
Exact statistics of ARQ packet delivery delay
over Markov channels with finite round-trip delay

Michele Rossi, Leonardo Badia, Michele Zorzi
Dipartimento di Ingegneria, Università di Ferrara — via Saragat 1, 44100 Ferrara, Italy

Email: {mrossi,lbadia,mzorzi}@ing.unife.it

Abstract— In this paper the packet delay statistics of a fully
reliable Selective-Repeat ARQ scheme is investigated. It is as-
sumed that the sender continuously transmits packets whose
error process is characterized by means of a two-state Discrete
Time Markov Channel. At the receiver these packets are checked
for errors and ACK/NACK messages (assumed error-free) are
sent back to the sender accordingly. The feedback message is
known at the transmitter m channel slots (round-trip delay) after
the packet transmission started. An appropriate Markov model
has been developed in order to find the exact statistics of the
delays experienced by ARQ packets after their first transmission.

I. INTRODUCTION

With the increasing development of multimedia applications
in modern communication systems, effective error control
techniques are required. Many applications are highly sensitive
to channel impairments. To have good performance in terms
of data reliability, latency, and efficient bandwidth usage, error
control techniques must be carefully designed. Thus, a deep
understanding of them is necessary. Usual protocol stacks
perform error control at multiple levels: e.g., at the physical
layer with error correction codes, at the data-link layer with
ARQ techniques and at the transport layer with TCP.

In recent years, the study of ARQ error control techniques
in wireless systems has enjoyed a lower popularity than,
e.g., error correction coding strategies. This is mainly due
to the type of application envisioned in these systems, i.e.,
voice and circuit-switched data, where strict delay guarantees
are required. With the extension of packet data and Internet
services over wireless links, the increased delay tolerance of
many applications and protocols leads to a paradigm shift,
where error recovery by retransmission may be more efficient
than protecting all data a priori by means of costly FEC.

ARQ solutions directly interact with higher levels, by de-
termining both delay/jitter performance and error probability
of higher level packets. Their correct configuration is key in
achieving the needed higher level QoS; hence, an accurate
study of the delivery delay process at the ARQ level is
crucial to understand the interaction between the higher level
performance and the link layer retransmission process.

In ARQ, the transmitter sends packets (PDUs) consist-
ing of payload and error detection codes. At the receiver
side, based on the outcome of the error detection procedure,
acknowledgment messages are sent back to the transmitter
(ACK or NACK, according to the result of error detection).
The sender performs packet retransmissions based on such
acknowledgments. In general, ARQ protocols are variants of
the following basic schemes: stop-and-wait (SW), go-back-
N (GBN) and selective repeat (SR). The SR scheme is the
most efficient: here packets are transmitted continuously, but
only negatively acknowledged packets are retransmitted, i.e.,
retransmissions are selectively triggered by NACK messages.

This work has been partially supported by ERICSSON research.

When the round-trip delay goes to zero all the presented
schemes become identical. In the literature [1][2], this situation
is referred as ideal SR ARQ.

The overall PDU delay with ARQ protocol can be subdi-
vided in three contributions. These quantities will be referred
to as queuing delay, transmission delay and re-sequencing
delay, as usually done in the literature [3]. The first is the
time spent in the source buffer queue, i.e., the time between
the PDU release by higher levels and the instant of its first
transmission over the channel. This term depends on both the
channel behavior and the PDU arrival process. The second
contribution is the time between the first transmission and
the correct reception of the PDU, which only depends on
the channel behavior. The last delay is the time spent in the
receiver re-sequencing buffer. In fact, even though the sender
transmits packets in order, they can arrive out of sequence,
due to random errors and consequent retransmissions. Hence, a
correctly received PDU must wait in the receiver re-sequencing
buffer until all the PDUs with lower identifier have been
correctly received. This last term is the most complicated
because it depends on errors experienced by other PDUs.
In the following, the term resolution (e.g., of a packet) will
mean correct transmission, whereas delivery (or equivalently,
release) refers to the joint resolution of the considered packet
as well as of all packets with a smaller id. In this paper we
investigate, with an exact analysis, the statistics of the delivery
delay, defined as the time between the first transmission of the
packet and its successful release from the re-sequencing buffer,
in other words, the sum of the second and third terms.

