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1 Introduction and related work algorithms), not only reduces their overhead but also leads to
significantly improved results.
Ad hoc and wireless sensor networks have gained a lot of ~Asubstantial efforthas already been putinto characterising
interest lately. Owing to technological breakthroughs, it is ad hoc networks from a statistical point of view. Kleinrock
now possible to build small sized and energy efficient devices and Silvester (1978) derive an approximation for the expected
that can organise themselves in ad hoc networks and helpprogress in each hop for a two dimensional network
monitor various parameters of the surrounding world. This deployed within a circular region. Moreover, they also
new technology brings also new challenges: the algorithms obtain approximations for the average distance between
running in these networks have to be designed by taking any two nodes. Bettstetter and Eberspacher (2003) derive
into consideration the limited resources available, the large closed form formulas for the probability that two nodes
number of devices and the dynamics of the environment. ~ can communicate within one or two hops. The nodes are
Owing to the lack of resources and computation power, deployed in a rectangular area and the results are based on
each hypothesis on which the design of a sensor networkthe distribution of the distance between two random nodes
is based needs to be taken into account. No matter howin such a scenario, which was originally derived by Ghosh
small is the amount of information brought, it needs to (1951). For hop counts larger than 2, simulation results are
be exploited from the beginning, because rediscovering presented and analysed. Lower and upper bounds for the hop
that information after the deployment of the network using count distribution between two random nodes are derived
distributed algorithms can simply be too expensive. based on the properties of the network as the node density
In this paper, we focus on exploiting the information grows to infinity. In Miller (2001), the author investigates the
provided by a generally accepted and largely ignored distance between two randomly positioned nodes, where the
hypothesis: the random deployment of the nodes of a network scenario is represented by nodes distributed inside a
wireless sensor network. Although the vast majority of rectangular region. Both the uniform and the Gaussian node
studies acknowledge this fact, only a few of them make use placements are analysed. Also, it is shown that the shapes of
of the properties, in terms of connectivity statistics, of these the distance distributions for these scenarios are very similar
networks. There is a close relationship between the density ofwhen the width of the rectangular area in the first case is
the nodes in such a network (that is known at deployment time taken to be about three times the standard deviation of the
and can be easily checked and updated during the run timedistribution in the second scenario. Mullen (2003) continues
of these networks), the number of hops separating two nodesthe analysis, exploring the underlying spatial distributions
and the distance between these two nodes. Using statisticain more depth. Mobility of the nodes is also taken into
techniques we derive distance estimates between the nodegccount, as an extension of the work done in Bettstetter
without using any sort of distance measuring hardware. This and Wagner (2002). Average hop distance is investigated
information can be further used to enhance and simplify for other network topologies as well. For example, in Rose
various networking protocols (e.g. localisation protocols).  (1992) the average hop distance is investigated for ring and
In the following we analyse the underlying statistics for street network topologies. However, while most of
uniformly random deployed ad-hoc networks in one- and the work done so far focuses on the calculation of first
two-dimensional cases and derive the relationships betweerand second order moments, we instead investigate
the number of hops and the distance separating two nodesthe complete statistics of the distance from a given
For the one dimensional case, we give an exact sourcedestination pair once their hop count is known. In
recursive formula that can be used for the calculation addition, in the last part of this paper, we advocate the
of various parameters (e.g. the mean distance betweerexploitation of these statistics to improve the performance
two nodes separated by a known number of hops), of existing network protocols.
while for the two dimensional case we propose several The paper is organised as follows: Section 2 presents
approximations. Finally, we show that applying these results the hop count statistics for the One-dimensional (1D)
in existing networking protocols (in particular in localisation ~scenario. The analysis continues with the Two-dimensional
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(2D) scenario in Section 3. All the results we obtain are Now, we are interested in finding the boundaries of the
confirmed by simulations. In Section 4, we show how to interval containing all the feasible positions for those nodes
exploit the obtained information to improve and simplify in HC n. The inferior Omin) and superior Pmax) limits of
existing localisation protocols for randomly deployed the interval containing all the nodes with HCare found

ad hoc and sensor networks. Our conclusions are drawn infrom (1):

Section 5. "
Drin[n] = LEJ R 2
2 Hop count statisticsin the 1D case Dmaxln] = nR
2.1 One-dimension network scenario This result can be also justified by simple geometrical

) ) ) observations (see Figure 1). The factthat the distance between
We model the one-dimensional network scenario through athe two consecutive poins andg; ., needs to be larger than

set of nodes placed on the positive side of the xeakis,  or equal toR, leads to the inferior limit. The superior limit
where positions are picked according to a one-dimensional comes from the fact that and;.1, in the limiting case, can
Poisson process with known parameter(Stoyan et al., be spaced by at mogt.

1995) Among these nodes, we consider one device, denoted

here assource that is the originator of the hop count

distribution procedure and that is placed at the origin Figurel Inferior (top) and superior (bottom) limits for the
of the real axis. The probability of having exactly hop intervals

nodes within a given interval of lengthis: Prolk) = o~ . o~ .

e~ (A¥/k!. Further, the distance between tiseurce 1 R-g '23 Rg '45 R-£.67 R-£'809
node and the first node to its right is a random variable ®o /99 9° O3 Oro—
(r.v.) X characterised by the cumulative distribution function € \F:{::i;/,// RN
(cdf) Fx(x) = 1 — e¢™** (Papoulis and Pillai, 2002). . . . .
Finally, we assume that each node can communicate to all its R-¢ 1 R-—t » R-¢ R-¢ 4 R-¢ 5
neighbours whose distances are smaller than or equaj to  ®~__ Or

where R denotes the (constant) transmission range of the R~ V e
nodes.

