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Abstract— Network coding is a technique which is particularly Il. RELATED WORK

suitable for the dissemination of data in distributed ad hoc networks . -
The definition of a mathematical model that describes the interac- Several studies have been carried out to understand the dy-

tions among nodes and, in particular, their relationship in terms namics of RLNC in distributed networks. As an example, an
of buffer subspaces is still an open and challenging problem. The analysis related to our own can be found in [3] and [4], where
contribution of this paper is an analysis of the relationship between_ the authors exploit the properties of the subspaces spdnyntx
the network topology and the subspace overlap among nodes. This cg|lected information vectors to identify the topologisatucture

analysis can be used to establish criteria for the design of packet : :
combination policies in diverse networking scenarios. Differently of the underlying network graph. In [4] the subspace obsiema

from previous studies, we will explicitly take the overlap among IS further used for topology management, to avoid bottlksec
subspaces into account through a framework comprising network and clustering in network-coded peer-to-peer systems5]rit[

with fixed as well as mobile nodes. has been shown that coding generally provides benefits mnster
of data persistence. Nevertheless, always combining tlieeen
. INTRODUCTION available information when sending a new data packet might

fici q deli is of high i for di leave coded packets undecodable (e.g., after a networkdgil
Efficient data delivery Is of very high importance for diSy, ;s requcing the data recovery performance. Referengefs]2
tributed wireless networking. Random Linear Network Cedin, 4 [7] address this issue by proposing code degree distritsu
(RLNC). [1]. IS-a techmque.that IS partlcularly sungbl_e faret that maximize data persistence. [2] presents a new class of
dissemination of data as it can be used in a distributed es called Growth Codes, that have been generalized in [6]
_compllete_lyi] unsynchromlzv_ad hmagnera Furthermore, fnitwor_k f These papers demonstrate that optimal combination psléitst,
ing algorithms can exploit the broadcast nature of the w8l o 0 hough the analysis is based on the assumption that the

medium to boost performancg. The random mixing of diﬁereﬂjiformation subspaces available at the nodes are unctadela
data flows makes data dissemination robust, which is pzatigu This is true for information exchange at random encounters

important in, e.g., mobile ad hoc and sensor networks whede n among nodes or for very high mobility. However, it does not

failures are common. Even though previous work dealt with oy, capture protocol behavior in realistic networks (esSaly in
theoretical and practical SChemeS fpr RLNC, it is still ‘“"*’f" the presence of moderate mobility or static networks), asvah
how packets should be combined in order to get the highgsti7) | this last paper, the authors show that networkshvait
benefits in terms of throughput, delay, energy efficiencyl @a qnnectivity graph that changes significantly between agbent
persistence [2] (th_e amount of |nf0rma_1t|on t.hat can be dedOd’[ransmissions are only representative of a small classatistie
at the data gat_herlng point(s) at any given tlrr_1e). ) networks. These models do not respect the dynamics of the
A mathematl_cal model that dgscr!bes the interactions amofdderlying connectivity structure of many networks and thiay
nodes performing network coding is a powerful tool from @grigysly impact the performance of the techniques of [2e T
protocol-design perspective. However, defining such a MoQgging rules proposed in [7] are based on heuristics; our aim

is a challenging problem. With RLNC, a network node sengs this paper is to go beyond this by analyzing buffer dynamic
out random vectors from the information space spanned by tt}Pl‘?ough a mathematical model.

packets received thus far. However, it is also possible éater

packets from only a subspace of the whole information space IIl. THEORETICAL MODELS

available at that node. The dimension of this subspace has aConsider a network withV nodes performing data dissem-
impact on the encoding and decoding complexity as well asation with network coding over a finite fiel®f,. At node i,
the efficiency of the data dissemination process. Our aino is the incoming packets containing the information vectoceneed
describe the RLNC transmission dynamics so as to predith, wip to timet form a matrix Y. Let (V') denote the subspace
sufficient accuracy, the evolution of the disseminatiorcpss. To spanned by the rows df;’. With RLNC, at transmission time
do this, we model the data delivery using combinatoric ttlség the node sends an encoded packet containing a linear cotiobina
allow us to track the overlap between the sub-spaces spayned! = mY; where m is a local encoding vector of random