Several studies have been performed on the delay per-
formance of the SR protocol over a wireless channel
[1][3][4][5][6][7]. In [4], queuing theory is used by Konheim
to evaluate the different kinds of delay affecting the PDU
transmission, in the situation of a finite round-trip time. In
this work a static channel is considered, and the developed
model allows only to estimate average values of the delays. In
[5] an alternative approach for the same problem considering
a Bernoulli arrival process is proposed. Rosberg and Shacham
in [6] and Rosberg and Sidi in [7] analyzed in detail re-
sequencing delay and re-sequencing buffer occupancy at the
transmitter and at the transmitter and the receiver jointly,
respectively, but again in the case of static channel. The
time varying channel was investigated for the first time by
Fantacci in [1], by means of queuing theory. However, here
the re-sequencing delay is not studied and only average values
for the other delays can be quantified, with a lower bound
on them with respect to the situation of a finite round-trip
delay. Finally, in [3] Kim and Krunz accounted for a time
varying channel and a finite round-trip delay, by developing the
analysis for all the ARQ delay contributions. However, several
approximations are introduced, as for example the hypothesis
of ideal SR is used for the queuing delay evaluation, so that

only approximate mean values can be quantified.
In this paper we study the delay performance of a fully

reliable SR ARQ scheme, considering both time varying
channel and finite round-trip time, and also the effect of bursty
channel errors is taken into account. Some assumptions are
made to simplify the formal description, however they do not
affect the generality of the results, since they can be relaxed
if needed. Previous studies are greatly extended, since an
exact analysis is presented for the delivery delay statistics:
this is an instrument that allows, for example, to write closed
mathematical expressions for quantities related to the ARQ
delay, and to give not just approximate mean values, that in
certain cases could be misleading, but the complete statistic
description, so that the performance can be exactly evaluated.

The remaining part of the paper is organized as follows:
in Section II the ARQ policy and the channel model are
described, in Section III the exact analysis of the delivery delay
is reported. In Section IV results are reported and finally, in
Section V, some conclusions are given.

II. MODEL FOR ARQ PROCESSES

We consider a pair of nodes, that communicate data pack-
ets through a noisy wireless link and use a fully reliable
Link Layer protocol (unlimited retransmission attempts) to
counteract channel impairments. Data packets (ARQ PDUs)
and ACKs/NACKs flow in forward and backward direction,
respectively: it is not restrictive to consider error-free ACKs
and NACKs. Moreover, we assume that both transmitter and
receiver have unlimited buffer size and they adopt the follow-
ing Selective-Repeat ARQ protocol (a generalization of the
protocol described in [8]) at the Link Layer.

The sender continuously transmits new PDUs from its buffer
in increasing numerical order as long as ACKs are received.
The time is slotted and the slot time corresponds to a single
PDU transmission. After each PDU reception, the receiver
checks for packet errors and replies with an ACK/NACK
accordingly. If m is the round-trip delay the sender receives the
ACK/NACK message for each packet after the transmission of
m−1 subsequent PDUs, new or retransmitted. In the literature
[9], m is also commonly referred as the ARQ window size. In
case of NACK, the corresponding PDU is retransmitted m
slots after the previous transmission, else a new PDU is sent.
The wireless channel is characterized by means of a two-
state Discrete Time Markov Chain (DTMC), and let denote
the states as 0 and 1. We can define the related transition
probability matrix P and the corresponding i-step transition
probability matrix P(i), as follows:

P =
(

p00 p01

p10 p11

)
, P(i) = Pi =

(
p00(i) p01(i)
p10(i) p11(i)

)

The steady-state channel error probability is ε = p01
p10+p01

,
while the average error burst length is given by b = 1/p10.
We model the errors in the channel with the hypothesis that
transmissions during state 1 are always erroneous, whereas
state 0 is error free. This is a reasonable assumption in many
cases [2] and the model we propose can be extended to account
for a higher order Markov Chain. A more complicated channel
model only makes the analytical study cumbersome.

