
SYNAPSE++: Code Dissemination in Wireless
Sensor Networks Using Fountain Codes

Michele Rossi, Member, IEEE, Nicola Bui, Giovanni Zanca, Luca Stabellini,

Riccardo Crepaldi, Student Member, IEEE, and Michele Zorzi, Fellow, IEEE

Abstract—This paper presents SYNAPSE++, a system for over the air reprogramming of wireless sensor networks (WSNs). In

contrast to previous solutions, which implement plain negative acknowledgment-based ARQ strategies, SYNAPSE++ adopts a more

sophisticated error recovery approach exploiting rateless fountain codes (FCs). This allows it to scale considerably better in dense

networks and to better cope with noisy environments. In order to speed up the decoding process and decrease its computational

complexity, we engineered the FC encoding distribution through an original genetic optimization approach. Furthermore, novel channel

access and pipelining techniques have been jointly designed so as to fully exploit the benefits of fountain codes, mitigate the hidden

terminal problem and reduce the number of collisions. All of this makes it possible for SYNAPSE++ to recover data over multiple hops

through overhearing by limiting, as much as possible, the number of explicit retransmissions. We finally created new bootloader and

memory management modules so that SYNAPSE++ could disseminate and load program images written using any language. At the

end of this paper, the effectiveness of SYNAPSE++ is demonstrated through experimental results over actual multihop deployments,

and its performance is compared with that of Deluge, the de facto standard protocol for code dissemination in WSNs. The TinyOS 2

code of SYNAPSE++ is available at http://dgt.dei.unipd.it/download.

Index Terms—Wireless sensor networks, distributed networks, data communications, protocol architecture, protocol verification, error

control codes, system integration and implementation.

Ç

1 INTRODUCTION

WIRELESS reprogramming is an invaluable service for
wireless sensor networks (WSNs). Code updates are in

fact essential to reconfigure the network on the fly after, e.g.,
a topology change, fix bugs in the software, re-task or update
existing applications. This service needs to be fully reliable,
scalable, energy efficient, and rapid, as the time spent with
the radio on is the main source of energy consumption in
WSNs. The program, due to the memory limitations of the
nodes (usually 10 kB of RAM), should be split into blocks and
processed one block at a time. This affects the design of
dissemination and error control algorithms. Further, the
code should be efficiently propagated over multihop net-
works without a priori knowledge of the topology. Lastly,
WSNs are usually highly populated with devices, thus if no
proper countermeasures are taken, it is likely that many
senders will transmit at the same time. The downside of this
is that packets will collide, thus resulting in an overall
degradation of the performance in terms of reprogramming
time and energy efficiency.

Classical schemes for reprogramming WSNs [1], [2], [3],
[4] use sophisticated error recovery algorithms that rely on
a selective NACK-based retransmission approach. While
these intelligently handle the selection of senders and
feature special mechanisms for feedback suppression (of,
e.g., ARQ NACKs), for increasing node density they are
however affected by the so-called feedback implosion
problem [5], i.e., control messages in this case collide with
high probability thus dramatically impacting the perfor-
mance. Also, a technique called pipelining [1] is used to push
concurrency in the data transmission over multihop net-
works. Specifically, pipelining allows a node that correctly
receives a data block from a neighboring sensor to
immediately start its dissemination to the next hop. This
increases the degree of parallelism in the data transmission
phase and effectively decreases the programming time.

This paper presents SYNAPSE++, a reprogramming
system built on SYNAPSE [6] that efficiently copes with
the above requirements through the use of rateless fountain
codes (FCs). These allow for high performance in dense as
well as noisy environments and substantially mitigate the
feedback implosion problem. The original contributions of
this paper are:

. We design a new dissemination protocol consisting
of an original pipelining strategy, coupled with a
novel and distributed channel access mechanism,
called soft TDMA.

. We improved the FC implementation of SYNAPSE by
a joint design with the forwarding mechanism so as to
maximize the number of errors that are corrected
through overhearing, thus limiting the number of
explicit retransmissions.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010 1749

. M. Rossi, G. Zanca, and M. Zorzi are with the Department of Information
Engineering, University of Padova, Via Gradenigo 6/B, 35131 Padova,
Italy. E-mail: {rossi, zancagio, zorzi}@dei.unipd.it.

. N. Bui is with the Consorzio Ferrara Ricerche, Via Saragat 1, Blocco B,
44124 Ferrara, Italy. E-mail: bui@dei.unipd.it.

. L. Stabellini is with the Wireless@KTH, Royal Institute of Technology,
Electrum 418, SE-164 40 Kista, Sweden. E-mail: lucast@kth.se.

. R. Crepaldi is with the Department of Computer Science, University of
Illinois, Urbana-Champaign, IL 61801. E-mail: rcrepal2@uiuc.edu.

Manuscript received 5 Nov. 2008; revised 5 Jan. 2009; accepted 7 Aug. 2009;
published online 3 June 2010.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2008-11-0446.
Digital Object Identifier no. 10.1109/TMC.2010.109.

1536-1233/10/$26.00 � 2010 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

. SYNAPSE++ features advanced boot loader and
memory management modules, which allow the
dissemination of binary images written in any
operating system and make application and repro-
gramming software completely independent in terms
of memory and variables.

. We provide an experimental evaluation of SY-
NAPSE++ in a real multihop deployment with
42 sensors and average path length of 8 hops.

Differently from previous reprogramming schemes, e.g.,
[1], [2], [3], [4], SYNAPSE++ is not embedded in the running
application but it is rather a stand-alone program. We
designed the boot loader so that at runtime it is possible to
switch between SYNAPSE++ and any of the disseminated
applications that, in turn, do not share RAM memory with
SYNAPSE++ . This alleviates memory requirements and
makes SYNAPSE++ suitable for the dissemination of third
party proprietary software.

The rest of the paper is organized as follows: Section 2
surveys related work. Section 3 presents the design of the
FC that we used in our framework and characterizes its
performance. Section 4 describes the architecture of
SYNAPSE++ along with the involved networking protocols.
Section 5 presents our joint optimization of pipelining and
FCs. Section 6 shows experimental results, where the
performance of our dissemination system is compared with
that of Deluge. Finally, in Section 7, we conclude the paper
by discussing the tuning of SYNAPSE++ that we performed
at the T. J. Watson IBM research center, where we used it as
a support tool for a project on WSNs.

2 RELATED WORK

In this section, we review a selection of reprogramming/
data dissemination approaches for WSNs by subdividing
them into five categories. A complementary taxonomy can
be found in [7].

2.1 Earlier Approaches

XNP [8] is the first network reprogramming protocol for
WSNs, it works over single-hop networks and does not
support incremental updating of the program image. The
Multihop over the air protocol (MOAP) [9] extended its
functionalities to multihop networks and enhanced its data
recovery phase through the usage of window and NACK-
based ARQ (these features are all used by the most recent
protocols). However, MOAP disseminates data in a hop-by-
hop fashion, i.e., a node has to receive the whole program
before it can start disseminating it over the next hop, and
this may be inefficient in large multihop networks.

2.2 Backbone-Based Approaches

A second class of solutions is based on the construction of a
connected dominating set (CDS), which is later used for a
two-phase dissemination of the data. Sprinkler [10] is the
first protocol that used this approach. It assumes location
awareness at each node, which is used to construct a CDS.
Objects metadata are disseminated through a packet-level
pipelining scheme and a TDMA schedule is exploited for
the transmissions among CDS nodes. Core nodes forward
newly received data packets and piggyback the negative
acknowledgment (NACK) for the lost data packets.

GARUDA [11] is a further dissemination protocol based
on CDS. It uses a distributed and lightweight algorithm to
approximate the CDS. It then exploits a two-phase error
recovery that prioritizes the nodes in the CDS (core nodes)
and then corrects the errors at the leaf nodes. Availability
bitmaps and a modified ARQ policy are used for error
recovery. A similar design is exploited by CORD [12], where
the dissemination is also split into the above two phases. In
addition, CORD further enhances the energy efficiency
through the use of coordinated sleep schedules at each node.

2.3 Contention-Based Approaches

A third approach consists of disseminating the data by
letting nodes randomly compete for the channel. This
solution does not need the construction of a CDS and is
more suitable for more dynamic topologies. Deluge [1] is
the first dissemination system falling in this category. It
propagates program images over multihop networks
through an epidemic routing approach. Data transmission
and NACK-based ARQ are jointly implemented through a
three-way handshake mechanism based on advertisement
(ADV), request (REQ) and actual code (CODE) transfer.
Deluge copes with the memory constraints of sensor nodes
by splitting the program image into pages. The image is
then transmitted page-by-page exploiting broadcast trans-
missions and pipelining. In addition, further features such
as ADV suppression and randomization of the transmission
of ADVs within predetermined time windows are imple-
mented to reduce the congestion during the dissemination
phase. Most of these techniques (especially pipelining) have
then been exploited by all subsequent protocols.

A further protocol, MNP [2], additionally implements
special algorithms to reduce the problems due to collisions
and hidden terminals. This is achieved through a distrib-
uted priority assignment so that, within a neighborhood,
there is at most one sender transmitting the program image
at any given time. The sender election is greedy and
distributed: the senders with a higher number of potential
receivers are assigned higher priority, and sleeping modes
are used to reduce energy consumption.

Freshet [3] builds on Deluge by aggressively optimizing
the energy consumption during reprogramming. In an initial
phase, some metadata about the image to be transferred and
the topology (in terms of number of hops from the front wave
where the code is currently being transmitted) are dissemi-
nated to sensor nodes. Using this information, nodes
estimate when the image will actually reach their vicinity
and enter a sleeping period accordingly.

According to their current TinyOS implementation,
Deluge, MNP, and Freshet all disseminate the image of the
programming protocol together with that of the program to
be transferred. However, this considerably inflates the
amount of data to be disseminated. Stream [4] fixes this
problem by preinstalling in each sensor node the re-
programming application. This is done through the segmen-
tation of the FLASH into multiple partitions so that the
reprogramming protocol and the program to be transferred
are stored in different image areas. Hence, at dissemination
time Stream transmits over the channel the minimal support
(about one page) needed for the activation of the reprogram-
ming image together with the actual program image. A last

1750 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

scheme, Typhoon [13], is also based on the ADV-REQ-CODE
paradigm, but it transmits the image using multiple
frequency bands so as to further push the concurrency of
the transmission (spatial reuse).

