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Abstract—In this paper, we present an accurate analytical
model for transport control protocol (TCP) over correlated
channels (e.g., as induced by multipath fading) taking into account
a finite round-trip delay. In particular, we develop models and
analysis for studying four versions of TCP, namely, Old Tahoe,
Tahoe, Reno, and New Reno. We focus on a single wireless TCP
connection by modeling the correlated packet loss/error process
as a Discrete Time first-order Markov chain. Our model explicitly
incorporates important aspects such as slow start, congestion
avoidance, fast retransmit and fast recovery. The main findings of
this study are that: 1) an increasing round-trip time may signifi-
cantly affect the throughput performance of TCP, especially when
an independent channel is considered; 2) New Reno performs
better than Reno and Tahoe when the channel is uncorrelated,
whereas Tahoe’s recovery strategy is the most efficient when the
channel correlation is high; and 3) the maximum window size does
not play a determinant role in increasing throughput performance
in both correlated and independent channels. While some of
these conclusions confirm what other authors have observed in
simulation studies, our analytical approach sheds some new light
on TCP’s behavior.

Index Terms—Bursty channel, congestion control algorithm,
correlated packet losses, performance analysis, TCP/IP modeling.

I. INTRODUCTION

THE INCREASING popularity of wireless networks
indicates that wireless links will play an important role in

the future internetworking. transport control protocol (TCP) is
a reliable, end-to-end, transport protocol that is widely used to
support applications like e-mail, telnet, ftp, and http. TCP was
designed primarily for wireline networks where packet losses
are caused mainly by congestion. Several modifications have
been proposed to the TCP loss-recovery and congestion-control
mechanism to improve data throughput, including Reno,
New Reno, and Vegas.

In the recent literature, many papers have appeared on the
topic of TCP performance in wireless systems. Some of those
papers have as their main goal to describe new behaviors, usu-
ally observed from results obtained by simulation. Some others
are more concerned with modeling TCP operation by means
of analytical techniques, in order to provide more general tools
and to develop more accurate descriptions while controlling the
complexity. The goal of this paper is to provide an accurate an-
alytical model for TCP operation.
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The analytical characterization of TCP has been already in-
vestigated in previous studies. In [1], for example, the TCP
throughput is obtained for large round-trip delays, but this paper
focuses on channel described by means of an independent and
identically distributed (i.i.d.) error process. In [2], Hellal et al.
studied the behavior of TCP Reno and Vegas considering an
error-free wireline network, where a bottleneck link is the only
cause of packet losses. On the other hand, Padhye et al. [3],
have derived a useful formula for the TCP Reno throughput over
wireline networks, considering the error process as i.i.d. In [3],
the correlation among losses is tracked assuming that, consid-
ering a window of transmitted packets, whenever a packet is
lost, all the other packets in the same window are lost as well
(we refer to this model with the term quasi-static channel). All
these papers consider a static (or quasi-static) channel and a
wired network. A correlated channel has been considered in [4]
and in [5], where TCP is studied over a wireless link and a two-
state Markov model is used to describe the channel burstiness.
An instantaneous feedback is considered, i.e., the acknowledge
(ACK) message is received immediately after the completion of
the packet transmission. This idealized model was adopted to
limit the analytical complexity of the approach. This simplifica-
tion leads to overestimating the TCP performance as the band-
width-delay product increases.

In [6], a TCP mean throughput analysis over finite round-trip
delay channels is reported considering both independent and
correlated losses. In that paper, the delay between the instant
where a packet loss occurs and the instant in which it is detected
by the TCP sender is neglected. This assumption leads to accu-
rate results where the round-trip time (RTT) is small. However,
this is not true for large RTTs, e.g., as the ones envisioned in
3G cellular networks. In these scenarios end-to-end TCP RTTs
can grow up to RTT s and the delay between error events
and error detection can be estimated as RTT , where is
the TCP packet transmission time. Moreover, in [6] it is as-
sumed that the congestion window restarts from 1 after multiple
timeout events and that, in the correlated error case and when
the timeout timer-expiry period is greater than the bad state du-
ration, the error event is detected by the Fast Recovery algo-
rithm with probability one (without entering timeout). In [7], the
TCP throughput performance in correlated channels with finite
round-trip delay is also investigated. This analysis enables qual-
itative and meaningful comparison between different schemes,
but the accuracy of the model is not addressed. The distribu-
tion of the number of consecutive packet drops in a bad state
is imposed, regardless of the time duration between the trans-
mission of these packets. This assumption is only valid when
packet transmission is continuous. However, TCP is a bursty
protocol that introduces (sometimes considerables) intermittent
idle durations during the lifetime of a connection. This assump-
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Fig. 1. Discontinuous transmissions during TCP slow-start phase.

tion holds when the window size is always equal to or greater
than the bandwidth delay product of the link. This is not true
in general and the assumption above in these cases may lead to
inaccurate results.

The merit of the present paper is to give a very accurate
analytical characterization of the TCP throughput behavior
over wireless links characterized by a finite round-trip delay.
The analysis we propose uses a semi-Markov chain to find
throughput performance. However, it is worth noting that
the analysis has the potential to be extended to find energy
consumption metrics as well. To the best of our knowledge, our
analysis is more accurate than any other analysis previously
proposed in the literature. All the simplifying assumptions
discussed above have been removed in the model presented
in this paper, by constructing a semi-Markov chain able to
jointly track window evolution, successes, transmissions and
underlying channel state. Moreover, the assumption made for
analytical tractability by previous works (see [5] and [6] as ex-
amples) that a timeout timer is associated with each TCP packet
has been removed. Instead, a single timeout is considered for
the whole connection (as in a real TCP data transfer).

