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1 Introduction and related work

Ad hoc and wireless sensor networks have gained a lot of
interest lately. Owing to technological breakthroughs, it is
now possible to build small sized and energy efficient devices
that can organise themselves in ad hoc networks and help
monitor various parameters of the surrounding world. This
new technology brings also new challenges: the algorithms
running in these networks have to be designed by taking
into consideration the limited resources available, the large
number of devices and the dynamics of the environment.

Owing to the lack of resources and computation power,
each hypothesis on which the design of a sensor network
is based needs to be taken into account. No matter how
small is the amount of information brought, it needs to
be exploited from the beginning, because rediscovering
that information after the deployment of the network using
distributed algorithms can simply be too expensive.

In this paper, we focus on exploiting the information
provided by a generally accepted and largely ignored
hypothesis: the random deployment of the nodes of a
wireless sensor network. Although the vast majority of
studies acknowledge this fact, only a few of them make use
of the properties, in terms of connectivity statistics, of these
networks. There is a close relationship between the density of
the nodes in such a network (that is known at deployment time
and can be easily checked and updated during the run time
of these networks), the number of hops separating two nodes
and the distance between these two nodes. Using statistical
techniques we derive distance estimates between the nodes
without using any sort of distance measuring hardware. This
information can be further used to enhance and simplify
various networking protocols (e.g. localisation protocols).

In the following we analyse the underlying statistics for
uniformly random deployed ad-hoc networks in one- and
two-dimensional cases and derive the relationships between
the number of hops and the distance separating two nodes.
For the one dimensional case, we give an exact
recursive formula that can be used for the calculation
of various parameters (e.g. the mean distance between
two nodes separated by a known number of hops),
while for the two dimensional case we propose several
approximations. Finally, we show that applying these results
in existing networking protocols (in particular in localisation

algorithms), not only reduces their overhead but also leads to
significantly improved results.

A substantial effort has already been put into characterising
ad hoc networks from a statistical point of view. Kleinrock
and Silvester (1978) derive an approximation for the expected
progress in each hop for a two dimensional network
deployed within a circular region. Moreover, they also
obtain approximations for the average distance between
any two nodes. Bettstetter and Eberspacher (2003) derive
closed form formulas for the probability that two nodes
can communicate within one or two hops. The nodes are
deployed in a rectangular area and the results are based on
the distribution of the distance between two random nodes
in such a scenario, which was originally derived by Ghosh
(1951). For hop counts larger than 2, simulation results are
presented and analysed. Lower and upper bounds for the hop
count distribution between two random nodes are derived
based on the properties of the network as the node density
grows to infinity. In Miller (2001), the author investigates the
distance between two randomly positioned nodes, where the
network scenario is represented by nodes distributed inside a
rectangular region. Both the uniform and the Gaussian node
placements are analysed. Also, it is shown that the shapes of
the distance distributions for these scenarios are very similar
when the width of the rectangular area in the first case is
taken to be about three times the standard deviation of the
distribution in the second scenario. Mullen (2003) continues
the analysis, exploring the underlying spatial distributions
in more depth. Mobility of the nodes is also taken into
account, as an extension of the work done in Bettstetter
and Wagner (2002). Average hop distance is investigated
for other network topologies as well. For example, in Rose
(1992) the average hop distance is investigated for ring and
street network topologies. However, while most of
the work done so far focuses on the calculation of first
and second order moments, we instead investigate
the complete statistics of the distance from a given
sourcedestination pair once their hop count is known. In
addition, in the last part of this paper, we advocate the
exploitation of these statistics to improve the performance
of existing network protocols.

The paper is organised as follows: Section 2 presents
the hop count statistics for the One-dimensional (1D)
scenario. The analysis continues with the Two-dimensional



On the hop count statistics for randomly deployed wireless sensor networks 91

(2D) scenario in Section 3. All the results we obtain are
confirmed by simulations. In Section 4, we show how to
exploit the obtained information to improve and simplify
existing localisation protocols for randomly deployed
ad hoc and sensor networks. Our conclusions are drawn in
Section 5.

2 Hop count statistics in the 1D case

2.1 One-dimension network scenario

We model the one-dimensional network scenario through a
set of nodes placed on the positive side of the realx axis,
where positions are picked according to a one-dimensional
Poisson process with known parameterλ (Stoyan et al.,
1995) Among these nodes, we consider one device, denoted
here assource, that is the originator of the hop count
distribution procedure and that is placed at the origin
of the real axis. The probability of having exactlyk
nodes within a given interval of lengthl is: Prob(k) =
e−λl(λl)k/k!. Further, the distance between thesource
node and the first node to its right is a random variable
(r.v.) X characterised by the cumulative distribution function
(cdf) FX(x) = 1 − e−λx (Papoulis and Pillai, 2002).
Finally, we assume that each node can communicate to all its
neighbours whose distances are smaller than or equal toR,
whereR denotes the (constant) transmission range of the
nodes.

2.2 Limits of the hop count intervals

We say that a node has a Hop Count (HC) equal ton, n ∈ N,
if and only if it is n hops away from thesource(the shortest
path between the two nodes has lengthn hops). Moreover, we
say that a given node with HCn ≥ 0 and in positionx ≥ 0 is
thelast nodein its HC if all nodes inx > x have a larger hop
count value. Let� = (τ0, τ1, τ2, . . . , τn, . . . ) denote the
ordered positions of the nodes,τi ∈ R

+. Moreover, let�′ =
(ξ0, ξ1, ξ2, . . . , ξm, . . . ) be the ordered set containing the
positions of the last nodes in each HC, whereξi is the position
of the last node in HCi. Observe that�′ ⊆ � and that the
source, placed inτ0 = ξ0 = 0, is considered to be the last
node in HC 0. Moreover, it can be easily verified that a node
belongs to HCn if and only if it is within the transmission
range of the last node in HCn−1 and is not in the transmission
range of the last node in HCn − 2. Exceptions to this rule
are HC 0 (that contains the source node only) and HC 1 (that
contains all the nodes in the transmission range of the source).
On the basis of these observations, we can write the following
inequalities:

