). The system input is the signal s(k), that can
be seen as a Laplacian or Gaussian innovation process.
These types of priors on the signal induce estimators that
use, respectively, the L1 and L2 norm of the signal as
regularization terms. We consider such priors because
they are often used in the literature in view of their
connection with powerful shrinkage methods such as
ridge regression and LASSO, as well as for the many
important features characterizing them, see Section 3.4

Fig. 3. Bayesian network used to model the considered real signals. In the
scheme we highlight the monitoring framework at each time sample k.

in [22] for a thorough discussion. We note also that the
observation of the WSN signal x(k) has a twofold effect:
the former is the creation of a deterministic dependence
between the PCA basis U(k) and the sparse signal s(k),
that are otherwise independent; the latter is the separation
of U(k) and s(k) from the data gathering variables, i.e.,
they become independent of y(k) and Φ(k);

• sparse signal model: we observe that the priors assigned
to the variable M and to the corresponding parameters
(e.g., for a Gaussian model the mean value m of each
component and the standard deviation σ, whereas for a
Laplacian model the location parameter μ and the scale
parameter λ) are non informative priors, i.e., a uniform
prior in R for m and μ, and a uniform prior in R≥0

of the variance, where R≥0 is the set of positive real
numbers. Here the observation of the sparse signal s(k)

makes the variable M and its corresponding parameters
no longer dependent on the variables of the monitoring
framework, so they can be analyzed separately as we do
in the following.

B. Sparsity Analysis

From the theory [21] we know that signals in the PCA
domain (in our case s) have in general uncorrelated compo-
nents. Also, in our particular case we experimentally verified
that this assumption is good since E[sisj ] � E[si]E[sj ] for
i, j ∈ {1, . . . , N} and i �= j. For the purpose of our analysis,
we make a stronger assumption, i.e., we build our model of
s considering statistical independence among its components,
i.e., p(s1, . . . , sN) =

∏N
i=1 p(si). A further assumption that

we make is to consider the components of s as stationary
over the entire monitoring period.5

Owing to these assumptions, the problem of statistically
characterizing s reduces to that of characterizing the random
variables

si =

N∑
j=1

uji(xj − xj) , i = 1, . . . , N , (10)

5Note that if this assumption does not hold, i.e., the signal statistics change
over time, the model is anyway able to follow such signals, since the signal
basis adapts periodically if the signal statistics change, see Section V.
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Fig. 4. Empirical distribution and model fitting for a principal component
of signal S3, luminosity in the range 320 − 730 nm.

where the r.v. uji is an element of matrix U in Eq. (5) and
the r.v. xj is an element of vector x.

A statistical model for each si can be determined through
the Bayesian estimation procedure detailed below. Similarly
to the approach adopted in [32], we rely upon two levels of
inference.
First level of inference. Given a set of competitive models
{M1, · · · ,MN} for the observed phenomenon, each of them
depending on the parameter vector θ, we fit each model to
the collected data denoted by D, i.e., we find the θMAP that
maximizes the a posteriori probability density function (pdf)

p(θ|D,Mi) =
p(D|θ,Mi)p(θ|Mi)

p(D|Mi)
, (11)

i.e.,
θMAP = argmax

θ
p(θ|D,Mi) , (12)

where p(D|θ,Mi) and p(θ|Mi) are known as the likelihood
and the prior respectively, whilst the so called evidence
p(D|Mi) is just a normalization factor which plays a key
role in the second level of inference.
Second level of inference. According to Bayesian theory,
the most probable model is the one maximizing the posterior
p(Mi|D) ∝ p(D|Mi)p(Mi). Hence, when the models Mi

are equally likely, they are ranked according to their evidence.
In general, evaluating the evidence involves the computation of
analytically intractable integrals. For this reason, we rank the
different models according to a widely used approximation,
the Bayesian Information Criterion (BIC) [33], that we define
as:

BIC(Mi)
def
= ln [p(D|θMAP ,Mi)p(θMAP |Mi)]−

�i
2
ln(T ) ,

(13)
where θMAP is defined in Eq. (12), �i is the number of
free parameters of model Mi and T is the cardinality of
the observed data set D. Roughly speaking, the Bayesian
Information Criterion (BIC) provides insight in the selection
of the best fitting model, penalizing those models requiring
more parameters.

