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Abstract—In this paper we address the task of accurately re-
constructing a distributed signal through the collection of a small
number of samples at a data gathering point using Compressive
Sensing (CS) in conjunction with Principal Component Analysis
(PCA). Our scheme compresses in a distributed way real world
non-stationary signals, recovering them at the data collection
point through the online estimation of their spatial/temporal
correlation structures. The proposed technique is hereby char-
acterized under the framework of Bayesian estimation, showing
under which assumptions it is equivalent to optimal maximum
a posteriori (MAP) recovery. As the main contribution of this
paper, we proceed with the analysis of data collected by our
indoor wireless sensor network (WSN) testbed, proving that these
assumptions hold with good accuracy in the considered real world
scenarios. This provides empirical evidence of the effectiveness
of our approach and proves that CS is a legitimate tool for the
recovery of real-world signals in WSNs.

I. I NTRODUCTION

In this paper, we look at data gathering approaches for
Wireless Sensor Networks (WSNs) which are able to measure
large amounts of data with high accuracy by only requiring
the collection of a small fraction of the sensor readings. Inthe
past few years, the research community has been providing
interesting contributions on this topic.

In particular, Compressive Sensing (CS) [1]–[3] is a recent
compression technique that takes advantage of the inherent
correlation of the input data by means of quasi-random ma-
trices. CS was originally developed for the efficient storage
and compression of digital images, which show high spatial
correlation. Since the pioneering work of Nowak [4], there
has been a growing interest in this technique also by the
networking community. In contrast to classical approaches,
where the data is first compressed and then transmitted to
a given data gathering point (hereafter called the sink), with
CS the compression phase can be jointly executed with data
transmission.

In our previous paper [5] we address the issue of designing
a simple protocol based on CS for the online recovery of large
data sets through the collection of a small number of readings.
In detail: 1) we exploit the combination of CS with Principal
Component Analysis (PCA) [6]; 2) we design a scheme which
iteratively learns optimal transformations for CS throughthe
online estimation of the monitored signal correlation struc-
ture. Hence, PCA is exploited to iteratively provide a good
transformation basis that allows us to continuously reconstruct

signals through the online estimation of their statistics.The
effectiveness of our approach for data gathering and recovery
has been proved in [5] for both synthetic and real signals.

In this paper we investigate the statistical distribution of
the principal components of signals gathered from an actual
Wireless Sensor Network (WSN) deployment. This analysis
provides an explanation of the good results that we have
obtained in [5] and proves that CS is a legitimate tool
for the recovery of real-world signals in WSNs. The main
contributions of this paper are:

• the inference of the statistical distribution of the principal
components of real world signals;

• a Bayesian justification of the good results achieved by
our monitoring framework.

The above points are tackled by means of Bayesian theory,
which provides a general framework for data modeling [7],
[8]. The Bayesian framework, in fact, has been addressed in
the very recent literature to develop efficient and auto-tunable
algorithms for CS, see [9]. However, previous work addressing
CS from a Bayesian perspective has mainly been focused on
the theoretical derivation of CS and its usefulness in the image
processing field. With the present paper, instead, we provide
empirical evidence of the effectiveness of CS in an actual
WSN monitoring scenario.

The paper is structured as follows. In section II we provide
a mathematical description of our data recovery framework.
In section III we substantiate the optimality of our combined
CS and PCA framework using tools from Bayesian theory. In
section IV we analyze the principal component distribution
and confirm that the assumptions under which our framework
is effective hold for real world signals. Section V concludes
the paper.

II. M ATHEMATICAL FRAMEWORK: TOOLS

In this section we first review basic tools from PCA and
CS and we subsequently illustrate our monitoring framework,
which jointly exploits these two techniques.
Principal Component Analysis [6]: the Karhunen-Lòeve
expansion is the theoretical basis for PCA. It is a method to
represent through the bestM -terms approximation a generic
N -dimensional signal, whereN > M , given that we have full
knowledge of its correlation structure. In practical cases, i.e.,
when the correlation structure of the signals is not known a
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priori, the Karhunen-Lòeve expansion can be achieved thanks
to PCA [6], which relies on the online estimation of the
signal correlation matrix. We assume to collect measure-
ments according to a fixed sampling rate at discrete times
k = 1, 2, . . . ,K. In detail, let x(k) ∈ R

N be the vector
of measurements, at a given timek, from a WSN with N
nodes.x(k) can be viewed as a single sample of a stationary
vector processx. The sample mean vectorx and the sample
covariance matrix̂Σ of x(k) are defined as:

x =
1

K

K∑

k=1

x(k) , Σ̂ =
1

K

K∑

k=1

(x(k) − x)(x(k) − x)T .