ξ0 = 0

ξ0 < ξ1 ≤ ξ0 + R

ξ0 + R < ξ2 ≤ ξ1 + R (1)

· · ·
ξn−2 + R < ξn ≤ ξn−1 + R

· · ·

Now, we are interested in finding the boundaries of the
interval containing all the feasible positions for those nodes
in HC n. The inferior (Dmin) and superior (Dmax) limits of
the interval containing all the nodes with HCn are found
from (1):

Dmin[n] =
⌊n

2

⌋
R (2)

Dmax[n] = nR

This result can be also justified by simple geometrical
observations (see Figure 1). The fact that the distance between
the two consecutive pointsξi andξi+2 needs to be larger than
or equal toR, leads to the inferior limit. The superior limit
comes from the fact thatξi andξi+1, in the limiting case, can
be spaced by at mostR.

Figure 1 Inferior (top) and superior (bottom) limits for the
hop intervals
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To proceed with our analysis, we introduce the following

notation: let
l2

�(x)
l1

, l1, l2 ∈ R, l1 < l2, be defined as:

l2
�(x)

l1

=
{

1 for l1 < x ≤ l2

0 otherwise

2.3 Punctual distribution function ofξn

For each hop counti ∈ N, we define a random variable
Ei denoting the position of the last point in that hop.
In the following, we compute the probability density
functions (pdfs) for these random variables,fEi

(ξi) = f (ξi),
where the joint densities ofE1, E2, . . . , En is indicated as
f (ξ1, ξ2, . . . , ξn). By the definition of conditional pdf we
can write the following relations:

f (ξ0) = δ(ξ0)

f (ξ1, ξ0) = f (ξ1|ξ0)f (ξ0) (3)

· · ·
f (ξn, ξn−1, . . . , ξ0) = f (ξn|ξn−1, . . . , ξ0)· · · f (ξ1|ξ0)f (ξ0)

whereδ(x) is the Dirac impulse and the above densities make
sense in the intervals where the nodes can actually be placed,
that is, according to the constraints in Equation (1) otherwise
the functions equal 0. Moreover, due to the structure of the
problem,∀ n ∈ N, n ≥ 2, whenξn−1 andξn−2 are givenξn
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does not depend onξi with i < n − 2. We can rewrite the set
of Equation (3) as:

f (ξ0) = δ(ξ0)

f (ξ1, ξ0) = f (ξ1|ξ0)f (ξ0)
ξ0+R

�(ξ1)
R

(4)

. . .

f (ξn, ξn−1, ξn−2) = f (ξn|ξn−1, ξn−2)f (ξn−1, ξn−2)
ξn−1+R

�(ξn)
ξn−2+R

The marginal density functionf (ξn) can therefore be
computed by double integration off (ξn, ξn−1, ξn−2) with
respect to ξn−2 and ξn−1. The conditional density
f (ξn|ξn−1, ξn−2) can be computed based on the fact that, in
order forξn to be the position associated with the last node
in hop countn, the following two eventshave to be jointly
verified(see Figure 2).

Figure 2 Feasible region forξn onceξn−2, andξn−2 are given

ξn−2 ξn−1 ξn

R
R

no pointsat least one point

A) ‘The interval (ξn−2 + R, ξn] is not empty’ (from
Equation (1) we have thatξn > ξn−2 + R).

B) ‘There are no points in the interval(ξn, ξn−1 + R]’.
The events A and B are independent because the
points (nodes) are placed according to a Poisson process
(memoryless). We can therefore write that:

Prob(A) = Prob{k > 0 in (ξn−2 + R, ξn]}
= 1 − e−λ(ξn−ξn−2−R) (5)

Prob(B) = Prob{k = 0 in (ξn, ξn−1 + R]}
= e−λ(ξn−1+R−ξn)

where k is the number of nodes. We are now in the
position of deriving theF(ξn|ξn−1, ξn−2)cdf and its derivative
f (ξn|ξn−1, ξn−2):

F(ξn|ξn−1, ξn−2) = Prob(A)Prob(B)
ξn−1+R

�(ξn)
ξn−2+R

f (ξn|ξn−1, ξn−2) = λ e−λ(ξn−1+R−ξn)
ξn−1+R

�(ξn)
ξn−2+R

(6)

From Equations (4) and (6), the distribution functionf (ξn)

can be obtained by induction as reported in Equation (7) at
the top of the next page. In other words, we have decomposed
f (ξn) as the product of two terms, where the first term
accounts for the network connectivity (λ), whereas the second
term is independent ofλ and for a givenξn, accounts for the
feasible region of the remainingn − 1 pointsξ1, . . . , ξn−1,

according to the constraints in Equation (1). More compactly,
f (ξn) can be written as:

f (ξn) = λne−λ(nR−ξn) × Gn(ξn) (9)

where Gn(x) replaces the succession of integrals in
Equation (7). Moreover, Gn(x) can be expressed as
(see Section 2.4):

Gn(x) =
n−1∑

i=� n
2 �

{
gi

n(x)
(i+1)R

�(x)
iR

}
(10)

where the gi
n(x) are polynomials with the following

properties (easily verified by inspecting the number
of integrals, the terms that are being integrated and
the continuity properties of the punctual distribution
functions):

1 the coefficients ofgi
n(x) do not depend onλ

2 gi
n(x) is a polynomial of ordern − 1

3 gi
n((i + 1)R) = gi+1

n ((i + 1)R).

