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Abstract—This paper explores hybrid ARQ policies based on
Fountain Codes for the transmission of multicast messages in un-
derwater channels. These rateless codes are considered because of
two nice properties, namely, they are computationally lightweight
and do not require to know the channel erasure probabilities
at the receivers prior to transmission. In this paper, these codes
are used together with a Stop and Wait ARQ to enhance the
performance of broadcast communications. First, we present a
dynamic programming model for the characterization of optimal
broadcasting policies. The derived broadcasting rules are then
compared against plain ARQ schemes via Monte-Carlo simulation.

Our results show that digital fountain codes are a promising
technique for the transmission over underwater channels as their
performance, in terms of delay, reliability and energy efficiency,
clearly dominates that of plain ARQ solutions. This paper is a
preliminary study on the topic and encourages us towards the
design of practical HARQ protocols for the underwater medium.

Index Terms—Underwater acoustic networks, broadcast, foun-
tain codes, hybrid ARQ, optimal transmission policy.

I. INTRODUCTION

Underwater acoustic sensor networks (UWASNs) are becom-

ing increasingly popular as a research area in telecommunica-

tions due to the many constraints that a transmission protocol

has to face in this environment. Specifically, sufficiently long

communication ranges and reliability are currently possible

through the use of acoustic waves. However, the propagation of

sound underwater incurs extremely long delays and only allows

limited bit rates. These facts need to be taken into account in

the design of any communication scheme, especially when the

network operates according to the ad hoc paradigm.

Research on networking protocols for UWASNs can be

considered in its infancy. Previous work was done regarding

MAC protocols [1]–[3] and some preliminary studies [4], [5]

provide solutions for routing. There is, however, room for

further work in terms of analysis and protocol design. In fact,

the underwater channel has peculiar characteristics which entail

the re-design or, in some cases, the invention of completely

new solutions. Moreover, fundamental tradeoffs involving the

use of transmission power, available bandwidth within channel

access as well as the use of retransmissions and forward error
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correction (FEC) at the link layer are often unexplored by the

related literature. Along these lines, in this paper we look into

techniques for reliable broadcasting in underwater networks.

This is a fundamental service which received little attention to

date, as the only available study to the best of our knowledge

consists of the practical schemes in [6].

In this work we apply a new paradigm to underwater

broadcasting, incorporating effective coding techniques such

as the recently proposed fountain codes [7] into Automatic

Repeat reQuest (ARQ) error recovery. Our main objective is

to limit, as much as possible, the number of transmissions to

reliably disseminate a message to a number of nodes. This

is particularly critical in UWASNs, due to the high cost of

transmissions [8]. In this paper, our hybrid ARQ (HARQ)

solution is first modeled using dynamic programming [9]. This

analysis is subsequently used to obtain optimal retransmission

policies under maximum delay constraints. Optimal HARQ is

finally compared with plain ARQ to measure the performance

improvements which are achievable under the assumption of

ideal channel access. Nevertheless, our analysis as well as the

obtained results are general and can be used, in future research,

for the design of practical broadcasting schemes.

The paper is structured as follows. Section II presents a

review of the related work in the field of network protocol

design for UWASNs. In Section III we describe the underwater

channel and review a model for the calculation of packet error

probabilities according to channel and transmission parameters.

Section IV introduces the fountain codes we use in this paper.

In Section V we detail our mathematical framework, through

which we obtain optimal error recovery policies for fountain-

based HARQ for broadcasting in underwater channels. In

Section VI simulation results are shown to demonstrate the

effectiveness of these HARQ schemes, their superiority with

respect to plain ARQ, as well as relevant tradeoffs. Finally,

Section VII concludes the paper.

II. RELATED WORK

The use of acoustics for underwater communication has

received increased interest in recent years. While the main use

of acoustic waves is still sonar detection and ranging, as well as

telemetry [10], relatively recent efforts have proven that reliable



links can be set up in water, using signal processing techniques

that provide good communication efficiency or speed [11]–[14].