The traffic model mainly affects the queuing delay, that
is out of the scope of our analysis, and the delivery delay
only slightly depends on it. So, it is reasonable to consider a
simple model for the arrival process, although our analysis can
be again extended with a more complicated one if necessary.

Hence, we suppose that once a PDU is correctly transmitted,
a new one is always present in the source buffer. This model
is referred in the literature [3] as Heavy Traffic condition,
and describes exactly a continuous packet source. Thus, it
holds for example for a TCP file transfer (FTP-like session or
video/audio continuous data streaming): reliable ARQ almost
completely avoids TCP timeouts (when the channel error rate
is not too large) and the TCP level, after filling the bandwidth-
delay product, behaves as a continuous packet source (the
TCP window size is not decreasing because error recovery is
never triggered). Should the Heavy Traffic assumption not be
verified, the delivery delay computed with it can be seen as an
upper bound (worst case analysis). An evaluation relaxing this
hypothesis would still be possible, by following an approach
as in [7].

III. COMPUTATION OF THE DELIVERY DELAY STATISTICS

We compute the delay statistics for a single PDU transmitted
using Selective Repeat ARQ. We do this by tracking the
successful delivery of the PDU of interest (called tagged
PDU), as well as all previous PDUs. Some remarks about
the notation used for the rest of the paper are presented here.
The slot in which the tagged PDU is transmitted for the first
time will be indicated as slot t = m. The m-sized window
from slot 1 to slot m will be called fundamental window,
due to the important role it plays in the analysis. For the
sake of simplicity, we will finally consider the delivery of
the tagged PDU as complete when all PDU with smaller
id have been correctly transmitted. This is not completely
appropriate, since the release time is evaluated at the receiver.
However, the delay between these two instants is a constant
tc (known a priori and approximately equal to m/2), that is
the sum of the path delay and the processing delay: in other
words, since this term does not affect the analysis, we will
not write it to avoid unnecessarily long expressions. Thus, in
the following we will study the statistics of Pd[k], defined as
the probability that the delivery delay equals k slots plus the
constant term tc. For example, Pd[0] is the probability that the
tagged PDU is released at the instant of its reception, i.e., the
first transmission attempt is successful and the re-sequencing
delay is zero.

Proposition 1: The channel state at time t = 0 is i = 0,
i.e., the corresponding PDU is correctly received.
Proof: This follows immediately from the fact that at time
t = m the first transmission of the tagged PDU occurs.
If the transmission at time 0 would have been erroneous, a
retransmission would have been scheduled instead. �

Proposition 2: The tagged PDU can be delivered in order
if and only if (⇔) all the PDUs transmitted in the fundamental
window are resolved.
Proof: Since PDUs identifier are assigned in increasing
order, the PDUs contained in the fundamental window are
surely characterized by a smaller id than the one assigned
to the tagged packet. Hence, in the slot in which the tagged
PDU is released all these PDUs must have been resolved.
This proves the ⇒ condition. In the following, we show that
the resolution of the fundamental window is also sufficient
(⇐), i.e., no other PDUs can affect the release of the tagged
packet. This can be shown considering the slot of the first
transmission of each PDU. If it is between 1 and m, these
PDUs are obviously taken into account in the fundamental
window. PDUs transmitted for the first time at t < 0 can be
either acknowledged or retransmitted m slots later. If they are
acknowledged before time m, then they are all resolved when

the tagged PDU is transmitted for the first time and do not
affect its delivery. For this reason they can be neglected. The
only PDUs we need to consider are the ones that are still
unacknowledged at time m, these PDUs are retransmitted in
the fundamental window. Finally, PDUs transmitted for the
first time in slot t > m have a larger id than the tagged
PDU, thus they do not affect the delivery delay statistics. In
conclusion, the only PDUs that can block the delivery of the
tagged packet are transmitted in the fundamental window that
is for this reason sufficient. �

To evaluate the resolution of the fundamental window we
formulate this algorithm, in which the slots in position t ≥ 1
are marked as follows:

1) Every slot t ≥ 1 begins unmarked. Let t = 1.
2) If there are m consecutive marked slots, starting from t,

the procedure ends. Else, increase t until an unmarked
slot is encountered.