Computing the distribution of the position of the last
node in hopn makes sense only in the cases where the
structure is connected up to that hop (i.e. there are no
connectivity holeslarger thanR up to the end of hopn).
Observe that, for a given hop numbern, the probability
of having a connected structure is a constant quantity that
is used to scale the joint punctual distribution function
f (ξn) to obtain the conditional distributionfc(ξn) =
f (ξn| Structure connected up to hopn). Formally, fc(ξn) is
written as

fc(ξn) = λne−λ(nR−ξn) × Gn(ξn)∫ nR

�n/2�R λne−λ(nR−ξn) × Gn(ξn) dξn

(11)

As the calculation of the integral in Equation (11) is rather
tedious, we approximate it as follows. The problem of having
a connected structure in the one dimensional case has been
studied in Dousse et al. (2002), where the authors derived a
close formula (Equation (8)) to obtain the probabilityPc(x)

of having a connected structure up to any positionx ∈ R
+.

The probability of having a connected structure up to the end
of hopn can be approximated asPn = Pc(nR). fc(ξn) can
therefore be approximated as

fc(ξn) ≈ λne−λ(nR−ξn) × Gn(ξn)

Pn

(12)

Equation (12) gives the distribution of the last node in hop
n. It is composed by two parts: an exponential function
depending on the parameterλ and a set of polynomials whose
coefficients areindependentof λ. This formula is the central
point for the analytical characterisation of the hop count
statistics for the one dimensional case. In Figure 4 we plot
the distribution calculated by means of Equation (12) against
simulation points. The obtained results confirm the accuracy
of the approximation.
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f (ξn) =
∫ ∞

−∞

∫ ∞

−∞
f (ξn, ξn−1, ξn−2) dξn−2 dξn−1

= λne−λ(nR−ξn) ×
∫ ∞

−∞

∫ ∞

−∞

ξn−1+R

�(ξn)
ξn−2+R

· · ·
∫ ∞

−∞

ξ3+R

�(ξ4)
ξ2+R

∫ ∞

−∞

ξ2+R

�(ξ3)
ξ1+R

ξ1+R

�(ξ2)
R

R

�(ξ1)
0

dξ1 dξ2· · · dξn−2 dξn−1 (7)

Pc(x) =




1 x < R
� x

R
�∑

i=0

{
[−λe−λR(x−iR)]i

i!

}
− e−λR

� x
R

�−1∑
i=0

{
[−λe−λR(x−(i+1)R)]i

i!

}
x ≥ R

(8)

2.4 Determination of theGn(x) coefficients

In this section, we address the computation of the coefficients
of the gi

n(x) polynomials that composeGn(x). As one
can notice by inspecting Equation (7), the coefficients of
gi

n(x) are functions of the transmission rangeR. This means
that, for every particular scenario, they should be computed
separately, as the transmission rangeR is unlikely to be the
same in all cases. Fortunately, there is a way to avoid this.
In fact, in Meester and Roy (1996), it has been proved that
for a network whose nodes are distributed according to a
Poisson process with parameterλ andR is the value of the
transmission range, one can varyR and modifyλ, such that
the properties of the underlying graph remain unchanged (the
reverse situation whereλ is varied while adaptingR is also
true). In more detail, if the distances are scaled by a ratior/r ′
in thed-dimensional space, theλ parameter must be modified
according toλ′ = (r/r ′)dλ.

In what follows, we consider the transmission range
to be R = 1. Any particular application can then scale
its distances such that the transmission range becomes 1
and varyλ accordingly. This means that any application could
then use the coefficients of the polynomials as computed
below at no additional expense. In other words, this makes the
coefficients ofgi

n(x) constants independent of the particular
deployment scenario(R andλ). To keep the notation simple,
in the following we consider that we already modifiedR to 1
such thatλ is the new value obtained after the normalisation
step. This will not have any influence on the final results.

Moreover, we observe that the� functions only take values
in {0, 1} and this means that their only influence is on the
intervals over which the integration in Equation (7) takes
place. In the form in which it is presented, Equation (7)
cannot be integrated in close form as the integration variables
are all linked together. To make this integration possible
in numerical form, we adopt the following three–step
procedure:

Step 1: From the definition of the� functions and
keeping in mind that the variables we use conform to the
inequalities described in Equation (1) we can write the
following identity:

ξi−1+1

�(ξi)
ξi−2+1

=
[

ξi+2−1

�(ξi)
ξi+1−1

i

�(ξi)
� i

2�

]
·
[

ξi+1−1

�(ξi−1)
ξi−1

i−1
�(ξi−1)

� i−1
2 �

]
·
[

ξi−1
�(ξi−2)
ξi−1−1

i−2
�(ξi−2)

� i−2
2 �

]

wherei ∈ N, i = 1, 2, . . . , n. Therefore, we can apply the
previous transformation to each� function inGn(x). Observe
that, in Equation (7), the termsξn+2 andξn+1 do not exist,

their place being taken by their extreme values as defined in
Equation (2).

Step 2: One can observe that each integration has as limits
integer numbers. More than this, the integration can be
performed by splitting the domain of the variableξi into
(i − �i/2�) disjoint integrals where the� functions to be
integrated are evaluated; each integral corresponds to one
interval of size 1 and the union of these disjoint intervals
covers the valid region of existence(�i/2�, i) for ξi .

Step 3: For what concerns the combination of any three
subsequent variables of the kind(ξi+2, ξi+1, ξi), only one out
of the three situations presented in Figure 3 is possible. That
is, if a is an integer such that:�(n + 2)/2� ≤ a < n + 2,
then:

1 ξi+2 ∈ (a, a + 1) ξi+1 ∈ (a − 1, a) ξi ∈ (a − 2, a − 1)

2 ξi+2 ∈ (a, a + 1) ξi+1 ∈ (a − 1, a) ξi ∈ (a − 1, a)

3 ξi+2 ∈ (a, a + 1) ξi+1 ∈ (a, a + 1) ξi ∈ (a − 1, a)

Figure 3 Possible configurations for the last nodes in each
hop.a ∈ N is such that�(n + 2)/2� ≤ a < n + 2
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ξ i

ξ i

ξ i+1
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ξ i+1
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i+2ξ     −1

i+2ξ     −1i+1ξ     −1

i+1ξ     −1

1

1

1

1

1

feasible region for 

a+1a−1

a+1a

a

a−1
a−2

a−1 a a+1
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The integration limits (feasible regions) in the previous three
cases are accounted for by the following expressions (see
Figure 3):

1
a+1

�(ξi+2)
a

a

�(ξi+1)
ξi+2−1

ξi+2−1

�(ξi)
ξi+1−1

2
a+1

�(ξi+2)
a

a

�(ξi+1)
ξi+2−1

ξi+2−1

�(ξi)
a−1

(13)

3
a+1

�(ξi+2)
a

ξi+2

�(ξi+1)
a

ξi+2−1

�(ξi)
ξi+1−1

By applying the three observations described above,
one can perform the integration in a recursive manner.
As an example, in Table 1 we report thegi

n(x) parameters
for n = 1, 2, . . . , 6. Figure 4 shows the punctual distribution
function for the last node in each hop, for the first ten hops and
for λ = 6.7. The theoretical distributions are plotted against
simulation points.