B N N N N4

2.2 Limits of the hop count intervals To proceed with our analysis, we introduce the following

We say that a node has a Hop Count (HC) equal toe N,
if and only if it is n hops away from theource(the shortest
path between the two nodes has lengttops). Moreover, we

Iz
notation: letl"(x), [1, [> € R, I; < I5, be defined as:
1

say that a given node with HZ > 0 and in positiorx > 0 is Flg 1 forlh<x<1U
. : ) _ ¥) =

thelast nodein its HC if all nodes int > x have a larger hop 1(1 ) 0 otherwise

count value. Le2 = (g, 71, T2, ..., Ty, ...) denote the

ordered positions of the nodes,c R*. Moreover, letY’ =

(&0, &1, &2, ..., &u, ...) be the ordered set containing the

positions of the last nodes in each HC, whigtrie the position 2.3 Punctual distribution function df,

of the last node in HG. Observe thaf2’ € Q and that the For each hop count € N, we define a random variable
source placed intg = & = 0, is considered to be the last E; denoting the position of the last point in that hop.
node in HC 0. Moreover, it can be easily verified that a node In the following, we compute the probability density
belongs to HG: if and only if it is within the transmission  functions (pdfs) for these random variabl¢s, (&) = f (&),
range ofthe last node in HG-1 and is notinthe transmission  where the joint densities ofy, E», ..., E, is indicated as
range of the last node in HEZ — 2. Exceptions to this rule  f(&1, &, ..., &,). By the definition of conditional pdf we
are HC 0 (that contains the source node only) and HC 1 (thatcan write the following relations:

contains all the nodes in the transmission range of the source).

Onthe basis of these observations, we can write the following /(o) = 8(50)
inequalities: [ (&1, €0) = f(&1l€0) f (%0) (3)
=0
éo<é&1 <&+ R SGnsdn—1,--..860) = f&nlEn-1, ..., 50) - f(Erl80) f (60)
o+t R <& =86H+R 1) wheres (x) is the Dirac impulse and the above densities make

sense in the intervals where the nodes can actually be placed,
that is, according to the constraints in Equation (1) otherwise
the functions equal 0. Moreover, due to the structure of the
problem\¥ n € N, n > 2, when¢,_; and§,_, are giverg,

én—2+R<§n§§n—l+R
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does not depend anp with i < n — 2. We can rewrite the set
of Equation (3) as:

f (o) = 8(%0)

&+R
[ (&1, 80) = f(&1l0) f (60) F(R&) (4)
§n—1t+R
f(Sn’ %.n—lv En—2) = f(énlgn—l’ %.n—Z)f(En—l’ gn—Z) F(Sn)
§n—2+R

The marginal density functionf(&,) can therefore be
computed by double integration gf(&,, &,-1, £,_2) with
respect to &, >, and §,.;. The conditional density

f(&rl€—1, &—2) can be computed based on the fact that, in
order forg, to be the position associated with the last node

in hop countr, the following two eventfiave to be jointly
verified(see Figure 2).

Figure2 Feasible region fof, onceg,_,, andg,_, are given

EnT

at least one poinho points

A) ‘The interval (§,-2 + R,&,] is not empty’ (from
Equation (1) we have thg}, > &, > + R).

B) ‘There are no points in the intervéd,, &,_1 + R]".

The events A and B are

(memoryless). We can therefore write that:
Prob(A) = Probk > 0in (§,_2 + R, &,]}
—1_ ¢ Man—tn—2-R) (5)

ProbB) = Probfk = 01in (§,, &1 + R}
— e_)t(§11—1+R_$n)

where k is the number of nodes. We are now in the

position of deriving the& (¢, |&,,_1, &,—2) cdf and its derivative
f(%-n |€n—la ’i:n—Z):

§n—1+R

F(&,18,-1, §,—2) = Prob(A)Prol(B) I'(&,)
§n—2+R

En—1tR

FEnlEn1, En2) = A e HEn—1TR=50) (g (6)

En—2+R

From Equations (4) and (6), the distribution functigrg,)

independent because the
points (nodes) are placed according to a Poisson process

according to the constraints in Equation (1). More compactly,
f(&,) can be written as:

f(&) = e MR8 5 G (E,) 9)

where G,(x) replaces the succession of integrals in
Equation (7). Moreover,G,(x) can be expressed as
(see Section 2.4):

(+DR
} (10)

n—1
Gu(x)= ) {g:;(xm;c)

i=1}]

where the g/ (x) are polynomials with the following
properties (easily verified by inspecting the number
of integrals, the terms that are being integrated and
the continuity properties of the punctual distribution
functions):

1 the coefficients 0§’ (x) do not depend oh
2 gl (x)is apolynomial of orden — 1
3 g +DR =gt G +DR).

Computing the distribution of the position of the last
node in hopn makes sense only in the cases where the
structure is connected up to that hop (i.e. there are no
connectivity holedarger thanR up to the end of hom).
Observe that, for a given hop number the probability

of having a connected structure is a constant quantity that
is used to scale the joint punctual distribution function
f(&,) to obtain the conditional distributionf,.(&,) =
f(&,] Structure connected up to hap. Formally, f.(&,) is
written as

fc(gn) _ - )\,nei)t(nRién) X Gn(é:n) (11)
nj2r M1eTHORTE X G (§,) A,

As the calculation of the integral in Equation (11) is rather
tedious, we approximate it as follows. The problem of having

a connected structure in the one dimensional case has been
studied in Dousse et al. (2002), where the authors derived a
close formula (Equation (8)) to obtain the probabilRy(x)

of having a connected structure up to any positioa R™.

