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and Distributed Source Coding in WSN
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Abstract—Despite the large body of theoretical research
available on compression algorithms for wireless sensor net-
works (WSNs), only recently have researchers started to design
and analyze practical distributed compression techniques. Also,
approaches belonging to different fields such as signal process-
ing (e.g., discrete Fourier transforms and compressive sensing)
or information theory (e.g., distributed source coding) and
networking are seldom evaluated against one another. In the
present contribution, we consider practical lossy compression
schemes that rely on different techniques, such as the exploita-
tion of the temporal and spatial dynamics of the signal as well
as recent algorithms based on Compressive Sensing (CS). These
techniques are adapted so as to be efficiently applied, within the
same data collection framework, to a distributed WSN. Hence,
we carry out a comparative performance analysis of these
schemes, assessing their performance in terms of reconstruction
error vs energy requirements. From this, several interesting
observations are derived, which allow the identification of
the best performing algorithm(s) as a function of the spatio-
temporal characteristics of the signal. For CS, we assess the
impact of the node selection scheme (scheduling) and gauge
its performance gap with respect to an idealized CS scheme
where the signal covariance matrix is perfectly known at
the reconstruction point. We finally identify areas that need
improvement, especially for the enhancement of CS-based
compression.

I. INTRODUCTION

Lossy compression is a key functionality for a Wireless
Sensor Network (WSN). Its effectiveness is based on the
premise that compressed data implies the transmission of
smaller packets. This, in turn, alleviates collisions at the
channel access and promotes energy savings at the trans-
mitter and the receiver [1].

However, the research on fully distributed, practical and
lightweight compression schemes is far from being over. In
fact, many aspects remain open, such as a solid understand-
ing of the suitability of the different techniques depending on
the type of signal as well as their comparative performance
evaluation. The objective of the present paper is to provide a
step forward in the understanding of this matter, identifying
the most promising approaches as a function of relevant
signal statistics and pointing out future research directions.

The effectiveness of distributed compression depends
upon implementation related facts, such as the energy re-
quired for compression versus that required for transmission.
In [2], the authors studied this tradeoff when the sensor
nodes independently compress their readings, by only ex-
ploiting the temporal correlation (TC) in the sampled signal.
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The best algorithms that were identified in [2] are Discrete
Cosine Transform (DCT)-based and Lightweight Temporal
Compression (LTC) [3], with the former providing the best
compression performance and the latter being the most
energy efficient in terms of local computations at the sensors.

Alternatively, one can exploit the spatial correlation in the
measured data and, based on that, apply Distributed Source
Coding (DSC). Practical DSC methods were first proposed
in [4] (termed DISCUS and based on syndrome encoding),
where the authors suggested the use of convolutional codes
as a means to spatially compress the data. In short, this is
achieved by splitting the input data sequence x according
to so called bins and, for each reading, the bin identifier
(binID) is sent in place of the actual data point. Com-
pression is achieved as the binID needs fewer bits than the
original data. If the bins are properly designed, i.e., they have
certain distance properties, reconstruction at the receiver
is possible through the acquisition of some side informa-
tion, i.e., an uncompressed (and spatially correlated) data
sequence y that is sent from another sensor. The original idea
of [4] consists of computing the bins using a channel code,
and in particular using the associated syndrome sequence s.
At the receiver, the decoder performs maximum likelihood
decoding of the original data sequence x based on s and
on the side information y. The DISCUS scheme has been
subsequently improved, going from the simple convolutional
codes of [4] to more powerful Turbo or Low Density Parity
Check (LDPC) codes, see [5], which are able to approach
theoretical compression ratios.

In addition, recent advancements in the signal processing
field have fostered the development of the new theory of
Compressive Sensing (CS) [6], [7]. Let N be the number
of sensors and x ∈ R

N be the vector representing the input
signal (one reading per sensor). Also, assume that x has a
sparse representation in some space, referred to here as u
(i.e., there exists a linear transformation that sparsifies x).
The CS theory provides means to solve for u, with high
probability, ill-posed linear systems of the type y = Ψu,
where y ∈ R

M and M ≪ N . Once u is known, the
complete signal x is retrieved applying the inverse of the
sparsification transform. This concept can be used to concoct
distributed and lightweight signal compression schemes, as
proposed in [8]. Hence, CS-based compression is based on
the idea that only a small number (M ≪ N ) of sensor nodes
send their (uncompressed) readings, namely, the signal y. At
the WSN data collector (referred to as the sink), the original
data x is retrieved with high probability using the sampled
(incomplete) data y and a suitable transformation basis.