2.5 Relation hop count number – distance statistics

In the following, we derive the relationships between the HC
number and the actual position of any given node. The basic
assumption is that we are dealing with a connected topology
up to and including the node in question. Assume that a node
finds out the number of hops it is separated from the source
node. This information is enough for it to get an estimate of
the distance between the two points. From the distribution of
the distance, the node can compute the average distance and
its associated standard deviation and use it, for example, in
localisation algorithms, routing protocols, etc.

The distribution function of the distance conditioned on
the number of hops has particular expressions for the case
when the node lies in the first and second hop. For the third
hop on, we provide a recursive formula for the computation
of the distribution. In the following, byξi we understand
the position of the last node in hopi. By xi we understand
the position of any node in hopi. The punctual distribution

function for the case where the node lies in the first hop (fd1)
is given by

fd1(x1) = 1

R

R

�(x1)
0

. (14)

This result is quite obvious: a node is in the first hop if it is
in the transmission range of thesource. Within this interval,
due to the fact that we are dealing with a Poisson process,
the node has an equal probability of being at any given
position, thus a uniform distribution. Assume now that a
node belongs to the second hop. We can write the following
expressions:

f (x2|ξ1) = 1

ξ1

ξ1+R

�(x2)
R

f (ξ1, x2) = f (x2|ξ1)f (ξ1) (15)

fd2(x2) =
∫ ∞

−∞
f (ξ1, x2) dξ1

Nodex2 belongs to the second hop and this means that it is
in the transmission range of the last node in the first hop and
out of the transmission range of thesource. Moreover, given
that the position of the last node in the first hop isξ1, the node
in second hop can belong only to the interval(R, ξ1 +R]. Its
distribution is again a uniform distribution due to the uniform
deployment of the nodes. We can now computef (ξ1, x2) and
integrate it overξ1 to get the marginal distributionfd2(x2)

(the expression forf (ξ1) has already been determined in
Section 2.3). Performing these computations leads us to the
following result:

fd2(x2) = λe−λR

∫ +∞

−∞

ξ1+R

�(x2)
R

R

�(ξ1)
0

eλξ1

ξ1
dξ1 (16)

For the distributions of distances in hops further away
than the second hop, we use the following reasoning (see
Figure (2): a node belongs to hopn if it is in the transmission
range of the last node in hopn − 1 and is out of the
transmission range of the last node in then−2 hop. Therefore,
within the interval (ξn−2 + R, ξn−1 + R] the position of

Table 1 Coefficients of thegi
n(x) polynomials (n = 1, 2, . . . , 6 andi = �n/2�, . . . , n − 1)

gi
n(x) x5 x4 x3 x2 x1 x0

g0
1 – – – – – 1.0000

g1
2 – – – – −1.0000 2.0000

g1
3 – – – 0.5000 −1.0000 0.5000

g2
3 – – – 0.5000 −3.0000 4.5000

g2
4 – – −0.3333 2.0000 −3.5000 1.6667

g3
4 – – −0.1667 2.0000 −8.0000 10.6667

g2
5 – 0.0833 −0.6667 2.0000 −2.6667 1.3333

g3
5 – 0.1250 −1.5000 6.2500 10.1667 4.7083

g4
5 – 0.0417 −0.8333 6.2500 −20.8333 26.0417

g3
6 −0.0417 0.5833 −3.1667 8.3333 −10.6250 5.2500

g4
6 −0.0333 0.6667 −5.0833 18.0000 −27.9583 12.7167

g5
6 −0.0083 0.2500 −3.0000 18.0000 −54.0000 64.8000
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Figure 4 Probability distribution functions of the last node in each hop (n = 1, 2, . . . , 10,λ = 6.7)
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the node is uniformly distributed. The marginal distribution
fdn(xn) is obtained as

f (xn|ξn−1, ξn−2) = 1

ξn−1 − ξn−2

ξn−1+R

�(xn)
ξn−2+R

(17)

f (xn, ξn−1, ξn−2) = f (xn|ξn−1, ξn−2)f (ξn−1, ξn−2)

fdn(xn) =
∫ ∞

−∞

∫ ∞

−∞
f (xn, ξn−1, ξn−2) dξn−2 dξn−1

The expression off (ξn−1, ξn−2) has already been determined
in Section 2.3. Numerical integration of these expression
should follow the method described in Section 2.4 of
rearranging the integration limits.

3 Hop count statistics in the 2D case

3.1 Network model

In the 2D case, we model the network as a graphG = (M, L),
where M is the set of nodes andL is the set of links
between nodes. As in the one dimensional case, among
the |M| nodes inM, we consider a special device called
source, which is the originator of the hop count distribution
procedure. For what concerns connectivity, we adopt the Unit
Disk model (Clark et al., 1991), where any two nodes can
communicate if their distance is smaller than or equal toR,
whereR is the transmission range. Moreover, we assume
that nodes are placed according to a planar Poisson process
with densityλ. Similarly to the one dimensional case, the
probability to haven nodes within an areaA is given by
φ(n, A) = e−λA(λA)n/n! (Stoyan et al.,1995). The hop
count value of a generic nodej ∈ M is defined as the length,
in terms of number of links, of the shortest path connecting
nodej to the source.