2.4 Dissemination Based on Rateless Codes

Recently, researchers started to use rateless codes, as we do
in this paper. Rateless-Deluge [14] enhances [1] through a
HARQ technique based on rateless codes on Galois fields of
size 2q with q ¼ 8 (GF ð28Þ). AdapCode [15] is a further
scheme exploiting network coding onGF ð25Þ. In AdapCode,
packets are coded at every node through linear combina-
tions with coefficients picked randomly in the Galois field.
Also, the coding aggressiveness is adaptively changed
according to link qualities and number of neighbors.
SYNAPSE [6] implements a HARQ similar to that in [14]
using GF ð2Þ, which is however optimized for hop-by-hop
data dissemination.

The protocol that we present in this paper, SYNAPSE++,
builds on SYNAPSE by adding full support for pipelining
through a joint design of MAC and fountain codes.
Specifically, it adopts the above ADV-REQ-CODE para-
digm, it randomizes the transmission of ADVs to avoid
collisions, and it exploits pipelining and implements the
optimization of [4]. It also features new elements such as the
extension of Deluge’s FLASH memory partition manage-
ment as well as a novel hybrid ARQ transmission and error
recovery mechanism based on rateless fountain codes [16].
Differently from previous work using rateless codes, our
scheme uses random codes over GF ð2Þ, i.e., encoding and
decoding only need to perform bit-wise XORs among
packets. We note that while working with fields of larger
size is more effective in terms of transmission overhead and
recovery capabilities, it is less efficient in terms of decoding
time and computational resources on sensor nodes, as
operations in this case are rather slow as compared to the
standard XORs required in GF ð2Þ.

In SYNAPSE++, we compensated for the lower perfor-
mance of GF ð2Þ through an optimization (via genetic
algorithms) of the distribution used at the encoder so that
our FC still provides overhead and recovery capability
performance close to that achievable for larger fields. As an
example, SYNAPSE++’s optimized decoding of 32 packets
takes about 460 ms as compared to delays of the order of 3 s
for GF ð28Þ [14] (see Section 3.3 for further details). Also,
SYNAPSE++ implements an original pipelining strategy
with transmission priorities based on a loose TDMA
synchronization within nodes in the same neighborhood.
This enables the separation of ADV, REQ, and DATA
phases so as to minimize collisions, facilitate pipelining,
and improve the effectiveness of FCs. Finally, SY-
NAPSE++’s pipelining scheme and FCs are jointly designed
and optimized. To the best of our knowledge, SYNAPSE++
is the first dissemination system to adopt this joint design.

2.5 Further Design Choices

In this last category, we describe a few more techniques that
are complementary to the actual transmission process and
that can be used to further improve the efficiency of the
overall reprogramming system. Dunkels et al. [17] present
dynamic linker and loaders, using the standard ELF format
and show that dynamic linking is effective for reprogram-
ming resource constrained sensor nodes. This method is

used by recent operating systems for WSNs such as Contiki
[18]. Along the same line, Flexcup [19] optimizes the way
the software running on the nodes is linked together. It
generates metadata, describing the compiled components.
During the code dissemination, this metadata is used to
install new components into the running application, re-link
function calls and perform address binding of data objects.
This allows to install parts of applications without having to
disseminate the entire program image. Lightweight data
compression schemes for WSNs with small memory
footprint are presented in [20]. The idea is to compress
the program image, disseminate it through any of the above
protocols, and then obtain the original program through
decompression at the receivers. Appropriate compression
schemes can save energy and reduce dissemination time
with respect to sending the uncompressed application.
Tsiftes et al. [20] also provide important hints on the trade-
off between immediately writing received data to FLASH
and buffering it in RAM, which are important considera-
tions for SYNAPSE++’s design.

3 FOUNTAIN-BASED ENCODING

The description of our fountain code is split into three
sections. In Section 3.1, we discuss the main characteristics
of fountain codes, why we use them in our framework and
their main differences from other encoding methods. In
Section 3.2, we specify the fountain code that we designed
for SYNAPSE++, discussing the optimizations carried out at
both transmitter (encoder) and receiver (decoder) sides.
Finally, in Section 3.3, we illustrate important implementa-
tion details.

3.1 Introduction to Fountain Codes

Digital fountain codes were presented by Luby in [21]. They
are near optimal rateless codes designed for binary “erasure
channels.” A binary erasure channel is such that each
transmitted packet is either correctly received without
errors or entirely lost with probability p, which identifies
the cannel erasure probability [16], [22].

A fountain code is conceptually very simple. For

illustration, consider Fig. 1 and let x1; . . . ; x5 be the five

source packets that need to be transmitted between a sender

and multiple receivers and consider a zero erasure prob-

ability, p ¼ 0. Instead of transmitting the source packets, we

apply an FC so that each transmitted packet is obtained as a

linear combination of a subset of the input packets

x1; . . . ; x5. In the example of Fig. 1, seven encoded packets

yi, i ¼ 1; . . . ; 7 are transmitted, where, e.g., y1 is obtained as

the bit-wise XOR of x1 and x2. The number of xi’s to be

summed together is picked according to a “degree dis-

tribution,” as we explain shortly, whose design is key to

obtaining good performance. Moreover, yi and yj with i 6¼ j
are statistically independent, i.e., the input packets picked

for yi do not depend on those picked for yj.
The relationship between xi and yi is captured by the

matrix transformation on the left of (1), which can be
written as y ¼ Gx, where x and y are vectors containing the
xi and yi and G is the transformation matrix.

ROSSI ET AL.: SYNAPSE++: CODE DISSEMINATION IN WIRELESS SENSOR NETWORKS USING FOUNTAIN CODES 1751

y1

y2

y3

y4

y5

y6

y7

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
¼

1 1 0 0 0

0 1 0 0 0

0 0 0 0 1

0 0 1 0 1

1 0 1 0 0

1 0 0 1 0

1 1 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

x1

x2

x3

x4

x5

0
BBBBBB@

1
CCCCCCA

)
Gaussian

elimination

y1 � y2

y2

y3 � y4

y1 � y2 � y6

y3

irrelevant

irrelevant

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

x1

x2

x3

x4

x5

0
BBBBBB@

1
CCCCCCA
:

ð1Þ

Each encoded packet is associated with a so called
encoding vector that, for yi, is nothing but the ith row of G.
Encoding vectors are sent along with encoded packets and
used at the receivers to obtain x ¼ G�1y. Hence, all
receivers can invert this transformation, e.g., through
Gaussian elimination, and retrieve x1; . . . ; x5 through bit-
wise sums of some encoded packets, as shown in (1). For
p > 0, the received matrix G might not be invertible (i.e., its
rank may be less than 5) at some receivers (as the channel
might now “erase” some of the transmitted packets) and in
this case the xi cannot be retrieved. Nevertheless, with
fountain codes it is possible to retrieve the five original
packets at all nodes through the transmission of additional
encoded packets, until G is full rank at all receivers. This is
why FCs are said to be “rateless,” i.e., the rate of the code
can always be extended on the fly depending on the
number of packets lost.

Common methods for reliably transmitting packets over
erasure channels are ARQ protocols where receivers send
back to the transmitter status reports to identify missing
packets. The transmitter, in turn, decodes incoming reports
and retransmits what is lost. ARQ works regardless of the
erasure probability p but often requires a large amount of
feedback. In addition, the forward channel (transmitter !
receivers) performance (e.g., delay and throughput effi-
ciency) is heavily impacted even for a small number of
receivers and low error rates [23]. As a solution, in the
literature several HARQ schemes have been proposed, see,
e.g., [5], [23]. HARQ scales considerably better than ARQ as

a single redundancy packet can recover different losses at
multiple receivers. We advocate the use of fountain codes-
based HARQ schemes for programming WSNs as these
retain the good performance of previous HARQ schemes
[5], [23] while presenting additional advantages:

. Due to the rateless nature of these codes, we do not
need to know in advance the error probability p. This
simplifies implementation and increases efficiency. In
fact, the actual amount of redundancy to use within
our dissemination protocol can be decided on the fly,
while retaining the good error recovery performance
of traditional HARQ schemes that use packet-based
Reed Solomon [5], [23] or Tornado [24] codes.

. Packets are encoded using arithmetic on the Galois
fieldGF ð2Þ, i.e., by means of bitwise XOR operations.
This substantially speeds up the execution time with
respect to traditional packet-based Reed Solomon
codes [5], [23], which use more complex operations
among polynomial coefficients in GF ð2qÞ, with q > 2.
In fact, fast operations over GF ð2qÞ require the use of
lookup tables, which is substantially slower than
XORing symbols. This is a tremendous advantage for
resource constrained sensor devices. We also observe
that, while Tornado codes [24] also perform encoding
in GF ð2Þ, they are not rateless.

3.1.1 Encoding Procedure

The key ingredient is the degree distribution �ðdÞ, which is a
probability distribution, determining the number of input
packets to combine to form any given encoded packet yi.
The input file is subdivided into a number of, say,
K packets, and the following operations are executed:

. Pick a degree di, 1 � di � K from the distribution
�ðdÞ, whose characteristics depend on the number of
original packets K in the input file, as well as on the
targeted performance (e.g., in terms of coding
complexity and overhead, see Section 3.2).

. Randomly and uniformly pickdi packets among theK
given as input. The encoded packet yi is obtained
through the bitwise, modulo 2 sum of these di packets,
i.e., by successively XORing them. di is the degree of the
encoded packet so obtained, while the information
about which di packets were XORed together forms
the corresponding encoding vector and needs to be
known at the decoder. Continue from the previous
step until the desired number of packets is encoded.

Note that, due to the above procedure, all encoded
packets are equally representative of the whole input file, as
they are independently generated using the same distribu-
tion. Hence, it is not important which packets are lost
during transmission, but rather what matters is how many
packets are correctly received. Moreover, the goodness of
the encoding process is totally captured by the adopted
degree distribution, whose optimization is thus crucial to
obtain good performance. This optimization is the subject of
the following Section 3.2.