Contribution: in the present paper we consider lossy com-
pression schemes that rely on different techniques, such
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as the exploitation of the temporal (DCT, LTC) and spa-
tial (DSC) dynamics of the signal as well as recent CS
schemes, that utilize the signal correlation in space and time.
Notably, despite the large amount of research available on
theoretical aspects, only recently (DISCUS has been the
first practical approach to DSC) have researchers started to
look at practical distributed compression techniques. Most
importantly, approaches belonging to different fields such as
signal processing (CS, DCT) or information theory (DSC)
and networking (LTC) are seldom evaluated against one
another. The aim of the present paper is to shed some light
on the comparative performance of these algorithms.

To this end, the aforementioned schemes are adapted
and integrated with practical aggregation and data gathering
strategies under realistic WSN settings. Thus, they are com-
pared in terms of their compression and energy consump-
tion performance by varying relevant signal statistics and
network parameters. The lessons that we have learned from
this study are multifold. First, the best performing scheme
depends on the signal statistics. CS-based compression is
preferable across the entire range of temporal correlations
when the spatial correlation is moderate. As the spatial
correlation becomes high, DSC schemes perform best and
when the temporal correlation is high, TC-based algorithms
(DCT, LTC) perform almost as well as CS, providing
a reasonable alternative to the latter. Notably, CS-based
schemes show a non-negligible gap between their theoretical
performance (a lower bound computed assuming perfect
statistical knowledge of the signal at the sink) and the actual
one. We believe this gap can be reduced and we identify how
that can be done as part of a future research work.
Organization of the paper: in Section II, we start by
describing the system model; this includes details on the
network topology, the data gathering (routing) structure,
a clustering procedure that we use for DSC, the energy
consumption and the signal models. In Section III we discuss
the compression algorithms that we compare in the paper.
In Section IV we present a performance evaluation of
the selected compression algorithms and in Section V we
summarize our main findings and highlight future research
directions.

II. SYSTEM MODEL

Signal model: next, we briefly outline the adopted signal
model. We consider the method of [9], that has been vali-
dated against real signals and allows the generation of time-
varying spatial fields with tunable correlation characteristics.

We target applications that sample the sensor field at
regular intervals. Thus, time t = 0, 1, 2, . . . is slotted and the
slot duration is fixed and equal to ∆t. We denote the spatial
and temporal domain by D = [−xD, xD] × [−yD, yD] and
by T = i∆t, i = 0, 1, 2, . . . , respectively. A point in space
is indicated with p = (x, y) ∈ D. With x(p, t) : D×T → R

we indicate the generated signal, which is stationary in space
and time, with mean µx = 0, variance σ2

x = 1 and tunable
correlation structure.1

1Note that we can obtain any other values for the mean and variance
by shifting and scaling the random field without affecting the correlation
characteristics.
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Fig. 1. Signal example for γ = 0.1 (left) and γ = 1 (right).

As commonly assumed in the modeling of environmental
spatio-temporal signals [9], [10], the correlation function is
assumed to be separable in the space and time components:

ρ(p1, t1,p2, t2) = ρS(p1,p2)ρT (t1, t2) , (1)

where p1 and p2 are two points in D, t1 and t2 ≥ t1 are
two time instants, ρS(·) and ρT (·) respectively denote the
spatial and temporal correlation functions. From the signal
stationarity, (1) can be equivalently rewritten as a function
of d = ‖p1 − p2‖2 and ∆t = t2 − t1.

Any suitable correlation function [11] can be used in the
signal generation procedure. In this paper, for ρS(d) we use
a Gaussian function:

ρS(d) = exp

{

− d2

γα2

}

, (2)

where α is a scaling factor that depends on the field
size and γ is a free parameter used to control the spatial
correlation. In Fig. 1 we show a single time instant for two
synthetic signals generated with this model, obtained with
γ ∈ {0.1, 1}.