The probability of having a connected structure up to the end
of hoprn can be approximated &, = P.(nR). f.(§,) can
therefore be approximated as

)‘.ne—)\(nR—Sn) X Gn(%'n)
Pn

fule) ~ (12)

Equation (12) gives the distribution of the last node in hop
n. It is composed by two parts: an exponential function
depending on the parameteand a set of polynomials whose

can be obtained by induction as reported in Equation (7) at coefficients aréndependenof A. This formula is the central
the top of the next page. In other words, we have decomposedpoint for the analytical characterisation of the hop count
f(&,) as the product of two terms, where the first term statistics for the one dimensional case. In Figure 4 we plot

accounts for the network connectivity)( whereas the second
term is independent of and for a giver¥,, accounts for the
feasible region of the remaining— 1 pointsé&y, ..., &, 1,

the distribution calculated by means of Equation (12) against
simulation points. The obtained results confirm the accuracy
of the approximation.
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CIR B QN CA TR

[e9) 00 &, _1+R O E3+R ©  £H4+R  £+R R
— Ao hnR—En) o f / T, - f T'(£) F($3)F(§2)F(051) dé1 d- - - dE, 2 dEy1 (7

o0 &—2+R oo &+R J—-oco £+R R
1 x <R
P()C) - L%J — . i L%J71 — . i (8)
¢ {[xe Heir) } _ ek S {[Ae GIISEEY } x> R
i=0 i=0
2.4 Determination of th&, (x) coefficients their place being taken by their extreme values as defined in

In this section, we address the computation of the coefficients Equation (2).

of the g’ (x) polynomials that compose€, (x). As one Step 2 One can observe that each integration has as limits
can notice by inspecting Equation (7), the coefficients of integer numbers. More than this, the integration can be
g! (x) are functions of the transmission ran@eThis means ~ performed by splitting the domain of the variatiieinto

that, for every particular scenario, they should be computed (i — [i/2]) disjoint integrals where th€ functions to be
separately, as the transmission ramyis unlikely to be the integrated are evaluated; each integral corresponds to one
same in all cases. Fortunately, there is a way to avoid this. interval of size 1 and the union of these disjoint intervals
In fact, in Meester and Roy (1996), it has been proved that covers the valid region of existen¢g /2], i) for &;.

for a network whose nodes are distributed according to aStep 3 For what concerns the combination of any three
Pmsson process with parameteandR is the value of the subsequent variables of the kit », &1, &), only one out
transmission range, one can vatyand modifyx, suchthat o the three situations presented in Figure 3 is possible. That

the properties of the underlying graph remain unchanged (theis, if a is an integer such that( +2)/2] < a < n + 2,
reverse situation whereis varied while adapting is also then:

true). In more detalil, if the distances are scaled by a r4tid
inthed-dimensional space, thgparameter mustbe modified 1 &.,,e€ (a,a+1) &uue@—La) &§e@—2,a—1)
according tov’ = (r/r") .

In what follows, we consider the transmission range 2&npc@atl) fne@-La §e@-1a
to be R = 1. Any particular application can then scale 3 §€(@,a+1) &€ @a+1) §e@—1a)
its distances such that the transmission range becomes 1
and varyi accordingly. This means that any application could
then use the coefficients of the polynomials as computed
below at no additional expense. In other words, this makes the

Figure3 Possible configurations for the last nodes in each
hop.a € Nissuchthai(n +2)/2] <a <n+2

coefficients ofg/ (x) constants independent of the particular & feasible region o
deployment scenari@gk andA). To keep the notation simple, pr = - e
in the following we consider that we already modifiedo 1 o
such that. is the new value obtained after the normalisation L 1 :E”l?
step. This will not have any influence on the final results. 1
Moreover, we observe that tiifunctions only take values T T
in {0, 1} and this means that their only influence is on the a-1 e
intervals over which the integration in Equation (7) takes a-2 Eisp -1 fia-1 a a+rl
place. In the form in which it is presented, Equation (7)
cannot be integrated in close form as the integration variables &
are all linked together. To make this integration possible
in numerical form, we adopt the following three-step Ein
procedure: promnoees e
1
- . Eiv2
Step 1 From the definition of thel’ functions and e
keeping in mind that the variables we use conform to the a-l gup-1 a a+l
inequalities described in Equation (1) we can write the
following identity: 3
S SR
§i—1t+1 Sivo—1l i Siy1—1 -1 &-1 i—2 S S S B
L&) = [F(Si)r(gi)}‘[F(Ei—l)r(si—l)]’[F(éi—z)r(éi—z)] &ir1
§i—2+1 &ir1—1 L%J &-1 L%J &_1-1 LI;EEJ e
1
wherei e N, i =1,2,...,n. Therefore, we can apply the Eip-1 Eiv2
I

previous transformation to eaEHunctioninG, (x). Observe
that, in Equation (7), the term& ., and&, 1 do not exist, a-1 &i+2-1 a atl
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The integration limits (feasible regions) in the previous three function for the case where the node lies in the first hfyp)(
cases are accounted for by the following expressions (seeis given by

Figure 3):
1 R
fa1(x1) = —T'(x1). (14)
a+1 a 42—l R o
! F(%“)r;ff;ti)gfi)l This result is quite obvious: a node is in the first hop if it is
st e Eiat in the transmission range of tlseurce Within this interval,
2 T ELDT (&) (13) due to the fact that we are dealing with a Poisson process,
a &1 a-1 the node has an equal probability of being at any given
atl  Eap Eipo-1l position, thus a uniform distribution. Assume now that a
3 I ELDT(E) node belongs to the second hop. We can write the following
@ @ Gin-l expressions:
By applying the three observations described above, 1 E+R
one can perform the integration in a recursive manner. f(x2l€1) = E_F(XZ)
As an example, in Table 1 we report tge(x) parameters R
forn =1,2,...,6.Figure 4 shows the punctual distribution f &1, x2) = f(x2l&1) f(§1) (15)

function for the last node in each hop, for the firstten hops and
for » = 6.7. The theoretical distributions are plotted against
simulation points.