3) If in t the transmission is successful, mark with the label
resolved every slot in position κm + t, with κ integer,
κ ≥ 0. Increase t by 1 and go to step 2.

4) Else, in t an erroneous transmission occurs. In this case,
mark only slot t with the label unresolved, increase t by
1 and go to step 2.

For example, suppose m = 3. Suppose a good channel state
at t = 1 is followed by a burst of four erroneous slots and then
the channel is again good for three slots, the algorithm gives:
1=resolved, 2=unresolved, 3=unresolved, 4=resolved (despite
the channel error, it was previously marked), 5=unresolved,
6=resolved, 7=resolved, 8=resolved. After slot 8, the algorithm
ends as slots 9 ÷ 11 are resolved.

Additionally, observe that also every slot t ≥ 9 is marked.
It is straightforward to prove that this is always true, i.e., the
ending condition of the algorithm at step 2, is equivalent to say
that after a slot with a sufficiently high position every other
slot is marked as resolved. Next propositions explain how this
can be useful to evaluate the delivery delay.

Proposition 3: Consider a sequence of slots from t−m+1
to t, with t ≥ m. Every slot of this sequence can be associated,
by means of a one–to–one correspondence, to a different
PDU transmitted in the fundamental window, so that the label
assigned by the above algorithm applies both to the slot and
the status of the related PDU at time t.
Proof: Formally, we define a function x → gt(x) (slot →
PDU), that relates the generic slot in position x to a PDU gt(x)
transmitted in the fundamental window. We have to show that
it is always possible to do this with the right correspondence
between the label of each marked slots and the status of the
related PDU at time t. This can be proven by induction.
For t = m the statement is true for the correspondence
gm(x) = x. In this case we relate each slot of the fundamental
window with the PDU transmitted in it, and the satisfaction
of the further conditions is trivial. Now, suppose that the
statement holds for t, for which the correspondence gt(·) is
defined. We can define the correspondence gt+1(·) for t + 1
by letting gt+1(x) = gt(x) for t − m + 1 < x ≤ t and
gt+1(t+1) = gt(t−m+1). It is also straightforward to verify
that the correspondence between slot label and PDU resolution
is correct. In fact, for every slot x, t − m + 1 < x ≤ t, the
condition holds for the inductive hypothesis, whereas slot t+1
represents the resolved/unresolved status for the same PDU of
the fundamental window as slot t − m + 1. �

Proposition 4: The tagged PDU is released in the last slot
of the first m-sized group of only resolved slots.

Proof: Let us call f the last slot of this group of PDUs.
At slot f the tagged PDU is surely delivered, as every PDU
transmitted in the fundamental window has been correctly
received: this comes from Proposition 3 applied to an m-sized
window of only resolved slots. We prove per absurdum that
the tagged PDU can not be released before this slot. Suppose
that the tagged packet is resolved in slot t < f : thus, since f
is the last slot of the first m-sized group of resolved PDUs,
the window from slot t − m + 1 to slot t contains at least
one unresolved slot. Proposition 3 implies then that at slot t
at least one PDU transmitted in the fundamental window has
not been correctly received and Proposition 2 states that in
this case the delivery is not ended. �

Thus, according to Proposition 2, the memory of the system
is the state of m PDUs of the fundamental window and the
channel state. Suppose that we are looking at slot t as the
current one. Proposition 3 suggests also that we can keep
track of the past memory by using the resolved/unresolved
status of the m − 1 most recent past slots, i.e., slots t −
m + 1, t − m + 2, . . . , t − 1. Therefore, this information can
be carried with a binary variable for each slot: we assign
bk = 1 if slot t − m + 1 + k is still unresolved, and bk = 0
otherwise, for k = 0, 1, . . . ,m−2. This string of bits can also
be represented by the integer i =