the buffers of different users. coefficients inF, [8]. (For ease of notation, we will omit index
The paper is organized as follows. In section Il we overviewin the remainder of the paper.)
the related work. In section Il we illustrate two matherati Instead, the node may also send a random vector from a

models to describe the buffer overlap among nodes perfgrmisubspacel’; C (Y;), where I'; is the space spanned by a
RLNC and we establish a relation between buffer overlap anahdom subset of the rows &f,. We denote the dimension of
the probability that the transmission of a new packet, codéuis subspacelim(T';) by transmission degree d, i.e., d is the
using RLNC, provides innovative information at the receita number of rows of the matri¥; that must be combined to
sections IV and V we present simulation scenarios and sgsuform the outgoing packet. Clearly, the largér the higher the
respectively. Section VI concludes the paper. probability that this packet is not contained in the infotima



space of a neighbor and thus provides innovative informatica packet outside the set of common packets. Hence, it is easy t
Once the matrixy; has full rank, decoding can be done througkee that:

Gaussian elimination. However, this is not necessary dutfie < Ying )
data dissemination process to form linear combinations.fmhin d

contribution of this paper is an analysis of the relatiopsirnong Yimj(d) =1- v ’ 2)
the network topology, the subspace overlap between any two d

given nodes, and the generation of innovative packets, asowe

explain. Where( Jc\if ) is the binomial coefficient.

A. Innovative Information

Consider an all-to-all communication scenario, where ea
node has a packet to send and is interested in collecting
packets from all other nodes in the network. Let nodeansmit
a packet to nodg from subspacé’; of dimensiond. This packet
is innovative if the vector contained therein and the rows
the matrixY; at the destination are linearly independent.
denote the dimension of nodés spacedim((Y;)) by ~; and
the dimension of the intersection of the spadasa((Y;) N (Y;)) N
by ~inj. Given the transmission degree= dim(T';) and the P = Zu(vI%,d)ij(d) 3
dimension of the intersection;, we would like to characterize =0
the probability that a random vector y; is innovative for node j. where N is the number of source packets (which equals the

Let ¢;—;(d) be the probability that the packet = mI; number of nodes in the network in our model), ang|v;, d)
generated from a-dimensional subspade; of the information s the probability that the size of the buffer overlapnisi.e.,
space of nodé is innovative for nodgj, i.e., Yinj = 7, for given~; and transmission degre& In this paper

Vi (d) = Py ¢ (Y2) 01 (Y)). u(-) is obtained by simulation.
1;—;(d) can be computed in different manners, depending cIID’h Buffer Overlap

the ‘assumptions that we make on the content of the encodingduations (1),(2) and (3) relate the buffer overlap to theoin

vectors when the two nodes meet. In what follows, we discu¥diiveé packet generation probabili#§;. A quantity of interest,
two possible models. that is also needed for the calculation Bf is the dimension of

the overlapy;n;. In what follows, we characterizg;~; in terms

Model A. If we assume that the rows of the matricésandY; of the fraction of the overlap between the matrices. Firsalbf
of the two nodes are elements picked uniformly at random frowe definem 2 max{0,v; +v; — N} and M 2 min{~;,v;}.

Innovative packet generation probability. Using the total prob-
ility theorem, we can compute the probability that a tnaitter
e with a matrix of ranky;, linearly combiningd packets
m its own matrix, generates an innovative packet witlpees
to those available at the receiver. We call this probabilitg
novative packet generation probability, denoted byP;. For both
fhodel A and model B, we have:

the whole N-dimensional spac&”, we have: Thus, we necessarily have:
i (d) qrini —1 grinil —1 grini—dtl 1 m < ying <M. (4)
il - @i—1 ¢'=1 " @ =1 nfact, ifv,4+~; < N, the minimum value that;; can take i)