According to the introduced formalism we consider
{s(1), s(2), . . . , s(T )} as the set of collected data D; further, the
observation of the experimental data gives empirical evidence
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Fig. 5. Bayesian Information Criterion (BIC) per Principal Component, for
each model M1–M4, WSN T1 (DEI), campaign A and signal S3, luminosity.

for the selection of four statistical models Mi and correspond-
ing parameter vectors θ: M1) a Laplacian distribution with
θ = [μ, λ], that we call L; M2) a Gaussian distribution with
θ = [m,σ2], that we call G; M3) a Laplacian distribution with
μ = 0 and θ = λ, that we call L0; M4) a Gaussian distribution
with m = 0 and θ = σ2, that we call G0. The space of models
for each si is therefore described by the set {L,G,L0,G0}. In
detail, for each signal S1−S6 in the corresponding WSNs and
campaigns of Table I, we collected the T +K signal samples{
x(1−K), . . . ,x(−1),x(0),x(1), . . .x(T )

}
from which we com-

puted
{
s(1), s(2), . . . , s(T )

}
according to what explained in

Section II-C. Then, for each component si, i = 1, . . . , N, and
for each model Mi, i = 1, . . . , 4, we estimated the parameters
(i.e., the most probable a posteriori, MAP ) that best fit the
data according to Eq. (12). These estimations are related to the
BN in Fig. 3 (sparse signal model box) and since we deal with
Gaussian and Laplacian distributions, they have well known
and closed form solutions [20]. In detail, for each component
si we compute:

M1) μ̂ = μ1/2(si) and λ̂ =

∑T
k=1

∣∣∣s(k)
i −μ̂

∣∣∣
T , where μ1/2(si) is

the median of the data set
{
s
(1)
i , . . . , s

(T )
i

}
;

M2) m̂ =
∑T

j=1 s
(k)
i

T and σ̂2 =

∑T
k=1

(
s
(k)
i −m̂

)2

T−1 ;

M3) λ̂ =

∑T
k=1

∣∣∣s(k)
i

∣∣∣
T ;

M4) σ̂2 =

∑T
k=1

(
s
(k)
i

)2

T .

Fig. 4 shows an example of data fitting according to the
aforementioned models; in this figure we plot the empirical
distribution and the corresponding inferred statistical model
for a generic principal component (but not the first one, as
explained in the following) of the luminosity (S3). This signal
has been observed during the data collection of the campaign
A, in the WSN testbed T1 (DEI). From the graph, we see that
the distribution of the principal components of our signals is
well described by a Laplacian distribution. Formally, the best
among the four considered models can be determined ranking
them according to the Bayesian Information Criterion (BIC)
introduced in Eq. (13). Since we assigned non informative
priors to the model parameters, p(θMAP|Mi) is a constant for
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TABLE II
BAYESIAN INFORMATION CRITERION (BIC) AVERAGED OVER ALL

PRINCIPAL COMPONENTS AND RELATIVE CAMPAIGNS, FOR EACH MODEL
M1–M4 , EACH TESTBED T1–T5 AND EACH CORRESPONDING PROVIDED

SIGNAL AMONG S1 (TEMPERATURE), S2 (HUMIDITY), S3 (LUMINOSITY),
S4 (SOLAR RADIATION), S5 (WIND DIRECTION), AND S6 (VOLTAGE).

WSN Testbed T1 (DEI)
S1 S2 S3 S6

L 1382.8 1059.8 2191.7 4656.9
G 1042.1 804.9 1690 3814.1
L0 1385.5 1062.4 2194.9 4660.1
G0 1044.9 807.60 5078.3 3816.9

WSN Testbed T2 (EPFL LUCE)
S1 S2 S4 S5 S6

L -36.1 -992.3 -2973.9 -3694.9 1854.1
G -195.3 -1163.7 -3628.1 -4026.5 1191.4
L0 -33.3 -989.5 -2970.7 -3691.5 1856.3
G0 -192.5 -1160.9 -3625.3 -4023.6 1194.2

WSN Testbed T3 (EPFL St Bernard)
S1 S2 S4 S5 S6

L -82.3 -1473 -2972.6 -3700.2 1617.8
G -487.4 -1700.7 -3615.9 -3850.3 1087.9
L0 -79.3 -1469.9 -2969.4 -3697.3 1619
G0 -484.7 -1697.8 -3613.3 -3847.5 1090.7

WSN Testbed T4 (CitySense)
S1 S5

L -858.1 -4309.5
G -1094.6 -4384.2
L0 -856.8 -4306.4
G0 -1091.9 -4381.2

WSN Testbed T5 (Sense&Sensitivity)
S1 S3 S6

L -127.7 -196.2 110
G -176.1 -232.1 70.2
L0 -125.7 -194.2 111.9
G0 -174.7 -230.6 71.8

each Mi and therefore the BIC can be redefined as:

BIC(Mi)
def
= ln p(D|θMAP ,Mi)−

�i
2
ln(T ) . (14)