faz(x2) = / f(&1, x2) d&y

Nodex; belongs to the second hop and this means that it is

in the transmission range of the last node in the first hop and
2.5 Relation hop count number — distance statistics Ut of the transmission range of theurce Moreover, given

that the position of the last node in the first hogjisthe node
Inthe fO”OWing, we derive the rE|ati0nShipS between the HC in second hop can be|0ng on|y to the inter@ﬂl £+ R]. Its
number and the actual position of any given node. The basic gjstribution is again a uniform distribution due to the uniform
assumption is that we are dealing with a connected topologydep|oyment of the nodes. We can now compfité,, x») and
up to and including the node in question. Assume that a nOdeintegrate it ovelt; to get the marginal distributiorf2(x»)
finds out the number of hops it is separated from the source(the expression forf (£1) has already been determined in

node. This information is enough for it to get an estimate of Section 2.3). Performing these computations leads us to the
the distance between the two points. From the distribution of fo|lowing result:

the distance, the node can compute the average distance and

its associated standard deviation and use it, for example, in iR

localisation algorithms, routing protocols, etc. Ja2(x2) = Le /_
The distribution function of the distance conditioned on *

the number of hops has particular expressions for the case-or the distributions of distances in hops further away

when the node lies in the first and second hop. For the third than the second hop, we use the following reasoning (see

hop on, we provide a recursive formula for the computation Figure (2): a node belongs to hajif it is in the transmission

of the distribution. In the following, by¥; we understand  range of the last node in hop — 1 and is out of the

the position of the last node in hapBy x; we understand  transmission range of the last node inthe2 hop. Therefore,

the position of any node in hap The punctual distribution  within the interval (¢,_> + R, &,_1 + R] the position of

+0 g4+R R M1

&
I'(x)T' (£1) — d&; (16)
R 0o &

Tablel Coefficients of the' (x) polynomials ¢ = 1,2, ..., 6andi = |n/2],...,n—1)

gl (x) x° x4 x3 x? xt x°

&0 - - - - - 10000
2 - - - - —1.0000 20000
a3 - - - Q5000 —1.0000 05000
g2 - - - Q5000 —3.0000 45000
g2 - - —0.3333 20000 —3.5000 16667
23 - - —0.1667 20000 —8.0000 106667
g2 - 0.0833 —0.6667 20000 —2.6667 13333
g - 0.1250 —1.5000 62500 101667 47083
g8 - 0.0417 —0.8333 62500 —20.8333 260417
g —-0.0417 05833 —3.1667 83333 —10.6250 52500
g8 —0.0333 06667 —5.0833 180000 —27.9583 127167

g —0.0083 02500 —3.0000 180000 —54.0000 648000
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Figure4 Probability distribution functions of the last node in each hop=(1, 2, . . ., 10,A =6.7)

6

A
/

the node is uniformly distributed. The marginal distribution
fan(x,) is Obtained as

fnlén—1, i—2) = I'(x,)

";:nfl - %-an E1—2+R

f(xn’ En—la En—Z) = f(xn|$n—l’ %‘n—Z)f(En—l’ Sn—Z)
fdn(-xn) = / / f(-xnv Snfl, g:an) d%‘an d'i:nfl

(17)

The expression of (§,_1, &,_2) has already been determined
in Section 2.3. Numerical integration of these expression
should follow the method described in Section 2.4 of
rearranging the integration limits.

3 Hop count statisticsin the 2D case

3.1 Network model

Inthe 2D case, we model the network as agréaph (M, L),
where M is the set of nodes and is the set of links

between nodes. As in the one dimensional case, among

the | M| nodes inM, we consider a special device called
source which is the originator of the hop count distribution

procedure. For what concerns connectivity, we adopt the Unit

Disk model (Clark et al., 1991), where any two nodes can
communicate if their distance is smaller than or equat o
where R is the transmission range. Moreover, we assume

8 9 10
x di stance (R=1)

3.2 Introduction to the computation of hop count

statistics for 2D random networks

The aim ofthe analysis presented in the following is to find the
HC distributionf (n|x), defined as the probability that the hop
countofagenericnodee M isn giventhatits distance with
respect to the source.is Owing to the adopted connectivity
model, f(1]x) is one if x < R and zero otherwise.
The computation of the second hop distribution is slightly
more complicated, but can be readily calculated considering
the diagram in Figure 5. In fact, a target node placed at a
distancex from the source has hop count equal to 2 if the
common coverage area between the source and the target
node contains at least one node. We refer to the common
area between two circles at distancas A,(x, R, R) (see
Equation (19) below). Hence, the distributigii2|x) equals

the probability that the ared,(x, R, R) (shaded area in
Figure is not empty. Formally:

x > 2R
R <x <2R

(18)

0
f@x) = {1 —¢(0, Az(x, R, R))

As(x, R1, R») is the area of the intersection of two circles of
radius R; and R, whose centres are separatedbgnd is
derived as:

that nodes are placed according to a planar Poisson process

with densityA. Similarly to the one dimensional case, the
probability to haven nodes within an ared is given by
o(n, A) = e *(1LA)"/n! (Stoyan et al.,1995). The hop
count value of a generic noges M is defined as the length,
in terms of number of links, of the shortest path connecting
node; to the source.

0 Ry<x—-—R
A(x, R1, Ry) = {7 R? R, >x+ Ry (19)
A>(x, R1, Ro) elsewhere
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Figure5 Diagram for the computation of the second hop The target node has hop count 3 if the two conditions above
distribution are verified, that is, if the minimum number of transmissions
for a packet sent by the target node to get to the source is 3. As
can be easily understood by the geometry of the problem, the
resolution of this statistics is rather tedious. Moreover, due
to the form of the involved integral it is also impossible to
obtain it in exact close form (Niculescu and Nath, 2004a,b).

A2 (X,R,R) Figure6 Diagram for the computation of the third hop
distribution

where
2 2 2
x“+ R —R
Aox(x, R1, Ry) = RPcos* [ ———L =2
2(x, Ry, R») 1 22k,
x2+ R3—R?
2xR>

+ R%cos? ( (20)

- %\/[(Rl + R2)2 — x2][x%2 — (R1 — R2)?] In the next section, we present an approximate approach
based on a Markov Chain representation of the underlying

and assumed?; < R (the other case can be obtained hop count assignment process, which is able to provide
by simmetry). R, and R, are the transmission ranges of accurate approximations of the connectivity statistics.
the source and the target node, respectively. In our case
R1 = Ry = R. The diagram related to the third hop ] o
distribution £ (3|x) is shown in Figure 6. Inthis case, anodeat 3.3 A recursive algorithmic approach to the
distancer from the source has HC equal to 3 if the following computation of hop count statistics

conditions are jointly verified: The hop count statistics is strictly related to the shortest hop

path concept. The analysis that follows is mainly based upon
this observation. In deeper detail, if a target node has hop
count equal to: this means that the minimum number of
intermediate nodes that connect it with the destination is
n — 1. The key idea of our analysis is to build, starting at

1 The intersecting region between the source and the
target node coverage areas (empty region in Figure 6)
must be empty in order to exclude all the cases where
the target node has HC equal to 2.

