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Abstract— Network coding is a technique which is particularly
suitable for the dissemination of data in distributed ad hoc networks.
The definition of a mathematical model that describes the interac-
tions among nodes and, in particular, their relationship in terms
of buffer subspaces is still an open and challenging problem. The
contribution of this paper is an analysis of the relationship between
the network topology and the subspace overlap among nodes. This
analysis can be used to establish criteria for the design of packet
combination policies in diverse networking scenarios. Differently
from previous studies, we will explicitly take the overlap among
subspaces into account through a framework comprising networks
with fixed as well as mobile nodes.

I. I NTRODUCTION

Efficient data delivery is of very high importance for dis-
tributed wireless networking. Random Linear Network Coding
(RLNC) [1] is a technique that is particularly suitable for the
dissemination of data as it can be used in a distributed and
completely unsynchronized manner. Furthermore, network cod-
ing algorithms can exploit the broadcast nature of the wireless
medium to boost performance. The random mixing of different
data flows makes data dissemination robust, which is particularly
important in, e.g., mobile ad hoc and sensor networks where node
failures are common. Even though previous work dealt with both
theoretical and practical schemes for RLNC, it is still unclear
how packets should be combined in order to get the highest
benefits in terms of throughput, delay, energy efficiency, and data
persistence [2] (the amount of information that can be decoded
at the data gathering point(s) at any given time).

A mathematical model that describes the interactions among
nodes performing network coding is a powerful tool from a
protocol-design perspective. However, defining such a model
is a challenging problem. With RLNC, a network node sends
out random vectors from the information space spanned by the
packets received thus far. However, it is also possible to create
packets from only a subspace of the whole information space
available at that node. The dimension of this subspace has an
impact on the encoding and decoding complexity as well as
the efficiency of the data dissemination process. Our aim is to
describe the RLNC transmission dynamics so as to predict, with
sufficient accuracy, the evolution of the dissemination process. To
do this, we model the data delivery using combinatoric toolsthat
allow us to track the overlap between the sub-spaces spannedby
the buffers of different users.

The paper is organized as follows. In section II we overview
the related work. In section III we illustrate two mathematical
models to describe the buffer overlap among nodes performing
RLNC and we establish a relation between buffer overlap and
the probability that the transmission of a new packet, coded
using RLNC, provides innovative information at the receiver. In
sections IV and V we present simulation scenarios and results,
respectively. Section VI concludes the paper.

II. RELATED WORK

Several studies have been carried out to understand the dy-
namics of RLNC in distributed networks. As an example, an
analysis related to our own can be found in [3] and [4], where
the authors exploit the properties of the subspaces spannedby the
collected information vectors to identify the topologicalstructure
of the underlying network graph. In [4] the subspace observation
is further used for topology management, to avoid bottlenecks
and clustering in network-coded peer-to-peer systems. In [5] it
has been shown that coding generally provides benefits in terms
of data persistence. Nevertheless, always combining the entire
available information when sending a new data packet might
leave coded packets undecodable (e.g., after a network failure),
thus reducing the data recovery performance. References [2], [6]
and [7] address this issue by proposing code degree distributions
that maximize data persistence. [2] presents a new class of
codes called Growth Codes, that have been generalized in [6].
These papers demonstrate that optimal combination policies exist,
even though the analysis is based on the assumption that the
information subspaces available at the nodes are uncorrelated.
This is true for information exchange at random encounters
among nodes or for very high mobility. However, it does not
well capture protocol behavior in realistic networks (especially in
the presence of moderate mobility or static networks), as shown
in [7]. In this last paper, the authors show that networks with a
connectivity graph that changes significantly between subsequent
transmissions are only representative of a small class of realistic
networks. These models do not respect the dynamics of the
underlying connectivity structure of many networks and this may
seriously impact the performance of the techniques of [2]. The
coding rules proposed in [7] are based on heuristics; our aim
in this paper is to go beyond this by analyzing buffer dynamics
through a mathematical model.

III. T HEORETICAL MODELS

Consider a network withN nodes performing data dissem-
ination with network coding over a finite fieldFq. At node i,
the incoming packets containing the information vectors received
up to time t form a matrixY t

i . Let 〈Y t
i 〉 denote the subspace

spanned by the rows ofY t
i . With RLNC, at transmission timet,

the node sends an encoded packet containing a linear combination
yt

i = mY t
i where m is a local encoding vector of random

coefficients inFq [8]. (For ease of notation, we will omit index
t in the remainder of the paper.)