Fig. 5 shows the BIC for the aforementioned luminosity
signal, for all its principal components and for all the con-
sidered models6. From this figure we see that the Laplacian
models better fit the data for all principal components si,
i = 2, . . . , N . The average BIC for each model, for the
different signals, campaigns and WSN testbeds, is shown in
Table II. The values of this table are computed averaging
over the N principal components. From these results we
see that model L0 provides the best statistical description of
the experimental data. In fact, the BIC metric is higher for
Laplacian models in all cases; furthermore, L0 has a higher
evidence with respect to L, since it implies the utilization
of a single parameter. As previously mentioned, the over-
parameterization of the model is penalized according to the
factor T− �i

2 (see Eq. (14)). Based on the above results, we
can conclude that the Laplacian model describes the principal
components of all the real signals that we considered slightly
better than the Gaussian model. Furthermore, it is worth noting
that the first principal components (to be more precise, the

6The first component, s1, does not have a Laplacian or Gaussian prior, by
construction of PCA.
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Fig. 6. Empirical distribution and model fitting for the first principal
component of signal S3, luminosity in the range 320− 730 nm.

first K − 1 principal components7 of the signal, where K is
the length of the training set) have different statistics from
the remaining ones, in terms of both signal range dynamics
and amplitude of the components. This is due to the fact that
the first K − 1 components actually map the observed signal
into the training set vector space, while the remaining ones
are random projections of the signals. The former capture the
“core” of the signal x, the latter allow to recover its details
which can lie outside the linear span of the training data. In
our simulations we set K = 2, in accordance to the rationale
presented in [34], so that only the first principal component
shows a behavior different from the one illustrated in Fig. 4
as reported in Fig. 6. In any case, the Laplacian model still
fits the observed data better than the Gaussian model.

C. Bayesian MAP condition and CS recovery

We have just seen that the Laplacian model is a good
representation for the principal components of typical WSN
signals. This legitimates the use of CS in WSNs when it is ex-
ploited according to the framework presented in Section II-C.
To support this claim, we now review a Bayesian perspective
that highlights the equivalence between the output of the CS
reconstruction algorithm and the solution that maximizes the
posterior probability in Eq. (11).

Assume a DCP is placed in the center of a WSN with N
sensor nodes and let our goal be to determine at each time
k all the N sensor readings by just collecting at the DCP a
small fraction of them. To this end, we exploit the joint CS
and PCA scheme presented in Section II-C. Eq. (5) shows that
the considered framework does not depend on the particular
topology considered; the only requirement is that the sensor
nodes be ordered (e.g., based on the natural order of their
IDs). Our monitoring application can be seen, at each time k,
as an interpolation problem: from a sampled M -dimensional
vector y(k) = Φx(k) ∈ R

M , we are interested in recovering,
via interpolation, the signal x(k) ∈ R

N . Typically (e.g., see

7Note that, according to Eq. (7), the matrix U(k) is obtained from
the elements of the training set X (k) minus their mean, i.e., from the
set

{
x(k−1) − x(k),x(k−2) − x(k), · · · ,x(k−K) − x(k)

}
which spans a

vector space of dimension at most K − 1.
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[32]) this problem can be solved through a linear interpolation,
where the interpolated function in our case has the form (see
Eq. (5))

x(k) − x(k) =
N∑
i=1

s
(k)
i u

(k)
i . (15)

A Bayesian approach would estimate the most probable
value of s(k) = (s

(k)
1 , · · · , s(k)N )T by maximizing a poste-

rior pdf of the form p(s(k)|y(k),U(k),M), where M is a
plausible model for the vector s(k). To avoid confusion, it
is important to note that in this section the interpretation
of all the variables involved is slightly different from the
one adopted in Section IV-B. In detail, now the vector s(k)

is seen as the parameter vector θ in Eq. (11), whilst the
vector y(k) represents the set D of collected data. Moreover,
the observed phenomenon x(k) is modeled through both the
matrix U(k) (i.e., a set of basis functions) and a model M
for the parameter vector s(k), according to the BN in Fig. 3.
In Eq. (11) we indicated with the symbol Mi a possible model
for the observed phenomenon: here that symbol is replaced
with the couple (U(k),M), where M directly refers to s(k).
Using the symbol M to indicate a model for s(k) (even if
s(k) is now interpreted as the parameter vector θ) allows us
to highlight the correspondence between the adoption of a
particular model for s(k) and the results of the study carried
out in Section IV-B. This correspondence will become clearer
in the following.

As in [32], we also assume that M can be specified by a
further parameter set α (called hyper-prior) related to s(k), so
that the posterior can be written as

p(s(k)|y(k),U(k),M)

=

∫
p(s(k)|y(k), α,U(k),M)p(α|y(k),U(k),M) dα .