For the temporal correlation, we use ρT (∆t) = ρ ∈ [0, 1],
referred to as the temporal correlation coefficient (this
amounts to assuming an exponential correlation function).

Topology and data gathering: we consider WSNs
comprising N nodes, deployed uniformly at random in
the area D, with xD = yD = 50 m. For the transmission
range R of the nodes we adopt a unit disk model so that
sensors can only communicate with those nodes placed at a

distance less than or equal to R. We use R = 2xD

√
5/
√
N

to guarantee that the structure is connected with high
probability under any deployment. The sink node is placed
at the center of the WSN area. For the routing, each
sensor considers as its next hop the node within its range
that provides the largest advancement toward the sink
(geographical forwarding), in Fig. 2 we show an example
topology for N = 50 nodes.

Clustering: for the DSC technique we have used the
weighted clustering algorithm (WCA) of [12]. This makes
it possible to group the sensors into a predetermined number
Nc of clusters obtained so as to evenly divide the WSN
area. Within each cluster, a clusterhead (CH) is elected, so
that the CH will minimize the average distance with respect



3

−50 −40 −30 −20 −10 0 10 20 30 40 50
−50

−40

−30

−20

−10

0

10

20

30

40

50

CH

CH

CH

CH

sink

 

 

Fig. 2. Example of WSN topology with N = 50 sensor nodes. The data
gathering tree is indicated by dashed lines, the clusterheads are represented
by black-filled circles, different clusters are delimited by solid lines and
the node in the center is the sink.

to the non-CH nodes within its cluster. See Fig. 2 for an
example with Nc = 4.

Energy model: for every compression technique, we have
counted the number of additions, multiplications, divisions
and comparisons executed at the nodes. Thus, according to
the considered sensor hardware, we have translated these
figures into the related number of clock cycles and we
have subsequently turned the latter into the corresponding
energy expenditure. In addition, we have considered the
energy consumption associated with the transmission and
reception of each packet. In this paper, for these figures we
have considered a MSP 430 micro-processor and a CC2420
radio [2] from Texas Instruments.

III. COMPRESSION TECHNIQUES

A. Temporal Correlation-based Compression

For this class of algorithms we consider LTC and DCT,
as these are the best performing algorithms from [2]. With
them, each sensor node independently compresses a time
series, exploiting the temporal correlation of the signal.
Both algorithms work on time series of T subsequent
(scalar) readings {x1, x2, . . . , xT }.

LTC: LTC is a low complexity algorithm that uses a
linear model to approximate a time series, according
to a preset error tolerance ε ≥ 0. The algorithm works
by approximating multiple readings through a single
segment, so that the segment will be within the given
error tolerance for all points, see [2]. This algorithm has
a linear complexity in the number of readings in the time
series. Also, a segment is described by two coefficients,
so compression is achieved when the number of readings

1 1 b0 = 0b0 = 0

b1 = 0b1 = 1

a0 a1a2 a3 a4 a5 a6 a7

∆

2∆

a0 a2 a4 a6 a1 a3 a5 a7

a2 a6 a0 a4 a3 a7 a1 a5

Fig. 3. Ungerboeck tree-based binning procedure [13]. In this example,
the alphabet A contains 8 symbols {a0, . . . , a7}, where these are classified
into bins according to (b1, b0) (bi ∈ {0, 1}). b1 splits the 8 symbols into
two subsets (or “bins”, containing crosses and circles). b0 allows splitting
each subset into two further sets (bins), obtaining the four bins at the bottom
of the figure. Note that symbols in the same bin have maximum distance.

that are covered through it (that depends on ε) is larger
than 2. It follows that LTC is effective when the signal
exhibits a high temporal correlation, whereas in the case of
uncorrelated readings its performance is worse than sending
the time series uncompressed (as confirmed by the results
of Section IV).

DCT: as observed in [2], DCT has a good energy
compaction property, which means that the energy of the
signal tends to be distributed within the first few DCT
coefficients. Based on this, we implemented DCT by
taking the time series {x1, x2, . . . , xT }, computing its
DCT and retaining the first T ′ coefficients, where T ′ ≤ T
determines the level of compression and, at the same time,
the representation accuracy. In our implementation, also
for DCT we considered a maximum error tolerance ε (see
also [2]). This implies that the compressor has to evaluate
the representation accuracy of the compressed sequence,
adding additional coefficients until the tolerance ε is met.