Instead, the node may also send a random vector from a
subspaceΓi ⊆ 〈Yi〉, where Γi is the space spanned by a
random subset of the rows ofYi. We denote the dimension of
this subspacedim(Γi) by transmission degree d, i.e., d is the
number of rows of the matrixYi that must be combined to
form the outgoing packet. Clearly, the largerd, the higher the
probability that this packet is not contained in the information



space of a neighbor and thus provides innovative information.
Once the matrixYi has full rank, decoding can be done through
Gaussian elimination. However, this is not necessary during the
data dissemination process to form linear combinations. The main
contribution of this paper is an analysis of the relationship among
the network topology, the subspace overlap between any two
given nodes, and the generation of innovative packets, as wenow
explain.

A. Innovative Information

Consider an all-to-all communication scenario, where each
node has a packet to send and is interested in collecting the
packets from all other nodes in the network. Let nodei transmit
a packet to nodej from subspaceΓi of dimensiond. This packet
is innovative if the vector contained therein and the rows of
the matrix Yj at the destination are linearly independent. We
denote the dimension of nodei’s spacedim(〈Yi〉) by γi and
the dimension of the intersection of the spacesdim(〈Yi〉 ∩ 〈Yj〉)
by γi∩j . Given the transmission degreed = dim(Γi) and the
dimension of the intersectionγi∩j , we would like to characterize
the probability that a random vector yi is innovative for node j.

Let ψi→j(d) be the probability that the packetyi = mΓi

generated from ad-dimensional subspaceΓi of the information
space of nodei is innovative for nodej, i.e.,

ψi→j(d) = P (yi /∈ 〈Yi〉 ∩ 〈Yj〉).

ψi→j(d) can be computed in different manners, depending on
the assumptions that we make on the content of the encoding
vectors when the two nodes meet. In what follows, we discuss
two possible models.

Model A. If we assume that the rows of the matricesYi andYj

of the two nodes are elements picked uniformly at random from
the wholeN -dimensional spaceFN

q , we have:

ψi→j(d) = 1 −
qγi∩j − 1

qγi − 1
·
qγi∩j−1 − 1

qγi−1 − 1
· . . . ·

qγi∩j−d+1 − 1

qγi−d+1 − 1

= 1 −

[

γi∩j

d

]

q
[

γi

d

]

q

, (1)

where

[

N
d

]

q

is the Gaussian, or q-binomial, coefficient.

However, in practice, the elements of the matrices available
at the nodes are not simply random elements of the complete
information space. At the beginning of the dissemination process,
the information to be disseminated is not mixed at all but only
contains the nodes’ own information. As the dissemination
process proceeds, the information gets more and more mixed.
This model does also not well capture the fact that nodes may
perform Gaussian elimination during the dissemination process.
In the extreme case where all information can always be decoded
(and thus the rows in the coding matrices at the nodes contain
all ’zeros’ with a single ’one’ at the corresponding column)we
can reduce the buffer overlap problem to a classical balls and
bins exercise.

Model B. In detail, we neglect that the matricesYi andYj (bins)
may contain coded packets and assume all matrix rows (balls)
are decoded.γi∩j is thus the number of packets in common in
the buffers of nodesi and j. The probability thati sends an
innovative packet toj corresponds to the probability thati picks

a packet outside the set of common packets. Hence, it is easy to
see that:

ψi→j(d) = 1 −

(

γi∩j

d

)

(

γi

d

) , (2)

where

(

N
d

)

is the binomial coefficient.

Innovative packet generation probability. Using the total prob-
ability theorem, we can compute the probability that a transmitter
node with a matrix of rankγi, linearly combiningd packets
from its own matrix, generates an innovative packet with respect
to those available at the receiver. We call this probabilitythe
innovative packet generation probability, denoted byPI . For both
model A and model B, we have:

PI =

N
∑

γ=0

µ(γ|γi, d)ψi→j(d) (3)

where N is the number of source packets (which equals the
number of nodes in the network in our model), andµ(γ|γi, d)
is the probability that the size of the buffer overlap isγ, i.e.,
γi∩j = γ, for given γi and transmission degreed. In this paper
µ(·) is obtained by simulation.

B. Buffer Overlap

Equations (1),(2) and (3) relate the buffer overlap to the inno-
vative packet generation probabilityPI . A quantity of interest,
that is also needed for the calculation ofPI is the dimension of
the overlapγi∩j . In what follows, we characterizeγi∩j in terms
of the fraction of the overlap between the matrices. First ofall,

we definem
△
= max{0, γi + γj − N} andM

△
= min{γi, γj}.