If the hyper-prior can be inferred from the data and has
non zero values α̂, maximizing the posterior corresponds to
maximizing p(s(k)|y(k), α̂,U(k),M), that as shown in [32]
can be written as

p(s(k)|y(k), α̂,U(k),M) =
p(y(k)|s(k),U(k))p(s(k)|α̂,M)

p(y(k)|α̂,U(k),M)
,

(16)
where p(y(k)|s(k),U(k)) is the likelihood function,
p(s(k)|α̂,M) is the prior and p(y(k)|α̂,U(k),M) is a
normalization factor. The parameters α̂ are estimated
maximizing the evidence p(y(k)|α,U(k),M), which is a
function of α. Note that here the hyper-prior plays, in regard
to s(k), exactly the same role as the parameter vector θ in the
previous section, where s(k) was interpreted as the collected
data set D of the observed phenomenon; for example, if we
choose M = L0 for s(k) then α = λ, i.e., the hyper-prior is
the scale parameter of the Laplacian prior assigned to s(k).

In Eq. (15), without loss of generality we can assume that
x(k) = 0, thus the constraints on the relationship between
y(k) and s(k) can be translated into a likelihood of the form
(see Eq. (6)):

p(y(k)|s(k),U(k)) = δ(y(k),Φ(k)U(k)s(k)) , (17)

where δ(x, y) is 1 if x = y and zero otherwise. In Sec-
tion IV-B, we have seen that the statistics of vector s(k) is

well described by a Laplacian density function with location
parameter μ equal to 0 (L0). This pdf is widely used in the
literature [9], [24] to statistically model sparse random vectors
and, owing to the assumption of statistical independence of the
components of s(k), we can write it in the form:

p(s(k)|α̂,M = L0) =
e−α̂

∑N
i=1 |s(k)

i |

(2/α̂)N
. (18)

In this equation, all the components of s(k) are assumed to be
equally distributed. As shown in [32], using Eq. (16), we can
consider the following posterior:

p(s(k)|y(k),U(k),L0) ∝ p(s(k)|y(k), α̂,U(k),L0)

∝ p(y(k)|s(k),U(k))p(s(k)|α̂,L0) . (19)

Using Eq. (17) through Eq. (19), maximizing the posterior
corresponds to solving the problem

argmax
s(k)

p(s(k)|y(k),U(k),L0)

= argmax
s(k)

p(y(k)|s(k),U(k))p(s(k)|α̂,L0)

= argmax
s(k)

δ(y(k),Φ(k)U(k)s(k))
e−α̂

∑N
i=1 |s(k)

i |

(2/α̂)N

= argmin
s(k)

N∑
i=1

|s(k)i |, given that y(k) = Φ(k)U(k)s(k)

= argmin
s(k)

‖s(k)‖1, given that y(k) = Φ(k)U(k)s(k) ,

(20)

which is the optimization problem solved by the CS recon-
struction algorithms (see [8] and [23]) as we wanted to show.
Note, however, that in our approach, unlike in the classical
CS problems, the sparsification matrix U(k) is not fixed but
varies over time adapting itself to the current data.

V. ITERATIVE MONITORING FRAMEWORK

In this section we present our monitoring framework called
SCoRe1 for distributed compression and centralized recovery
of a multi dimensional signal. We integrate the mathematical
techniques proposed in Section II into an actual monitoring
framework for a WSN with N sensor nodes, that exploits the
model described in Section IV.

A. Logic Blocks of the Monitoring Framework

A diagram showing the logic blocks of this framework is
presented in Fig. 7. Let x(k) ∈ R

N be the N -dimensional
signal (one reading per sensor node) sampled at discrete times
k = 1, 2, . . . . At each time k the DCP8 collects a compressed
version y(k) = Φ(k)x(k), of the original signal x(k) ∈ R

N ,
with y(k) ∈ R

L and L ≤ N . The sampling matrix Φ(k) ∈
R

L×N , has one element equal to 1 per row and at most one
element equal to 1 per column, while all the other elements are
equal to zero.9 Thus, the elements in y(k) are a subset of those

8The DCP can be the sink of the WSN or a remote server that is not battery
powered, so it does not have stringent energy requirements and has enough
computational resources to execute the signal recovery algorithms.

9The elements equal to 1 indicate which nodes transmit their data sample
to the DCP at time k.
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in x(k) (spatial sampling). Note that reducing the number of
nodes that transmit to the DCP is a key aspect as each sensor
is supposed to be a tiny battery powered sensing unit with a
finite amount of energy that determines its lifetime. At each
time k the transmitting nodes are chosen in a distributed way
according to a simple Random Sampling (RS) technique to be
executed in each node of the WSN, as we detail shortly. The
DCP is responsible for collecting the compressed data y(k),
sending a feedback to the WSN and recovering the original
signal from y(k). Next, we detail the blocks and sub-blocks
which compose the SCoRe1 framework and are illustrated in
Fig. 7.
Random Sampling (RS): the RS scheme is used to decide
in a fully distributed way which sensors transmit their data to
the DCP and which remain silent, at any given time k. This
method has been chosen because it translates into a simple and
general data gathering solution that is easy to implement and
has a low communication overhead for the synchronization
of the nodes that transmit. In detail, at each time k each
sensor node decides, with probability p