In order to take into consideration the bursty nature of the
channel, a two-state discrete time Markov channel (DTMC) is
considered, as in [5]. The time is slotted, the single slot duration
is equal to the TCP packet transmission time and the channel
process (DTMC) evolves slot by slot according to its transi-
tion probabilities. Moreover, we extend the work presented in
[5] considering a noninstantaneous feedback, i.e., ACKs arrive
exactly slots after the packet transmission, where is
the RTT value. The introduction of this feedback delay leads to
what we call a “discontinuous transmission phase” (see Fig. 1).
In fact, after the transmission of the first packet of the connec-
tion, the TCP sender enters an idle time waiting for the reception
of an ACK message. When this ACK arrives, the TCP window
size, , is incremented by one (slow-start phase), allowing the
receiver to transmit two consecutive packets. According to the
protocol rules, is incremented by one segment for each new
received ACK until reaches the slow-start threshold, .
When becomes larger than the sender enters the so
called congestion-avoidance phase and is incremented by

for each received ACK.1

During this phase, TCP transmits packets in bursts of length
equal to and enters an idle time waiting for the ACK re-
ception. This discontinuous phase finishes when reaches the
round-trip value, i.e., when becomes equal to . It is im-

1In Fig. 1W is set to 1 segment.

portant to note that the assumption of an RTT greater than zero
implies that the TCP sender takes more time to fill the band-
width-delay product of the link, since the window grows more
slowly, and this may significantly affect the TCP performance.

The main findings of this study are that; 1) an increasing
RTT may significantly affect the throughput performance of
TCP, especially when an independent channel is considered;
2) New Reno performs better than Reno and Tahoe when the
channel is uncorrelated, whereas the Tahoe recovery strategy
is the most efficient when the channel correlation is high; and
3) the maximum window size does not play a determinant role
in increasing throughput performance in both correlated and in-
dependent channels. While some of these conclusions confirm
what other authors have observed in simulation studies, our an-
alytical approach sheds some new light on TCP’s behavior.

This paper is organized as follows. In Section II, the channel
and the TCP models are presented in detail and Section III
reports the analysis. Results are shown in Section IV and in
Section V, some conclusions are given.

II. SYSTEM MODEL

A TCP session involves three phases that are the connec-
tion setup phase, the data transfer phase and the connection
tear-down phase. Since we are primarily interested in the bulk
throughput performance of TCP, in this paper, we consider only
the data transfer phase because it is the one that dominates the
overall performance. We consider a pair of nodes, the sender
and the receiver, exchanging data over a dedicated link, charac-
terized by a two-state Markov packet error process, finite prop-
agation delay and perfect feedback. It is assumed that the trans-
mitter always has an infinite supply of packets to send (Heavy
Traffic assumption). As usually done in studies taking an ana-
lytical approach, we focus on a single TCP connection between
a wireless terminal and a terminal placed in the terrestrial net-
work. In this scenario, TCP packets experiences an RTT ( ) that
is given by the sum of the contributes due to the wireless and the
terrestrial network. We consider the wired link to be error-free,
while we model the errors over the wireless channel by means
of the Markov model introduced above. A detailed description
of such model will be given in Section II-B.

A. TCP Algorithms Description

In this section, we first describe the transmitter and receiver
processes in TCP OldTahoe, Tahoe, Reno and New Reno. In
the following, we proceed with our description of the various



ROSSI et al.: ACCURATE ANALYSIS OF TCP ON CHANNELS WITH MEMORY AND FINITE ROUND-TRIP DELAY 629

TCP algorithms. The TCP receiver is common for all TCP ver-
sions, while the TCP transmitter depends on the version consid-
ered. The receiver accepts packets out of sequence, but will only
deliver them in sequence to the user’s application. Moreover,
the receiver sends back one ACK for every packet correctly re-
ceived (no-delayed ACK receiver).2 The ACKs are cumulative,
that is, an ACK carrying the sequence number ACKs all data
packets up to, and including, the packet with sequence number

. Each ACK will identify the next expected packet sequence
number, which is the first among the packets necessary to com-
plete the in-sequence delivery. Hence, when a packet is lost, the
transmitter keeps receiving the so called duplicate ACKs, that
is, the ACK with the sequence number of the first packet lost.

The TCP transmitter operates using a sliding window-based
strategy as follows. At any given time , the TCP transmitter
maintains the status variables , and . The
lower window edge, , represents all data numbered up
to and including that has been transmitted and
acknowledged. This variable is nondecreasing, and for each
received ACK with sequence number , increases
up to . The congestion window, , defines the maximum
number of unacknowledged packets the transmitter is allowed
to send starting from . At any time is limited by its
maximum value .3 The slow-start threshold triggers the
increment of to realize the flow control imposed by the
sender, i.e., to slow-down or speed-up the transmission rate of
packets into the network. In particular, if , each
ACK causes to be incremented by one. This is called the
slow-start phase. On the other hand, if , is
incremented by every time a new ACK is received.
This phase is called congestion avoidance.

Each TCP connection has a timeout timer that is updated at
each round-trip delay. If this timeout timer expires, i.e., no more
ACKs are received, then a retransmission occurs. To maintain
the analytical tractability we assume this timer to be fixed at a
constant value, .4 Calling the time in which this happens,

and are set to 1 and respectively. In
this way the connection is restarted in slow-start phase. Note,
that there exists another flow control parameter imposed by the
receiver called receiver advertised window ; the protocol
rules impose that at any time the transmitter is allowed to inject
into the network a number of unacknowledged packets equal to
the minimum between and . By setting , the
receiver can slow-down the sender transmission rate when it is
not able to read data at the same speed at which the sender is
transmitting.