2 Two further nodes must exist with the following the source, a process that, at every step of the forwarding
properties. The first node (node with HC equalto 1 in  process, selects the set of nodes leading to the maximum
Figure 6) must be in the transmission range of the advancement towards the target device. This concept can

source and must not be within the intersecting region  be better understood by referring to Figure 7, where we
between the source and the target node (empty region indepict the first hop selection in our hop count assignment
Figure 6). Moreover, a further node (with HC equal to 2 process. During this first step, we need to pick the nodes
in Figure 6) must exist in the transmission range of the in the coverage area of the source that are the closest to the
target node and its position must be such that this node destination (target node at distance It shall be observed

is also in the transmission range of the first node (but  that, by geometric considerations, some nodes are equivalent

not of the source). In Figure 6 we report a possible for the purpose of the advancement. In particular, in the
scenario for this casels(x) is the feasible region for figure nodesF1 and F2 lead to the same advancement as
the second point. That is, the transmission area of a they are both placed at the same distaRgdérom the target

node placed withimi3(x) has a non void intersection node. This equivalence is very important as it allows to

with the portion of the source transmission area where model the hop count assignment process by only tracking the
the first point can be placed (all coverage area minus theremaining distance towards the destination. The probability
empty regionas specified above). Once the position for that the maximum advancement in the first step is, say
the second point has been fixed, the first pointcanbe (R; = x — a1), given that the initial distance between the
placed within an ared* which is given by the source and the target nodexscan be easily evaluated by
intersection between the transmission area of the multiplying the probability that no nodes are present within
second point and the transmission area of the source  the intersecting areal,(x, Ry, R) (see Figure 7) by the
minus the empty region. probability that there is at least one node in the coverage
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region of the source whose distance to the target nofte.is  Figure8 Model for the single hop advancement process
For analytical tractability, we introduce the following two

2 Only positive or zero advancements are possible.
This assumption is equivalent to assuming that a node
at a given distance; can inherit its HC value only
from nodes placed at a distance< x3. This
assumption is well verified in dense enough networks N o )
and therefore in most of the cases of practical interest. 1he  probability ~mass distribution ~ function  of
If this assumption is not verified this analysis canbe ~ the advancement; achieved at step, given the position
seen as an approximation. x;—1 at stepc — 1, and the advancement_; at the previous

stepk — 1, is referred to ag'[ax|xx—1, ax—1]. Further details

on the computation of this function are reported in Sections

3.4 and 3.5. For now, we take this function as given and use

it into the computation of the statistics of interest. We refer

assumptions: (%A1
%A |
1 We subdivide the radio ranginto a finite number - ay
of intervalsN,, of lengthA = R/N,. This empty region ™ -
quantisation is introduced to enable a convenient and L : |
recursive calculation. {/1//1'/I R R K
_Ra1 X N1

N, (radio range)

Figure7 Circle intersection for the analysis depicting the first

node selection stage of the hop count assignment to the joint probability of position and advancement at step
process k as f[xx, ax]- This distribution can be recursively evaluated
as:

source fl[va1|xo =0,a0=0] k=1
A
target
node Flre, al = Z { Slxk-1, ax-1l 21)

& (XR R) ax—1=0
| x flaglxg-1, ax-1] } k>1

wherex, € {0,1,...,[x/Al},ar € S, = {0,1,..., Na}
andx; = x;_1 — a;.t f[n|x]is found by summing all the
In the following, we present in detail the recursive approach contributions connecting the source to the target node in
for the computation of the HC statistics. Due to the exactlyn hops. Observe that each of these paths is a shortest
above assumptions, the HC statistics computed here is arhop path. This derives directly from the way in which the path
approximation of the actual one. However, as will be shown is built, thatis, by selecting, at every stage, the hop leading to
inthe following, the approach gives very accurate results. The the maximum advancement toward the target rfogign|x]
approximate statistics is referred to fig:|x],n > 1,n € N can be formally written as follows:
andx isthe initial distance separating the source and the target
node. The advancement process is tracked by means of a No  Na
Markov Chainwith a finite number of states. The generic state _
at the generic stepconsists of the tripleX (k) = (k, xx, ax), flalxd= 30 D, Sl ] (22)
wherek is the stage of the advancement process, that also
corresponds to the HC assigned to the currently occupiedin the equation above, we sum all the terms that leaal ;i
node, x; is the residual distance between the currently hops, to a residual distance between the-(1)-st hop and
occupied node and the target node amdcorresponds to  the target nodenth hop) that is shorter than or equalig,,
the current advancement that is definedias= x;_1 — x;. that is, within transmission range of the target node that is
As in Zorzi and Rao (2003) botly, andx; are represented at a quantised distance pf/A7. Once the residual distance
in the quantised space, that is, their absolute values are giverx,_; between the current and target nodes is smaller than or
by x, = xxA anda, = a;A, respectively. A graphical equal toN,, the current node is connected with the target
representation of the advancement process is shown inwith probability one andf[n|x] is just obtained by summing
Figure 8. the probabilities of these events to occur.
As reported in Figure 8, we make a further assumption  For the computation of thef[ay|x;_1, ar_1] function,
to track the position of a node. That is, we approximate the we need to look at the forwarding process in more depth.
position of each node withina giveninteryal A, (x;+1)A) In Figure 9, we report the related diagram. Here, we consider
with that of the leftmost edge of the interval itself; A. a forwarding sequence composed by three hap€ and
Another possibility would be to assign the rightmost edge. D. As clearly highlighted in the figure, the advancement at
We prefer to adopt the first solution due to its superior ability hop D (a;) depends on the past forwarding history. In this
to fit the actual statistics. example, forinstancel chooseg as its next hop. Of course,