∑m−2
k=0 bk2k. In addition,

we need to specify the status of the current slot, i.e., slot t.
In this case we also need to track the channel state, which
is necessary to determine the future evolution of successful
transmissions. (Note that this is not necessary for past slots,
since the Markovian nature of the channel evolution allows to
neglect the channel state in slots s < t once the channel state in
t is known.) For the current slot, three situations are possible:
the channel is good, which implies that the slot is resolved
(if it is not resolved already, the good channel state makes it
resolved now); the channel is bad and the slot is resolved (in
a previous transmission); the channel is bad and the slot is
still unresolved. These three possibilities will be denoted by
0, 1 and 2, respectively, and the associated variable will be
denoted by u.

Consider now the random process X(t) = (i(t), u(t))
which jointly tracks slot-by-slot the Markov channel evolu-
tion and the status of the m latest slots. This process is a
Markov chain, as proved before. In order to determine the
possible transitions X(t) → X(t + 1) = (i′, u′) and the
corresponding transition probabilities, suppose at time t the
bitmap i(t) is (b0, b1, . . . , bm−2), where the most significant
bit bm−2 denotes the status of the most recent among the
past slots. At time t + 1 this bitmap is clocked one position
into the past, i.e., i′(t + 1) = (b′0, b

′
1, . . . , b

′
m−3, b

′
m−2) =

(b1, b2, . . . , bm−2, f(u)), where f(u) = 1 if u = 2 (current
slot at time t was still unresolved), and f(u) = 0 if u = 0, 1.
(More compactly, in this case f(u) = �u/2�.)

Regarding the value of u′ = u(t + 1), note the following.
If at time t b0 = 0, the corresponding slot has already been
resolved, and therefore u′ = 0 or 1 according to the channel
state at time t + 1. On the other hand, if b0 = 1, the slot
is still unresolved at time t, hence we have u′ = 0, if the
channel at time t + 1 is good (slot is resolved at this time),
and u′ = 2 otherwise (slot remains unresolved). There are
only two possible destinations for X(t + 1), given X(t),
since the shift of the bitmap is deterministic and the only
random variable is the channel state which can assume two
values. More precisely, the transition probabilities are given
as follows:

• if i is even (i.e., b0 = 0), then

P [X(t + 1) = (i′, u′)|X(t) = (i, u)] = (1)

=

pxv if i′ = � i
2� + �u

2 �2m−2,
x = 	u

2
, u′ = v, v = 0, 1
0 otherwise

• if i is odd (i.e., b0 = 1), then

P [X(t + 1) = (i′, u′)|X(t) = (i, u)] = (2)

=

pxv if i′ = � i
2� + �u

2 �2m−2,
x = 	u

2
, u′ = 2v, v = 0, 1
0 otherwise

where the use of u′ = 2v in the latter case means that a
good channel v = 0 leads to u′ = 0 whereas a bad channel
v = 1 leads to u′ = 2, i.e., the situation of bad channel and
unresolved slot. According to the above rule, the transition
probability matrix can be built, with only two non-zero entries
per row.

In order to find the delay statistics, we proceed as follows.
Let π = [π0 π1 · · · πK] be a 1 × K vector whose K =
3 · 2m−1 entries represent the probabilities that the system
starts in a given state. π is computed as follows:

• if u is even (0, 2):

π(i,u) = p0b0

[m−2∏
j=1

pbj−1bj

]
pbm−2

u
2

(3)

• if u is odd (1):
π(i,u) = 0 (4)

Let e0 be a column vector of all zeros except for the entries
corresponding to states (0, 0) and (0, 1), that are equal to 1.
If T is the transition matrix of the Markov chain X(t), we
determine:

Pc[k] = πT ke0, k ≥ 0 . (5)

The distribution Pc[k] is the probability that the delivery
delay is greater than or equal to k. Finally, Pd[k] is determined
as:

Pd[0] = Pc[0], Pd[k] = Pc[k] − Pc[k − 1] ∀k > 0 . (6)

IV. RESULTS

The delivery delay statistics Pd[k] has been computed
according to the above analysis, for various values of the
channel error probability ε and the channel burstiness b. To
test the accuracy, we used a simulator in which we simply
implemented the transmission of packets with a SR ARQ
scheme applied to the same scenario; thus, we empirically
measured the delivery delay statistics, instead of deriving them
from the exact analysis.