When a loss occurs, TCP-OldTahoe [9] uses only the above
explained timeout recovery mechanism.

TCP-Tahoe [8], [10] instead, implements a further recovery
technique called fast retransmit. When a packet is lost and when

2In this paper, we consider a no-delayed ACK receiver, even if in real TCP
implementations the delayed ACK scheme [8] is used.

3This value can be negotiated with the receiving entity during the connection,
however, in this paper we consider it as a constant value.

4We do not explicitly model the timeout back-off mechanism. The accuracy
of this simplifying assumption has been verified by simulation. Also, note that
it is possible to let the timeout depend on the RTT,m, with no modification to
the analysis we present here.

the transmitter gets the th duplicate ACK5 at time , it behaves
as if a timeout had occurred and begins retransmission setting

and as above.
In the case of TCP-Reno [8], [11], [12], the Fast Retransmit

procedure is implemented as in Tahoe, but the subsequent re-
covery phase is different. In more detail, with the reception of
the th dupACK at time , and

. At this point, the Reno transmitter transmits only
the first lost packet (with sequence number equal to , this
is the Fast Retransmit) and, as it waits for the ACK it may get
dupACK due to the outstanding packets. For each dupACK
is inflated by one, and a packet is transmitted if allowed by
and the new value of . This is the Fast Recovery algorithm.
Finally, in , when the new ACK is received the loss recovery
phase finished and is set to . The
Reno’s loss recovery does not work for multiple losses in a
window of packets [13], for example, when three packets are
dropped from a window of data, the sender is forced to wait for
a timeout whenever the number of packets between the first and
the second dropped packet is less than , where is the
congestion window just before the Fast Retransmit. Note that,
the loss recovery strategy in Reno performs better than Tahoe
when single packet losses occur in the loss window (the window
in which we have the first loss).

In the New-Reno algorithm [14], when duplicate ACKs are
received, the Fast Retransmit is applied as in Reno, but the loss
recovery procedure is different. The highest sequence number
transmitted before the loss is recorded in a variable named re-
cover. The Fast Recovery phase differs from Reno when an
ACK acknowledging new data, arrives. In fact, this ACK could
be the acknowledgment elicited by the first retransmission, or
elicited by a later retransmission. If this ACK acknowledges all
the packet up to, and including recover, then the Fast Recovery
procedure is completed as for the Reno case. On the other hand,
this ACK is labeled as partial new ACK. In this case, the first
unacknowledged packet is retransmitted, is deflated by the
amount of new data acknowledged (also is updated accord-
ingly) and then is incremented by one. So, a new packet is trans-
mitted if allowed by the new value of and . The Fast Re-
covery is completed when the sender receives an ACK up to and
including recover. The New Reno algorithm can recover from
multiple losses in some cases.

Unlike the assumption in [5], where a timer is associated
to every packet transmitted, in this paper we consider only
one timeout timer characterizing the connection, as in a real
TCP protocol [8], [15]. This assumption allows us to correctly
track the timeout whenever a partial new ACK is received,
that is, when a partial new ACK is received the timeout timer
is restarted (see [15]). In [5], due to the assumption of instan-
taneous feedback, the numerical results were not so different
from the ones relative to the real TCP protocol. However, when
a finite round trip is considered, performance is significantly
affected, so it is important to correctly track the timeout event.
Fig. 2 shows how the timer is rescheduled during the New
Reno fast recovery phase when both a single timer and a timer
per packet is used. Note that, when the recovery phase fails,
and the second case is considered, the timeout timer expires at
least slots earlier.

5K is a system parameter usually set to 3.



630 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 2, MARCH 2004

Fig. 2. Scheduling of the timeout event in the New Reno fast recovery phase.

B. Channel Model

We model the correlated packet error process using a dis-
crete-time first-order Markov model as proposed in [16]. The
pattern of errors is described by the transition matrix

(1)

where is the transition from bad to good, i.e., the condi-
tional probability that successful transmission occurs in a slot
given that a failure occurred in the previous slot, and the other
entries in the matrix are defined similarly. Note that
represents the average length of a burst of errors, which is de-
scribed by a geometric r.v.

Given the matrix , the channel properties are completely
characterized. In particular, it is possible to find the average slot
error probability, 6 , that turns out to be
dependent on the fading margin, indicated with , (that express
the physical characterization of the channel), and the normal-
ized Doppler bandwidth product, , where is the packet
duration [16]. By choosing different and values, we can
establish fading channel models with different degrees of cor-
relation in the fading process. When is small, the fading
process is very correlated, on the other hand, for higher values
of , successive samples of the channels are almost indepen-
dent. In Table I the fading margin , the transition probabilities

and and the average burst length are re-
ported for several values of and .

A detailed analysis of the packet loss with memory is
presented and the case of i.i.d. errors is also considered for
comparison.7

III. ANALYTICAL APPROACH

The analysis is based on a Markov/renewal reward approach.
The joint evolution of the window parameters and the channel
state can be tracked by a random process

6This is the steady-state probability that the channel is in bad state in a time
slot, and is not the same as the error probability experienced by transmitted
packets because TCP’s window adaptation tries to avoid bad channel conditions.
The analytical approach developed in the following takes this into account.

7This case is obtained from the correlated channel by imposing p =

p = ".