3.1.2 Decoding Procedure

Decoding can be done by inverting the decoding matrix G,
which is formed by the received encoding vectors, i.e.,

1752 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

Fig. 1. Fountain Codes: encoding example.

solving for x the system y ¼ Gx, where y is the vector
containing the received encoded packets, whereas x
contains the K original packets to be retrieved (see (1)).
Of course, a necessary condition for this inversion is that G
has full rank K. In general, this may require the collection at
the receiver of N > K encoded packets as, due to the
random encoding method of FCs, not all encoding vectors
are guaranteed to be linearly independent. The actual
number of packets N that need to be received to obtain a
full rank matrix depends on the selected distribution �ðdÞ.
We define the overhead O as the extra redundancy needed
for the recovery of the K original packets, i.e., O ¼ N �K.

In practice, for largeK (usually larger than 1,000) there are
encoding distributions providing a small overhead as well as
very efficient decoding procedures [21] (these are based on
message passing and heuristically solve the linear system
y ¼ Gx). Our focus in this paper is however different asK in
our setting is typically small. Here, K is the number of
packets in a transport block, that is just a portion of the whole
program image. We recall that, due to the inherent memory
limitations of sensor devices, we cannot work with large
K values.1 Hence, the suboptimal decoding in [21] is not a
useful option in our case due to its poor performance in terms
of overhead for small K. On the other hand, we note that
optimal decoding (in terms of decoding overhead) amounts
to inverting the decoding matrix G, which can be done
through, e.g., Gaussian elimination and back-substitution
[22]. For large K, this method is not efficient, as its
complexity grows as OðK3Þ. However, in our case this
complexity is acceptable due to the small values of K (e.g.,
K ¼ 32). Hence, we decided to implement an optimal
decoder, according to an efficient Gaussian elimination
routine. This, together with the optimization of the degree
distribution at the encoder, led us to small decoding
overhead at the cost of a reasonable complexity.

3.2 Optimization of the Degree Distribution �ðdÞ
Properly designed fountain codes should have N close to
K. Some overhead is unavoidable and depends on the
adopted degree distribution �ðdÞ. In this section, we present
an original and very effective algorithm for the optimization
of �ðdÞ according to given performance objectives. The
optimized degree distributions that we obtain in this section
are used within SYNAPSE++’s error recovery scheme. We
also stress that they are general as they do not depend on the
particular program image to transmit: this is why �ðdÞ is only
used to decide how many source packets are to be
combined, regardless of their actual content.

We optimize our FCs for transmission over error-free
channels. In fact, for full recovery at the receiver(s), it is
sufficient to receive K independent packets so that G can be
inverted. This implies the reception of N � K packets as not
all packets we generate through �ðdÞ are linearly indepen-
dent. However, an error probability p > 0 does not alter the
decoding operations at the receiver side as K independent
packets are still needed. Hence, as packets are generated
independently of each other, losses will preserve all the
properties of the distribution designed for p ¼ 0. In practice,

a good distribution for error-free channels will preserve its
good performance over error-prone links [22].

Before describing our optimization algorithm, we intro-
duce a few definitions. A sample of the algorithm involves the
generation of encoded packets until these allow full recovery
at the decoder. An iteration of the algorithm is composed of a
fixed number of samples, M. To optimize the degree
distribution, we adopt an iterative approach: we start from
an initial distribution, we generate samples and, for each of
them, we calculate a cost, which is subsequently used to
refine the distribution itself. The procedure is terminated
when a stopping condition, which is defined below and
depends on the latest distribution obtained, is verified. A
new iteration is started otherwise. In the following, we define
some parameters:

. K: number of packets in the input file.

. pj; j ¼ 1; 2; . . . ; K: point probabilities defining the
degree distribution �ðdÞ.

. M: number of samples generated during each
iteration.

. CðiÞ; i ¼ 1; 2; . . . ;M: cost associated with the ith
sample of the current iteration.

. NðiÞ; i ¼ 1; 2; . . . ;M: number of encoded packets
needed to retrieve the originalK packets for sample i.

. njðiÞ; i ¼ 1; 2; . . . ;M; j ¼ 1; . . . ; K: degree j packets
generated within the ith sample,

PK
j¼1 njðiÞ ¼ NðiÞ.

We use ideas from the theory of genetic algorithms to
iteratively obtain an optimized degree distribution. We start
by generating a population of M samples and evaluating for
each sample i its cost CðiÞ. CðiÞ may, for example, be a
function of the overhead (defined as OðiÞ ¼ NðiÞ �K) and/
or of the number of elementary operations (XORs) required
for decoding. Once we have the costs for all samples
1; 2; . . . ;M, we select the most promising samples as follows:
We compute the �-percentile, C�, of the observed costs
Cð1Þ; Cð2Þ; . . . ; CðMÞ and pick all samples k having cost
CðkÞ � C�. These samples are subsequently used to refine
the degree distribution �ðdÞ. The refined distribution
survives to the next iteration. Let S be the set containing
the selected samples: S ¼ fk : CðkÞ � C�g and let pj be the
point probabilities associated with the current distribution.
The new distribution is obtained as:

pnewj ¼
P

k2S
njðkÞ
NðkÞ

jSj ; j ¼ 1; 2; . . . ; K; ð2Þ

where jSj is the cardinality of set S. Also, it is easy to verify

that
PK

j¼1 p
new
j ¼ 1. In fact,

XK
j¼1

pnewj ¼ 1

jSj
XK
j¼1

 X
k2S

njðkÞ
NðkÞ

!
¼ 1

jSj
X
k2S

XK
j¼1

njðkÞ
NðkÞ

!

¼ 1

jSj
X
k2S

NðkÞ
NðkÞ ¼ 1:

ð3Þ

Since this new distribution is obtained from the smallest
cost samples, it is reasonable to suppose that adopting pnewj

for the generation of new samples, i.e., at the next iteration
of the algorithm, will result in outcomes with smaller cost.
These are in turn used to generate a new distribution, and

ROSSI ET AL.: SYNAPSE++: CODE DISSEMINATION IN WIRELESS SENSOR NETWORKS USING FOUNTAIN CODES 1753

1. More details on how the application is split for transmission over the
network are given in Section 4.3.

this procedure is iterated until a certain stopping condition
is verified. In our algorithm, the stopping condition is
defined in terms of the expected value of the cost during the
last two iterations. In particular, the optimization process is
continued if and only if the mean cost obtained in the
current iteration is strictly lower than that obtained
previously. We tested our algorithm, comparing its perfor-
mance against that of state-of-the-art optimization schemes
[25]. Results demonstrating that our genetic approach
substantially outperforms [25] can be found in [6].

As discussed in Section 3.1, the message passing (LT)
decoder [21] is not suitable for our settings, i.e., for small
K values. On the other hand, in our case an optimal
decoder, based on Gaussian elimination, can be used at a
reasonable computational cost. We thus applied our
optimization algorithm to a Gaussian elimination decoder
to obtain distributions having low decoding cost as well as low
overhead. For this purpose, we used two cost functions:
C1ðiÞ ¼ NðiÞ, accounting for the number of packets needed
to decode, and C2ðiÞ, which is defined as the number of
XORs performed to recover the original K packets. These
two cost functions were used to define a new set of useful
samples S0 ¼ fk : C1ðkÞ � C�1

V
C2ðkÞ � C�2

g, to be used in
(1), that in this case was obtained considering two different
values for the �-percentiles for C1 and C2.

A new set of optimal encoding distributions �ðdÞwas thus
found for K 2 f32; 48; 64; 128g through the above genetic
algorithm with the two costs C1 and C2, where pj ¼ 1=K,
j ¼ 1; 2; . . . ; K was used to initialize the optimization
process. By tuning the two parameters �1 and�2, we selected
the following distributions �ðdÞ: D1) �1 ¼ 0:05; �2 ¼ 1:
having minimum overhead (IE½C1� ¼ 33:65 packets, IE½C2� ¼
6;586 XORs), D2) �1 ¼ 1; �2 ¼ 0:05: having minimum decod-
ing cost (IE½C1� ¼ 50:7 packets, IE½C2� ¼ 3;249 XORs),
D3) �1 ¼ 0:05; �2 ¼ 0:075: achieving a suitable trade-off
(IE½C1� ¼ 34:26 packets and IE½C2� ¼ 5142 XORs).

D1 and D2 obtain unsatisfactory performance in terms of
cost and overhead, respectively. D3 was instead selected as
the final �ðdÞ to use in SYNAPSE++ as, with respect to D1, its
overhead is just slightly larger and its decoding cost is
reduced by about 20 percent. D3 is shown in Fig. 2, whereas in
Fig. 3 we show the complementary distribution function (cdf)

of the decoding cost for D1, D2 and D3. We stress that D3 does
not depend on the input data content, and that the genetic
algorithm is only run offline to find this distribution and not
during SYNAPSE++’s data dissemination process. With
larger K, e.g., K ¼ 128 a cost reduction of up to 40 percent
can be achieved with respect to D1, whilst maintaining
almost the same overhead. This K, however, hardly fits our
memory requirements. Further details about the various
trade-offs are not given here due to space constraints and can
be found in [6].

3.3 Implementation Details

First of all, encoding vectors are not transmitted along with
encoded packets. We instead use the same random number
generator at both transmitter and receivers and associate
random seeds with encoded packets. In our implementa-
tion, each packet carries a 16 bit field containing the seed
that was used to generate it. Thus, at the receiver side, seeds
are used to synchronize the pseudorandom generator with
that used at the encoder (transmitter) and reproduce the
encoding vector for any received packet. This improves
robustness and facilitates error correction through over-
hearing (see Section 4.3).

In SYNAPSE++, we adopt a generator based on Linear
Feedback Shift Registers (LFSR) [26], which works with
registers of 16 bits. This method, which is optimized for the
TI MSP430 microcontroller of our TmoteSky sensor nodes,
is very fast. Decoding a block of K ¼ 32 packets (800 bytes)
with LFSR takes 462 ms. A drawback of LFSR is that a few
random seeds exist which provide unsatisfactory perfor-
mance. There are, however, a large number of seeds for
which LSFR performs properly.