Xp—1=0a,_1=0
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this implies that the common region between the circle
centered im with radiusR and the circle centered B with
radiusx,_, is empty, that is, no relay nodes can be found
in the aread,(x;_,, x;_;, R), wherex’ meansxA. Given
that, at nodeD (step k), the area that was considered
empty in the previous step — 1 (shaded areads in the
figure) can notbe reconsidered for forwarding purposes. To
sum up, the advancement at stegepends on the previous
advancement at stép- 1 and, in general, on all the previous
advancements as well (it can be shown that for the two

Now, refer to thekth step of our forwarding process
and consider that the position of the previous hop;,is;.
Owning to assumption 2 of Section 3.3, the advancement
at stepk is constrained to be in the sef € S, =
{0,1,..., Npa}. Considering the diagram in Figure 8,
having a maximum advancement equaktaorresponds to
having no nodes in the area delimited Ry_, and at least
one node inthe intervgk, A, (x; +1)A). This probability is
found as a function oR; andR;_;, which can be written as
Xp—1— ar + 1 andx;_; — a, respectively (see Figure 8). The

dimensional case, only the previous thirteen neighbors areprobability that the advancementiggivenx;_; anda,_; is

of influence). Here, for tractability purposes, at the generic

derived as

stepk, we choose to consider the previous advancement at

stepk — 1 only.

Figure9 Detailed diagram for the advancement process

Note that aread3; also depends on the angjereported in
the figure. In fact, to fully specify the geometry of the three

[ak|xk—1, ax—1] ar € S,
Sflaglxg—1, ax-1] = Slaelxiv, apal - o (23)
0 elsewhere
where
Claglxe_1, ap_1] = e -1 — ™A (24)
and
.Aj,]_ = AZ(x/i,y R? Rgfl)
Aj = Ax(x;_4, R, R})
Rj =x_1—ar+1
Rj_1=xk_1—ay
X' =xA (25)

3.5 Computation of [ay|xi_1, axr_1]: approach Il

In the approach presented in this subsection, we consider the
dependence on the previous stage-(1) only. Our target

is to compute the function[ay|x;_1, ax—_1], which can be
subsequently plugged into Equation (23) to obtain a better
approximation forf [ay|xx—1, ax—1]. As discussed above, to
this end we need to account for the four quantitigs;,

ax—1, a; as well as the angle. Note thaty is the only

points constituting the advancement sequence we need tgjuantity that is not explicitly tracked by our Markov Chain.

know x;_1, ax_1, a; and the angle. In our Markov Chain
X, we precisely track the first three quantities, whereas the
dependence og is accounted for in a statistical sense. The

The knowledge of this angle is needed to compute the shaded
areaAs in Figure 9, that is, the common area arising from
the intersection of the three circles centered in points

next two subsections are devoted to the presentation of twoandC. Furthermore, the only quantities that we need to fully

different approaches to obtain thféa, |x;_1, ax_1] function
and clarify the role ofy.

3.4 Computation of [a;|x;_1, ar_1]: approach |

In this first approach to the computation fffa; |xi_1, ax—1]
we neglect the dependence on the forwarding history two or

specify this area arg,_,, x;_1, ¢, R andx. In the following,

we referto this area ass (xx_2, xx—1, @, R, x;). As expected,

the angley is the only unknown quantity in our analysis. In
the next, we therefore proceed with its characterisation. From
Figure 9 it is clear that, once,_; andx;_, have been fixed,
the feasible region fag consists of the set € [—@max, Ymaxl,

more hops in the past. In this case, the forwarding process

statistics is renewed at every forwarding step so that the
forwarding decision is made independently of previously
occupied locations. This is, of course, a rough approximation

;)% + (x,_1)? — R?
lei—le/c—l

(pmax = C0571

(26)

| }

of the actual forwarding process, where indeed there maywherex;_, = x;_1 + a;_1 andx’ = xA.
be a strong correlation between subsequent node selections. Now, we refer top(¢) as the pdf ofp. The form of this
Nevertheless, as will be shown next, such an approximationfunction will be discussed later. For a given the area

becomes accurate as the node density increases.

Asz(xp_2, xk—1, ¢, R, x;) is readily computed by geometric
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arguments, whereas we express the probability massproviding a better approximation. We note that an even better
function of the advancement, conditioned an as approximation can be achieved by further refining pe)
nlaglxx—1, ar—1, ¢1- ¢laxlxi—1, ax—1] can be evaluated as function considered in the analysis in Section 3.5. Finally,
follows: oncef[n|x] has been computed, we observe tfigt|n] can
be easily found via Bayes’ formula. Note théliz|x] can be
used to estimate the geographical distandeetween two

(] 1=2 $max ] 1 p(0) d nodes through maximum likelihood criteria when the hop
Clagle—1, ar-1l = o koL 1, 91 PR TP count distance is known. A first example in this sense will
27) be given in section 4.
Observe that the equation above holds as long.as > O, Figure10 f[n|x]forx, = 8
for gmax = O it reduces to Equation (23) above. Hence, for
a given(x;_1, ax_1) pair, the advancement mass function is 1 ' ' ' ' ' ' '
found by statistically averaging over the admitted values of ool aggfgggﬁhl : ]
©. nlag|xi_1, ax_1, ¢] is evaluated as 0' . similation o
0.7 f
nlaglxe-1, ax—1, ] = e A=t — ¢4 (28) 0.6 f
<
<= 0.5¢f
where: =
~ 0.4f
0.3
Ajfl = A2(x1/<71, Rs R;;]_) 0.2}
- A3(x],(_27 x]/(_la (pa R7 R}_l) 0.1r
Aj = Az(X;i,l, R, R;) - A3(X]/<,2, )CI/{,]_, @, R» R;) 0 0 0‘_ 5 1 1.5 2 2.5 3 3. ge: ] 4
Xp—2 = Xj—1+ ar_1 xIR