(k)
tx , whether or not to

transmit its measurement to the DCP. This decision is made
independently of the past and of the behavior of the other
nodes. p

(k)
tx can be fixed beforehand and kept constant, or

can be varied as a function of the reconstruction error and
broadcast by the DCP to all the sensor nodes.
Data Collection Point (DCP). The role of the DCP is three-
fold: 1) it receives as input y(k) and returns the reconstructed
signal x̂(k); 2) it adapts p

(k)
tx and sends its new value to the

sensor nodes, in order to reduce the number of transmissions
in the network while bounding the reconstruction error; 3) it
provides the recovery block with a training set T̂K , that is used
to infer the structure of the signal, which is then exploited
by the signal recovery algorithm. T̂K is formed by the K
previously reconstructed signals x̂(k), so it can be written as
T̂K = {x̂(k−K), . . . , x̂(k−1)}.
Controller: this super-block is responsible for the estimation
of the signal reconstruction’s quality at the DCP and for the
feedback process. It is made of the following two blocks: 1)
the Error Estimation block, which computes the reconstruction
quality of x(k) ∈ R

N from y(k) ∈ R
L, with L < N (i.e., this

block evaluates how close x̂(k) is to x(k)); 2) the Feedback
Control, which tunes the transmission probability p

(k)
tx to reach

the desired reconstruction quality, whilst saving transmissions
when possible.
Error Estimation: the reconstruction error that we want to
estimate is given by

ξ
(k)
R =

‖x(k) − x̂(k)‖2
‖x(k)‖2

, (21)

where x̂(k) is the signal reconstructed at time k by the
Recovery block and ‖ · ‖2 is the L2 norm of a vector.
Note that at the DCP we do not have x(k), but only
y(j) = Φ(j)x(j) and x̂(j), for j ≤ k. Since the quantity
ξ
(k)
0 = ‖y(k) − Φ(k)x̂(k)‖2/‖y(k)‖2 is always zero, due to

the fact that the received samples are reconstructed perfectly,
i.e., Φ(k)x̂(k) = Φ(k)x(k), one might use some heuristics to
calculate the error from the past samples. In this paper we use

Fig. 7. Diagram of the proposed sensing, compression and recovery scheme.
Note that the Controller, which includes the Error estimator and the Feedback
Control blocks, represents the core of SCoRe1.

the following formula:10

ξ(k) =

∥∥∥∥
[

y(k)

y(k−1)

]
−
[

Φ(k)x̂(k−1)

Φ(k−1)x̂(k)

]∥∥∥∥
2∥∥∥∥

[
y(k)

y(k−1)

]∥∥∥∥
2

, (22)

With this heuristic we compare the spatial samples collected
at time k, i.e., y(k), with the reconstructed values at time
k − 1, i.e., x̂(k−1), sampled in the corresponding points, i.e.,
Φ(k)x̂(k−1). Then we compare the same signals switching the
roles of k and k− 1. Note that ξ(k) accounts not only for the
reconstruction error but also for the signal variability. This
introduces a further approximation to the error estimate, but
on the other hand allows the protocol to react faster if the
signal changes abruptly, which is a desirable feature. In fact,
if the signal significantly differs from time k − 1 to time k,
ξ(k) will be large and this will translate into a higher p(k+1)

tx ,
as detailed below.
Feedback Control: this block calculates the new ptx and
broadcasts it to the network nodes. The calculation of the
new ptx is made according to a technique similar to TCP’s
congestion window adaptation, where ptx is exponentially
increased in case the error is above a defined error threshold
τ (to quickly bound the error) and is linearly decreased
otherwise. In detail, for some constants C1 ∈ [1,+∞[,
C2 ∈ {1, 2, . . . , N} and pmin

tx , we update the probability of
transmission as:

p
(k+1)
tx =

⎧⎨
⎩
min

{
p
(k)
tx C1, 1

}
if ξ(k) ≥ τ

max
{
p
(k)
tx − C2/N, pmin

tx

}
if ξ(k) < τ .

(23)

In Section V-B, we provide some insight on the choice of the
parameters in Eq. (23).
Recovery: the recovery technique adopted in our approach
is the joint CS and PCA technique described in Section II-C.
Specifically, the set T̂K is used at each time step k to compute
the sample mean vector x and the sample covariance matrix
Σ̂. Thus, U(k) is obtained from Σ̂ and Eqs. (6)-(7) are used
to retrieve x̂(k), using the techniques of [8] or [24]. The
joint CS and PCA technique, hereafter referred to as CS-
PCA, will be compared in Section VI with other classical

10We tried other heuristics and verified through extensive simulation that
they perform similarly but slightly worse than the one in Eq. (22). These are
therefore not listed here, as they do not provide any additional insight.
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interpolation techniques that can alternatively be plugged into
our framework. These techniques are described in detail in the
technical report [30].