There are still many open issues in building underwater

acoustic networks [15]. Most of the research work done so

far focused on the design of MAC protocols. A discussion of

deterministic multiple access schemes for underwater networks

was presented in [16]. A more comprehensive comparison of

such schemes in clustered environments has been more recently

carried out in [17]. Other protocols have been more specifically

tailored to the underwater acoustic channel features. For exam-

ple, Slotted FAMA [18] focuses on collision avoidance. It sets

up shared synchronization among the sensors, whereby the time

is divided into slots sufficiently long to accommodate for the

maximum round-trip time in the network. Transmissions are

preceded by an RTS/CTS handshake, and may take place only

at the beginning of a slot. A number of protocols followed [1]–

[3], [19]. PCAP focuses on collision avoidance by making the

duration of handshakes predictable; this allows the transmitter

to carry out other tasks while waiting for the receiver to reply.

In [1] collision control is sought instead of avoidance, mainly

through the exchange of signaling messages prior to data trans-

mission. The protocol in [1] cannot avoid collisions completely.

However, the reduced length of the waiting times ensures

a globally greater throughput, outperforming Slotted FAMA.

Moreover, there is no need to maintain node synchronization.

UWAN–MAC [2] is designed to save energy through very low

duty cycles, and focuses on collision avoidance through some

sort of adaptive TDMA. Time synchronization with neighbors

is achieved through the transmission of special packets. HELLO

packets are used to recover from synchronization errors, such as

waking up and hearing no transmission by the intended sender.

The authors in [20] argue that the difference between transmit

and receive power can be exploited in underwater networks and

discuss how to manage idle time in light of this. The conclusion

is that near-optimal energy performance can be reached if ultra-

low power transducer wakeup modes could be implemented. On

a similar line of thought, Tone-Lohi [3] tries to avoid collisions

by sending very short busy tones, that could be heard by other

nodes during idle channel monitoring. Optimal packet sizes for

ARQ protocols as well as different variants of Stop and Wait

ARQ (i.e., operating over single vs. multiple channels) were

investigated in [21]. The tradeoffs discussed in that paper are

key to the design of any reliable network protocol in UWANs.

Research on more complex network protocols for, e.g.,

routing or broadcasting is very recent. We describe below

the few research efforts in this sense. We observe that most

of the literature is focused on the adaptation of terrestrial

radio protocols to the underwater environment. Segmented Data

Reliable Transport (SDRT) [4] employs FEC to guarantee error

protection. Each node encodes and forwards data continuously

using a simplified version of Tornado codes, until some positive

feedback is received. To avoid wasting too much energy,

packet transmissions are “windowed:” the packets inside the

window are transmitted at full rate, whereas a lower rate is

used for those outside the window. Each receiver must decode

the whole block of data before transmitting again. In [5],

the authors deploy a framework for addressing delay-sensitive

and -insensitive applications, involving Reed-Solomon packet

coding and scheduling of packets according to their delay

requirements. The focus of the investigation is on the impact of

the long delays and stronger attenuation of the acoustic channel

on packet routing. The variation of the available bandwidth with

distance is taken into account in [22], where the authors find an

optimal transmission distance in terms of energy consumption

for line and three-dimensional topologies.

In this paper we continue the line of research on networking

protocols for UWANs by studying HARQ schemes for broad-

casting in underwater channels. To the best of our knowledge

the only previous paper dealing with this problem is [6].

The most advanced protocol in that paper has Forward Error

Correction capability, as we assume here. However, the scope

and the approach of [6] are complementary to those of the

present paper. First, rather than devising a practical protocol, as

the authors do in [6], we focus on the theoretical gains that are

achievable through the use of coding and ARQ. Moreover, we

model in detail an important class of codes (namely, fountain

codes) that were not considered in [6]. The work we present

here highlights tradeoffs and potential gains which can be

exploited in the proposal of new practical schemes.

Differently from [5], we use fountain codes as they allow for

a lightweight implementation of encoder and decoder. In fact,

low computational complexity is key for unmanned, battery

operated underwater sensors. We also observe that fountain

codes are rateless, which means that the optimal amount of

redundancy to generate and send for recovery can be decided

through online algorithms. This is very important, especially

given the high communication cost, in terms of power and

delay, in underwater acoustic channels.