Given the above equations, let us consider the orthonormal
matrix U whose columns are the unitary eigenvectors ofΣ̂,
placed according to the decreasing order of the corresponding
eigenvalues. It is now possible to project a given measurement
x(k) onto the vector space spanned by the columns ofU.

If we define s(k) def
= UT (x(k) − x), by construction of the

projection matrixUT we have that the entries ofs(k) are
ordered as follows:s(k)

1 ≥ s
(k)
2 ≥ · · · ≥ s

(k)
N . If the

instancesx(1),x(2), · · · ,x(K) of the processx are temporally
correlated, then there exists anM < N such that fori > M
we have thats(k)

i is negligible with respect to the previous
entries ofs(k), i.e., s(k)

i ≪ s
(k)
j for j ≤M andi > M . Thus,

each samplex(k) can be very well approximated in anM -
dimensional space by just accounting forM < N coefficients.
According to the previous arguments we can write each sample
x(k) as:

x(k) = x + Us(k) , (1)

where theN -dimensional vectors(k) can be seen as anM -
sparse vector, namely, a vector with at mostM < N non-zero
entries. Note that the set{s(1), s(2), · · · , s(K)} can also be
viewed as a set of samples of a random vector processs. In
summary, thanks to PCA, each original pointx(k) ∈ R

N can
be transformed into a points(k), that can be consideredM -
sparse. The actual value ofM , and therefore the sparseness
of s, depends on the actual level of correlation among the
collected samplesx(1),x(2), · · · ,x(K).
Compressive Sensing (CS) [10]:CS is the technique that we
exploit to recover a givenN -dimensional signal through the
reception of a small number of samplesL, which should be
ideally much smaller thanN .

As above, we consider signals representable through one di-
mensional vectorsx(k) ∈ R

N , containing the sensor readings
of a WSN withN nodes. We further assume that there exists
an invertible transformation matrixΨ of sizeN×N such that

x(k) = Ψs(k) (2)

and that theN -dimensional vectors(k) is M -sparse. Assuming
thatΨ is known,x(k) can be recovered froms(k) by inverting
(2), i.e.,s(k) = Ψ−1x(k). Also, s(k) can be obtained through a
numberL of random projections ofx(k), namelyy(k) ∈ R

L,
with M ≤ L < N , according to the following equation:

y(k) = Φx(k) . (3)

In our framework,Φ is referred to asrouting matrix as it
captures the way in which our sensor data is gathered and
transmitted to the sink. For the remainder of this paperΦ will
be considered as anL ×N matrix with a single one in each
row and at most a single one in each column (i.e.,y(k) is
a sampled version ofx(k)).1 Now, using (2) and (3) we can
write

y(k) = Φx(k) = ΦΨs(k) def
= Φ̃s(k) . (4)

In general, this system is both ill-posed and ill-conditioned
as the number of equationsL is smaller than the number of
variablesN and small variations of the input signal can pro-
duce large variations of the outputy(k), respectively. However,
if s(k) is sparse, it has been shown that (4) can be inverted
with high probability through the use of special optimization
techniques [3], [12]. These allow to retrieves(k), whereas the
original signalx(k) is found through (2).
Joint CS and PCA [5]: in [5], our main contribution was the
design of a data recovery scheme combining CS and PCA. In
this scheme CS is exploited to solve the system in (4) after
L data packets have been collected from our WSN testbed
and PCA is the technique providing the transformation matrix
Ψ. The proposed mathematical framework is detailed in the
following.

Let us assume to place the sink in the center of a wireless
network with N sensor nodes. We are interested in the
reconstruction of the signal at each timek based on our joint
CS and PCA scheme. Note that real signals are characterized
by spatial and temporal correlations that are in general non-
stationary. This means that the statistics that we have to use in
our solution (i.e., sample mean and covariance matrix) must
be learned at runtime and might not be valid throughout the
entire data collection phase. To show the effectiveness of the
algorithm in [5] from a theoretical standpoint, we also make
the following assumptions:

1. at each timek we have perfect knowledge of the previous
K process samples, namely we perfectly know the set
X (k) = {x(k−1),x(k−2), · · · ,x(k−K)}, referred to in
what follows as training set;2

2. there is a strong temporal correlation betweenx(k) and
the setX (k). The sizeK of the training set is chosen
according to the temporal correlation of the observed
phenomena to validate this assumption.