Rj:xk_l—ak+1

Rj_1=xk1—a i
Figurell f[n|x]fora, =15

x'=xA (29)
For what concerns the probability distribution function v v Approach 1 ——
p(¢), we consider here the simple case whereis approach |1

uniformly distributed in the interval—¢max, ¢mad. In this 1t simiation o |

casep(p) = 1/(2¢max). As will be shown in the next
section, the results obtained with such an approach are in

good agreement with simulation points, even for quite small < o1 ]
values ofa. = J I S o )
«~ 0.01F ; AR
&7/ g o
|1 @/ / w/
3.6 \Verification of the accuracy of the considered 0.001 F 5 °\4
approach Sy i d

In this section, we report some resullts to test the goodness of = e-04 - PR ‘
the methods described above. In Figures 10 and 11, we plot «/R
the hop count statisticg[n|x] for A, = An R? € {8, 15} and
n > 2. Simulation points are also reported for comparison.
As can be shown in Figure 10 the second approach for the
computation ofthe functiomi [ax|x,_1, ax_1]leadsto a higher
accuracy, whereas the first approach leads to overestimating
the actual statistics. This is due to the fact that at every In this section, we report an alternative method to derive
stage the full coverage area is made available independentlyapproximations for hop count related statistical values.
on the past forwarding history and the complete statistics In Bose et al. (2001) and Zorzi and Rao (2003) it has been
arises from the convolution of single stage advancementshown that geographical routing provides good shortest path
statistics. approximations. Refer now to Figure 12, whefeis the
However, as can be observed from Figure 11, as theoriginator of the hop count distribution procedure, whereas
node density increases, the two approaches become almostodeQ is a target node with hop count Moreover, let us
equivalent. Moreover, itis worth noting how the behaviour of refer to the single hop progress asand to the associated
the statistics suddenly changes for small probabilities. Theser.v. asE. If the distance betweeR and Q is large enough,
regions are, infact, the ones where the past forwarding historywe may neglecti, thereby havingd1(¢) + A2(§) ~ A1(§),
most affects the results. It can also be observed thatthe refinedvhereA1(§) = arccosé) —£./1 — £2. Inthis case, the cdf of
analysis is closer to the real behaviour of the curves therebythe maximum advanceme#f} (¢) is achieved as Kleinrock

3.7 Approximation by means of maximum
forwarding within radius routing
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and Silvester (1978F:(£) = ProdE < £] = e *41® and Consider a localisation example where a set of nodes is

its pdf is found as: randomly deployed within a given geographical area. The
position of a node can be determined based on distance

fE(E) = 20y/1 — 27441 (30) estimates from other nodes that have already acquired their

position (let us call these nodemnchord. As we have
Unfortunately, close form expressions for the mé&aand previously discussed, with a simple hop count assignment,
the variancefs2 of the advancement do not exist (Niculescu all nodes can be informed about the distance, in number
and Nath, 2004a,b). As in Niculescu and Nath (2004a,b), of hops, between them and any other node in the network.

the mean and the variance of the distance betweend In particular, we might think of calculating the number of
Q can be approximated b§(n) = n€ and ng(n) = nogz, hops separating each node from a setwthors that are
respectively. The above method gives very accurate resultsassumed to know their position with a sufficient precision.
for both mean and variance for high valuesxofHowever, Note that the hop count information can be easily obtained,
the approximation fails for lower densities as: as both MAC and routing protocols either natively exploit

it or can disseminate it together with data traffic at a low
additional cost. Focusing on a given node, it is reasonable to
assume that anchors further away should have a diminished

1 theindependence between subsequent advancements
is no longer verified and

2 the means of Maximum forwarding within influence than closer anchors when we have to derive position
Radius (MFR) forwarding strategy is no longer estimates through, for example, triangulation techniques.
a good approximation of the actual paths. This is due to the fact that precision is affected by distance.

The central point of our enhancement to DVHop is to
reflect this intuition into the localisation protocol. In practice,
Figure12 Single hop geographical advancement we would like closer anchors to play a more determinant role
in the position estimation procedure. As said above, any given
node can obtain a list of hop counts separating it from each
anchor in the network. Hence, exploiting the statistics for
y the 2D case and as a function of the hop counts only, we
can further obtain the statistics of the distance separating a
given node from each anchor. In particular, we can calculate
the variance of the distance related to each hop count value
z Q (anchor) and use it to calculate a weight for that specific hop
count (anchor). A possible way to calculate the weights is
Ay as follows:w; = 1/52, wherei is the hop count value. In
the next section, we show how this intuition can be used to
enhance the localisation protocol.

4 Example application 4.2 Statistically enhanced localisation protocol

In this section, as an example application of the results The DVHop protocol (Niculescu and Nath, 2004a,b) consists
presented in this paper, we describe how they can beof three phases:

used to enhance existing localisation protocols. Firstly, we
will use the results derived in Section 3 to compute a 1
series of coefficients in the particular case of a random
topology network. Secondly, we will modify the DVHOp 5 aach anchor computes an average hop length
protocol (Niculescu and Nath, 2004a,b) to include these based on the number of hops towards the
results and compare the performance of the new algorithm  ,iner anchors and

with the original one. For a more detailed description and

further results on the applicability of these methods to other 3 anchors distribute the average hop length and
localisation protocols the reader is referred to Dulman and nodes are able to compute their position through
Havinga (2004). triangulation.