3.2 Introduction to the computation of hop count
statistics for 2D random networks

The aim of the analysis presented in the following is to find the
HC distributionf (n|x), defined as the probability that the hop
count of a generic nodej ∈ M isngiven that its distance with
respect to the source isx. Owing to the adopted connectivity
model, f (1|x) is one if x ≤ R and zero otherwise.
The computation of the second hop distribution is slightly
more complicated, but can be readily calculated considering
the diagram in Figure 5. In fact, a target node placed at a
distancex from the source has hop count equal to 2 if the
common coverage area between the source and the target
node contains at least one node. We refer to the common
area between two circles at distancex asA2(x, R, R) (see
Equation (19) below). Hence, the distributionf (2|x) equals
the probability that the areaA2(x, R, R) (shaded area in
Figure is not empty. Formally:

f (2|x) =
{

0 x > 2R

1 − φ(0, A2(x, R, R)) R < x ≤ 2R

(18)

A2(x, R1, R2) is the area of the intersection of two circles of
radiusR1 andR2 whose centres are separated byx and is
derived as:

A2(x, R1, R2) =




0 R2 ≤ x − R1

πR2
1 R2 ≥ x + R1

A2(x, R1, R2) elsewhere

(19)
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Figure 5 Diagram for the computation of the second hop
distribution
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where

A2(x, R1, R2) = R2
1 cos−1

(
x2 + R2

1 − R2
2

2xR1

)

+ R2
2 cos−1

(
x2 + R2

2 − R2
1

2xR2

)
(20)

− 1

2

√
[(R1 + R2)2 − x2][x2 − (R1 − R2)2]

and assumedR1 ≤ R2 (the other case can be obtained
by simmetry). R1 and R2 are the transmission ranges of
the source and the target node, respectively. In our case
R1 = R2 = R. The diagram related to the third hop
distributionf (3|x) is shown in Figure 6. In this case, a node at
distancex from the source has HC equal to 3 if the following
conditions are jointly verified:

1 The intersecting region between the source and the
target node coverage areas (empty region in Figure 6)
must be empty in order to exclude all the cases where
the target node has HC equal to 2.

2 Two further nodes must exist with the following
properties. The first node (node with HC equal to 1 in
Figure 6) must be in the transmission range of the
source and must not be within the intersecting region
between the source and the target node (empty region in
Figure 6). Moreover, a further node (with HC equal to 2
in Figure 6) must exist in the transmission range of the
target node and its position must be such that this node
is also in the transmission range of the first node (but
not of the source). In Figure 6 we report a possible
scenario for this case.A3(x) is the feasible region for
the second point. That is, the transmission area of a
node placed withinA3(x) has a non void intersection
with the portion of the source transmission area where
the first point can be placed (all coverage area minus the
empty region, as specified above). Once the position for
the second point has been fixed, the first point can be
placed within an areaA∗ which is given by the
intersection between the transmission area of the
second point and the transmission area of the source
minus the empty region.

The target node has hop count 3 if the two conditions above
are verified, that is, if the minimum number of transmissions
for a packet sent by the target node to get to the source is 3. As
can be easily understood by the geometry of the problem, the
resolution of this statistics is rather tedious. Moreover, due
to the form of the involved integral it is also impossible to
obtain it in exact close form (Niculescu and Nath, 2004a,b).

Figure 6 Diagram for the computation of the third hop
distribution
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In the next section, we present an approximate approach
based on a Markov Chain representation of the underlying
hop count assignment process, which is able to provide
accurate approximations of the connectivity statistics.

3.3 A recursive algorithmic approach to the
computation of hop count statistics

The hop count statistics is strictly related to the shortest hop
path concept. The analysis that follows is mainly based upon
this observation. In deeper detail, if a target node has hop
count equal ton this means that the minimum number of
intermediate nodes that connect it with the destination is
n − 1. The key idea of our analysis is to build, starting at
the source, a process that, at every step of the forwarding
process, selects the set of nodes leading to the maximum
advancement towards the target device. This concept can
be better understood by referring to Figure 7, where we
depict the first hop selection in our hop count assignment
process. During this first step, we need to pick the nodes
in the coverage area of the source that are the closest to the
destination (target node at distancex). It shall be observed
that, by geometric considerations, some nodes are equivalent
for the purpose of the advancement. In particular, in the
figure nodesF1 andF2 lead to the same advancement as
they are both placed at the same distanceR1 from the target
node. This equivalence is very important as it allows to
model the hop count assignment process by only tracking the
remaining distance towards the destination. The probability
that the maximum advancement in the first step is, saya1

(R1 = x − a1), given that the initial distance between the
source and the target node isx, can be easily evaluated by
multiplying the probability that no nodes are present within
the intersecting areaA2(x, R1, R) (see Figure 7) by the
probability that there is at least one node in the coverage
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region of the source whose distance to the target node isR1.
For analytical tractability, we introduce the following two
assumptions:

1 We subdivide the radio rangeR into a finite number
of intervalsN	, of length	 = R/N	. This
quantisation is introduced to enable a convenient and
recursive calculation.

2 Only positive or zero advancements are possible.
This assumption is equivalent to assuming that a node
at a given distancex1 can inherit its HC value only
from nodes placed at a distancex2 ≤ x1. This
assumption is well verified in dense enough networks
and therefore in most of the cases of practical interest.
If this assumption is not verified this analysis can be
seen as an approximation.

Figure 7 Circle intersection for the analysis depicting the first
node selection stage of the hop count assignment
process
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In the following, we present in detail the recursive approach
for the computation of the HC statistics. Due to the
above assumptions, the HC statistics computed here is an
approximation of the actual one. However, as will be shown
in the following, the approach gives very accurate results. The
approximate statistics is referred to asf [n|x], n ≥ 1, n ∈ N

andx is the initial distance separating the source and the target
node. The advancement process is tracked by means of a
Markov Chain with a finite number of states. The generic state
at the generic stepk consists of the tripleX (k) = (k, xk, ak),
wherek is the stage of the advancement process, that also
corresponds to the HC assigned to the currently occupied
node, xk is the residual distance between the currently
occupied node and the target node andak corresponds to
the current advancement that is defined asak = xk−1 − xk.
As in Zorzi and Rao (2003) bothak andxk are represented
in the quantised space, that is, their absolute values are given
by x ′

k = xk	 and a′
k = ak	, respectively. A graphical

representation of the advancement process is shown in
Figure 8.