Compression strategy: the compression is orchestrated ac-
cording to cycles of T time slots. Each sensor independently
collects a time series {x1, x2, . . . } and, when T readings
are available, these are transformed according to the com-
pression strategy in use (either DCT or LTC). The resulting
coefficients are stored in the payload of a single(multiple)
packet(s) that is(are)2 sent to the sink and the process is
repeated.

B. Spatial Correlation-based Compression

As per the DSC scheme, as suggested in [4] we use the
Ungerboeck tree-based binning scheme [13], an example of
which is provided in Fig. 3. We consider the transmission
of an analog reading, which is first quantized (uniform
quantization is assumed in Fig. 3, with quantization step ∆)
into a certain number of levels Nℓ (Nℓ = 8 in the figure).
We refer to n as the number of bits required to represent the
quantized symbol. After this, bins are obtained by grouping

2Multiple packets may be needed to carry the compressed signal,
depending on T , the compression process and the payload size.
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the quantized symbol as shown in Fig. 3. In this figure, we
use four bins (B0, . . . , B3), which means that k = 2 bits
(b1, b0) are sufficient to represent the binID. Note that
following this approach the symbols within each bin have
maximum distance, whilst assuring an even distribution
of the symbols in the bins. Also, the distance property is
maintained for all bins. This procedure can be applied for
any n and k.

Compression strategy: given the above splitting procedure,
the DSC scheme works as follows. As said above, the WSN
is divided into a number Nc of clusters. At each time slot
t, each non-CH node in the cluster compresses its reading
xt ∈ R by first quantizing it into xq

t according to ∆ and Nℓ.
3

Subsequently, the quantized symbol xq
t is mapped into the

corresponding bin according to the Ungerboeck procedure,
using k < n bits. At time t, the resulting binID, indicated
by st (k bits), is stored at the sensor node in place of the
quantized symbol xq

t . The CH simply quantizes its current
reading yt and stores in its internal memory its quantized
representation yqt (n bits). Every T time slots the memory of
both non-CH and CH nodes is flushed and the data therein
is sent to the sink. In detail, CH nodes store the last T
quantized readings in a single packet (payload of nT bits),
which is sent to the sink via multi-hop routing. Non-CH
nodes store the last T compressed readings (the payload is
now kT bits) into a single packet and send it to the sink via
multi-hop routing.

For the procedure to be executed at the sink, let us
consider a generic cluster. The decompressor first looks
at the packet received from the corresponding CH, which
contains T uncompressed readings yqt (side information).
Consider now a non-CH node i in this cluster. For each
binID st contained in the packet from this node, with
t ∈ {1, . . . , T}, we refer to Bst as the corresponding bin
and the estimated (quantized) symbol for node i is obtained
as:

x̂q
t = argminxq∈Bst

|xq − yqt | , (3)

where we look for the element in the bin Bst that has mini-
mum Euclidean distance with respect to the side information
yt that is received from the CH.

From the bin construction procedure, it descends that x̂q
t

will be equal to the original reading xq
t if the difference be-

tween xq
t and the side information yqt is strictly smaller than

2k−2∆. Note that this depends on the (spatial) correlation
properties of the signal. Also, we consider the quantization
error as negligible; note that this is a good assumption in
the considered scenario.4 Also, it is possible to improve
the performance of the above procedure through the use
of coding for the generation of binID sequences (LDPC
being a popular example). In this paper, we consider the
memoryless procedure outlined above, noting that it is often
preferred for WSNs due to its lightweight character, see,

3Quantization is performed according to a minimum distance criterion,
as in [4].

4We consider n = 16 bits per reading, with a signal range of ≈ 2 units.
This leads to ∆ = 3 · 10−5, which is negligible compared to the
reconstruction error, see Section IV.

e.g., [14]. Extension to more complex coding approaches,
along with the evaluation of their additional complexity, are
left as future work.