III. CHANNEL MODEL

The physics of acoustic propagation must be taken into

account for a proper design of underwater communication

networks. Acoustic waves have a peculiar propagation be-

havior [23]. First of all, they propagate at a slow speed

c ≈ 1500m/s, which is five orders of magnitude smaller than

radio propagation in the air. The propagation speed actually

changes with the depth, temperature, and salinity of the water,

but we will consider it fixed for simplicity.

The most unusual feature of the underwater acoustic channel

is the dependence between bandwidth and transmission dis-

tance [24]. More precisely, the available bandwidth shrinks

for increasing distances due to a superposition of frequency-

dependent effects related to attenuation and noise. We explain

this starting with Urick’s model for the attenuation incurred by

a tone at frequency f as a function of the distance d [23]:

A(d, f) = dka(f)d . (1)

k is the spreading coefficient, and models the geometry of the

propagation. If the propagation is perfectly spherical (such as in

deep water where a wave finds no boundaries until after several

kilometers), k = 2. Conversely, if the propagation is perfectly

cylindrical (such as in very shallow water), k = 1. Typically,



k = 1.5 is chosen to represent a mixed propagation scenario. It

is observed that k is the counterpart of the attenuation exponent

in the radio path loss model. Finally, the factor a(f) in (1)

is the absorption loss, and models the conversion of acoustic

pressure into heat due to the resonance with certain ions present

in the water. This factor can be approximated by Thorp’s

formula [25]:

A(f) =
0.11f2

1 + f2
+

44f2

4100 + f2
+ 2.75 · 10−4f2 + 0.003 , (2)

where A(f) = 10 log10 a(f). Equation (2) returns a(f) in

dB/km for f in kHz. From the above equations, we observe

that the attenuation increases with frequency and that the

dependence on distance is much stronger than in radio channels,

due to the exponential term a(f)d in (1).

The noise power spectral density (psd) depends on the

frequency as well, being composed of four main contributions:

turbulence (subscript t), shipping (s) and other human activities,

wind and waves (w), and thermal noise in the receiver circuitry

(th). They can be modeled as follows:

Nt(f) = 17 − 30 log(f)

Ns(f) = 40 + 20(s− 0.5) + 26 log(f) − 60 log(f + 0.03)

Nw(f) = 50 + 7.5
√
w + 20 log(f) − 40 log(f + 0.4)

Nth(f) = −15 + 20 log(f) , (3)

where Nx(f) stays for 10 log10Nx(f), whereas s is the ship-

ping factor, representing the intensity of shipping activities on

the surface of the water, and has values ranging between 0 and

1. The factor w is the wind speed in m/s. The total noise psd

is N(f) = Nt(f) + Ns(f) + Nw(f) + Nth(f). The different

components impact the noise psd at different frequencies.

We are now ready to define the average SNR of a tone

transmitted at a frequency f and traveling a distance d as [24]

SNR(d, f) =
PT/A(d, f)

N(f)∆f
, (4)

where PT is the transmit power and N(f) is the noise power

spectral density (assumed constant in a narrow band ∆f
around f ). In (4), the factor 1/A(d, f)N(f), is the frequency-

dependent term. Since A(d, f) increases with frequency while

N(f) decreases at least to a certain point, the product between

the two has a maximum for some frequency f0. This maximum

has minimal combined attenuation and noise effects (i.e., it is

the best frequency to use for transmission).

Figure 1 shows a number of concave grey lines that represent

the factor [A(d, f)N(f)]−1 for varying d from 10m to 100 km.

Each line corresponds to a different distance; some relevant

curves are plotted for illustration. The upper and lower bounds

of the available bandwidth B(d) are shown by means of two

black lines. B(d) is derived around f0 according to the −3 dB
definition, i.e., B(d) = {f : SNR(d, f) > SNR(d, f0)/2}. No-

tably, the available bandwidth shrinks for increasing distance

(i.e., by spanning the black lines from top to bottom). This

is different from what happens in radio and must be carefully

accounted for in the design of network protocols for UWASNs.