As reported in Figure 8, we make a further assumption
to track the position of a node. That is, we approximate the
position of each node within a given interval[xk	, (xk+1)	)

with that of the leftmost edge of the interval itself,xk	.
Another possibility would be to assign the rightmost edge.
We prefer to adopt the first solution due to its superior ability
to fit the actual statistics.

Figure 8 Model for the single hop advancement process
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The probability mass distribution function of
the advancementak achieved at stepk, given the position
xk−1 at stepk − 1, and the advancementak−1 at the previous
stepk − 1, is referred to asf [ak|xk−1, ak−1]. Further details
on the computation of this function are reported in Sections
3.4 and 3.5. For now, we take this function as given and use
it into the computation of the statistics of interest. We refer
to the joint probability of position and advancement at step
k asf [xk, ak]. This distribution can be recursively evaluated
as:

f [xk, ak] =




f [a1|x0 = 0, a0 = 0] k = 1
N	∑

ak−1=0

{
f [xk−1, ak−1]

× f [ak|xk−1, ak−1]
}

k > 1

(21)

wherexk ∈ {0, 1, . . . , �x/	
}, ak ∈ Sa = {0, 1, . . . , N	}
andxk = xk−1 − ak.1 f [n|x] is found by summing all the
contributions connecting the source to the target node in
exactlyn hops. Observe that each of these paths is a shortest
hop path. This derives directly from the way in which the path
is built, that is, by selecting, at every stage, the hop leading to
the maximum advancement toward the target node.2 f [n|x]
can be formally written as follows:

f [n|x] =
N	∑

xn−1=0

N	∑
an−1=0

f [xn−1, an−1] (22)

In the equation above, we sum all the terms that lead, inn−1
hops, to a residual distance between the (n − 1)-st hop and
the target node (nth hop) that is shorter than or equal toN	,
that is, within transmission range of the target node that is
at a quantised distance of�x/	
. Once the residual distance
xn−1 between the current and target nodes is smaller than or
equal toN	, the current node is connected with the target
with probability one andf [n|x] is just obtained by summing
the probabilities of these events to occur.

For the computation of thef [ak|xk−1, ak−1] function,
we need to look at the forwarding process in more depth.
In Figure 9, we report the related diagram. Here, we consider
a forwarding sequence composed by three hopsA, C and
D. As clearly highlighted in the figure, the advancement at
hop D (ak) depends on the past forwarding history. In this
example, for instance,A choosesC as its next hop. Of course,
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this implies that the common region between the circle
centered inA with radiusR and the circle centered inB with
radiusx ′

k−1 is empty, that is, no relay nodes can be found
in the areaA2(x

′
k−2, x

′
k−1, R), wherex ′ meansx	. Given

that, at nodeD (step k), the area that was considered
empty in the previous stepk − 1 (shaded areaA3 in the
figure)can notbe reconsidered for forwarding purposes. To
sum up, the advancement at stepk depends on the previous
advancement at stepk −1 and, in general, on all the previous
advancements as well (it can be shown that for the two
dimensional case, only the previous thirteen neighbors are
of influence). Here, for tractability purposes, at the generic
stepk, we choose to consider the previous advancement at
stepk − 1 only.

Figure 9 Detailed diagram for the advancement process

αA

A3

xk
ka

xk−2

xk−1
B

CB

AC

ϕ

AB

P

P
P

A

S D

C

y

�
�
�
�
�
�

�
�
�
�
�
�

Note that areaA3 also depends on the angleϕ reported in
the figure. In fact, to fully specify the geometry of the three
points constituting the advancement sequence we need to
know xk−1, ak−1, ak and the angleϕ. In our Markov Chain
X , we precisely track the first three quantities, whereas the
dependence onϕ is accounted for in a statistical sense. The
next two subsections are devoted to the presentation of two
different approaches to obtain thef [ak|xk−1, ak−1] function
and clarify the role ofϕ.

3.4 Computation off [ak|xk−1, ak−1]: approach I

In this first approach to the computation off [ak|xk−1, ak−1]
we neglect the dependence on the forwarding history two or
more hops in the past. In this case, the forwarding process
statistics is renewed at every forwarding step so that the
forwarding decision is made independently of previously
occupied locations. This is, of course, a rough approximation
of the actual forwarding process, where indeed there may
be a strong correlation between subsequent node selections.
Nevertheless, as will be shown next, such an approximation
becomes accurate as the node density increases.

Now, refer to thekth step of our forwarding process
and consider that the position of the previous hop isxk−1.
Owning to assumption 2 of Section 3.3, the advancement
at step k is constrained to be in the setak ∈ Sa =
{0, 1, . . . , N	}. Considering the diagram in Figure 8,
having a maximum advancement equal toak corresponds to
having no nodes in the area delimited byRj−1 and at least
one node in the interval[xk	, (xk +1)	). This probability is
found as a function ofRj andRj−1, which can be written as
xk−1 − ak +1 andxk−1 − ak, respectively (see Figure 8). The
probability that the advancement isak givenxk−1 andak−1 is
derived as

f [ak|xk−1, ak−1] =
{

ζ [ak|xk−1, ak−1] ak ∈ Sa

0 elsewhere
(23)

where

ζ [ak|xk−1, ak−1] = e−λAj−1 − e−λAj (24)

and

Aj−1 = A2(x
′
k−1, R, R′

j−1)

Aj = A2(x
′
k−1, R, R′

j )

Rj = xk−1 − ak + 1

Rj−1 = xk−1 − ak

x ′ = x	 (25)