TABLE I
MARKOV MODEL PARAMETERS FOR DIFFERENT VALUES OF " AND f T

, where and are the window size
and the slow-start threshold in slot , respectively, and
is the channel state in slot (bad, B, or good, G, corre-
sponding to an erroneous or correct transmission, respectively).
Time is discrete, and the slot (packet transmission time) is the
time unit. Unfortunately, this process is not Markov, since its
evolution starting from a certain state, also depends on other
quantities not accounted for in (such as the number of out-
standing packets). Following the approach proposed in [5], we
sample the process at appropriate instants . In particular, by
choosing as sampling instants the slots immediately following
those in which either a timeout timer expires or a loss recovery
phase is successfully completed, we obtain a process

which is Markov. In fact, immediately after a timeout
event, the window size shrinks to 1 and, from the point of view
of the window adaptation algorithm, no outstanding packets
are present. Therefore, at these instants, knowledge of (

, , ) is all there is to know to characterize the
window/channel evolution in the future. Likewise, in the instant
immediately after the slot in which the loss recovery phase was
successfully completed, by definition, all outstanding packets
have been acknowledged. Again, ( , , ) is
all we need to know to characterize the future evolution of the
window/channel. We observe that, from the protocol rules, the
value of can only be equal to 1 (timeout case) or to

(successful loss recovery). Finally, note that unlike in
[5], the channel state at time can be either erroneous or
correct not only in the timeout case, but also for a successful loss
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recovery. In fact, even if the loss recovery phase must be ended
by a a successful transmission, we receive the relative ACK after
an RTT. Therefore, the state space of the process is given
by

(2)

where the first set correspond to timeout and second set corre-
sponds to successful recovery phase. Note that, the total number
of states8 is in this case .

In order to evaluate metrics of interest, such as throughput,
the above information is not sufficient, so we consider a semi-
Markov process, which admits as its embedded Markov
chain. We label transitions of the chain with transition
metrics, which track the events which determine time delay,
transmissions, and successes. For a given transition, let be
the associated number of slots, the number of transmissions,
and the number of successful transmissions.

A. Semi-Markov Analysis

Let us define as cycle the time evolution of the system be-
tween two consecutive sampling instant and , where
is the th sampling instant determined as explained in the pre-
vious section. The statistical behavior of a cycle only depends
on the channel state at time and on the slow-start threshold
and window size at time , so the system state is given by

, where is the
set of all possible values of (state space of the sampled
process). For simplicity of notation in the following we indicate

as . Also, we assume that the process is stationary, so
that all statistics are independent of . Let be the first slot
of the cycle to contain an erroneous transmission. Because of
the assumption of a not instantaneous ACK message, the TCP
packet transmission in each cycle can be discontinuous, so, to
compute the distribution probability of , we must take in ac-
count the only slots in which transmissions actually occur. Con-
ditioned on the channel state in slot , the probability to
have the first transmission error in slot is 0 when the
sender is idle, whereas, when a transmission is allowed, it is
given by

(3)

where and , [or ], represents
the probability that the transmission in slot is successful
given that the transmission in slot was successful
(unsuccessful). Note that the probability to have the first
error at time given the channel state at time 0 ( )
is a deterministic quantity once , and have been
fixed. In fact, and are all we need to know to de-
termine the error-free protocol evolution (transmission and
window processes). Hence, these processes can be easily
tabulated. In order to explain the meaning of (3) consider
the situation depicted in Fig. 3, in which we have assumed

8States (C , 1, 1), C = G;B are contained in both sets.

Fig. 3. Distribution probability of the first error at slot n.

an RTT of , and . In this case
,

, where is the -step probability ( ),
that is the probability that slot 5 is successful given that slot

was successful. The other entries in the expression are
obtained similarly. For a given , and , the transmission
evolves following the protocol rules up to and including time

. Therefore, we can easily tabulate the transmission mask
that represents the sequence of slots in which a transmission
actually occurs. Moreover, is directly derived from this
mask as previously described.

Let be the system state at time in cycle and let
be the set of all possible values of . Note that, at time
there are a number of outstanding packets (packets in flight) that
depends on , and . Also, by definition we know
that the channel state at that time is . To determine the state at
the beginning of cycle the slow-start threshold plays an im-
portant role. In fact, the exact number of packets that the sender
is allowed to transmit after the first error, ( ), depends on the
number of packets in flight at time . In particular, during the
recovery phase, the TCP window size is further incremented by
the number of incoming ACKs elicited by these packets. There-
fore, defining as the final value reached by and
as the number of incoming ACKs, we can simply derive
as , since the error at time always consumes one
window unit. Referring to slot , is obtained as follows:

(4)
where represents the maximum number of outstanding
(unacknowledged transmitted) packets at time . Since the value
of the RTT is , and the transmission before the error event
is assumed to be error-free, gives the
number of packets transmitted in the round preceding slot .
In (4), we take in the minimum instead of because
we are evaluating the number of ACKs received after the error.
In more detail, is the maximum number of packets sent in
the round preceding slot and so it represents the maximum
number of incoming ACKs that can be received from slot on-
ward; with we account for the ACK received in slot .
The two terms and in (4) are an es-
timate of , and are chosen according to the
value of and . If , we are in the
situation depicted in Fig. 4(a), where the window size in the
previous round is equal to and the ACK relative to
the first of the packets is the one that determines
the increment of at time . In this case the number of ACKs
received after the error event is equal to . The situa-
tion in which is analogous [see Fig. 4(b)], but
here at slot , is incremented by , so
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Fig. 4. Number of ACKs received after the first error: (a) slow-start case,
W (1) = 1 andW (1) = 5. (b) congestion-avoidance case,W (1) = 1 and
W (1) = 3.

usually remains equal to . Note that this last as-
sumption is not always true, since some values of
could exist such that the above condition is not verified, i.e.,