In Figure 1 we evaluate Pd[k] and compare the case of
independent (iid) channel with different values of the correla-
tion b. In any case, the shape of the delivery delay statistics
presents a step-wise behavior with a consistent decreasing gap
after every position κm, κ integer. Moreover, when errors
are independent, Pd[k] is almost constant within a given m-
sized window, whereas in the correlated case it presents an
increasing behavior with the maximum placed at the end of
the round. This means that the transmissions of the tagged
PDU, which occur in position κm, are always a bottleneck that
blocks the resolution of the entire window. In fact, only after
the slot κm every PDU that was still unresolved at (κ− 1)m
has had another retransmission. That is, when two or more
PDUs (possibly including the tagged one) block the delivery,

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70 80

P
d
[
k
]

k

iid
b=3
b=5
b=7

b=15

Fig. 1. Pd[k], iid channel vs. b=3, 5, 7, 15, with m = 10, ε = 0.1.

0.001

0.01

0.1

1

10

100

0.01 0.1 1

m
e
a
n

d
e
l
i
v
e
r
y

d
e
l
a
y

ε

iid analysis
b=3 analysis
b=5 analysis
b=7 analysis

b=15 analysis
iid sim
b=3 sim
b=5 sim
b=7 sim

b=15 sim

Fig. 2. Mean delivery delay as a function of ε.

the most restrictive condition is the correct transmission of the
PDU with highest position in the fundamental window. Being
the tagged PDU transmitted at time m, it is more likely to be
the most restrictive one.

An interesting value is Pd[0], which corresponds to a
successful first transmission of the tagged packet being the
m − 1 previous transmissions correct. From Fig. 1 it can
be observed that Pd[0] in the bursty case is higher, due to
the greater probability to have a whole window of correct
slots when errors occur in bursts. Also the values for high
k are considerably different, because of the increase of the
probability of high delivery delays due to correlated channels.

Let us discuss the variations of b. For a given ε, for
increasing b also the probability to encounter a long sequence
of slots without errors increases. This is the reason why Pd[0]
increases as b increases. Note that a significant increase is
visible even for b = 3, i.e., when the channel burstiness
is small. Moreover, the slope of each curve decreases with
increasing b, i.e., the larger the burst, the more likely that
the starting window will be resolved after a large delay. This
means that, on average, a number of slots equal to b are needed
for the channel to be restored into the good state, and from
here a further round for the starting window to be resolved.
Similar observations can be made for Fig. 2. Here, the mean
delivery delay is reported as a function of ε by varying b, and
also simulation points are plotted for comparison.

These considerations allow us to conclude that the inde-

0.001

0.01

0.1

1

10

1 10 100

m
e
a
n

d
e
l
i
v
e
r
y

d
e
l
a
y

b

ε=0.001
ε=0.01

ε=0.1
ε=0.2
ε=0.3

Fig. 3. Mean delivery delay as a function of b.

pendent case, in general, can not be used to derive a good
approximation under many aspects, i.e., the knowledge of the
average channel error probability does not suffice to obtain a
good delay statistics estimate.

In Fig. 3 the mean delivery delay is reported against the
error burstiness b by varying ε. The first value of b on the
leftmost part of the graph corresponds to the iid case (b =
1/(1 − ε)). For each ε, an increasing b always leads to a
lower value for the mean delivery delay. The iid case is the
one characterized by the highest mean delivery delay under
all channel conditions.