3.5 Computation off [ak|xk−1, ak−1]: approach II

In the approach presented in this subsection, we consider the
dependence on the previous stage (k − 1) only. Our target
is to compute the functionζ [ak|xk−1, ak−1], which can be
subsequently plugged into Equation (23) to obtain a better
approximation forf [ak|xk−1, ak−1]. As discussed above, to
this end we need to account for the four quantitiesxk−1,
ak−1, ak as well as the angleϕ. Note thatϕ is the only
quantity that is not explicitly tracked by our Markov Chain.
The knowledge of this angle is needed to compute the shaded
areaA3 in Figure 9, that is, the common area arising from
the intersection of the three circles centered in pointsA, B

andC. Furthermore, the only quantities that we need to fully
specify this area arexk−2, xk−1, ϕ, R andxk. In the following,
we refer to this area asA3(xk−2, xk−1, ϕ, R, xk). As expected,
the angleϕ is the only unknown quantity in our analysis. In
the next, we therefore proceed with its characterisation. From
Figure 9 it is clear that, oncexk−1 andxk−2 have been fixed,
the feasible region forϕ consists of the setϕ ∈ [−ϕmax, ϕmax],
where:

ϕmax = cos−1

[
(x ′

k−2)
2 + (x ′

k−1)
2 − R2

2x ′
k−2x

′
k−1

]
(26)

wherexk−2 = xk−1 + ak−1 andx ′ = x	.
Now, we refer top(ϕ) as the pdf ofϕ. The form of this

function will be discussed later. For a givenϕ, the area
A3(xk−2, xk−1, ϕ, R, xk) is readily computed by geometric
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arguments, whereas we express the probability mass
function of the advancement, conditioned onϕ, as
η[ak|xk−1, ak−1, ϕ]. ζ [ak|xk−1, ak−1] can be evaluated as
follows:

ζ [ak|xk−1, ak−1] = 2
∫ ϕmax

0
η[ak|xk−1, ak−1, ϕ] p(ϕ) dϕ

(27)

Observe that the equation above holds as long asϕmax > 0,
for ϕmax = 0 it reduces to Equation (23) above. Hence, for
a given(xk−1, ak−1) pair, the advancement mass function is
found by statistically averaging over the admitted values of
ϕ. η[ak|xk−1, ak−1, ϕ] is evaluated as

η[ak|xk−1, ak−1, ϕ] = e−λAj−1 − e−λAj (28)

where:

Aj−1 = A2(x
′
k−1, R, R′

j−1)

− A3(x
′
k−2, x

′
k−1, ϕ, R, R′

j−1)

Aj = A2(x
′
k−1, R, R′

j ) − A3(x
′
k−2, x

′
k−1, ϕ, R, R′

j )

xk−2 = xk−1 + ak−1

Rj = xk−1 − ak + 1

Rj−1 = xk−1 − ak

x ′ = x	 (29)

For what concerns the probability distribution function
p(ϕ), we consider here the simple case whereϕ is
uniformly distributed in the interval[−ϕmax, ϕmax]. In this
casep(ϕ) = 1/(2ϕmax). As will be shown in the next
section, the results obtained with such an approach are in
good agreement with simulation points, even for quite small
values ofλ.

3.6 Verification of the accuracy of the considered
approach

In this section, we report some results to test the goodness of
the methods described above. In Figures 10 and 11, we plot
the hop count statisticsf [n|x] for λn = λπR2 ∈ {8, 15} and
n ≥ 2. Simulation points are also reported for comparison.
As can be shown in Figure 10 the second approach for the
computation of the functionf [ak|xk−1, ak−1] leads to a higher
accuracy, whereas the first approach leads to overestimating
the actual statistics. This is due to the fact that at every
stage the full coverage area is made available independently
on the past forwarding history and the complete statistics
arises from the convolution of single stage advancement
statistics.

However, as can be observed from Figure 11, as the
node density increases, the two approaches become almost
equivalent. Moreover, it is worth noting how the behaviour of
the statistics suddenly changes for small probabilities. These
regions are, in fact, the ones where the past forwarding history
most affects the results. It can also be observed that the refined
analysis is closer to the real behaviour of the curves thereby

providing a better approximation. We note that an even better
approximation can be achieved by further refining thep(ϕ)

function considered in the analysis in Section 3.5. Finally,
oncef [n|x] has been computed, we observe thatf [x|n] can
be easily found via Bayes’ formula. Note thatf [n|x] can be
used to estimate the geographical distancex between two
nodes through maximum likelihood criteria when the hop
count distancen is known. A first example in this sense will
be given in section 4.

Figure 10 f [n|x] for λn = 8
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Figure 11 f [n|x] for λn = 15
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3.7 Approximation by means of maximum
forwarding within radius routing

In this section, we report an alternative method to derive
approximations for hop count related statistical values.
In Bose et al. (2001) and Zorzi and Rao (2003) it has been
shown that geographical routing provides good shortest path
approximations. Refer now to Figure 12, whereP is the
originator of the hop count distribution procedure, whereas
nodeQ is a target node with hop countn. Moreover, let us
refer to the single hop progress asξ and to the associated
r.v. asE. If the distance betweenP andQ is large enough,
we may neglectA2 thereby havingA1(ξ) + A2(ξ) ≈ A1(ξ),
whereA1(ξ) = arccos(ξ)−ξ

√
1 − ξ2. In this case, the cdf of

the maximum advancementFE(ξ) is achieved as Kleinrock
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and Silvester (1978)FE(ξ) = Prob[E ≤ ξ ] = e−λA1(ξ) and
its pdf is found as:

fE(ξ) = 2λ
√

1 − ξ2e−λA1(ξ) (30)

Unfortunately, close form expressions for the meanξ and
the varianceσ 2

ξ of the advancement do not exist (Niculescu
and Nath, 2004a,b). As in Niculescu and Nath (2004a,b),
the mean and the variance of the distance betweenP and
Q can be approximated byξ(n) = nξ andσ 2

ξ (n) = nσ 2
ξ ,

respectively. The above method gives very accurate results
for both mean and variance for high values ofλ. However,
the approximation fails for lower densities as:

1 the independence between subsequent advancements
is no longer verified and

2 the means of Maximum forwarding within
Radius (MFR) forwarding strategy is no longer
a good approximation of the actual paths.