In Fig. 4, we plot the time taken for the TI MSP430 to
successfully decode a transport block of K data packets (of
25 bytes each) using GF ð28Þ (as used in, e.g., [14]) and
compare it to that of SYNAPSE++’s optimized decoder. The
observed improvement of a factor no less than 6.5 is due to
1) performing operations over GF ð2Þ (bitwise XORs) and
2) adopting our optimized degree distributions, which
make the decoding matrix G sparse. On the other hand, for
GF ð28Þ decoding K original packets requires the reception
of exactly K packets, whereas GF ð2Þ reaches the same goal

1754 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

Fig. 2. Selected optimal encoding distribution �ðdÞ for K ¼ 32. Fig. 3. Cdf of the computational cost at the decoder for different �ðdÞ.
The cost is measured as the number of XORs between 16-bit words.

with a larger number of packets, e.g., 36 (this overhead is
also taken into account in Fig. 4). Hence, using SYNAPSE++
we have an additional time overhead of 13 percent
(transmission of four additional packets) that has to be
compared to a time dilation of 550 percent that comes from
using GF ð28Þ.

Finally, we observe that in addition to picking good seeds

in terms of their decoding times, we also had to optimize

them so that different nodes transmitting the same original

data will produce, with high probability, linearly indepen-

dent encoded packets. This fact is exploited in SYNAPSE++’s

pipelining strategy, which is presented in Section 4.3. The

optimization of the fountain code when used with pipelining

techniques is instead discussed in Section 5.

4 SYNAPSE++’S DESIGN

We structured the discussion of SYNAPSE++’s architecture

and algorithms as follows: Section 4.1 describes SY-

NAPSE++’s architecture, Section 4.2 introduces the Boot

Loader, which we realized to allow the management of the

FLASH (formatting, partitioning, etc.) and to load new

programs. Section 4.3 presents the fountain-based dissemi-

nation protocol. The architecture was designed and imple-

mented for the TmoteSky sensor nodes (the same hardware

is used by TelosB motes) and programmed in TinyOS 2 [27].

4.1 General Architecture

It is important to note that SYNAPSE++ is not a service
embedded in the distributed code, but instead it is a stand-
alone application. This is a design choice that offers two
main advantages. First, distributed applications do not
require additional code to embed the service, which would
make them larger. Second, the applications that are
disseminated using SYNAPSE++ are completely indepen-
dent of the dissemination service itself and, as such, they
are not constrained to be developed in a specific language
or operating system. All applications are seen as plain
binary code, which allows the distribution, for example, of
closed-source programs. The boot loader, which is always
present in the bootstrap sector of the microcontroller,
handles the switch between the dissemination operation

and the execution of the many applications that can be
distributed and stored in the nodes.

Due to this complete separation, when a node switches to
SYNAPSE++ the whole RAM is available. An application is
usually larger than the amount of RAM present on the nodes,
thus it has to be split into pages before being distributed. The
pages are decoded and stored in the external FLASH. Since
the radio chip and the external memory often share the same
bus they cannot operate at the same time. This means that
while storing a page on the external memory a node is
unaware of any incoming messages. To limit the number of
times this occurs, the current implementation of SY-
NAPSE++ keeps a page size of K ¼ 32 packets, which
requires an amount of memory of about 1.5 kB (for a total
overall occupation of about 4 kB). This is supported by all
existing sensor platforms, to the best of our knowledge, but
could be easily modified if needed. More details on the
switching between application and SYNAPSE++ are given in
Section 4.2.

Next, we describe the architecture of SYNAPSE++,
detailing its functional blocks.

4.1.1 Structure of the Software

The software was developed in a modular and portable way
to facilitate its extension/modification. There are three
macroblocks: the Boot Loader (BL), the data dissemination
manager (DDM) and the external memory (EM). The
communication between BL and DDM is possible thanks to
the information memory (IM), a portion of the internal
memory that is preserved even after a device reset (non-
volatile memory). Further modules are contained in the
DDM, namely, the boot loader communication (BLC), the
data dissemination logic (DDL), the partition manager (PM),
the Radio and the Codec. Next, we detail their function-
alities as well as their interactions.

4.1.2 Boot Loader

Our sensor nodes feature a TI MSP430 micro-controller with
direct access to an internal memory of 48 kB; additional
storage is provided by 1,024 kB of FLASH memory (External
Memory, EM). The BL is loaded at boot time, and handles
read and write operations between these memories. Also, it
loads applications residing on the EM on demand; these
applications, as we explain below, can be written in any
programming language. Due to its importance, we present
the Boot Loader in greater detail in Section 4.2.

4.1.3 Data Dissemination Manager

This is the core of our data dissemination system. It
comprises the Data Dissemination Logic, the Radio, the
Codec, the BLC, and the PM. These modules are described
in what follows.

4.1.4 Data Dissemination Logic

It orchestrates the Radio and Codec modules in order to
send, encode and decode data and control packets. This
module makes local forwarding decisions, i.e., it decides,
upon the reception of a new transport block (TB), whether the
receiving node should act as a forwarder for this transport
block, handles the transmission of transport blocks (through
the Radio module) and implements the error control policy
(for data recovery, including joint coding/retransmissions
and pipelining). Also, it exploits a dedicated soft-TDMA

ROSSI ET AL.: SYNAPSE++: CODE DISSEMINATION IN WIRELESS SENSOR NETWORKS USING FOUNTAIN CODES 1755

Fig. 4. Decoding time: comparison between Gaussian elimination with

GF ð28Þ and SYNAPSE++.

scheduling to synchronize neighboring nodes and improve
the performance of the pipelining scheme.

4.1.5 Radio

This module provides the Codec with the current set of
original packets (a block of K packets in our case), which
are used by the Codec to obtain encoded packets. These are
then passed back to the Radio module for their actual
transmission over the channel. For improved efficiency, we
synchronized the coding and sending procedures so as to
enable back-to-back transmission of data packets. In detail,
soon after passing a packet to the radio transceiver, the
Radio module triggers the Codec for the generation of the
next encoded packet.

4.1.6 Codec

The codec implements the fountain code coding routines,
specifically designed to address the constraints of wireless
sensor nodes. The fountain code used by this module has
been further optimized, with respect to [6], for its usage in
conjunction with pipelining techniques. These aspects are
treated in deeper detail in Sections 3 (fountain code design)
and 5 (pipelining).

4.1.7 Boot Loader Communication

This is a TinyOS module allowing the communication
between TinyOS applications (in our case the Data
Dissemination Manager) and the Boot Loader. It is intended
to provide an abstraction to the actual hardware. The
module allows the application to access the information
segment and to issue reboot and load commands.

4.1.8 Partition Manager

Partition manager provides functionalities for reading,
writing, and creating memory partitions in the external
FLASH. The PM component maintains a persistent partition
table, stored at the beginning of the FLASH memory. This
allows the dynamic allocation of new partitions when new
applications are received. Using a partitioning system as an
abstraction from the hardware makes the system more
flexible and allows an easy migration to other platforms.

4.2 Boot Loader

The Boot Loader manages many operations on the external
storage (i.e., formatting, saving new applications and
exchanging data between the internal and the external
memories). Before issuing the reboot command, an applica-
tion writes in the information memory, which is nonvola-
tile, information about the operation that has to be executed
at the next reboot by the Boot Loader. The main commands
are: Format the EM, Store and Load applications. The EM is a
Write Once Read Many (WORM) device. Thus, we wrote
our dynamic partitioning system to work with WORM
memories without knowing in advance the number and the
size of the partitions.

Each application that we store in the EM is uniquely
identified by an application ID.2 In the first partition of the
external memory, we maintain a partition table which relates

application IDs to the memory location where the corre-
sponding application is saved. The application ID is
subsequently used by the boot loader to retrieve the
application from the external FLASH, copy it to the internal
memory and load it. In detail, each entry of the partition
table contains the following pieces of information: the
application ID, the address, and the size of the application
in the EM, and a flag that indicates whether the application
passed the CRC check, i.e., whether it is complete and
correctly received (this flag is used to prevent the system
from loading incomplete or corrupted images).

4.3 Data Dissemination Protocol

Next, we present the data dissemination and error recovery
algorithms of SYNAPSE++. Our aim is to disseminate a
program image to all nodes of a WSN. Due to the inherent
memory constraints of sensor nodes, an efficient dissemina-
tion requires splitting files into B transport blocks (TBs) of
K packets each, so that they can be processed in the
available RAM. Transport blocks are then encoded through
our fountain code into K0 ¼ K þ � packets each (� is the
number of redundant packets) before being transmitted. As
its predecessors [1], [2], [4], SYNAPSE++ uses an ADV/
REQ/DATA transmission paradigm, which is coupled with
an original pipelining and coding scheme. Below, we
describe SYNAPSE++’s protocol elements.

4.3.1 ADV/REQ Handshaking

Any given node n maintains a bit-mask bðnÞ indicating the
TBs that it correctly received so far. As done in [1], [2], [4],
either periodically or whenever a new TB is received, any
node n advertises its status bðnÞ by sending an ADV. This
informs its neighbors about the TBs that this node can
provide and allows out-of-order delivery of transport
blocks within the network (this feature dramatically
improves the performance with respect to sending blocks
in order). Interested neighbors respond with an REQ
message including the smallest identifier among the blocks
they need. In case multiple REQs are received, n will serve
the one requesting the highest block (this is done to
promote advancement).

In addition to bðnÞ, every ADV also carries an indication
of the hop count of the sending node as well as the identifier
and the total size of the program image. Each node keeps
sending ADVs as in [1] (doubling the inter-ADV time
whenever a node does not receive a corresponding REQ)
until a stopping command is received from the sink node.

4.3.2 Fountain Codes

First of all, fountain code encoding is applied to each TB.
That is, given the K original packets of a given TB, FC
produces a slightly larger number of packets K0, where the
overhead � ¼ 4 is picked to have a successful recovery with
probability greater than 0.8 at the first transmission of the
TB (i.e., of these K0 packets) considering a typical packet
erasure probability p ¼ 0:1. In detail, at the receiver the
K original packets are successfully decoded with prob-
ability Psð�Þ ¼

PKþ�
�¼0 �ðK þ � � �ÞP�ðK þ �Þ, where

P�ðK þ �Þ ¼
K þ �
�

� �
p�ð1� pÞKþ���

1756 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

2. This identifier could be obtained through, e.g., a hash function,
calculated as a function of the application object’s code. This generation is
performed by the compiling system, which usually resides in a PC having
the necessary computational power.

is the probability of having � erasures over K þ � transmis-
sions. �ðxÞ returns the probability that the correct reception
of x encoded packets leads to a full rank G. An excellent
approximation for �ð�Þ can be found through numerical
simulation, as it only depends on the selected �ðdÞ. In our
protocol, each time a node n has a TB to send, it picks a
suitable random seed s and obtains the K0 encoded packets
for this TB as explained in Section 3. To achieve good
performance, the seeds have to be carefully selected as
explained in Section 5.