Fig. 4 reports the delivery delay standard deviation, simula-
tion points are reported for comparison. Unlike for the mean
delivery time, this metric in the iid case can not be interpreted
as a bound. In fact, its role with respect to the correlated case
depends on both b and ε. Moreover, its behavior is clearly
different from that of the other curves.

The cumulative complementary distribution of the delivery
delay statistics, ccdf [x], is plotted in Figure 5, where ccdf [x]
is the probability that the delivery delay exceeds x slots,
formally:

ccdf [x] = 1 −
x∑

k=0

Pd[k] (7)

We report the complementary distribution by varying b in
Fig. 5. It is clear that the iid case is not a suitable model
when errors are correlated (also when the correlation is low,
e.g., b = 3). In particular, in the correlated case, the tagged
packet has a higher probability to be delivered in the first round
(slots 0 through m). Once again, it is clear from the Figure
that in this range iid and correlated cases differ significantly.
Even after a full round (x ≥ m) the curves do not match. For
instance, ccdf [x = m = 10] in the iid case is almost twice
that in the correlated case with b = 15.

V. CONCLUSIONS

In this paper we studied the delivery delay performance
of a Selective Repeat ARQ scheme over a two-state Discrete
Time Markov Chain. We obtained the exact statistics of the
delivery delay process regarding a single ARQ packet. Main
characteristics of the statistics have been compared for several
values of the channel error probability and error correlation,
and simulation results confirm the goodness of the analysis.
The only drawback of the exact analysis is that its complexity

1

10

0.01 0.1 1

s
t
a
n
d
a
r
d

d
e
v
i
a
t
i
o
n

ε

iid analysis
b=3 analysis
b=7 analysis

b=15 analysis
iid sim
b=3 sim
b=7 sim

b=15 sim

Fig. 4. Delivery delay standard deviation as a function of ε.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

c
c
d
f
[
x
]

x

iid
b=3
b=5
b=7

b=15

Fig. 5.Cumulative complementary delivery delay distribution, ε=0.1, m=10.

grows exponentially with the round trip delay, so approxima-
tions with lower complexity can be the goal of future research.

REFERENCES

[1] R. Fantacci, “Queueing Analysis of the Selective Repeat Automatic
Repeat Request Protocol for Wireless Packet Networks,” IEEE Trans.
Veh. Technol., vol. 45, no. 2, pp. 258–264, May 1996.

[2] M. Zorzi, R. R. Rao, and L. Milstein, “Error statistics in data transmission
over fading channels,” IEEE Trans. Commun., vol. 46, no. 11, pp. 1468–
1477, Nov. 1998.

[3] J. G. Kim and M. M. Krunz, “Delay Analysis of Selective Repeat ARQ for
a markovian Source over a Wireless Channel,” IEEE Trans. Veh. Technol.,
vol. 49, no. 5, pp. 1968–1981, Sept. 2000.

[4] A. G. Konheim, “A Queueing Analysis of Two ARQ Protocols,” IEEE
Trans. Commun., vol. 28, pp. 1004–1014, 1980.

[5] M. E. Anagnostou and E. N. Protonotarios, “Performance Analysis of the
Selective-Repeat ARQ Protocol,” IEEE Trans. Commun., vol. 34, no. 2,
pp. 127–135, Feb. 1986.

[6] Z. Rosberg and M. Shacham, “Resequencing Delay and Buffer Occupancy
under the Selective Repeat ARQ,” IEEE Trans. on Inf. Theory, vol. 35,
no. 1, pp. 166–173, Jan. 1989.

[7] Z. Rosberg and M. Sidi, “Selective-Repeat ARQ: the Joint Distribution
of the Transmitter and the Receiver Resequencing Buffer Occupancies,”
IEEE Trans. Commun., vol. 38, no. 9, pp. 1430–1438, Sept. 1990.

[8] S. Lin, D. Costello, and M. Miller, “Automatic-repeat-request error
control schemes,” IEEE Commun. Mag., vol. 22, no. 12, pp. 5–17, Dec.
1984.

[9] D. Bertsekas and R. Gallager, Data Network, 2nd ed. Prentice Hall,
1992.