Figure 12 Single hop geographical advancement
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4 Example application

In this section, as an example application of the results
presented in this paper, we describe how they can be
used to enhance existing localisation protocols. Firstly, we
will use the results derived in Section 3 to compute a
series of coefficients in the particular case of a random
topology network. Secondly, we will modify the DVHop
protocol (Niculescu and Nath, 2004a,b) to include these
results and compare the performance of the new algorithm
with the original one. For a more detailed description and
further results on the applicability of these methods to other
localisation protocols the reader is referred to Dulman and
Havinga (2004).

4.1 Preliminaries

We note that a large number of publications (especially
the ones related to localisation in wireless ad hoc or
sensor networks) assume random topologies. Most of them,
however, develop their solutions without taking advantage
of the statistics governing the node positioning. We however
think that such statistics, if available, can be successfully
exploited to improve performance. Next, we give an example
of this fact.

Consider a localisation example where a set of nodes is
randomly deployed within a given geographical area. The
position of a node can be determined based on distance
estimates from other nodes that have already acquired their
position (let us call these nodesanchors). As we have
previously discussed, with a simple hop count assignment,
all nodes can be informed about the distance, in number
of hops, between them and any other node in the network.
In particular, we might think of calculating the number of
hops separating each node from a set ofanchors, that are
assumed to know their position with a sufficient precision.
Note that the hop count information can be easily obtained,
as both MAC and routing protocols either natively exploit
it or can disseminate it together with data traffic at a low
additional cost. Focusing on a given node, it is reasonable to
assume that anchors further away should have a diminished
influence than closer anchors when we have to derive position
estimates through, for example, triangulation techniques.
This is due to the fact that precision is affected by distance.
The central point of our enhancement to DVHop is to
reflect this intuition into the localisation protocol. In practice,
we would like closer anchors to play a more determinant role
in the position estimation procedure.As said above, any given
node can obtain a list of hop counts separating it from each
anchor in the network. Hence, exploiting the statistics for
the 2D case and as a function of the hop counts only, we
can further obtain the statistics of the distance separating a
given node from each anchor. In particular, we can calculate
the variance of the distance related to each hop count value
(anchor) and use it to calculate a weight for that specific hop
count (anchor). A possible way to calculate the weights is
as follows:wi = 1/σ 2

i , wherei is the hop count value. In
the next section, we show how this intuition can be used to
enhance the localisation protocol.

4.2 Statistically enhanced localisation protocol

The DVHop protocol (Niculescu and Nath, 2004a,b) consists
of three phases:

1 nodes get distances in number of hops to
the anchors

2 each anchor computes an average hop length
based on the number of hops towards the
other anchors and

3 anchors distribute the average hop length and
nodes are able to compute their position through
triangulation.

By exploiting the results in the previous section, we can
distribute the value of the density as part of the first phase
of the algorithm. The number of hops towards the anchors
are now enough for the nodes to compute their position.
Instead of the Least Squares Method used when computing
the position via triangulation, nodes can now make use of
Weighted Least Squares Method with the weights as specified
above. In other words, the new protocol (DVHopSE) will
make use of only phases 1 and 3 from the previous description
(leading to smaller traffic in the network) and use a set of
precomputed weights.
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Figure 13 Comparison DVHop - DVHopSE: (a) mean value of the positioning error and (b) standard deviation of the
positioning error
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Example results are presented in Figure 13. The setup
consisted in 200 nodes randomly deployed in a square area
(1x1 unit2), with the nodes having a transmission range
of 0.115 units leading to situations where each node had
on average approximately seven neighbours (all simulations
have been performed in Matlab).

The number of beacons was varied from 5% to 30%
of the total number of nodes and it can be seen that an
improvement between 22% and 29% is obtained in the
mean value of the positioning error. The results given
by DVHopSE are more precise, and also the associated
standard deviation is improved (improvement spans from 8%
to 22%).

The reason for this improvement lies in the fact that the
closer anchors had a bigger influence in the calculation of
position estimates than anchors being further away. DVHop
computes hop estimates that best fit the local topology: in
practice if nodes are denser in a certain part of the network,
they will get a smaller value for the average hop distance
than nodes in a less dense part of the network. DVHopSE
averages these values to only one. Simulation results show
that the weights related to how far the anchors are located
play a bigger role than local densities. Similar results were
obtained for distance-based localisation algorithms (called
DVDistance, see Niculescu and Nath, 2004a,b), see, for
example, Dulman and Havinga (2004). We note that the
random deploymentassumption, which is present in the vast
majority of the scenarios considered so far in the literature,
is mostly unexploited. However, the underlying random
topology has certain properties that can actually be used
within localisation protocols, instead of being ‘rediscovered’
at the cost of additional resources and time (as for phase 2 of
the DVHop protocol).

5 Conclusions

Although the large majority of applications consider
randomly deployed networks, only a few of them make use
of the properties resulting from the underlying statistics, as
most protocols try to ‘rediscover’ things that should be taken
as granted. In this paper we focused on these underlying
statistics in the case of uniform random deployment of

networks in the one dimensional and two dimensional cases
and derived the relationship between the number of hops and
the distance separating two nodes of a uniformly distributed
network. For the one dimensional case, we were able to give
an exact recursive formula for the computation of various
parameters, while for the two dimensional case we proposed
several approximations. We have shown that applying these
results in already existing algorithms, not only reduces their
overhead but also leads to significantly better performance.
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Notes

1See Figure 8. Note that the inequalityxk ≤ xk−1 holds asxk is by
definition the (quantised) distance that remains to be covered at
stagek to reach the target node.

2This fact is taken into account by the distributionf [ak|xk−1, ak−1].