. In this case, to ex-
actly derive from the knowledge of , the state
space would have to be further expanded, but this would
lead to such a big state space to make the problem analytically
intractable. For this reason, when , we approx-
imate as . However, we have verified by sim-
ulation that our assumption has a negligible effect on the perfor-
mance results for a wide range of the system parameters and is,
therefore, entirely acceptable in general. Once computed ,

is derived in a straightforward way from the knowledge
of and by using the TCP protocol window in-
crementing rules. Specifically, is computed by using the
following:

(5)

where

(6)

(7)

We can observe that, in our model, is described by
( , ), where and

.
As described in [5], we can separate the system evolution in

two parts. The first part, in which the system makes a transition
from state to a state , is characterized
by the transition matrix ; whereas the second part, in
which the system makes a transition from state
to a state , is characterized by the transition matrix

. The statistic of the cycle is fully described by the matrix

(8)

whose entries are the transition functions associated to transi-
tions from to itself. In practice the function is re-
sponsible of tracking the error-free protocol evolution until the
instant in which the first error event occurs, whereas is
used to track the system evolution from the error to the instant
where it is resolved (either by means of timeout or retransmis-
sions, i.e., Fast Recovery and Fast Retransmit algorithms) and a
new good channel period is entered. The variable is a vector of
transform variables, , where tracks the delay,

the number of transmissions and the number of successes.
More precisely, we can define

(9)

where is the probability that the system makes
a transition to state in exactly slots, and that in slots

transmission attempts are performed and
successes are counted, given that the system was in slot

at time 0.
In particular we can note that the transition matrix of the em-

bedded Markov chain is given by whereas, the
matrix of the average delays can be found as

(10)

where

(11)

The average number of transmissions, , and successes, , can
be found similarly. According to the renewal reward theory
described in [17]–[19], we can evaluate the average TCP
throughput as

(12)

where , , are the steady-state probabilities of the
embedded Markov chain (transition matrix ). The average
number of transmissions per slot can be similarly computed,
by using instead of . This last metric is related to the
energy consumption of the protocol [20].

B. Computation of

Since the first part of a cycle consists of error-free transmis-
sions, and since all versions of TCP considered here have the
same window adaptation mechanism as long as there are no er-
rors, the computation of applies to all versions of TCP.

Let the starting state of cycle
. The first part of the cycle has a duration of

with probability , . The window size at time is a
deterministic function of , and . So
we can denote the window size at time by

(13)

Therefore, this deterministic function can be easily tabulated. It
can be observed that the evolution of the window strongly de-
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Fig. 5. Evolution of the window size.

pends on the RTT value. Fig. 5 shows an example of window
evolution, where in the first slot is equal to 1. Note that

remains equal to one segment for the first slots, since
the first ACK message arrives exactly an RTT later. The suc-
cessive increments depend on the value of and are always
triggered by incoming ACKs. In more detail, the window size
at time increments if and only if a new ACK arrives, that is, if

slots earlier a successful transmission occurred. Similar con-
siderations can be made for any initial values of and ,
so that in general the error-free window evolution is computed
applying recursively (14), shown at the bottom of the page, and
taking , where is defined in (7). One can
note that in the discontinuous phase, the window size increments
more slowly than in the continuous transmission mode. So, for
large , takes more time to reach its maximum value. This
strongly limits the throughput performance since the link is not
fully exploited. The transmission mask, ,
is derived in a straightforward manner from the knowledge of

(15)

where

elsewhere (16)

With the function we are checking whenever the
window in position suffices to ensure a transmission in that
slot. In more detail, by subdividing (starting from the first slot
of the cycle) the time in rounds of length ,
gives the number of slots covered by in the current round. So,
remembering that the protocol, at any time, allows a maximum
of unacknowledged packets, a packet in position can be
transmitted only if . Similarly, when is an in-
teger multiple of , we have a transmission only if the window
size in that slot is greater or equal to . Moreover, at time
the delay is equal to slots, but the number of packet trans-
missions, , is no longer equal to like in [5], but it is equal
to , that is the number of packets actu-

ally transmitted. This value is computed using the transmission
mask as follows:

(17)

The number of successes is . Therefore, once the
starting state and the final state , have
been selected we can write

(18)

where .

C. Computation of

The second part of the cycle is characterized by a transition
function, , that depends on the way the different TCP
versions handle packet loss recovery and, therefore, it must be
computed separately in the various cases.

Define the time in which the first error occurs as time 0, so
that the first slot in the second part of the cycle corresponds to
time 1. Consider, also, as the probability that there
are successes in slots 1 through and that the channel is in
state at time , given that the channel was in state at time 0.
Let be the starting state for the second half of
the cycle. Then, referring to (5), the number of packets that the
transmitter is allowed to send after the error is .

D. Computation of for OldTahoe

In the case of TCP OldTahoe, there are neither Fast Re-
transmit nor Fast Recovery. Note that the second part of the
cycle, initiated by the loss at time 0, has duration which is
deterministically equal to , since every loss can only be
recovered by timeout. The next cycle, then, will start in state

with transition function

(19)

where is a random variable. Since the exact analysis is te-
dious to compute, we use here a simple approach based on a
bounding technique. In such cases, instead of considering the
average of the reward function for each transition, , we
take , where correspond to the case in

elsewhere

(14)
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Fig. 6. Assumption of the first error in the first slot on a round trip.

which none of the transmissions after the first error is successful,
while the upper bound counts all these transmissions as correct.
This approach gives two analytical bounds for the throughput
performance.