d j do not overlap). Conversely, f; +~; > IV the minimum value
, (1) thatv;n; can take isy; ++; — N (i.e., the subspaces generated by
[ le } the buffers of nodesand; must overlap of at least this quantity).
q For M, the maximum value thaf;~; can take isy; (resp.~;)
N if the subspace generated by the buffer of nedeesp. ) is a
where[ d } is the Gaussian, or g-binomial, coefficient. subset of the subspace generated by the buffer of riodesp.
a i). Thus, from (4)y;n; can be expressed as:
However, in practice, the elements of the matrices avalabl A
at the nodes are not simply random elements of the complete Ying = m 4+ a(M —m) , (5)
information space. At the beginning of the disseminatiorcpss,
the information to be disseminated is not mixed at all butyon
contains the nodes’ own information. As the disseminati
process proceeds, the information gets more and more mix
This model do?s alsp POt .weII capture thg fact Fhat. nodes M the overlap between the two buffers is maximized.
perform Gaussian elimination during the disseminatiorcess. A ,
In the extreme case where all information can always be d=tod When M = m, « :AO if v; +~; < N, whereas ify; +
(and thus the rows in the coding matrices at the nodes contain > N we defineaw = 1. Note that the previous definition
all 'zeros’ with a single 'one’ at the corresponding colunwg of « is consistent. From (5), whef/ = m the value of« is
can reduce the buffer overlap problem to a classical balts amndetermined. However, ag is always greater than or equal to
bins exercise. one, for M = m we can only have the following two cases: 1)
when~; +v; < N from the definition ofm, we getm = 0.
Model B. In detail, we neglect that the matricgs andY; (bins) If m = 0, from the definition ofM/ we have that\/ = m if
may contain coded packets and assume all matrix rows (bals) = 0, which implies v;n; = 0. Hence, definingnr = 0 is
are decodedy;n; is thus the number of packets in common iorrect as the two buffers have nothing in common in this .case
the buffers of nodes and j. The probability that; sends an 2) Along the same liney; +~; > N impliesm = v; +v; — N.
innovative packet tg corresponds to the probability thapicks As M = min{~;,v;}, if M = ~; from M = m we havey; = N,

[ Ying } (i.e., in case the subspaces generated by the buffers o$ hade
q

= 1-—

‘Nherea guantifies the relative overlap between the two buffers.
t is worth noting that by definitiod < o < 1. If « = 0 we have
tvin; = m, i.e., the overlap between the two buffers is the
nimum possible. Conversely, if = 1 it holds thaty;n; = M
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Fig. 2. Results for RNC for a mobile network with low mobility @V = 50 nodes (scenario S2).

otherwise ifM = v; we havey; = N. Thus,v;n; = M = m node at any time instant is independent from the neighbors of
and it is correct to definec = 1. In section V, we characterizethe same node at any other instant, i.e., the node’s locdgion
« by simulation for four selected network scenarios. uncorrelated in time.

IV. SIMULATION DESCRIPTION V. RESULTS AND COMMENTS

We consider four all-to-all communication scenarios: Stgra Figs. 1, 2, 3 and 4 show simulation results for random static
dom static network, S2) a low mobility network, S3) a moderanetworks (S1) and low (S2), moderate mobility (S3) and high
mobility network, and S4) a mobile network with high moljilit mobility scenarios (S4), respectively. For the sake of abdidy,
Each of the N nodes has a packet to send and is interestae@ plot only results for transmission degrekes4, 16, 32 and
in collecting the packets of all other nodes in the network. 150. The plots on the left show the buffer overlap,; and the
the simulations, all nodes perform Gaussian eliminatioenupfraction of buffer overlapa, whereas those on the right show
packet reception to ensure immediate decoding of the redeithe empirical P;, that was measured by simulation as the ratio
information. We vary the dimension of the subspace from twhibetween the number of innovative packets delivered andotiaé t
packets are created (i.e., the transmission deghedrom 1 number of transmissions (for given transmitter buffer raamd
to N. For the static scenario we consider topologies whetansmission degree). In Figs. 1(a), 2(a), 3(a) and 4(a) s a
N = 50 nodes are placed uniformly at random (ensuring thatot, by means of dotted lines, upper and lower boundsyfey,
full connectivity of the network is always guaranteed), lwitobtained averaging the values &f that were measured in the
average node density df neighbors per node. In low andsimulations with transmission degrdeand averaging those of
moderate mobility scenarios, nodes additionally move |&ling m with transmission degre&0 for the upper and the lower
to a random waypoint mobility model with speeds uniformlypound, respectively. It is worth observing that the gap leetw
distributed in the intervalR, 4] and[8, 16] m/s (low and moderate the two bounds narrows along the dissemination process (i.e
mobility respectively). In the high mobility scenario (@lsalled with increasing buffer rank). This is in line with the faciath as
random encounter mobility scenario, see [2]), they move in a packets are disseminated, the buffer rank increases forodks
completely uncorrelated fashion and their speed is so hagh, and, in turn, the probability of providing innovative infoation
regard the network size, that the set of neighbors of anyngivies reduced.
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Fig. 3. Results for RNC for a mobile network with medium mobilégd N = 50 nodes (scenario S3).