C. CS-based Compression

As stated in the introduction, CS is a mathematical frame-
work that makes it possible to solve ill-posed linear systems
when the unknown vector x is sparse. In our problem,
x = [x(1), x(2), . . . , x(N)]T ∈ R

N , where the i-th element
x(i) represents the reading generated by sensor node i.
Including the temporal dimension, we indicate the complete
WSN signal at time t by xt (with the term “complete,” we
mean containing the readings from all the sensor nodes).

At any time t, CS can be used to approximate xt by
measuring a subset of the readings, i.e., collecting a smaller
vector yt of size M ≪ N [8].

Here, we assume that the signal xt is sparse and zero
mean,5 which means that there exists an invertible N × N
transformation matrix Φt such that

xt = Φtut , (4)

where ut ∈ R
N is M -sparse.6 Hence, assuming that Φt is

known, xt can be retrieved from its sparse representation
using (4).

Compression strategy: at each time slot t the sink collects
the readings from M ≪ N sensors (see Section III-E for
the sensor selection strategies), storing them into vector yt.

7

Thus, we can write yt = Rtxt, where Rt is a sampling
matrix of size M × N . In detail, Rt is an all zero matrix,
except for a single one in each row and at most a single one
in each column (i.e., yt is a sampled version of xt). Using
the previous definitions, we have:

yt = Rtxt = RtΦtut
def
= Ψtut . (5)

(5) can be solved for ut, once the sparsification matrix Φt

(see Section III-D) and the sampling matrix Rt are known.
Once ut is known, (4) is used to retrieve the complete
signal xt. Note that the signal that we obtain through this
procedure, referred to as x̂t, is an interpolated version of xt.

D. Sparsification Basis Φt

As demonstrated in [15], although standard transforms
such as the Fast Fourier Transform (FFT) or the DCT
perform satisfactorily as sparsification bases for video se-
quences, they are rather ineffective for typical WSN signals.
A solution to this entails the use of Principal Component
Analysis (PCA) [16]. PCA is a statistical processing tech-
nique that uses the sample covariance matrix Σ to convert a
correlated signal into a number of principal components that
is usually smaller than the number of variables in the original

5This assumption is not restrictive as the approach explained here can
be applied to the signal after subtracting its (estimated) mean xt [8].

6A vector is defined M -sparse when it only has M significant elements,
whereas the amplitude of the remaining N−M elements is negligible with
respect to the average energy per component, (1/N)

√
< ut,ut >.

7Note that M can be varied across subsequent time slots.
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signal x. That is, PCA finds a smaller space where x can be
projected by minimizing the loss of information that occurs
from the original (size N ) to the projected (size M ) space.
The projection basis is obtained by the M eigenvectors of
the sample covariance matrix that better represent the signal
(i.e., that capture most of its energy). Note that the projection
basis corresponds to the sparsification basis Φt that we are
looking for.

In this paper, matrix Φt is obtained as follows:

1) Use yt and the current Ψt matrix to obtain yt → x̂t

(through (5), solved via ℓ1-minimization).
2) Store x̂t into a buffer, containing the T most recent

(estimated) vectors X = {x̂t, x̂t−1, . . . , x̂t−T+1}.
3) Estimate Σt (and xt) from the vectors in X .
4) Compute the new Ψt+1 from Σt using PCA.

More computationally efficient algorithms can be found
in [17]. These are not considered for the results in this paper.

E. Sampling Strategy Rt

In this section, we briefly discuss the sampling strategies
that we have considered for matrix Rt.

Random node selection (RNS) [8]: at each time slot
t = 0, 1, 2, . . . , on average, a number M of nodes transmit
their readings to the sink. A simple and distributed technique
to achieve this is to define a transmission probability ptx so
that M = Nptx. Hence, at time t, each node independently
decides whether it will be transmitting to the sink according
to ptx; in that case, its current reading is stored in the
payload of a single packet, which is sent to the sink through
multi-hop routing. If user i ∈ {1, . . . , N} transmits at time
t, Rt will have a (single) one in the i-th column.