Thus, we necessarily have:

m ≤ γi∩j ≤M . (4)

In fact, if γi+γj ≤ N , the minimum value thatγi∩j can take is0
(i.e., in case the subspaces generated by the buffers of nodes i and
j do not overlap). Conversely, ifγi +γj > N the minimum value
thatγi∩j can take isγi +γj −N (i.e., the subspaces generated by
the buffers of nodesi andj must overlap of at least this quantity).
For M , the maximum value thatγi∩j can take isγi (resp.γj)
if the subspace generated by the buffer of nodei (resp.j) is a
subset of the subspace generated by the buffer of nodej (resp.
i). Thus, from (4)γi∩j can be expressed as:

γi∩j
△
= m+ α(M −m) , (5)

whereα quantifies the relative overlap between the two buffers.
It is worth noting that by definition0 ≤ α ≤ 1. If α = 0 we have
that γi∩j = m, i.e., the overlap between the two buffers is the
minimum possible. Conversely, ifα = 1 it holds thatγi∩j = M
and the overlap between the two buffers is maximized.

When M = m, α
△
= 0 if γi + γj ≤ N , whereas ifγi +

γj > N we defineα
△
= 1. Note that the previous definition

of α is consistent. From (5), whenM = m the value ofα is
undetermined. However, asγi is always greater than or equal to
one, forM = m we can only have the following two cases: 1)
when γi + γj ≤ N from the definition ofm, we getm = 0.
If m = 0, from the definition ofM we have thatM = m if
γj = 0, which implies γi∩j = 0. Hence, definingα = 0 is
correct as the two buffers have nothing in common in this case.
2) Along the same line,γi + γj > N impliesm = γi + γj −N .
AsM = min{γj , γi}, if M = γj fromM = m we haveγi = N ,
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(a) Buffer overlapγi∩j (top) and fraction of overlapα (bottom)
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(b) Innovative Packet Generation Probability,PI

Fig. 1. Results for RNC in random static networks withN = 50 nodes (scenario S1).
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(a) Buffer overlapγi∩j (top) and fraction of overlapα (bottom)
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(b) Innovative Packet Generation Probability,PI

Fig. 2. Results for RNC for a mobile network with low mobility and N = 50 nodes (scenario S2).

otherwise ifM = γi we haveγj = N . Thus,γi∩j = M = m
and it is correct to defineα = 1. In section V, we characterize
α by simulation for four selected network scenarios.

IV. SIMULATION DESCRIPTION

We consider four all-to-all communication scenarios: S1) aran-
dom static network, S2) a low mobility network, S3) a moderate
mobility network, and S4) a mobile network with high mobility.
Each of theN nodes has a packet to send and is interested
in collecting the packets of all other nodes in the network. In
the simulations, all nodes perform Gaussian elimination upon
packet reception to ensure immediate decoding of the received
information. We vary the dimension of the subspace from which
packets are created (i.e., the transmission degreed) from 1
to N . For the static scenario we consider topologies where
N = 50 nodes are placed uniformly at random (ensuring that
full connectivity of the network is always guaranteed), with
average node density of8 neighbors per node. In low and
moderate mobility scenarios, nodes additionally move according
to a random waypoint mobility model with speeds uniformly
distributed in the intervals[2, 4] and[8, 16] m/s (low and moderate
mobility respectively). In the high mobility scenario (also called
random encounter mobility scenario, see [2]), they move in a
completely uncorrelated fashion and their speed is so high,as
regard the network size, that the set of neighbors of any given

node at any time instant is independent from the neighbors of
the same node at any other instant, i.e., the node’s locationis
uncorrelated in time.

V. RESULTS AND COMMENTS

Figs. 1, 2, 3 and 4 show simulation results for random static
networks (S1) and low (S2), moderate mobility (S3) and high
mobility scenarios (S4), respectively. For the sake of readability,
we plot only results for transmission degrees1, 4, 16, 32 and
50. The plots on the left show the buffer overlapγi∩j and the
fraction of buffer overlapα, whereas those on the right show
the empiricalPI , that was measured by simulation as the ratio
between the number of innovative packets delivered and the total
number of transmissions (for given transmitter buffer rankand
transmission degree). In Figs. 1(a), 2(a), 3(a) and 4(a) we also
plot, by means of dotted lines, upper and lower bounds forγi∩j ,
obtained averaging the values ofM that were measured in the
simulations with transmission degree1 and averaging those of
m with transmission degree50 for the upper and the lower
bound, respectively. It is worth observing that the gap between
the two bounds narrows along the dissemination process (i.e.,
with increasing buffer rank). This is in line with the fact that, as
packets are disseminated, the buffer rank increases for allnodes
and, in turn, the probability of providing innovative information
is reduced.
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(a) Buffer overlapγi∩j (top) and fraction of overlapα (bottom)
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(b) Innovative Packet Generation Probability,PI

Fig. 3. Results for RNC for a mobile network with medium mobilityandN = 50 nodes (scenario S3).
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(b) Innovative Packet Generation Probability,PI

Fig. 4. Results for RNC for a mobile network with high mobility with N = 50 nodes (scenario S4).