For example, performing a few long-range hops in a multi-hop
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Fig. 1. Frequency-dependent part of the SNR for an acoustic tone transmitted
underwater. Two black lines represent the lower and upper limit of the available
transmit bandwidth B(d). Grey lines represent the [A(d, f)N(f)]−1 factor for
different distances.

path would require to transmit at a very high power (because

of the large attenuation) and at a low bit rate (because of

the small bandwidth), thus increasing the energy consumption

considerably.

We now derive the channel effects over a signal with a certain

spectrum S(f). Assume for simplicity that this spectrum is flat,

i.e., S(f) = PT/B(d). The SNR in this case is [24]

SNR (d,B(d)) =

P

B(d)

∫

B(d)

A−1(d, f) df

∫

B(d)

N(f) df

. (5)

Due to the one-to-one relationship between d and B(d), all

integrals in (5) are determined when d is fixed.

Given the above characterization, let p be the probability

of success for a packet containing b bits. According to (5),

and assuming the use of a BPSK modulation with independent

channel errors on the b transmitted symbols, when the distance

between sender and receiver is d we have

p =

(

1 − 1

2
erfc

√

SNR(d,B(d))

)b

. (6)

This formula gives the BPSK packet error rate assuming

additive white Gaussian noise. Although the noise is non-

white [24], see (3), when the signal bandwidth is sufficiently

small, one can assume that the power spectral density of the

noise is almost constant. In these conditions, expression (6)

holds as an approximation. The SNR is defined as that of an

equivalent AWGN channel as in (5) [24].

IV. INTRODUCTION TO FOUNTAIN CODES

Digital Fountain Codes [7] are high performance codes based

on sparse bipartite graphs. These codes are rateless, which

means that the amount of redundancy is not fixed prior to

transmission but can be rather adjusted on the fly until full re-

covery. There is no theoretical limit to the number of redundant



packets that can be transmitted. These codes are proven to be

asymptotically near-optimal for every erasure channel and very

efficient as the size of the message to transmit grows. Also, they

operate on packet units by means of simple XOR operations,

which allows for extremely efficient implementations. This

makes these codes considerably faster than, e.g., classical Reed

Solomon codes. Consider a set of K (source) packets, each

having the same length of L bits. The encoding procedure

works as follows:

1) To create an encoded packet tn, randomly pick a degree

dn from a given degree distribution ρ(·), whose char-

acteristics depend on the set size K, as well as on the

targeted performance (e.g., in terms of coding complexity

vs. overhead).

2) Pick, uniformly at random, dn distinct input packets from

the input message and set tn equal to the bitwise sum,

modulo 2, of these dn packets. This can be realized

by successively XORing the dn packets. An encoding

vector is created for tn: it contains a list of the original

packets that were XORed together. This vector is either

transmitted along with tn or retrieved at the receiving side

through intelligent association of the packet identifiers

and the random seeds used in the encoding phase (this

last method is always preferred in practice).

Decoding can be done by solving the system t = Gs,

in which the matrix G is formed by the received encoding

vectors, the vector t contains the received encoded packets, and

s contains the K original packets to be retrieved. Recovery at

each interested receiver requires the reception of K linearly

independent coded packets, so that G has full rank and can be

inverted. As encoded packets are randomly generated according

to the degree distribution ρ(·), it is possible that some of the

received packets are linearly dependent, so that in general a

node needs to receive K ′ ≥ K packets before being able to

decode. The performance of these codes, in terms of overhead

O = K ′ − K, depends on the degree distribution, and can

be kept small by properly designing ρ(·). Reference [26]