Deterministic node selection (DNS): this approach works
in data collection cycles of T time slots each, as we
now explain. A predetermined and deterministic sampling
strategy is computed by the sink and disseminated to all
WSN nodes. Exactly M nodes sample the signal at each time
slot and we define T = κ⌈N/M⌉, with κ integer. For the
discussion that follows, consider the first collection cycle,
i.e., time slots {1, 2, . . . , T}. The subset of sampling nodes
is computed according to the following criteria: 1) the M
selected nodes shall evenly cover the area D, 2) all nodes
sample the signal at least once within ⌈N/M⌉ time slots.
Actually, they sample exactly once if N/M is integer and up
to two times otherwise. In the latter case, ⌊N/M⌋M nodes
sample the signal once in the first ⌊N/M⌋ slots, whereas in
the last time slot, (N mod M) nodes sample the signal for
the first time and M − (N mod M) nodes resample it to
assure that there are M sampling nodes.

This is achieved through a suitable monitoring schedule,
which is obtained using the theory in [18]. At time t, Rt

will have a one in column i ∈ {1, . . . , N} if the monitoring
schedule includes node i for transmission in this time slot.
To improve the efficiency in the transmission of the sampled
readings we use the following data aggregation approach.
From the above discussion, each node will be sampling the
signal ns(T ) ∈ {κ, κ + 1, . . . , 2κ} times (depending on
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(uncorrelated signal in both time and space).

whether N/M is integer) in the T time slots (in the slots
indicated by the monitoring schedule). In the last slot T ,
the sensor will aggregate the ns(T ) samples storing them
in the payload of a single (or multiple) packet(s), which
is(are) sent to the sink for processing. The sink collects the
incoming packets and, given its knowledge of the sampling
matrix Rt, associates back the readings from the nodes to
the corresponding time slots. This permits to obtain yt at the
sink for all time slots {1, 2, . . . , T}. This process is repeated
for the following cycles. As we show in Section IV, this
aggregation strategy allows a substantial improvement with
respect to RNS.

IV. RESULTS

In this section, we compare TC-based algorithms (LTC,
DCT) against SC-based (DSC) and CS-based techniques. We
consider a network of N = 50 nodes with the signal model
of Section II with varying spatial (γ) and temporal (ρ) cor-
relation parameters for a collection cycle length of T = 50
time slots.8 For the performance metrics, we compute the

average reconstruction error at the sink ξ , Et [‖xt − x̂t‖1],
where xt and x̂t respectively represent the original signal
and the one reconstructed at the sink, and the total average
energy consumption per time slot, E, expressed in Joule
(including the transmission and processing tasks performed
by the WSN nodes). Each sensor reading takes n = 16 bits
of memory and for DSC we have used k = 4 bits to
represent the bin identifiers. In the following, we show
tradeoff curves comparing ξ (y-axis) against E (x-axis),
where the performance of DSC and CS schemes is obtained
by varying an independent parameter as follows: DSC) the
number of clusters Nc is varied between 5 and N in steps
of 5; CS-RNS) ptx goes from 0.1 to 1 in steps of 0.1; CS-
DNS) M goes from 5 to N in steps of 5. A free parameter
is not needed for DCT and LTC as our implementation of
these two schemes is self-tuning, i.e., it takes the error ξ

8Although not presented here due to space constraints, results similar to
those that we discuss in this section have been obtained for higher values
of T .
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as the input parameter. All results were obtained averaging
over a sufficiently large number of simulations so that the
confidence intervals (not shown in the graphs for readability)
are within 5% of the average values plotted.

We start our discussion with Fig. 4, where we show the
performance of CS for ρ = 0 and γ = 10−3, i.e., an
uncorrelated signal in space and time. As stated in Sec-
tion III-C, practical CS algorithms compute the sparsification
basis from the PCA, which is obtained from incomplete
observations of the signal. Here, we obtain a lower bound on
the error recovery performance of CS-DNS by calculating
the sample covariance matrix from the complete signal xt,
assuming that all the past samples (excluding the current
one at time t) are available at the sink with no errors and
at no additional cost with respect to the acquisition of the
incomplete signal set. This idealized algorithm is referred
to in the following plots as “lower bound” and has the
same energy consumption as CS-DNS. From Fig. 4, we
observe a few interesting facts. First, CS-DNS substantially
outperforms CS-RNS (originally proposed in [8]) and the
reason for this resides in 1) the aggregation strategy adopted
by CS-DNS and 2) the type of sampling (i.e., deterministic
versus probabilistic). To understand the impact of each of
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Fig. 8. Error ξ vs energy consumption E for ρ = 0.98 and γ = 10−3