451 | —@—degree 1
= 30 —w—degree 4
= 337 | -A—degree 16
Q o5 0O degree 32
—— degree 50

o
©

0.8

0.7

510 15 20 25 30 35 40 45 50 06

Transmitter buffer rank,y, 05

0.4

0.3

—@—degree 1
0.2 | =y~ degree 4
—A— degree 16
0.1 | @ degree 32
—@— degree 50

1 5 100 15 20

# innovative packets/ # transmission, PI

35 40 45 50

25 30

20 25 3

Transmitter buffer rank,yi Transmitter buffer rank,yi
(a) Buffer overlapyin; (top) and and fraction of overlap (bottom) (b) Innovative Packet Generation Probabilify;

Fig. 4. Results for RNC for a mobile network with high mobilityitw N = 50 nodes (scenario S4).

For random static networks (Fig. 1) we see that the buffeubspace may further decrease the probability of innawativ
overlap does not change, given a certain buffer rank of thormation. The gain given by the low mobility in terms &%
transmitter, when using different transmission degreés1f)). (Fig. 2(b)) is evident when compared to the random statie cas
Random networks where nodes communicate with the same feig. 1(b), due mainly to the mobility.

neighbors (i.e. sparse networks) make the diversity ofmédion In Fig. 3 the higher mobility, compared to the low mobility

in the neighborhoods low. Therefore, a high transmissiar@® scenario, increases the gap in terms of buffer overlap letwe

is necessary to achieve even a moderate probability of @geh@ oy and high transmission degrees, as expected. Mobilitgshe

innovative packets, as shown in Fig. 1(b). particularly the high transmission degrees to get closehw® t

maximum probability of sending innovative informatiorg.ithe

W nefits of full RLNC are well combined with moderate molgilit

(S3). This is particularly evident from the graph showingAt

first, « increases since information is mainly exchanged between
ghbors. In the second half of the dissemination process,

becomes very small as the overlap is close to the lower bound

In Fig. 2 we show the same performance metrics for the |
mobility scenario (S2). Here we get a first insight into thadfés
of RLNC combined with mobility. The buffer overlap (Fig. 2Ja
for low transmission degrees gets close to the upper bo
aforementioned, while for high transmission degrees amgh hi
transmitter buffer ranks it gets close to the lower boundm€o
pared to the static case, mobility lets nodes mix the infdiona ] ] ]
stored in their buffers and the diversity of informationriseses !N Fig. 4 we plot the results obtained in a random encounter
over the network as soon as new neighbors are encounte®gnario (S4). As expected, with high mobility the fractioh
Obviously, the lower the transmission degree, the higher tpverlap o deg:reases_ even further with respect to the other Fhree
probability that a packet is generated from a subspace dyire£2ses, thus increasing;. We observe that both random coding
available at some of the neighbors and is thus non-innaati@nd mobility help the mixing of information in the network
A low transmission degree also increases the probabilaytte through content diversification.
packet can be decoded immediately in case it is innovatige. A Finally, Fig. 5 shows the innovative packet generation prob
we have seen from the different probabilities of innovaiegs bility P; computed in conjunction with Model B (Eq. (2) and
associated with Model A and B, sending from a fully decodelg. (3)) for the four scenarios. In all four cases, Model B
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captures extremely well what is observed in the actual sitraris  to the dissemination performance. This behavior is weltwaal
(compared to the plots showinf; in Fig. 1, 2, 3 and 4). This by the models we proposed in the paper. The analysis that we
confirms the validity of our model based on the probabilitiggresented can be used in a more comprehensive framework with
of overlapv;~; and packet innovativeness_.;(d). The reasons the objective of designing practical combination rules RiNC

for this good performance are twofold. As previously memtid in distributed and mobile networks. For future work, we e
(section IIl), the information gets more and more mixed cady to assess the validity of our model over a wider range of ne¢wo
the dissemination process proceeds. In many cases, thenameizes and topologies.
of time in which the information is poorly mixed or not mixed a
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