Moreover, here, a simple approximation is used, that is, we
consider that the first error in the cycle always occurs in the first
slot of an RTT, as shown in Fig. 6. This is equivalent to assuming
a continuous transmission after the first error and only in this
case the analysis above is correct. In correlated channels, since
the error burst exactly starts from the loss at time 0, the assump-
tion to have a continuous transmission after the first error leads
to a pessimistic case, i.e., where the burst is more likely affecting
all the packets transmitted after time 0. Another approximation
is the one used to account for the timeout value. In particular,
we assume that a single timeout timer is used for the TCP con-
nection and that it is re-initialized at the beginning of time 0,
i.e., exactly when the first error occur. This justifies the duration
of the cycle [see (19)]. In real TCP implementations, the in-
stants in which the timeout timer is restarted depend on the RTT
value, , on the transmission mask and on where errors occur.
For these reasons an exact tracking of this process, though in
principle possible, turns out to be very tedious and the assump-
tion above is used instead. We proved by simulations that this
assumption has a negligible effect when is large compared to

, that is also the case of interest. The same assumptions will
be implicitly considered in the sequel.

E. Computation of for Tahoe

In the case of Tahoe, there is no Fast Recovery. Once Fast Re-
transmit is triggered, regular transmission is resumed, starting
from the first unacknowledged packet and by setting the TCP
window to 1. On the other hand, if Fast Retransmit cannot be
triggered, then a timeout event has to be waited for.

1) :
If , fast retransmit can not be triggered since

the number of packets that can be further transmitted is
less than . So, duplicate ACKs will never be re-
ceived. In this case, the timeout timer will expire and the
lost packet will be retransmitted in slot . Note
that the value of the window size at the timeout instant
will be greater than , since new ACKs can arrive from
the previous RTT. Therefore, the window size advances
till . Hence, after the timeout, the algorithm will set

, . Then, the transition function
to state is

(20)

is bounded as in the OldTahoe case, in particular,
gives a lower bound for the throughput per-

formance, while the upper bound is obtained by setting
.

2) :
Case 2.1 - Fast Retransmit is not Triggered: If fewer than

slots in are successful, fast retransmit
will not be triggered. At this point, we rely
on the approximation above that each error
occurs in the first slot of the round. Only where
this condition is verified, in fact, are the
packets following the erroneous one at time
0 transmitted continuously, and the following
analysis is exact. The same consideration ap-
plies to the analysis presented in the rest of the
paper. The destination values of and
will be as in the previous case. Let
be the event that there are successful slots in

ad that the channel in slot
is . Then,
and . The
transition function from state to state

is then given
by

(21)

where and the
two terms account for the two possibilities for
the channel state at time . Note that the sums
are limited to instead of since the
number of successes must be less than for the
considered case of fast retransmit not triggered.

Case 2.2 - Fast Retransmit is Triggered: If the th dupli-
cate ACK is received, fast retransmit is triggered

slots after the th success in .
Define as the slot in which the
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th successful transmission occurs. Then the
next cycle starts in slot , the destination
state is , and the
transition function is given by

(22)

where and is the
number of packets transmitted between the error
at time 0 and the beginning of the recovery phase
(when the th duplicate ACK is received)

(23)

is the channel state in the slot where the
th packet is transmitted, whereas

is the channel state in the slot just before the
one in which the next cycle starts. The function

represents the probability to have
correct packets in

(24)

(25)

The quantity can be bounded by
, where 0 and

represent the lower-bound and the upper-bound
case, respectively. The lower bound accounts
here for the very worst case where all the
packets correctly transmitted in slot 1 through

are retransmitted during following
cycles.

F. Computation of for Reno

Since TCP Reno differs from Tahoe only after fast retransmit
is triggered, all the events considered for TCP Tahoe and cor-
responding to no fast retransmit still apply in this case. Hence,
in the following we only need to consider the case in which fast
retransmit is triggered (Case 2.2), i.e., the case in which the th
successful transmission occurs at time in . Let

be the event that the packet failure at time 0 is followed
by consecutive successes, and let , ,

be the event that the th success occurs at time
and the first loss after the loss in 0 occurs at time (note that
since , there must be a packet loss before the th suc-
cess). The probabilities of these events are given as shown in
(26) and (27) at the bottom of the page.

Case 2.2.a: Consider first the occurrence of the event .
Since at the end of slot the th

duplicate ACK is received, the retransmission is
performed in slot .

• If this retransmission is successful, the loss
recovery phase is successfully completed
and a new cycle starts at time .
In this case, the destination state is

9 and the
transition function is given by

(28)
where we account for the probability to
have the error at time 0 followed by cor-
rect packets ( ) and a correct re-
transmission (term , slots after
the transmission of the th packet); the
term accounts for the channel
state in the slot preceding the start of the
new cycle. can be bounded as

, giving the throughput
lower and upper bound, respectively.

• If, on the other hand, the retransmis-
sion is a failure, the protocol will stop
and wait for an ACK which will never
be transmitted. In this case only the
timeout will eventually resolve the
deadlock. According to the TCP Reno
rules, upon receiving the th duplicate
ACK the window size will be updated
to ,
so that the new state after timeout is

with transi-
tion function

(29)
where is bounded as in the previous
case and accounts for the retransmis-
sion of the lost packet in addition to the

transmissions.
Case 2.2.b: Consider the occurrence of the event .

In the case of multiple losses in a congestion
window, TCP Reno is able to successfully com-
plete the Fast Recovery phase only when the con-
gestion window at the first error is large enough.
So, in this article we consider that multiple losses
event always leads to deadlock and consequent
timeout.10

• If the retransmission at time is a
failure, we can observe that the protocol

9According with Reno’s rules, after the reception of theKth duplicate ACK,
W is set to half the window sizeW and never changed until the successful
completion of the lost recovery phase, where the window size is set to W =

dW =2e.
10This assumption is better verified as the round trip increases.