By exploiting the results in the previous section, we can
distribute the value of the density as part of the first phase
of the algorithm. The number of hops towards the anchors
We note that a large number of publications (especially are now enough for the nodes to compute their position.
the ones related to localisation in wireless ad hoc or Instead of the Least Squares Method used when computing
sensor networks) assume random topologies. Most of them,the position via triangulation, nodes can now make use of
however, develop their solutions without taking advantage Weighted Least Squares Method with the weights as specified
of the statistics governing the node positioning. We however above. In other words, the new protocol (DVHopSE) will
think that such statistics, if available, can be successfully make use of only phases 1 and 3 from the previous description
exploited to improve performance. Next, we give an example (leading to smaller traffic in the network) and use a set of
of this fact. precomputed weights.

nodes get distances in number of hops to
the anchors

4.1 Preliminaries
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Figure13 Comparison DVHop - DVHoOpSE: (a) mean value of the positioning error and (b) standard deviation of the
positioning error
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Example results are presented in Figure 13. The setupnetworks in the one dimensional and two dimensional cases

consisted in 200 nodes randomly deployed in a square areaand derived the relationship between the number of hops and

(1x1 unif), with the nodes having a transmission range the distance separating two nodes of a uniformly distributed

of 0.115 units leading to situations where each node had network. For the one dimensional case, we were able to give

on average approximately seven neighbours (all simulationsan exact recursive formula for the computation of various

have been performed in Matlab). parameters, while for the two dimensional case we proposed
The number of beacons was varied from 5% to 30% several approximations. We have shown that applying these

of the total number of nodes and it can be seen that anresults in already existing algorithms, not only reduces their

improvement between 22% and 29% is obtained in the overhead but also leads to significantly better performance.

mean value of the positioning error. The results given

by DVHopSE are more precise, and also the associated

standard deviation is improved (improvement spans from 8%

to 229%). References

The reason for this improvement lies in the fact that the . o
closer anchors had a bigger influence in the calculation of Bettstetter, C. and Wagner_, C. (20_0_2) ‘The spatial node distribution
position estimates than anchors being further away. DVHop of the r".’mdom waypoint mobility modelGerman Workshop
computes hop estimates that best fit the local topology: in on Mobile Ad Hoc Networks (WMANQZ)Im, Germany.
practice if nodes are denser in a certain part of the network, Bettstetter, C. and Eberspacher, J. (2003) ‘Hop distances in
they will get a smaller value for the average hop distance homogengus ad hoc networkBroceedings of IEEE Vehicular
than nodes in a less dense part of the network. DVHopSE ~ technologies conference(VT®orea.
averages these values to only one. Simulation results showBose, P., Morin, P., Stojmenayil. and Urrutia, J. (2001) ‘Routing
that the weights related to how far the anchors are located  with guaranteed delivery in ad hoc wireless network&sM
play a bigger role than local densities. Similar results were Wireless Networks/ol. 7, pp.609-616.
obtained for distance-based localisation algorithms (called clark, B.N., Colbourn, C.J. and Johnson, D.S. (1991) ‘Unit
DVDistance, see Niculescu and Nath, 2004a,b), see, for Disk Graphs’, Discrete MathematicsVol. 86, Nos. 1-3,
example, Dulman and Havinga (2004). We note that the pp.165-177.
fa”,do,m deploymeraISs_umption_, which is pre;entin Fhe vast Dousse, O., Thiran, P. and Hasler, M. (2002) ‘Connectivity in
majority of the scenarios considered so far in the literature, ad hoc and hybrid networks’, ifEEE Infocom Vol. 2,
is mostly unexploited. However, the underlying random pp.1079-1088.
topology has certain properties that can actually be used
within localisation protocols, instead of being ‘rediscovered’
at the cost of additional resources and time (as for phase 2 of

Dulman, S. and Havinga, P. (2004) ‘Statistically enhanced
localization schemes for randomly deployed wireless sensor
networks’, Proceedings of DEST International Workshop on

the DVHop protocol). Signal Processing for Sensor Netwarktelbourne, Australia.
Ghosh, B. (1951) ‘Random distances within a rectangle and
5 Conclusions between two rectangles’Bulletin Calcutta Mathematical

Society\Vol. 43, pp.17-24.
Although the large majority of applications consider Kleinrock, L. and Silvester, J. (1978) ‘Optimum transmission

randomly deployed networks, only a few of them make use radii for packet radio newtorks or why six is a magic
of the properties resulting from the underlying statistics, as number’,Proceedings of IEEE National Telecommunications
most protocols try to ‘rediscover’ things that should be taken ConferenceBirminghan, Alabama, pp.4.3.1-4.3.5.

as granted. In this paper we focused on these underlyingmeester, R. and Roy, R. (1996pntinuum PercolationrCambridge
statistics in the case of uniform random deployment of University Press.



102 S. Dulman et al.

Miller, L. (2001) ‘Distribution of link distances in a mobile
network’, Journal of Research of the National Institute of
Standards and Technology

Mullen, J. (2003) ‘Robust approximations of, the distribution of
link distances in a mobile networkMobile Computing and
Communications Reviewol. 72, No. 2.

Niculescu, D. and Nath, B. (2004a) ‘Error characteristics of
ad hoc positioning systems (APSIProceedings of MobiHoc
‘04, Roppongi, Japan, May.

Niculescu, D.B. Nath, P. (2004b) ‘Position and orientation in ad hoc
networks’ Elsevier Journal of Ad Hoc Networkgol. 2, No. 2,
pp.133-151.

Papoulis, A. and Pillai, S. (200Brobability, Random Variables
and Stochastic Processeéth Edition, McGraw—Hill Higher
Education.

Rose, C. (1992) ‘Mean internodal distance in regular and random
multihop networks’ |EEE Transactions on Communications
Vol. 40, August.

Stoyan, D. Kendall, W. S. and Mecke, J. (1985 chastic Geometry
and its Applications2nd Edition, John Wiley and Sons.

Zorzi, M. and Rao, R.R. (2003), ‘Geographic random forwarding
(GeRaF) for Ad Hoc and Sensor Networks: Multihop
Performance’, IEEE Transactions on Mobile Computing
Vol. 2, October—December, pp.337-348.

Notes

!See Figure 8. Note that the inequality < x;_; holds asx; is by
definition the (quantised) distance that remains to be covered at
stagek to reach the target node.

2This fact is taken into account by the distributigfuy [xi_1, a;_1].