Using PCA, from Eq. (1) at each timek we can map our
signal x(k) into a sparse vectors(k). The matrixU and the
averagex can be thought as computed iteratively from the
setX (k), at each time samplek. Accordingly, at timek we
indicate matrixU asU(k) and we refer to the temporal mean
and variance ofX (k) as x(k) and Σ̂(k), respectively. Hence,
we can write:

x(k) − x(k) = U(k)s(k) . (5)

1This selection ofΦ has two advantages: 1) the matrix is orthonormal as
required by CS [11] and 2) this type of routing matrix can be obtained through
realistic routing schemes.

2In [5] we presented a practical scheme that does not need this assumption
in order to work.



Now, using equations (3) and (5), we can write:

y(k) −Φx(k) = Φ(x(k) − x(k)) = ΦU(k)s(k) , (6)

whose form is similar to that of (4) with̃Φ = ΦU(k). The
original signalx(k) is approximated as follows: 1) finding a
good estimate3 of s(k), namelŷs(k), using the techniques in [3]
or [12] and 2) applying the following calculation:

x̂(k) = x + U(k)ŝ(k) . (7)

III. WSN M ONITORING VIA CS: A BAYESIAN

JUSTIFICATION

In this section we justify the effectiveness of our combined
CS and PCA technique from a Bayesian perspective. To this
end, we refer to the general data modeling framework of [7],
[8]. A good review of Bayesian estimation and fitting can also
be found in [13]. According to this framework two levels of
inference are involved in the data modeling task:
First level of inference. Given a set of plausible models
{M1, · · · ,MN} for the observed phenomenon, each of them
depending on some set of parametersθ, we fit each modeli
to the collected dataD, i.e., we find the parameter setθMAP

that maximizes the posterior probability density function(pdf)

p(θ|D,Mi) =
p(D|θ,Mi)p(θ|Mi)

p(D|Mi)
, (8)

wherep(D|θ,Mi) andp(θ|Mi) are known as thelikelihood
and the prior respectively, whilst the so calledevidence
p(D|Mi) is just a normalization factor which plays a key
role in the second level of inference.
Second level of inference.The Bayesian framework al-
lows the comparison of different models and the assign-
ment of preferences among them in the light of data. The
most probable model is the one maximizing the posterior
p(Mi|D) ∝ p(D|Mi)p(Mi). Assuming that there are no
reasons to assign different priorsp(Mi), the models are
ranked according to their evidence. Moreover, the evidence
is proportional to the likelihood computed inθMAP , i.e.,
p(D|Mi) ∝ p(D|θMAP ,Mi) (called best fit likelihood,
see [13]), whereθMAP is the most probable value of the
parameter set according to the observed data, i.e., the argument
that maximizes (8). It can be shown, see, e.g., [14], that we
can rank different models using the quantity

BIC(Mi)
def
= ln p(D|θMAP ,Mi)−

ℓi

2
ln(T ) , (9)

whereℓi is the number of free parameters of modelMi andT
is the cardinality of the observed data setD. Roughly speaking,
the Bayesian Information Criterion (BIC) provides insights in
the selection of the best fitting model, considering the bestfit
likelihood and the number of parameters. The BIC penalizes
those models requiring more parameters.

Equations (5)–(7) show that the considered framework does
not depend on the particular topology considered; the only

3In this paper we refer to a good estimate ofs
(k) as ŝ

(k) such that
‖s(k) − ŝ

(k)‖2 ≤ ǫ. Note that by keepingǫ arbitrarily small, assumption
1 above holds.

requirement is that the sensor nodes be ordered (e.g., basedon
the natural order of their IDs). Our monitoring applicationcan
therefore be seen, at each timek, as an interpolation problem:
from a sampledM -dimensional vectory(k) = Φx(k) ∈ R

M ,
we are interested in recovering, via interpolation, the signal
x(k) ∈ R

N . Typically, this problem can be solved through a
linear interpolation on a setF of h basis functionsfi ∈ R