4.3.3 Pipelining

This technique is used to allow concurrent transmission of
the same TBs in different portions of the network. While
SYNAPSE++ also leverages this transmission paradigm, it
features a novel approach as 1) packets are encoded
through a suitable FC, 2) transmission turns among nodes
are coordinated through an original pipelining scheme
exploiting soft-TDMA schedules for improved efficiency,
and 3) pipelining and FCs are coupled through the selection
of proper seeds to encode and transmit data over
subsequent hops. In this way, SYNAPSE++ jointly performs
error correction and data forwarding.

Let us now refer to the example in Fig. 5: after a first ADV/
REQ/DATA phase for TB i from node no, using seed so and
broadcasting K0 encoded packets, we have that node n1

successfully decodes this block while nodes n2 and n3 fail.
Our previous version of SYNAPSE, in this case, would have
gone through a number of transmission rounds, sending
(from node no) additional encoded packets (incremental
redundancy) to recover from failures. Instead, SYNAPSE++
prioritizes the advancement of data with respect to local
error recovery. Accordingly, n1 occupies the channel and
enters its own ADV/REQ/DATA phase for TB i: in detail,
node n1 sends an ADV for TB i, n4 responds with an REQ and
n1 broadcasts K0 new encoded packets for TB i using a
different seed s1 6¼ so. Now, full recovery of TB i at any
unsuccessful node (in this case n2 and n3) occurs if this node
received at least K independent encoded packets out of the
2K0 transmitted (including the first transmission from no and
the second from n1). We stress that in this way we can
concurrently advance toward the next hop while recovering
the losses at the unsuccessful nodes belonging to the last

visited hop.3 A similar overhearing technique is also used
when packets are sent uncoded as in [1], [2]. However, in
SYNAPSE++ any additional linearly independent packet
increases the rank of the decoding matrix G and thus can be
used to recover a partially received block, whereas according
to plain ARQ schemes nodes need to receive the exact
packets that have been lost. The policy adopted for the
selection of the seeds is crucial to the success of this
pipelining strategy as it should maximize the probability
that, e.g., seeds so and s1 will lead to linearly independent
encoded packets. This is treated in greater detail in Section 5.

The effectiveness of the pipelining strategy can be seen
from Fig. 6, where we compare the reprogramming time of
SYNAPSE++ against that of SYNAPSE [6] (which exploits
hop-by-hop transmissions). Each point in this figure was
obtained with the event-driven simulation tool presented in
[28], averaging the results over 100 different random
topologies with size ranging from 1 to 10 hops. SYNAPSE
exploits a hop-by-hop dissemination scheme, which is
beneficial for small networks, i.e., on average up to 3 hops,
as confirmed by the analysis in Section 5.2.4 of [1]. For
increasing network size SYNAPSE++ takes advantage of its
new dissemination method and performs significantly better.

4.3.4 Synchronization and Priority

In order to reduce the number of collisions and avoid idle
times, which are typical of pure CSMA schemes, we opted for
a loosely synchronized channel access scheme, which we call
soft-TDMA (and that we use in substitution of the TinyOS
MAC). According to this technique, ADV/REQ/DATA
phases follow a specific time frame structure (hereafter
referred to as frame), see Fig. 7. Specifically, the transmission
is subdivided into three time intervals: the first, tADV , is
dedicated to the transmission of ADVs, the second, tREQ,
is for the transmission of REQs and the last, tDATA, is allotted
to DATA transmission and decoding. ADV and REQ
intervals are further subdivided into ‘ADV and ‘REQ access
slots (of duration tslot), respectively.

ROSSI ET AL.: SYNAPSE++: CODE DISSEMINATION IN WIRELESS SENSOR NETWORKS USING FOUNTAIN CODES 1757

Fig. 5. ADV/REQ/DATA handshaking example.
Fig. 6. Simulation: dissemination time of SYNAPSE and SYNAPSE++.

3. When overhearing does not lead to TB recovery, local retransmissions
are performed to recover the erroneous block. These have lower priority
with respect to other forwarding operations so as to take advantage of the
transmission of the same TB by different neighbors.

The originator of the dissemination sets the reference
time for the first frame within its first hop neighborhood. It
does so by including in its ADV the lapse of time, �tADV , to
the next REQ interval. Access slots of ADV and REQ
intervals are further subdivided into two priority levels. In
particular, the first half of their slots are assigned high
priority. Priorities are used to push newest data toward
unexplored portions of the network; our aim here is to
facilitate pipelining, thus quickly reaching a high degree of
parallelism in the data transmission. Upon successful
decoding of a new TB, a node sets its ADV priority to high.
This priority level lasts for the next time frame and will be
set back to low upon its completion.

Getting back to our example in Fig. 5, let us now consider
node n1 after the reception of the new TB i. For the sake of
illustration, we assume that this TB is the highest correctly
received by n1 (and included in its bit-mask bðn1Þ). The next
ADV interval for this node is inferred from the end of the
previous DATA transmission period and its ADV priority is
set to high. Hence, it transmits a new ADV for TB i picking
one of the high priority slots 1; 2; . . . ; ‘ADV =2 of this ADV
interval, where this selection is made using the optimal
access policy of [29] (which presents optimal slot selection
probabilities, so as to minimize the probability of collision
in the presence of multiple sending nodes). Within the same
ADV interval, the low priority node no can transmit a
further ADV exploiting slots ‘ADV =2þ 1; . . . ; ‘ADV , i.e., in
the second half of the interval (using the same slot selection
strategy). For our example, we assume that no sends a low
priority ADV. At this point, two events can occur depend-
ing on the reception status of n4:

. Case 1: n4 correctly receives the advertisement.
This node will then transmit its REQ, asking for the
last TB i and using one of the high priority slots
1; 2; . . . ; ‘REQ=2 of the next REQ interval (REQ
priority always equals the priority of the corre-
sponding ADV).

. Case 2: n4 does not receive the advertisement. In this
case n1 will not receive a response to its high priority
ADV. Thus, it can still use one of the low priority
slots ‘REQ=2þ 1; . . . ; ‘REQ of the current REQ inter-
val to respond to no’s low priority ADV. Thanks to
this fallback procedure, the current transmission
frame will not go unused when there are no nodes
providing advancement (referring to our example,
when n4 does not exist or its REQ is lost due to
channel impairments).

As above, the slot selection for REQs adopts Tay’s method
[29] for both priority cases. We shall observe that our soft-
TDMA scheme completely avoid collisions only during the
DATA phases. In fact, according to our design the first two

intervals of the time frame are accessed using slotted CSMA.
Hence, the control packets sent during these intervals may
collide. DATA packets, instead, are collision free because
only one transmitter can be selected per neighborhood
thanks to SYNAPSE++s ADV, REQ handshaking mechan-
ism. In the following, we illustrate a few last technicalities:

4.3.5 ADV/REQ Suppression

Consider a node n and let TB i be the highest TB correctly
received by this node. Upon receiving an ADV (REQ)
advertising (asking for) TB j, this node cancels its ADV
(REQ) transmission if and only if j � i (j > i) and its current
priority equals that of the received ADV (REQ).

4.3.6 Failure Management

Nodes which have not successfully decoded a given TB will
ask for the same TB in the next transmission frame.
However, they will always respond (REQ) to incoming
ADVs using low priority slots and including the residual
rank (number of additional linearly independent packets
needed for G to have full rank) of their decoding matrix for
this TB. The sender will then generate and transmit this
number of additional packets. This is done to promote data
correction through pipelining and thus limit the local
retransmissions. Besides, this quickly pushes the data
toward unexplored portions of the network.

4.3.7 Frame Synchronization

Upon the reception of the first valid ADV, a given node
knows its own hop count as well as an estimate of the frame
structure boundaries (i.e., it is synchronized at the frame level
with its neighbors). We refer to this frame synchronization as
“loose” as only those nodes within the same transmission
range must be synchronized at the frame level for correct
reception; in this case a precision of a few milliseconds
suffices (time skews are accounted for adding guard
intervals between ADV, REQ and DATA periods). However,
nodes that are more than two hops apart can tolerate larger
synchronization errors. In addition, each node adjusts its
frame level boundaries upon the reception of an ADV either
from a node closer to the originator or from a node having a
larger hop count and advertising new TBs.

4.3.8 Back-Off Policy

A node that receives no response to its ADV defers the
transmission of its next ADV according to a random timer
whose maximum value is doubled at each transmission
attempt (up to a maximum back-off time) and reset upon
the reception of an REQ.

4.3.9 Energy Conservation

Due to the imposed frame structure, each node has a good
knowledge of when data packets will be sent. This allows for
the following optimizations: 1) a node can turn off its radio,
thus conserving energy, whenever it detects the transmission
of packets belonging to a TB that is not of interest for such
node (this can be inferred from ADV and REQ periods as
well as from the first packet of the DATA phase), 2) when a
node does not detect any ADV or REQ messages it can
additionally listen to the initial portion of the DATA period.
Hence, it can still accept ongoing transmissions, in case these

1758 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

Fig. 7. ADV/REQ/DATA time frame structure.

are for missing TBs, or go to sleep otherwise. The optimiza-
tion of these sleeping modes is left for future work.

5 JOINT PIPELINING AND FOUNTAIN CODES

OPTIMIZATION

In this section, we further optimize the FC used in
SYNAPSE++ in order to enhance the performance of its
pipelining scheme. As outlined in Section 3.3, practical
implementations of FC encoders/decoders require random
number generators (RNG). The choice of the initialization
seeds for these RNGs is particularly important. In fact, the
correlation among the encoding vectors of different packets
depends on how these seeds are picked. Specifically, a
wrong selection of the seed leads to the transmission of
linearly dependent encoded packets, and this impacts the
performance in terms of decoding overhead. We remark that
an attractive property of fountain codes lies in the fact that
the coding process can be carried out without having any a
priori information about the channel error probability.
However, while this is true when packets are obtained
through an ideal random number generator, pseudorandom
number generators, due to the correlation that they
inherently introduce in the packet stream, cause the
performance of the decoding process to depend on the error
rate. Nevertheless, the desirable features of FCs should not
be altered by implementation details and the chosen seeds
must lead to low decoding overhead regardless of the
specific channel conditions.