B. Validation of the Monitoring Framework

In order to illustrate the choices made in the design of
SCoRe1, we consider two simple strategies for iteratively
sensing and recovering a given signal. In particular, we aim
to explain the reasons for: 1) the adoption of an approximate
training set T̂K and 2) the definition of the Controller block
in Fig. 7.

The first strategy we consider aims to adapt to the possible
variable statistics of the observed signals and is referred to as
2 Phases, since it alternates two phases of fixed length. The
former is a training phase lasting K1 time samples, during
which the DCP collects the readings from all N sensors and
uses them to estimate the statistics needed by the recovery
algorithm. During this phase, each sensor transmits its data,
i.e., the signal received at the DCP at time k is y(k) = x(k),
and at the end of this phase the DCP has stored a training set
TK1 = {x(k−K1), . . . ,x(k−1)} that will be used to infer the
relevant statistics. The latter is a monitoring phase of K2 time
samples, with K2 ≥ K1, during which (on average) only L ≤
N nodes transmit, according to the adopted RS scheme with
ptx = L/N . The signal of interest is thus reconstructed from
this data set by the Recovery block exploiting the statistics
computed in the training phase, as detailed in Section V-A.

A major drawback of this technique is that it is very
sensitive to the choice of the parameters that govern the
compression and the recovery phases. The parameters to be
set are ptx and the lengths of the training phase K1 and
the monitoring phase K2. These parameters must be set at
the beginning of the transmission and can only be tuned
manually. Hence, even though the initial choice is optimal
for the specific signal monitored, 2 Phases is not able to
adapt to sudden changes in the signal statistics. Moreover,
the training phase accounts for the biggest part of the total
cost in terms of number of transmissions, as we show shortly.
A solution to the latter problem is to obtain the training set,
that is necessary for the reconstruction algorithm, from the
K previously reconstructed signals, i.e., T̂K . In this way, we
eliminate the training phase and the nodes at each time k
transmit with a fixed probability ptx: this is the Fixed ptx

technique. This way of obtaining the training set from the pre-
viously reconstructed signals is the same as in SCoRe1, with
the difference that in SCoRe1 there is a feedback mechanism
to bound the reconstruction error.

To compare SCoRe1 with the above schemes, we use differ-
ent signals classified according to their statistical characteris-
tics, as detailed in Section III: C1) signals with high temporal
and spatial correlation, e.g., ambient temperature [°C] or
ambient humidity [%]; C2) signals with lower correlation, e.g.,
luminosity [A/W]; and C3) the battery level [V] of the sensor
nodes during the signal collection campaign.

The x-axis of the performance plots represents the nor-
malized cost expressed as the average fraction of packet
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Fig. 8. Impact of the choice of K1 on the performance of 2 Phases, for
signal (C1).

transmissions in the network per time sample, formally:

Cost =
1

KDTOT

K∑
k=1

N∑
n=1

DnIn(k) , (24)

where K is the number of considered time instants (i.e., the
overall duration of the data collection), N is the total number
of nodes in the WSN, Dn is the distance in terms of number
of hops from node n to the DCP,11 DTOT =

∑N
n=1 Dn and

In(k) is an indicator function, with In(k) = 1 if node n
transmits and In(k) = 0 if node n remains silent at time
k. Note that a normalized cost of 1 corresponds to the case
where all nodes transmit during all time instants 1, 2, . . . ,K ,
which accounts for the maximum energy consumption for the
network. The cost of the feedback transmitted by the DCP is
neglected here, since the feedback packets are assumed to be
very short compared to the data packets.

The y-axis, instead, shows the signal reconstruction error
at the end of the recovery process, calculated according to
Eq. (21). In order to vary the cost (x-axis) for the three
techniques we modify the following parameters: for 2 Phases
and Fixed ptx we vary the probability of transmission ptx
that is set at the beginning of the data gathering in the range
]0, 1[; for SCoRe1, we vary the error threshold τ of Eq. (23)
in the range ]0, 1[. Moreover, we set the training phase and
the monitoring phase lengths for 2 Phases to K1 = 2 and
K2 = 4, respectively, whilst for Fixed ptx and SCoRe1 we
set the training set length to K = 2. Further, for SCoRe1 we
also set C1 = 1.3, C2 = 3 and pmin = 0.05. These parameter
choices have been made after extensive simulations.