N ,
i.e., F = {f1, · · · , fh}. We can assume that the interpolated
function has the form:

x(k) = x(k) +

h∑

i=1

sifi . (10)

A Bayesian approach would estimate the most probable value
of s by maximizing the posterior pdfp(s|y(k),F ,M), where
M is a plausible model for the vectors = (s1, · · · , sh).
As in [13], we assume thatM can be specified by a
further parameter setα (called hyper-prior) related tos,
so that the posterior can be written asp(s|y(k),F ,M) =∫

p(s|y(k), α,F ,M)p(α|y(k),F ,M) dα. If the hyper-prior
can be inferred from the data and has non zero values
α̂, maximizing the posterior corresponds to maximizing
p(s|y(k), α̂,F ,M), that as shown in [13] corresponds to
maximizing the following expression

p(s|y(k),F ,M) ∝ p(s|y(k), α̂,F ,M)

=
p(y(k)|s,F)p(s|α̂,M)

p(y(k)|α̂,F ,M)
,

(11)

where p(y(k)|s) is the likelihood function,p(s|α̂,M) is
the prior and p(y(k)|α̂,F ,M) is a normalization factor.
The parameterŝα are estimated maximizing the evidence
p(y(k)|α,F ,M), which is a function ofα.

At each timek, our data recovery scheme can be analyzed
through the above Bayesian framework thanks to the following
associations: the columns of the PCA matrixU(k) as the
set of h = N basis functions, i.e.,F = {f1, · · · , fN} =

{u
(k)
1 , · · · ,u

(k)
N } = U (k); the sparse vectors(k) as the pa-

rameter vectors = (s1, · · · , sN ) = (s
(k)
1 , · · · , s

(k)
N ) = s(k).

In this perspective the interpolated function has the form (see
Eq. (5))

x(k) − x(k) =

N∑

i=1

s
(k)
i u

(k)
i . (12)

Without loss of generality we assume thatx(k) = 0, thus the
constraints on the relationship betweeny(k) and s(k) can be
translated into a likelihood of the form:

p(y(k)|s,F) = p(y(k)|s(k),U (k))

= δ(y(k),ΦU(k)s(k)) , (13)

whereδ(x, y) is 1 if x = y and zero otherwise. In Section II,
we have seen that the vectors(k) is required to be sparse.
In order to guarantee a sparse representation ofs(k), let us
consider the Laplacian (L0) density function, having zero
meanµ = 0, which is widely used in the literature [9], [12]



Fig. 1. Layout of the WSN testbed.

to statistically model sparse random vectors. This pdf has the
form:

p(s(k)|α̂,M = L0) =
e−α̂

∑
N

i=1
|s

(k)
i

|

(2/α̂)N
. (14)

In this equation, all the components ofs(k) are assumed to
be independent and equally distributed. If (11) holds, we can
therefore obtain the following posterior:

p(s(k)|y(k),F ,M) = p(s(k)|y(k),U (k),L0)

≃ p(s(k)|y(k), α̂,U (k),L0)

∝ p(y(k)|s(k),U (k))p(s(k)|α̂,L0).

(15)

Using (13)–(15), maximizing the posterior corresponds to
solving the problem

arg max
s
(k)

p(s(k)|y(k),U (k),L0)

= arg max
s
(k)

p(y(k)|s(k),U (k))p(s(k)|α̂,U (k),L0)

= arg max
s
(k)

δ(y(k),ΦU(k)s(k))
e−α̂

∑
N

i=1
|s

(k)
i

|

(2/α̂)N

= arg min
s
(k)

N∑

i=1

|s
(k)
i |, given thaty(k) = ΦU(k)s(k)

= arg min
s
(k)
‖s(k)‖1, given thaty(k) = ΦU(k)s(k) ,

(16)

which is actually the problem solved by the CS reconstruction
algorithms, see, e.g., [3].

In the next section we will develop a statistical analysis on
the principal component distribution of real world signalsthat
validates the use of (14), i.e., that the Laplacian is a good
model to represent the principal components of typical WSN
data. This provides a justification for using CS in WSNs.