In the following, we first describe our optimization of the
seeds for a nonzero packet error probability and then we
discuss a further optimization step to use FC in conjunction
with pipelining. Carrying out this study on real sensor
nodes would have been time prohibitive. Thus, in order to
perform a significant number of experiments and charac-
terize the performance of the seeds with high accuracy, we
exactly reproduced the selected LFSR random generator in
a simulator.

5.1 Seed Optimization against Channel Errors

For a given block length K, given the set of all possible
seeds, R, and in the absence of channel errors (p ¼ 0), we
first identified the set R0 that includes all seeds leading to a
zero decoding overhead.4 We then restricted our investiga-
tion to these seeds and characterized their performance
over noisy channels estimating the decoding overhead for
each of them. We considered independent packet losses
over an erasure channel with packet error probability p.

Fig. 8 shows results for IE½N�, where N is the number of
packets needed to successfully decode a given TB at the
receiver side, as defined in Section 3.1. The solid line denotes
the performance of the distribution selected in Section 3.2
(see Fig. 2) considering p ¼ 0 and averaging over all seeds in
R. In this case, IE½N � isNðRÞ ¼ 34:92, which is slightly higher
than that obtained for the same distribution in Section 3.2
(IE½N� ¼ 34:26), due to the nonideality of the implemented
pseudorandom generator. The dotted line shows the average
performance for the seeds in R0, referred to as NðR0Þ. The

decoding overhead for these seeds increases for increasing p,
approaching NðRÞ when p � 0:8, and this means that the
choice of the seed is of little importance when p is very large.
This behavior is expected as a large p will lead to many lost
packets thus reducing the correlation among the few packets
that are successfully delivered.

Since different seeds in R0 do behave differently, we
performed an exhaustive search over R0. We identified a
further set R1 	 R0, comprising all seeds for which IE½N � �
NðR0Þ. In principle, a different set R1 should be obtained for
each value of p, as the same seed might perform differently
for different error rates. However, we noticed that, besides a
small number of exceptions, seed behaviors were quite
uniform, i.e., seeds that perform well when p is low usually
perform well also at higher p. In other words, the ranking
among seeds in terms of decoding performance is pre-
served as p varies.

Therefore, we empirically obtained R1 for p ¼ 0:4 as
representative of all possible sets. After this, we verified
that every seed in R1 has in fact very low decoding
overhead for a wide range of channel error probabilities. In
Fig. 8, we show E½N� for the seeds in R1 and denote their
average performance by NðR1Þ. In the same figure, we also
show the performance (NðR2Þ) obtained from a third set R2,
including all seeds for which IE½N � > NðR0Þ.

5.2 Seed Selection for Pipelining

As a last optimization step, starting from set R1, we selected
a further subset R? whose seeds also work properly for
pipelining. Specifically, with reference to the scenario
depicted in Fig. 5, hop-by-hop data dissemination techni-
ques start transmitting to nodes in hop kþ 1 only when all
nodes in hop k have completely received all data blocks.
Instead, schemes using pipelining initiate the dissemination
toward hop kþ 1 as soon as the first node in hop k decodes
a valid data block (communication and synchronization
issues were already addressed in Section 4.3).

A further advantage of pipelining is the possibility of
correcting transmission errors (nodes within the current
hop) while forwarding transport blocks toward the next hop.
The key point of our seed design is that the seeds used at

ROSSI ET AL.: SYNAPSE++: CODE DISSEMINATION IN WIRELESS SENSOR NETWORKS USING FOUNTAIN CODES 1759

Fig. 8. IE½N� versus packet error probability for different seed sets.

4. For these experiments, we assumed K ¼ 32 as this value fits well our
memory requirements.

hop k and kþ 1 must be matched for this purpose. In detail,
the transmission at hop k will be done using seed sk.
Referring to Fig. 5, imagine that nodes n2 and n3 are not able
to decode the block while n1 can correctly decode it. Now,
according to the pipelining philosophy, n1 will immediately
transmit the block toward the next hop kþ 1, using seed skþ1

(instead of explicitly retransmitting data for the failed nodes
n2 and n3). If skþ1 is carefully selected, unsuccessful nodes at
hop k could correct their losses thanks to the data being
forwarded toward hop kþ 1, i.e., in our example, n2 and n3

would simply append the new received packets (encoded
using skþ1) to their decoding matrix until it is invertible.

Following the above rationale, set R1 has been exten-
sively tested by quantifying the affinity of seed pairs
ðsk; skþ1Þ used over hops k and kþ 1. In particular,
8 sk; skþ1 2 R1, with sk 6¼ skþ1, we determined the recovery
probability for a given node within hop k as follows:

. The transmission process starts at hop k sending a
transport block of K0 packets using seed sk.

. We considered only those cases where at least one
node within hop kþ 1 successfully decodes the TB
and forward it using seed skþ1 (K0 packets encoded
using skþ1).

. Conditioned on this, we thus computed the prob-
ability that any other node within hop kþ 1 can
successfully decode the TB only using the two
transmissions above (2K0 packets). This includes the
nodes that were successful during the first transmis-
sion from hop k as well as those that recover the block
by overhearing the second transmission.

We experimentally noticed that the behavior of seed pairs in
terms of the above recovery probability only marginally
depends on p. Also, only a few seeds in R1 showed a
significant performance loss when coupled with other seeds,
while the large majority of them led to good multihop
performance. Thus, a fourth seed set R? 	 R1 was obtained
by eliminating those few bad seeds from R1. Set R? is the
final seed set that we use at every node to decode TBs. Note
that all seeds in R? lead to good recovery performance when
used in combination over subsequent hops.

Examples of the gains achievable introducing this further
optimization step are shown in Figs. 9 and 10, where we
show IE½N� (vertical bars indicate 95 percent confidence
intervals), i.e., the average number of packets after which
we can recover a TB, and the recovery probability forR? and
another set R3 having the same cardinality and containing
seeds randomly picked inR. For these graphs, we considered
K0 ¼ K þ � ¼ 36. It should be observed that the optimiza-
tions carried out in this section have led to large improve-
ments for both performance measures. For the seed selection
policy, we opted for a very simple but effective approach. For
any TB, all potential forwarders keep track of the seeds
currently used within their neighborhood, storing them in
the new set R?

used. Whenever a TB has to be sent, the sender
randomly picks a seed in R? nR?

used. R?
used is emptied when

the node operates on a new TB or R? ¼ R?
used.

We conclude this section with some considerations on the
cardinality of the different sets that were identified. Working
with words of 16 bits means that R contains 216 � 1 ¼ 65;535
seeds. For computational reasons, we restricted our study to
5,000 seeds, randomly picked in this set. About 10 percent of
them, i.e., slightly more than 500 seeds, belong to R0. The
cardinality ofR1 is jR1j ¼ 50 andR? has 35 elements meaning
that, on average and for the considered RNG, only 1 every
150 seeds possesses all the required properties.

6 EXPERIMENTAL RESULTS

In this section, we present the results of the experimental
comparison between SYNAPSE++ and Deluge in a real
multihop deployment. Aiming at a fair comparison between
the two schemes we proceeded as follows:

. at the beginning of the experiments we programmed
each sensor node with an application. For different
experiments the only characteristic that we change
in this initial application is the MAC protocol used.
We tested the behavior of the dissemination applica-
tions with a low power listening (LPL) MAC [30] for
three different configurations: 1) LPL disabled (i.e.,

1760 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

Fig. 9. IE½N� versus packet error probability using seeds belonging to R?

and R3 for K0 ¼ 36. Fig. 10. Recovery probability versus p using seeds belonging to R? and

R3 for K0 ¼ 36.

radio always on), 2) LPL enabled with duty cycles of
7 percent, and 3) of 2.5 percent,

. during each experiment we disseminate the same
application that was originally loaded on the motes,
with the same MAC policy. We repeated this
dissemination procedure several times,

. we measured the following performance metrics:
1) dissemination time, time elapsed between the
instant when a new dissemination command is
issued by the sink node to the instant when the
program image is correctly received by all nodes,
and 2) programming time, time elapsed between the
instant when a new dissemination command is
issued at the sink node to the instant when the
program image is correctly running at all nodes.

Exactly the same amount of data (i.e., a program image of
11.5 kB) was transmitted by the two dissemination proto-
cols in all experiments.

6.1 WSN Deployment

We deployed 42 sensor nodes on the first floor of a three
stories industrial building, including offices and commercial
spaces. Our sensors spanned an area of about 15
 46 square
meters. We placed a sensor in each office, up to nine within
larger commercial spaces, and we positioned a few further
sensors on stairs and hallways to keep the structure
connected. Overall, this led to a network topology with
maximum path lengths of 14 hops. Fig. 11 shows the layout

of our deployment: the eastmost node has been chosen as
the dissemination initiator (referred to as sink).

The hardware platform consists of TmoteSky wireless
nodes (same hardware as Crossbow TelosB [31] sensor
nodes). These sensors are equipped with an IEEE 802.15.4
compliant radio transceiver (a ChipCon CC2420 radio chip
working in the 2.4-GHz frequency band), an MSP430 16 bit
microcontroller with 10 kB on chip RAM, 48 kB FLASH/
ROM and 1,024 kB external FLASH memory. The radio chip
has a nominal data rate of 250 kB/s. For SYNAPSE++, we
split the application into blocks of K ¼ 32 packets, having
data and header fields of 25 and 15 bytes, respectively, and
considered transport blocks of K0 ¼ K þ � ¼ 36 packets,
where � ¼ 4 is the redundancy per block that we added to
cope with channel errors. ADV and REQ messages take 25
and 14 bytes, respectively. For the packet structure, we
opted for the standard AM message of TinyOS, adding
4 bytes for block id and random seed to the usual 11 bytes of
header. We remark that both Deluge and SYNAPSE++ were
designed to be 100 percent reliable so that all nodes in the
network correctly receive every byte of the transmitted
image, and this has been confirmed by all of our
experiments. Thus, in this section, we only look at the
dissemination time and number of packets sent.

6.2 Experimental Results

Fig. 12 shows the dissemination (DISS) and programming
time (PROG) for SYNAPSE++ and Deluge for the described

ROSSI ET AL.: SYNAPSE++: CODE DISSEMINATION IN WIRELESS SENSOR NETWORKS USING FOUNTAIN CODES 1761

Fig. 11. Map of the WSN deployment.