(26)

(27)
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behavior is similar to the previous case,
i.e., the next cycle will start in state

, with transition func-
tion

(30)
where the term repre-
sents the probability that the th correct
packet (after the loss at time 0) is trans-
mitted in slot and that the retransmission
of the first lost packet is unsuccessful. In
this case, a time out event must be waited
for; this will happen exactly slots after
the beginnig of slot 0. Here, can be
bounded as .

• On the other hand, if the retransmission at
time is successful the system will
timeout at the end of slot .
In fact, according to the protocol rules, we
consider only one timeout timer associated
to the connection and this timer is reset
(see [15]) at the reception of the ACK rel-
ative to the loss at time 0 (at the end of
slot ). The window size will be
updated to

(the ACK for the successful re-
transmission causes the window to be fur-
ther increased by one with respect to the
previous case). The next cycle will restart
in state with
transition function

(31)
where can be bounded as

. In fact, in this case, the number
of successes is at least one more than in the
previous case.

G. Computation of for New Reno

Finally, let us consider TCP New Reno. The only case in
which it is different from Reno is when there are multiple losses
within the same congestion window and the retransmission per-
formed due to Fast Retransmit is successful (second bullet of
Case 2.2.b). All other cases are the same as in Reno. Refer to
the definition of , , as the
event in which the th success occurs at time and the first
loss after the loss in 0 occurs at time . If the th successful
transmission is performed at time , then besides the first
lost packet (at time 0) there are losses in slot through

.
1) Successful Loss Recovery: Let be the total number

of packets in error in slots . Conditioned
on , this variable is given by the sum of a deterministic and
a random term. The former is the number of errors up to slot

(that is ), while the latter, that we call ,
, represents the number of errors in

. Let also be the proba-
bility to have exactly losses in and to have channel state

in slot . This probability is computed as

(32)

(33)

where . If we have consecutive
successful retransmissions, loss recovery is successfully
completed, since at time the last lost packet is suc-
cessfully retransmitted and the corresponding ACK (received
at the end of slot ) will acknowledge
all outstanding packets. A new cycle will then start at time

in state ,
since remains equal to and is set to upon
completion of the loss recovery phase. The transition function
corresponding to this event is

(34)

where and . Note
that, since the recovery phase ends successfully, all packets in
slots are eventually received correctly, so

is exactly given by . Note that is the channel
state in the slot just before the one in which the new cycle be-
gins, whereas represents the channel state in slot .
In (34), we consider the case of multiple losses in a window.
The total number of losses has been separated in two contribu-
tions. The first is relative to the number of lost packets between
the loss at time 0 and the transmission of the th correct packet
( losses). The second contribution, instead, accounts for
the number of losses between the transmission of the th cor-
rect packet and the slot in which the fast retransmit starts (
losses). As observed above, the total number of losses is given
by . In (34) we sum over all pos-
sible values of and over all possible values of the channel
state in the slot where the last of the packets is trans-
mitted. From here, we use the term to evolve the
channel state until the slot in which fast retransmit starts.11 In
we account for the total delay, i.e., we sum to the time needed
to recover from the losses after the th successful packet
(transmitted is slot ), in we count all the transmitted packets,
whereas in we count only successes ( packets sent
before the beginning of the recovery phase plus the retransmis-
sion of the loss at time 0).

2) Unsuccessful Loss Recovery: Consider now the case in
which the loss recovery phase does not end successfully, i.e.,
after the th duplicate ACK there are fewer than suc-
cesses. Suppose that, after the successful retransmission of the
first loss at time 0, we have exactly consecutive good retrans-
missions ( ) followed by a failure. This
event has probability . After the th success

11Since we are in the successful loss recovery case, we assume that the first
and all following retransmissions are successful.
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Fig. 7. n .

the value of the window is given by
. The initial state of the next cycle corre-

sponds to the timeout relative to the ( )nd loss in the window,
since the first have been successfully retransmitted, and
is . The transition function in this
case is given by

(35)

where and . In
the equation above, similarly to (34), we sum over all possible
values of and . In this case, however, not all packets
in error are successfully recovered. We account for this fact by
means of the sum over . Here, a timeout event must be waited
for, and it will happen exactly slots after the first retrans-
mission failure (term ).

Finally, the transition function matrix is computed by
assigning to each entry the sum of all the transition func-
tions leading from state to state , as explained in [5].

IV. RESULTS

In this Section the throughput performance of the various ver-
sions of TCP are analyzed.

First of all we note that, in our study, we have considered
some approximations in order to keep the model analytically
feasible. In the following we point out these approximations in
order to better clarify the analysis and to permit a better un-
derstanding of the results presented in this Section. First of all,
(4) gives an overestimate of the number of ACKs received after
the first error. This is true especially for high error probabili-
ties and large values of . Under these conditions, in fact, the
number of packets in flight could be less than the window value
at the time in which the error occurs (see Fig. 7). This happens
when the transmission in the round preceding the one where the
error occurs is discontinuous. In any case, the use of (4) always
leads to an analytical upper bound for the window size reached
after the first error ( ). For this reason, what we model is
an approximated version of the real protocol that corresponds
to an analytical upper-bound for what concerns throughput per-
formance of the real protocol. Hence, the throughput lower and

Fig. 8. Throughput comparison between analysis and simulation with f T =

0:01,K = 3,W = 16, T = 100. (a) Tahoe, (b) Reno, and (c) New Reno.

upper bounds considered in the computation of the matrix
must be viewed as the upper and the lower bounds for the ap-
proximate model and not for the real protocol. In any event, as
will be clear from the results presented, the approximation con-
sidered is very good.