IV. PRINCIPAL COMPONENTDISTRIBUTION OF REAL

SIGNALS GATHERED FROM AWSN

In our experimental campaign, we collected different real-
izations of five real world signals, we computed the principal
components of each and we analyzed the distribution of each
principal component independently. According to the notation
of Section II, if x(k) is the sampled signal at timek andx(k)
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Fig. 2. Signal sample: luminosity in the range320 − 730 nm.

andU(k) are computed from the setX (k), we obtain the vector
of principal componentss(k) inverting (5):

s(k) = (U(k))−1(x(k)−x(k)) = (U(k))T (x(k)−x(k)) , (17)

since U(k) is orthonormal by construction and therefore
U(k)(U(k))T = IN .

In what follows we describe the considered signals and the
WSN deployment. After that, we present the analysis on the
distribution of the elements ofs.
Network: we consider the WSN testbed of Fig. 1. This
experimental network is deployed on the ground floor of
the Department of Information Engineering at the Univer-
sity of Padova. The WSN consists ofN = 68 TmoteSky
wireless nodes equipped with IEEE 802.15.4 compliant radio
transceivers.
Signals: From the above WSN, we gathered five different
types of signalsx: S1) humidity, S2-S3) luminosity in two dif-
ferent ranges:320−730 and320−1100 nm, respectively, S4)
temperature and S5) battery voltage. We collect measurements
from all nodes every5 minutes for at least3 days. We repeated
the data collection for three different measurement campaigns
during the month of March 2009, choosing different days of
the week: C1) from the13th to the16th of March, C2) from
the19th to the23th and C3) from the24th to the27th. Fig. 2
shows an example signal of type S2, i.e., luminosity in the
range320− 730 nm.
Principal Component Analysis of Real World Signals:our
aim is to infer the statistical distribution of the vector random
processs(k) from the samples{s(1), s(2), . . . , s(T )} which are
obtained from the above WSN signals. The parameterT is
the duration (number of time samples) of each monitoring
campaign C1–C3.

From the theory [6] we know that signals in the PCA
domain (in our cases(k)) have in general uncorrelated compo-
nents. Also, in our particular case we experimentally verified
that this assumption is good sinceE[sisj ] ≃ E[si]E[sj ]
for i, j ∈ {1, . . . , N} and i 6= j. In our analysis, we
make a stronger assumption, i.e., we build our model ofs

considering statistical independence among its components,
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Fig. 3. Empirical distribution and model fitting for a principal component
of signal S1, humidity.
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Fig. 4. Empirical distribution and model fitting for a principal component
of signal S2, luminosity in the range320 − 730 nm.

i.e., p(si, sj) = p(si)p(sj) with i 6= j, which allows us to
consider the prior (14). A further assumption that we make
is to consider the components ofs as stationary over the
entire monitoring period4. The model developed following this
approach leads to good results [5], which allow us to validate
these assumptions.

Owing to these assumptions, the problem of statistically
characterizings reduces to that of characterizing the random
variables

si =
N∑

j=1

uji(xj − xj) , i = 1, . . . , N , (18)

where the r.v.uji is an element of matrixU and the r.v.xj

is an element of vectorx.
A statistical model for eachsi can be determined through

a Bayesian approach (see [13]). For the first level of infer-

4Note that this assumption does not imply that also the observedprocessx
is assumed to be stationary. The basisU(k) does not represent a fixed linear
transformation betweenx(k) ands

(k), but it changes at each time samplek

according to the statistics ofx.
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Fig. 5. Bayesian Information Criterion (BIC) per Principal Component, for
each modelM1–M4, campaign C1 and signal S1, humidity.

ence, the observation of the experimental data gives empirical
evidence for the selection of four statistical models:

M1 a Laplacian distribution with parameters{µ, λ}, that
we callL;

M2 a Gaussian distribution with{m,σ2}, that we callG;
M3 a Laplacian distribution withµ = 0 and λ, that we

call L0;
M4 a Gaussian distribution withm = 0 andσ2, that we

call G0.

The space of models for eachsi is therefore described by the
set{L,G,L0,G0}. For each signalS1−S5, for each compo-
nent si, i = 1, . . . , N, and for each modelMi, i = 1, . . . , 4,
we have estimated the parameters (i.e., the most probable
a posteriori, MAP ) that best fit the data according to (8).
Since we deal with Gaussian and Laplacian distributions, these
estimations have well known and closed form solutions [8].
In detail:

M1 µ̂ = µ1/2(s) and λ̂ =

∑
T

j=1
|sj−µ̂|

T , where µ1/2(s)
is the median of the data;

M2 m̂ =

∑
T

j=1
sj

T and σ̂2 =

∑
T

j=1
(sj−m̂)2

T−1 ;

M3 λ̂ =

∑
T

j=1
|sj |

T ;

M4 σ̂2 =

∑
T

j=1
s2

j

T .