Fig. 12. Dissemination (DISS) and programming time (PROG) as a function of the hop count distance. (a) Duty cycle 100 percent. (b) Duty cycle
7 percent. (c) Duty cycle 2.5 percent.

WSN deployment. Each point in the graphs represents the
performance of a single node; its abscissa is the maximum
hop count distance from the sink during a run of the
dissemination experiment, averaged over 100 runs (the same
number of experiments was considered for the remaining
results in this section). The dissemination time of SY-
NAPSE++ is the sum of two contributions: 1) reload

SYNAPSE++, the time required to distribute a reboot
command to all nodes and subsequently load SYNAPSE++;
2) disseminate application, the time necessary to dis-
seminate the new program image to all nodes. Note that the
initial command distribution protocol must be integrated in
the original application running on nodes and depends on
the specific implementation of it. For our experiments, we
used a simple flooding: even though more complicated and
reliable approaches are possible, this technique always
reached all nodes.

In Fig. 13, we show the time required to distribute the
reload command to all sensors. The distribution of any
other command when SYNAPSE++ is running takes the
same amount of time as that in Fig. 13 for a duty cycle of
100 percent. Upon the completion of the command distribu-
tion phase the nodes reboot with SYNAPSE++, and this takes
a constant time, which is the same for SYNAPSE++ and
Deluge and is approximatively equal for all nodes. The
second contribution to the dissemination time is the time
taken for the actual dissemination of the code image, which is
achieved using the algorithm in Section 4.3.

From Figs. 12a, 12b and 12c we observe that the
dissemination time of Deluge is dramatically influenced
by the MAC protocol implemented in the application
originally loaded on the motes. This is because Deluge
runs in parallel with the application and exploits the same
LPL MAC to disseminate the program image. The LPL
technique works fine with low-rate traffic shape, which
might be the case for the regular behavior of the application
but not for the intensive transmission activity required by
the dissemination phase. Specifically, with short duty cycles
longer preambles must be used by the LPL MAC wakeup
procedure upon the transmission of control and data

packets, which become very frequent during the dissemina-
tion operation. The programming time of Deluge is given by
the dissemination time plus a constant additional delay due
to the reboot of the nodes.5 We note that the dissemination
time of SYNAPSE++ scales better as a function of the hop
count distance and is not impacted by the duty cycle of the
preloaded LPL MAC. In fact, according to SYNAPSE++’s
design (see Section 4.1) the preloaded application and its
MAC are replaced with SYNAPSE++ before initiating the
dissemination procedure. Hence, the actual reprogramming
phase is performed using SYNAPSE++’s soft-TDMA (see
Section 4.3).

The programming time of SYNAPSE++ is obtained
through a back-propagation scheme where nodes recur-
sively inform their parents about their programming status.
In detail, the reprogramming procedure ends at a given
node whenever this node as well as all its neighbors with
higher hop count have received the application. In this case,
this node will send an ADV with a completion bit set and,
to speed up the notification process, these final ADVs are
sent using a simple CSMA. Note that soft-TDMA and the
related slot structure is not applied here as in this last phase
no further data are transmitted.

Points in Figs. 14 and 15 represent the average
performance of specific nodes over all experiments,
whereas lines correspond to the average performance over
all nodes and experiments. In Fig. 14, we show the number
of data packets sent during a reprogramming operation. For
this metric, SYNAPSE++ attains similar performance with
respect to Deluge. The points having hop count zero
represent the data packets transmitted by the sink. These
values are considerably higher than the remaining ones as
the sink must transmit all transport blocks, whereas other
sensor nodes take turns in transmitting, thus effectively
sharing the traffic load.

Fig. 15 refers to the number of control packets sent
during a dissemination. SYNAPSE++ performs slightly
better than Deluge in terms of control overhead. Again,

1762 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

Fig. 13. Command distribution time: time taken to distribute the reload
SYNAPSE++ command to all nodes for different values of the duty cycle

(DC) at the MAC.

Fig. 14. Data packets transmitted as a function of the hop count

distance.

5. The results for Deluge have been obtained using the disseminate and
reboot -dr command.

the rightmost node in the figure has the largest performance
gap; this is due to its poor link conditions and to the fact
that SYNAPSE++ is more efficient in this case. Also, for
SYNAPSE++ this metric has a smaller dispersion around its
mean. The results in Figs. 14 and 15 were obtained for a
duty cycle of 100 percent. We however obtained very
similar results for other duty cycles. In fact, SYNAPSE++ is
not impacted by the application’s MAC, whereas for Deluge
the LPL MAC only leads to longer transmission phases,
without changing the protocol dynamics.

Finally, Fig. 16 shows the recovery probability during
pipelining, calculated as the fraction of times a node did not
successfully receive the first transmission of a transport
block and could successfully recover it in the next dis-
semination phase overhearing some other node’s transmis-
sion.6 If this recovery does not succeed, the node in question
will explicitly ask for the retransmission of the missing
blocks. Our pipelining was however designed in order to
take the maximum advantage of overheard transmissions, so
as to avoid further explicit retransmission phases. From the
experimental results of Fig. 16, we see that overhearing is
effective for 50 percent to 70 percent of the dissemination
sessions, while only the node at the last hop (the rightmost
point in the plot) has poor performance. This is due to the
fact that this node could not overhear forwarded packets as it
did not have neighbors at the same hop level. These results
confirm the validity of SYNAPSE++’s pipelining scheme.

In conclusion, we observe that SYNAPSE++ effectively
exploits pipelining in multihop environments, where the
soft-TDMA strategy together with FCs give some advan-
tages in terms of dissemination time and control overhead.
Also, SYNAPSE++’s design allows us to fully decouple the
reprogramming application from the existing software on
the nodes. This, as shown by our results for the low-power
listening MAC, prevents the performance of SYNAPSE++
from getting impacted by a suboptimal or faulty design of
application components.

7 USER EXPERIENCE AND CONCLUSIONS

We now conclude the paper by discussing our experience at
the IBM T.J. Watson research facility in New York, where
we used SYNAPSE++ as a support tool for the SEAIT
project [32]. SEAIT is a WSN system designed specifically to
address the requirements of visibility and monitoring of the
railroad system. A testbed for SEAIT was set up by
deploying a number of sensor boards on the rooftop of
the IBM facility, with distances among sensors comparable
to those at which nodes will be likely to work in the actual
deployment on trains. This testbed consists of a network
covering a quarter of a mile with a maximum path length of
seven hops. As expected, a number of problems that did not
arise during the indoor experiments arose in the outdoor
deployment and required several code updates. SY-
NAPSE++ greatly simplified the reprogramming proce-
dure, reducing the time from the 2 hours required to
manually reprogram the nodes to the few minutes required
to distribute the application wirelessly. The SEAIT proto-
type was implemented in TinyOS 1. Although SYNAPSE++
is written in TinyOS 2, the two applications could coexist
without any problems. As per our discussion in Section 4.2,
SEAIT did not require any change but the implementation
of a reboot function.

The experience at IBM research allowed us to tune
SYNAPSE++ so that the application is now robust to several
hardware problems. For example, CRC fields were added to
each transport block to identify erroneous data due to faulty
portions of the FLASH memory. The feedback that we
obtained from this first use of SYNAPSE++ in support to
another research team is extremely positive. The system
addresses their requirements, showing good stability and
usability, and physical access to the testbed is now only
needed to turn off the nodes or to change their batteries.

To conclude, decoupling the reprogramming software
from the application has been shown to be beneficial as it
shields the reprogramming procedure from side effects due
to application components, such as aggressive sleeping
behavior or faulty MAC design. Also, this design permits
the dissemination of applications even when they cannot
run concurrently with the reprogramming software due to,

ROSSI ET AL.: SYNAPSE++: CODE DISSEMINATION IN WIRELESS SENSOR NETWORKS USING FOUNTAIN CODES 1763

Fig. 15. Control packets transmitted as a function of the hop count

distance.

6. Note that the recovery probability as defined in Section 5 is higher than
that of Fig. 16 as it also includes those nodes that received the block
correctly during its first transmission.

Fig. 16. Effectiveness of overhearing.

e.g., copyright, code or memory issues. Overall, from our

performance evaluation as well as from the above experi-

ence we can conclude that SYNAPSE++ is effective in

providing fast and reliable dissemination of code images in

multihop WSNs.

ACKNOWLEDGMENTS

This material is based upon work partially supported by the

European Commission under contract number INFSO-ICT-

215923 (SENSEI), by the Italian Foundation Cassa di

Risparmio di Padova e Rovigo (CARIPARO), by the Italian

Ministry of University and Research under the International

FIRB program, grant no. RBIN047MH9, and by the Swedish

Agency for Innovation Systems (VINNOVA). A previous

version of this paper was presented at IEEE SECON 2008.

REFERENCES

[1] J.W. Hui and D. Culler, “The Dynamic Behavior of a Data
Dissemination Protocol for Network Programming at Scale,” Proc.
ACM SenSys, Nov. 2004.

[2] S.S. Kulkarni and L. Wang, “MNP: Multihop Network Repro-
gramming Service for Sensor Networks,” Proc. IEEE Int’l Conf.
Distributed Computing Systems (ICDCS), June 2005.

[3] M.D. Krasniewski, R.K. Panta, S. Bagchi, C.-L. Yang, and W.J.
Chappell, “Energy-Efficient, On-Demand Reprogramming of
Large-Scale Sensor Networks,” ACM Trans. Sensor Networks,
vol. 4, no. 1, pp. 1-38, 2008.

[4] R.K. Panta, I. Khalil, and S. Bagchi, “Stream: Low Overhead
Wireless Reprogramming for Sensor Networks,” Proc. IEEE
INFOCOM, May 2007.

[5] J. Nonnenmacher, E.W. Biersack, and D. Towsley, “Parity-Based
Loss Recovery for Reliable Multicast Transmission,” IEEE/ACM
Trans. Networking, vol. 6, no. 4, pp. 349-361, Aug. 1998.

[6] M. Rossi, G. Zanca, L. Stabellini, R. Crepaldi, A.F. Harris III, and
M. Zorzi, “SYNAPSE: A Network Reprogramming Protocol for
Wireless Sensor Networks Using Fountain Codes,” Proc. IEEE
Comm. Soc. Conf. Sensor, Mesh and Ad Hoc Comm. and Networks
(SECON), June 2008.