(temporally correlated but spatially uncorrelated signal).

these, we considered an additional curve, obtained by ad-
justing the energy consumption performance of CS-RNS so
that its equals that of CS-DNS. A direct comparison between
this (adjusted) curve and CS-DNS reveals the improvement,
in terms of reconstruction error ξ, that is brought about by
DNS. In this case, the aggregation process does not affect ξ.
As expected, this improvement is especially high when ptx is
small, i.e., when the signal is randomly sampled by a small
number of sensors. The reason behind this is that a properly
designed deterministic schedule provides a more uniform
sampling (in both time and space) of the signal that, in turn,
translates into a better estimation of its statistical properties
at the sink (i.e., of its covariance matrix). Further, substantial
energy savings are possible through data aggregation, as
this alleviates the negative impact due to the transmission
of large packet headers (assumed to be 13 bytes for the
results in this paper). CS-RNS is consistently outperformed
by CS-DNS for all values of ρ and ξ. For this reason, it will
no longer be considered in the rest of the paper.

Next, we focus on the comparative analysis of CS, DSC,
DCT and LTC, which is shown in Figs. 5–8. From these
figures, a few key observations can be made. a) When the
signal is uncorrelated in space and time (Fig. 5), CS-DNS
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is the scheme of choice and performs close to its theoretical
bound. Temporal correlation schemes should be avoided,
as their energy consumption in this case is higher than
that incurred in sending all the data uncompressed (given
by the abscissa value where CS and DSC reach ξ = 0).
Especially, LTC is rather inefficient as two coefficients (i.e.,
one segment) are sent for each data point for small values
of ρ. b) As the signal correlation increases (see Fig. 6,
with ρ = 0.5 and ξ = 5), DSC better uses the increased
spatial correlation, outperforming CS as can be observed for
ξ ≥ 1. The performance of DCT and LTC is only marginally
improved. c) For a temporal correlation as high as ρ = 0.8
(see Fig. 7), the performance of DCT and LTC reaches that
of CS. d) For signals that are highly correlated in time but
spatially uncorrelated, the situation is reversed, see Fig. 8.
In this case, DCT and LTC both outperform CS, whereas
DSC performs worst and its use is not recommended.

As a general remark, the gap between CS-DNS and its
lower bound increases for increasing signal correlation. This
means that the quality of the sample covariance matrix is
highly impacted in this case. This, in turn, affects the accu-
racy of the related PCA transform, providing less accurate
approximations of the signal. These results indicate that
there is still some room for improvement for CS, whose
performance can be ameliorated so as to approach that of
DSC and temporal-compression schemes. To achieve this
goal, we need to concoct improved covariance estimators
for incomplete signal sequences. To this end, a sensible
approach could be the use of spatial correlation estimators
to filter the noise affecting the sample covariance. Future
work has to be carried out in this direction.

All in all, however, if the correlation statistics are un-
known, CS is deemed a valid compression approach as
it often outperforms competing algorithms and, in the
worst cases, it performs in between temporal and spatial
correlation-based compression.

V. LESSON LEARNED AND FUTURE WORK

In this paper, we have performed a comparative perfor-
mance evaluation of selected lossy compression schemes
for WSN. This analysis can be seen as a preliminary study
for a more in-depth research work, as it serves to pinpoint
the pitfalls of the considered schemes. In fact, we found
that no single algorithm performs best in all settings, and
compressive sensing in general provides good performance
that, in the worst case, lies in between that of temporal and
spatial compression schemes.

Most importantly, our analysis reveals that there are
interesting avenues for future research. One of these consists
in the improvement of CS schemes, and specifically in the
design of improved estimators for the sparsification basis
(obtained through PCA), which is strictly related to the
covariance structure of the signal. Also, CS schemes can be
implemented as well by exploiting a clustered WSN, i.e., by
restricting the scope of the matrix inversion within each of
the clusters. Finally, more powerful DSC algorithms can be
considered in our framework, accounting for LDPC codes.
These, on the one hand, are expected to better approach the

theoretical bounds in terms of reconstruction error but, on
the other hand, also imply a higher computational burden at
the sensor nodes. The computational requirements of these
more complex DSC approaches have to be evaluated.
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