In particular, in Fig. 8 we show the impact of the choice
of K1 on the performance of 2 Phases, for the recovery of
signal (C1).12 We see that the performance decreases with an
increasing value of K1, so in our case the best choice for this
parameter is K1 = 2. In the same figure, the solid and dotted
lines without marks represent lower bounds on the recovery
error performance, which are obtained assuming that at each
instant k the recovery algorithm can use a genie to retrieve
at no cost an updated version of the training set, i.e., TK1 .

11Note that Dn is considered to take into account the multi-hop structure
of the network in the performance analysis.

12A similar analysis has been performed also for signals (C2) and (C3).
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Fig. 9. Impact of the choice of K on the performance of Fixed ptx, for
signal (C1).

These bounds represent the achievable performance in the
idealized case when all the previous signal samples are known
at the sink. The gap between the actual recovery error and the
corresponding lower bound serves as a further indication for
the parameter selection and performance comparison; as an
example, note that in Fig. 8 the relative distance between the
curve with K1 = 2 and its lower bound is the smallest.

In Fig. 9, instead, we show the performance of Fixed ptx,
that is also representative for SCoRe1, varying the length of
the training set K . Also in this case, the best choice for
the training set length is K = 2. Other simulation results
concerning the setting of parameters have been obtained, but
they are not shown here because they do not bring further
insight into the understanding of the technique.

Fig. 10 shows that with the slowly varying signals of
type (C1) we achieve very good performance in all cases.
In some applications, the same network can be exploited to
collect different signals (as a matter of fact, most currently
available nodes are equipped with more than one sensor, each
measuring a different signal). In this case, we would like to fix
a priori the parameters of the framework in each node, and see
how the network is able to reconstruct the different signals.
In order to study the achievable performance, we consider
the average performance obtained for signals (C1), (C2) or
(C3), as depicted in Fig. 11. Here, the error for Fixed ptx

increases dramatically for small ptx and this in turn leads
to a more sensitive trade-off between energy reduction and
recovery accuracy. This is due to the fact that, with quickly
variable signals, the error propagates and increases over time.
SCoRe1, instead, is able to iteratively adapt its parameters
to the specific characteristics of the observed signals and, in
turn, to significantly outperform the other schemes. This is a
favorable aspect, especially when the signal statistics is not
known. To conclude, the results shown in this section allow
us to validate the design choices of SCoRe1.

VI. PERFORMANCE COMPARISON: RECONSTRUCTION

TECHNIQUES

In Section V we presented a mechanism, integrated into
our monitoring framework, to jointly exploit CS and PCA
for signal interpolation in WSN, which we called CS-PCA.
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Fig. 10. Performance comparison of three iterative monitoring schemes for
signals (C1), temperature and humidity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
−4

10
−3

10
−2

10
−1

Cost

E
rr

or
 [

R
]

 

 

2 Phases
Fixed p

tx

SCoRe1

Fig. 11. Average recovery performance of the three iterative monitoring
schemes for signals (C1), (C2) and (C3).

This mechanism is executed at the DCP (see Fig. 7) and, at
any time k, tries to recover the original signal x(k) ∈ R

N

from its compressed version y(k) ∈ R
L, with L ≤ N .

Many alternatives exist in the literature, each based on a
particular signal model. Given a signal model, in fact, we can
determine through theoretical analysis the optimal recovery
mechanism to adopt. However, the performance is strongly
affected by how well the given signal model fits the real
signals considered. In the first part of this section we will
briefly review some state of the art interpolation techniques
that, as well as CS, provide us with a solution to the following
problem:

Problem (Interpolation Problem). Estimate x̂(k) (such that
‖x̂(k) − x(k)‖2/‖x(k)‖2 � 0) knowing that y(k) = Φ(k)x(k),
where y(k) ∈ R

L, L ≤ N and Φ(k) is an [L ×N ] sampling
matrix, i.e., all rows of Φ(k) contain exactly one element equal
to 1 and all columns of Φ(k) contain at most one element equal
to 1, whilst all the remaining elements are zero.

In the second part of this section, instead, we analyze the
performance of SCoRe1 when used in conjunction with the
interpolation methods described in the first part. This study
shows that CS can be effectively exploited for WSNs.
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Fig. 12. Performance comparison of different interpolation techniques
applied to SCoRe1, for signals in class (C1), temperature and humidity. These
performance curves are obtained with signals gathered from the DEI WSN
deployment.