In Fig. 8(a), we report the throughput of TCP Tahoe as a func-
tion of the channel error probability by fixing
(correlated channel case). In Fig. 8, three kinds of curves are
reported: the analytical throughput upper and lower bound and
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Fig. 9. Throughput (upper bound) comparison by varying f T , K = 3,
W = 16, m = 5, T = 100.

the values obtained by simulation. As the RTT ( ) increases
analysis and simulation differ. In particular, the throughput ob-
tained from the analysis is slightly higher than the one obtained
by simulation. This is justified by the way in which the quantity

has been computed.
In Fig. 8(b), we compare simulation results and analysis for

TCP Reno. Here, the approximation introduced in (4) is less in-
fluential than in the previous case. This is justified by the fact
that, after a successful recovery phase both and are set to

. By doing so, the performance is less influenced by the
value of with respect to the Tahoe case (where and

).12 Moreover, in this figure we note some dif-
ferences between simulation and analysis when both and
are low. These differences are due to our assumption that TCP
Reno always times out in the case of multiple losses in a window.
This assumption, in fact, is good only when either or has a
large value, in any other case could be sufficiently large to
ensure the recovery of multiple losses. However, the approxima-
tion above appears to be very good as increases.

Fig. 8(c) shows the same comparison for TCP New Reno.
Here, no simplified assumptions are made regarding the
recovery process. Simulation results in this case match almost
perfectly with the analysis.

In Fig. 9, we compare the throughput13 of New Reno and
Tahoe by varying the channel memory ( ). When errors are
correlated ( ), New Reno presents a slightly lower
throughput than Tahoe. In this case, a burst ( ) of erroneous
packets follows the error at time . At this point, TCP Tahoe
reacts to the reception of the th duplicate ACK by re-starting
the connection with the slow-start algorithm. From this point on,
the lost packets are retransmitted as if a timeout event had
occurred. In the New Reno recovery phase, instead, it is possible
to transmit only one packet per RTT ( slots). So, to recover
from the losses and restore the normal transmission mode a
total of slots are needed. For large values of (e.g., for

) this strategy (New Reno) leads to a larger recovery

12Here,W is determinant for the time needed byW to reachm, i.e., to fill
the bandwidth-delay product.

13Since the curves relative to the throughput lower and upper bounds are very
close to each other, in the following graphs we report only the upper bound
curve.

Fig. 10. Throughput (upper bound) versus m with K = 3, W = 16,
T = 100. (a) f T = 0:01, (b) f T = 0:64.

time with respect to Tahoe. This is the reason why, in this case,
New Reno is affected by a lower throughput. Note that this
problem is not present when instantaneous feedback ( ) is
considered, while it becomes more relevant as increases.

The situation is reversed at low channel correlation (
). Here, the best recovery strategy is the one imple-

mented by New Reno. This is justified by the fact that New Reno
has a more persistent recovery strategy, able to recover multiple
losses without leading to a timeout event. This event, in uncorre-
lated channel is more probable than in correlated environments,
due to the fact that the error event (the error burst) probability
in this case is larger even if the average packet error probability
is the same.

Note also that, from the point of view of the protocol perfor-
mance, a channel characterized by is equivalent to
the independent error case (i.i.d.).

The throughput as a function of is reported in Fig. 10,
for the cases of [Fig. 10(a)] and
[Fig. 10(b)]. First of all, we note that uncorrelated errors have
a higher impact on throughput than correlated channels. More-
over, in the case, TCP Reno is the one with the
lower throughput, and New Reno and Tahoe present almost the
same performance. Where , instead, Tahoe becomes
the worst, New Reno the best, whereas Reno performs in the
middle.
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Fig. 11. Tahoe, throughput (upper bound) versus P , by varying W and
f T with K = 3, m = 10 and T = 100.

Fig. 12. New Reno, throughput (upper bound) versus P , by varying W
and f T with K = 3, m = 10 and T = 100.

Figs. 11 and 12 show the TCP throughput as a function of
the channel error probability by varying the channel corre-
lation ( ) and . We note that the curves depend weakly
on the value. In particular, when the channel is correlated
( ) the greatest differences are in the New Reno case,
i.e., where the Fast Recovery and Fast Retransmit algorithms are
used. In such cases, in fact, the success of these recovery algo-
rithms depends on the maximum window size reached during
the error-free phase (first cycle in our analysis): the larger the
value of the window, the higher the probability that, after the first
error, packets are sent with success. This results in a higher
probability of triggering the Fast Recovery algorithm, thereby
avoiding timeout and increasing the performance.

We can conclude that the maximum window size must be
greater than the bandwidth-delay product ( ) in order to
reach the continuous transmission phase by avoiding the waste
of available resources. However, once it has been set following
this rule, its size is not determinant to improve performance re-
gardless of the degree of correlation characterizing the packet
error process.

V. CONCLUSION

In this paper, we have developed an analytical framework,
based on Markov renewal theory, in order to describe the
throughput performance of a TCP protocol working over a
wireless link. The main goal of our analysis was the study of
TCP performance in a link characterized by a finite round-trip
delay. Even though some approximations are introduced for
analytical tractability, comparison with simulation results
shows that the considered approach is very accurate and is able
to predict very precisely the throughput performance of various
versions of TCP. The main findings of this study are that:
1) an increasing RTT may significantly affect the throughput
performance of TCP, especially when an independent channel is
considered; 2) New Reno performs better than Reno and Tahoe
when the channel is uncorrelated, whereas the Tahoe recovery
strategy is the most efficient when the channel correlation
is high; and 3) the maximum window size does not play a
determinant role in increasing throughput performance in both
correlated and independent channels.
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