For random static networks (Fig. 1) we see that the buffer
overlap does not change, given a certain buffer rank of the
transmitter, when using different transmission degrees (Fig.1(a)).
Random networks where nodes communicate with the same few
neighbors (i.e. sparse networks) make the diversity of information
in the neighborhoods low. Therefore, a high transmission degree
is necessary to achieve even a moderate probability of exchanging
innovative packets, as shown in Fig. 1(b).

In Fig. 2 we show the same performance metrics for the low
mobility scenario (S2). Here we get a first insight into the benefits
of RLNC combined with mobility. The buffer overlap (Fig. 2(a))
for low transmission degrees gets close to the upper bound
aforementioned, while for high transmission degrees and high
transmitter buffer ranks it gets close to the lower bound. Com-
pared to the static case, mobility lets nodes mix the information
stored in their buffers and the diversity of information increases
over the network as soon as new neighbors are encountered.
Obviously, the lower the transmission degree, the higher the
probability that a packet is generated from a subspace already
available at some of the neighbors and is thus non-innovative.
A low transmission degree also increases the probability that the
packet can be decoded immediately in case it is innovative. As
we have seen from the different probabilities of innovativeness
associated with Model A and B, sending from a fully decoded

subspace may further decrease the probability of innovative
information. The gain given by the low mobility in terms ofPI

(Fig. 2(b)) is evident when compared to the random static case
Fig. 1(b), due mainly to the mobility.

In Fig. 3 the higher mobility, compared to the low mobility
scenario, increases the gap in terms of buffer overlap between
low and high transmission degrees, as expected. Mobility helps
particularly the high transmission degrees to get close to the
maximum probability of sending innovative information, i.e. the
benefits of full RLNC are well combined with moderate mobility
(S3). This is particularly evident from the graph showingα. At
first, α increases since information is mainly exchanged between
neighbors. In the second half of the dissemination process,α
becomes very small as the overlap is close to the lower bound
m.

In Fig. 4 we plot the results obtained in a random encounter
scenario (S4). As expected, with high mobility the fractionof
overlapα decreases even further with respect to the other three
cases, thus increasingPI . We observe that both random coding
and mobility help the mixing of information in the network
through content diversification.

Finally, Fig. 5 shows the innovative packet generation proba-
bility PI computed in conjunction with Model B (Eq. (2) and
Eq. (3)) for the four scenarios. In all four cases, Model B
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(a) Scenario S1,N = 50 nodes
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(b) Scenario S2,N = 50 nodes
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(c) Scenario S3,N = 50 nodes
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(d) Scenario S4,N = 50 nodes

Fig. 5. Theoretical Innovative Packet Generation Probability, PI .

captures extremely well what is observed in the actual simulations
(compared to the plots showingPI in Fig. 1, 2, 3 and 4). This
confirms the validity of our model based on the probabilities
of overlapγi∩j and packet innovativenessψi→j(d). The reasons
for this good performance are twofold. As previously mentioned
(section III), the information gets more and more mixed onlyas
the dissemination process proceeds. In many cases, the amount
of time in which the information is poorly mixed or not mixed at
all is not negligible (with respect to the total dissemination time).
Furthermore, nodes perform Gaussian elimination iteratively (i.e.
after each received packet). Because of both of these aspects, the
uniformity assumption that we discussed above in model A does
not hold and the results of model B are closest to what we obtain
in our simulations.

VI. CONCLUSIONS

Given a network with nodes performing random linear network
coding, this paper analyzed the relationship among the network
topology, the subspace overlap between any two given nodes,and
the generation of innovative packets. We proposed a framework
to describe and understand this complex relationship. As the
node mobility increases, the impact of transmission degreeon the
overlap between the subspaces increases as well. Node mobility
helps the dissemination process in that packets are more likely
to be innovative. Here, a transmission degree larger than 25%
of the total number of source packets does not significantly add

to the dissemination performance. This behavior is well captured
by the models we proposed in the paper. The analysis that we
presented can be used in a more comprehensive framework with
the objective of designing practical combination rules forRLNC
in distributed and mobile networks. For future work, we intend
to assess the validity of our model over a wider range of network
sizes and topologies.
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