A. Signal Models and Interpolation Techniques

The prior knowledge that we have about a given signal
of interest x(k) helps us to build a model for such signal.
This knowledge13 can be deterministic, e.g., a description
of the physical characteristics of the observed process, or
probabilistic, e.g., the formulation of a probability distribution,
called prior, to describe the possible realizations of x(k). The
Deterministic approach allows us to define for instance two
standard recovery methods, the Biharmonic Spline (Spline)
and the Deterministic Ordinary Least Square (DOLS). The
first one is a standard interpolation technique that is dependent
on the knowledge of where the signal sources are placed
and exploits smooth functions to interpolate among different
measurement points; the second, instead, assumes that the
signal is stationary over a given time period, exploits a portion
of the PCA matrix (i.e., the first K − 1 columns of U(k)

indicated with U
(k)
K−1, where K is the length of the training

set T (k)
K or of its approximate version T̂ (k)

K ) to determine the
lower dimensional approximation of the original signal and,
finally, recovers the signal with the Ordinary Least Square
method (OLS). Alternatively, a probabilistic approach can be
adopted as we have done in Section IV, where such solution
allowed us to legitimate the use of CS-PCA when a Laplacian
prior is assumed for s(k), the principal components of the
monitored signal x(k). Assigning a Gaussian prior to s(k),
instead, leads to a classical recovery method that we call
Probabilistic Ordinary Least Square (POLS). Note that all the
above interpolation techniques can be implemented at the DCP
in the Recovery block shown in Fig. 7.

B. Performance of the Signal Recovery Methods

In the following, we show performance curves for Spline,
DOLS, POLS and CS-PCA. Note that DOLS cannot be
considered as an effective solution since it is affected by a
numerical stability problem. Nevertheless, we considered it
in view of its simplicity and low complexity. Along the x-
axis of the figures of this section we have the normalized

13For a more detailed description of the argument and the pseudo-code of
all the techniques introduced, we refer the reader to the technical report [30].
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Fig. 13. Performance comparison of different interpolation techniques
applied to SCoRe1, for signals in class (C2), luminosity in the range 320−730
nm. These performance curves are obtained with signals gathered from the
DEI WSN deployment.
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Fig. 14. Performance comparison of different interpolation techniques
applied to SCoRe1, for signals in class (C1), temperature and humidity. These
performance curves are obtained with signals gathered from the EPFL WSN
deployment LUCE, see [26].

cost expressed as the average fraction of packet transmissions
in the network per time sample, again computed according
to Eq. (24); the y-axis shows the signal reconstruction error
at the end of the recovery process, calculated according to
Eq. (21). To vary the cost (x-axis) we modify the parameters
of SCoRe1 as explained in Section V. Solid and dotted lines
represent lower bounds on the error recovery performance,
which are obtained by assuming a genie that provides a perfect
knowledge about past signals for the same transmission cost
incurred with the actual scheme, i.e., this is implemented
considering TK instead of T̂K .

In Figs. 12 and 13 we can see how an imperfect knowledge
of the training set severely impacts the recovery performance
of DOLS. This is however not as dramatic for CS-PCA
and POLS. The uncertainty on the training set makes the
Gaussian prior for s(k) more effective than the Laplacian one,
in accordance to the central limit theorem (e.g., see [35]). As
a consequence, if we use T̂K , POLS outperforms CS-PCA,
whilst if we use TK , CS-PCA and POLS perform equally
well, also for highly variable signals, see Fig. 13, signal class
(C2). In any case, both POLS and CS-PCA remain valid
solutions for a monitoring application framework, since the
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performance loss from the ideal case, which assumes perfect
knowledge of TK , to the one that exploits T̂K is sufficiently
small. Concerning Spline, this method is able to reach good
performance only with a transmission probability above 0.8;
furthermore, the use of Spline as the interpolation technique
in SCoRe1 leads to large errors due to the fact that it does not
exploit any prior knowledge on the statistics of the signal to
recover.

Finally, in Fig. 14 we show similar performance curves
using the signals gathered from the EPFL WSN deployment
LUCE, see [26]. The signals considered in this figure are of
the class (C1), i.e., temperature and humidity. Also in this
case, the performance is similar to Fig. 12 and all the above
observations remain valid. This provides further evidence that
SCoRe1 is an effective solution for monitoring applications for
WSNs in different scenarios. Equally important, the achieved
performance shows that CS recovery can be effectively used
for data gathering in WSNs.

VII. CONCLUSIONS

In this paper we investigated the effectiveness of data re-
covery through joint Compressive Sensing (CS) and Principal
Component Analysis (PCA) in actual WSN deployments. At
first, we framed our recovery scheme into the context of
Bayesian theory proving that, under certain assumptions on
the signal statistics, the use of CS is legitimate, and is in
fact equivalent to Maximum A Posteriori in terms of recov-
ery performance. Hence, we proposed a novel framework,
called SCoRe1, for the accurate approximation of large real
world WSN signals through the collection of a small fraction
of data points. SCoRe1 accommodates diverse interpolation
techniques, either deterministic or probabilistic, and embeds
a control mechanism to automatically adapt the recovery
behavior to time varying signal statistics, while bounding the
reconstruction error. We remark that our approach is also
robust to unpredictable changes in the signal statistics, and this
makes it very appealing for a wide range of applications that
require the approximation of large and distributed datasets,
with time varying statistics.
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