Figs. 3–4 show two examples of data fitting according to the
aforementioned models; in these figures we plot the empirical
distribution and the corresponding inferred statistical model for
a generic principal component of the humidity (S2) and the
luminosity (S4), respectively. From these graphs it is already
clear that the distribution of the principal components of our
signals is well described by a Laplacian distribution. For the
second level of inference we ranked each model according to
the Bayesian Information Criterion (BIC) (see Eq. (9)). Fig. 5
shows the BIC for the humidity signal of campaign C1 for all
principal components and for all the considered models. From
this figure we see that the Laplacian models better fit the data



Campaign C1
S1 S2 S3 S4 S5

L 1320.2 2481.9 2186.3 1708.5 5374.0
G 1191.7 2226.8 1813.0 1540.1 4139.2
L0 1322.6 2485.0 2189.3 1711.4 5377.3
G0 1194.1 2229.8 1815.9 1542.7 4141.5

Campaign C2
S1 S2 S3 S4 S5

L 921.2 2740.8 2065.4 1483.4 6094.0
G 463.2 1727.7 815.6 749.0 5152.4
L0 924.3 2744.0 2068.8 1486.1 6097.5
G0 466.2 1730.7 818.4 751.9 5155.3

Campaign C3
S1 S2 S3 S4 S5

L 430.3 1207.4 851.3 773.9 3239.7
G 272.9 737.0 301.1 585.8 2676.7
L0 432.7 1210.4 854.4 776.5 3242.9
G0 275.5 739.8 303.8 588.6 2679.3

TABLE I
BAYESIAN INFORMATION CRITERION (BIC) AVERAGED OVER ALL

PRINCIPAL COMPONENTS, FOR EACH MODELM1–M4 , EXPERIMENTAL

CAMPAIGNS C1–C3AND SIGNALS S1–S5.

for all principal componentssi, i = 1, 2, . . . , N . The average
BIC for each model, for the different signals and the three
campaigns C1–C3, is shown in Table I. The values of this table
are computed averaging over theN principal components.
From these results we see that modelL0 provides the best
statistical description of the experimental data. In fact,the BIC
metric is higher for Laplacian models in all cases; furthermore,
L0 has a higher evidence with respect toL, since it implies
the utilization of a single parameter. As previously mentioned,
the over-parameterization of the model is penalized according
to the factorT

−ℓ
2 (see Eq. (9)). Based on the above results we

can make the following observations:

1 In our monitoring framework which jointly exploits CS
and PCA (Section II), the principal components of real
world signals are Laplacian distributed with good approx-
imation, therefore it is legitimate to use the prior (14);

2 it is possible to determine, for each principal component,
an optimal parameter̂λ that differs from zero, and there-
fore we can exploit (15) witĥα← λ̂;

2.1 in case all principal components are equally distributed
with parameterλ̂, we have that, as demonstrated in
Section III, CS obtains the best recovery performance,
i.e., at each timek, it finds thes(k) that maximizes the
posterior (15);

2.2 in case the principal components are Laplacian distributed
with different parameters and these can all be estimated
from the data, following a rationale similar to that of
Section III we can say that the best recovery performance
can be obtained using CS reweighted [15]. We observe
that this is often the case in practice, as confirmed by our
empirical measurements. We shall note, however, that the
correct online estimation of the different parameters is not
straightforward. Nevertheless, standard CS still provides
very good reconstruction performance as shown in [5].

V. CONCLUSIONS

In this paper we investigated the effectiveness of data re-
covery through joint Compressive Sensing (CS) and Principal
Component Analysis (PCA) in Wireless Sensor Networks
(WSNs). At first, we framed our recovery scheme into the
context of Bayesian theory proving that, under certain assump-
tions on the signal statistics, the use of CS is legitimate, and
is in fact optimal in terms of recovery performance. Hence, as
the main contribution of the paper we have shown that these
assumptions hold for real world data, which we gathered from
an actual WSN deployment and processed according to our
monitoring framework. This allows us to conclude that the
use of CS not only is legitimate in our recovery scheme but
also makes it possible to obtain very good performance for
the considered data sets.
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