[7] Q. Wang, Y. Zhu, and L. Cheng, “Reprogramming Wireless
Sensor Networks: Challenges and Approaches,” IEEE Network,
vol. 20, no. 3, pp. 48-55, May/June 2006.

[8] J. Jeong, S. Kim, and A. Broad, “Network Reprogramming,”
http://www.tinyos.net/tinyos-1.x/doc, Aug. 2003.

[9] T. Stathopoulos, J. Heidemann, and D. Estrin, “A Remote Code
Update Mechanism for Wireless Sensor Networks,” CENS
Technical Report 30, 2003.

[10] V. Naik, A. Arora, P. Sinha, and H. Zhang, “Sprinkler: A Reliable
and Energy Efficient Data Dissemination Service for Wireless
Embedded Devices,” Proc. IEEE Real-Time Systems Symp. (RTSS),
Dec. 2005.

[11] S.-J. Park, R. Sivakumar, I. Akyildiz, and R. Vedantham,
“GARUDA: Achieving Effective Reliability for Downstream
Communication in Wireless Sensor Networks,” IEEE Trans. Mobile
Computing, vol. 7, no. 2, pp. 214-230, Feb. 2008.

[12] L. Huang and S. Setia, “CORD: Energy-Efficient Reliable Bulk
Data Dissemination in Sensor Networks,” Proc. IEEE INFOCOM,
Apr. 2008.

[13] C.-J.M. Liang, R. Mus�aloiu-Elefteri, and A. Terzis, “Typhoon: A
Reliable Data Dissemination Protocol for Wireless Sensor Net-
works,” Proc. European Conf. Wireless Sensor Networks (EWSN), Jan.
2008.

[14] A. Hagedorn, D. Starobinski, and A. Trachtenberg, “Rateless
Deluge: Over-the-Air Programming of Wireless Sensor Networks
Using Random Linear Codes,” Proc. IEEE Int’l Conf. Information
Processing in Sensor Networks (IPSN), Apr. 2008.

[15] I.-H. Hou, Y.-E. Tsai, T.F. Abdelzaher, and I. Gupta, “AdapCode:
Adaptive Network Coding for Code Updates in Wireless Sensor
Networks,” Proc. IEEE INFOCOM, Apr. 2008.

[16] D.J.C. MacKay, “Fountain Codes,” IEE Proc. Comm, vol. 152, no. 6,
pp. 1062-1068, Dec. 2005.

[17] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-Time
Dynamic Linking for Reprogramming Wireless Sensor Net-
works,” Proc. ACM SenSys, Nov. 2006.

[18] “Contiki: The Operating System for Embedded Smart Ob-
jects—The Internet of Things,” http://www.sics.se/contiki, Mar.
2009.

[19] P.J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh,
and K. Rothermel, “FlexCup: A Flexible and Efficient Code
Update Mechanism for Sensor Networks,” Proc. European Conf.
Wireless Sensor Networks (EWSN), Feb. 2006.

[20] N. Tsiftes, A. Dunkels, and T. Voigt, “Efficient Sensor Network
Reprogramming through Compression of Executable Modules,”
Proc. IEEE Comm. Soc. Conf. Sensor, Mesh and Ad Hoc Comm. and
Networks (SECON), June 2008.

[21] M. Luby, “LT Codes,” Proc. 43rd Ann. IEEE Symp. Foundations of
Computer Science, Nov. 2002.

[22] D.J.C. MacKay, Information Theory, Inference, and Learning Algo-
rithms. Cambridge Univ. Press, 2003.

[23] M. Rossi, M. Zorzi, and F.H. Fitzek, “Link Layer Algorithms for
Efficient Multicast Service Provisioning in 3G Cellular Systems,”
Proc. IEEE Global Comm. Conf. (Globecom), Nov. 2004.

[24] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and
V. Stemann, “Practical Loss-Resilient Codes,” Proc. 29th Ann.
ACM Symp. Theory of Computing, May 1997.

[25] E. Hyytiä, T. Tirronen, and J. Virtamo, “Optimizing the Degree
Distribution of LT Codes with an Importance Sampling Ap-
proach,” Proc. Sixth Int’l Workshop Rare Event Simulation (RESIM
’06), Oct. 2006.

[26] D.E. Knuth, The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, third ed. Addison-Wesley, 1997.

[27] “TinyOS: An Open Source OS for the Networked Sensor Regime,”
http://www.tinyos.net, Mar. 2009.

[28] L. Badia, N. Bui, M. Miozzo, M. Rossi, and M. Zorzi, “On the
Exploitation of User Aggregation Strategies in Heterogeneous
Wireless Networks,” Proc. IEEE Int’l Workshop Computer-Aided
Modeling, Analysis and Design of Comm. Links and Networks
(CAMAD), June 2006.

[29] Y.C. Tay, K. Jamieson, and H. Balakrishnan, “Collision-Minimiz-
ing CSMA and Its Applications to Wireless Sensor Networks,”
IEEE J. Selected Areas in Comm., vol. 22, no. 6, pp. 1048-1057, Aug.
2004.

[30] J. Polastre, J.L. Hill, and D.E. Culler, “Versatile Low Power Media
Access for Wireless Sensor Networks,” Proc. ACM SenSys, Nov.
2004.

[31] “Crossbow,” http://www.xbow.com, Mar. 2009.
[32] J.M. Reason and R. Crepaldi, “Ambient Intelligence for Freight

Railroads,” IBM J. Research and Development, vol. 53, no. 3, May/
June 2009.

Michele Rossi received the laurea degree (with
honors) in electrical engineering and the PhD
degree in information engineering from the
University of Ferrara in 2000 and 2004, respec-
tively. From March 2000 to October 2005, he
has been a research fellow in the Department of
Engineering, University of Ferrara. During 2003,
he was on leave at the Center for Wireless
Communications (CWC) at the University of
California San Diego (UCSD), where he per-

formed research on wireless sensor networks. In November 2005, he
joined the Department of Information Engineering, University of
Padova, Italy, where he is currently an assistant professor. He is
currently part of the EU-funded SENSEI project and of the WISE-WAI
project, both on wireless sensor networks. His research interests are
centered around the dissemination of data in distributed ad hoc and
wireless sensor networks, including integrated MAC/routing schemes,
data dissemination via network coding, the application of compressive
sensing techniques for the reconstruction of signals in wireless sensor
networks and cooperative routing policies for ad hoc networks. He is a
member of the IEEE.

1764 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

Nicola Bui received the laurea degree in
information engineering in 2003 and the specia-
listic laurea degree in telecommunication en-
gineering in 2005, both from the University of
Ferrara. He is currently a general manager at
Patavina Technologies, a spin-off of the Uni-
versity of Padova, operating in the ICT field. He
has been a research fellow with Consorzio
Ferrara Ricerche (CFR), Italy, and with the
Department of Information Engineering (DEI),

University of Padova, for four years. During this period, he has been
involved in three European funded projects: Ambient Networks on
heterogeneous networks and e-SENSE and SENSEI on wireless sensor
networks. His main research interests include the design, simulation,
and experimentation of protocols and applications for wireless sensor
networks and embedded systems.

Giovanni Zanca received the laurea degree in
telecommunication engineering from the Univer-
sity of Padova in 2007. He is currently with the
Department of Information Engineering, Univer-
sity of Padova, Italy. His main research interests
include the design and the performance evalua-
tion of localization systems for ad hoc networks
and the implementation of algorithms on wire-
less sensor networks.

Luca Stabellini received the BS degree in
electrical engineering and the MS degree in
electrical and telecommunication engineering
(both with honors) from the University of Ferrara,
Italy, in 2004 and 2006, respectively. From
March to September 2006, he completed a six-
month research internship at Thales Research
and Technology, Palaiseau, France. Since
October 2006, he has been with the Radio
Communication Systems Department at the

Royal Institute of Technology (KTH), Stockholm, Sweden, working
toward the PhD degree. His current research interests include the
design of interference mitigation and interference avoidance techniques
for wireless sensor networks with special emphasis on energy-efficient
and simple dynamic spectrum access schemes.

Riccardo Crepaldi received the MS (laurea)
degree in telecommunications engineering from
the University of Padova, Italy, in 2006. He is
currently working toward the PhD degree in the
Computer Science Department, University of
Illinois at Urbana-Champaign, under the super-
vision of Professor Robin Kravets. After his
graduation, he was a research scientist in the
Signet Group, University of Padova, until 2007.
He was engaged in research on wireless sensor

networks and designed and deployed a WSN testbed and developed
management tools for it. He also worked on the design and performance
analysis of routing and localization algorithms for WSNs. The scope of
his research involves systems design and management and service
discovery for wireless sensor networks and delay-tolerant networks. He
is a student member of the IEEE.

Michele Zorzi received the laurea degree and
the PhD degree in electrical engineering from
the University of Padova, Italy, in 1990 and
1994, respectively. During the academic year
1992-1993, he was on leave from the University
of California, San Diego (UCSD), attending
graduate courses and doing research on multiple
access in mobile radio networks. In 1993, he
joined the faculty of the Dipartimento di Elet-
tronica e Informazione, Politecnico di Milano,

Italy. After spending three years with the Center for Wireless Commu-
nications at UCSD, in 1998, he joined the School of Engineering,
University of Ferrara, Italy, and in 2003, he joined the Department of
Information Engineering at the University of Padova, Italy, where he is
currently a professor. His current research interests include performance
evaluation in mobile communications systems, random access in mobile
radio networks, ad hoc and sensor networks, energy-constrained
communication protocols, and cognitive radio and networks. He was
the editor-in-chief of the IEEE Wireless Communications Magazine from
2003 to 2005, is currently the editor-in-chief of the IEEE Transactions on
Communications, serves on the steering committee of the IEEE
Transactions on Mobile Computing, and serves on the editorial boards
of the Wiley Journal of Wireless Communications and Mobile Computing
and the ACM/URSI/Kluwer Journal of Wireless Networks. He was also a
guest editor for special issues of the IEEE Personal Communications
Magazine (energy management in personal communications systems)
and the IEEE Journal on Selected Areas in Communications (multimedia
network radios). He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ROSSI ET AL.: SYNAPSE++: CODE DISSEMINATION IN WIRELESS SENSOR NETWORKS USING FOUNTAIN CODES 1765