presents suitable distributions and heuristic decoding methods

for large K, that lead to extremely lightweight computations

(G is inverted through heuristic algorithms) as well as a small

overhead O. However, for underwater communication, we are

constrained to work with small K values. This is in line with

the typical message sizes that can be supported in underwater

channels (which are small due to the limited bandwidth). In

this case, special distributions ρ(·) are to be designed. Here,

however, we rather focus on the theoretical gains provided by

fountain codes; thus we consider the digital random fountain

in [7]. Considering a random fountain makes sense here as

these codes have asymptotically optimal performance in terms

of throughput efficiency. Hence, they allow us to study the

maximum improvements which can be achieved through this

type of codes in the underwater channel. We note that these

codes are not practical in terms of computational complexity,

even though practical codes with very good performance in

terms of throughput and acceptable computational complexity

can be found using optimization approaches similar to that

in [27]. However, the design of practical codes is not within

the scope of this paper and is left for future research.

We now define two suitable distributions which will be

used in the following analysis. We model the dynamics of the

fountain-based encoding/decoding system through a distribu-

tion ψ(x) with x integer, returning the probability of correct

decoding at a generic user upon the reception of the x-th

encoded packet, i.e., full recovery does not occur for packets

x − 1, x − 2, . . . . Note that ψ(x) = 0 for x < K as a

full rank (of K) matrix cannot be obtained in this case. We

further define Ψ(x) as Ψ(x) =
∑x

z=0 ψ(z). We observe that

these distributions, given the complexities involved, are usually

difficult to obtain in closed-form for actual systems. However,

we can empirically measure them. The measured distributions

are a simple yet effective method for capturing the complexity

of the encoding-decoding process and can be plugged into the

analysis that follows. The analysis is thus valid for general

fountain codes. Nevertheless, for the random digital fountain

that we consider here, from [7] a tight approximation for Ψ(·)
is obtained as Ψ(x) = 1 − 2x−K if x ≥ K and Ψ(x) = 0
otherwise. This specific type of function will be used in the

results of Section VI.

V. OPTIMAL RETRANSMISSION POLICIES FOR

FOUNTAIN-BASED HARQ

Next, we find the optimal error recovery policy for HARQ

systems using fountain codes. We assume to have a message to

be broadcast by a transmitting node. This message is subdivided

into K (original) packets of fixed length, which are given to

the HARQ protocol for their delivery to a number of receivers.

Error recovery occurs trough a number of transmission rounds.

By optimal error recovery we mean the use of the optimal

number of encoded packets that the transmitting node has to

send at each round. Our interest is on optimal online policies;

the transmitter, at the generic round i, has to make a decision

on the optimal amount of redundancy to send xi, based on what

happened up to and including round i− 1.

In the following Section V-A we develop an analysis for the

case where all receivers have the same packet error probability

p, i.e., they all belong to the same probability class. While being

of little practical interest, this case provides useful insights on

the involved tradeoffs. Moreover, it is the fundamental building

block for quasi-optimal policies when users belong to multiple

classes. The latter case is analyzed in Section V-B.

A. Optimal Retransmission Policy for Single Class Users

Let R be the number of receiving nodes within the trans-

mission range of the sender. The sender’s task is to reli-

ably deliver the original K information packets to these R
nodes. This is done through a number of transmission rounds

1, 2, . . . , L, where L is their maximum number. During the

generic round i, the sender transmits a number of encoded

packets xi such that xmin
i ≤ xi ≤ xmax

i , where xmin
1 = K,

xmin
i = 1, for i > 1, whereas xmax

i s are design constraints.

The number of encoded packets sent to the R neighbors up

to and including round i is Xi =
∑i

j=1 xj . We refer to

ξi(r) as the number of packets correctly received, out of these



Xi packets, by the r-th neighbor. The optimal policy, which

is the objective of the following analysis, maps Xi−1 and

mi−1 = min{ξi−1(1), ξi−1(2), . . . , ξi−1(R)} to the number of

additional encoded packets, xi, we are to send in the current

round i in the case where at least one of the neighbors, at

the end of round i− 1, is still not able to decode the original

K packets (we call this a failure at round i − 1). Formally,

xi = µi(mi−1,Xi−1). The goal of our optimization is to find

a policy µi(·), for each round i, which minimizes the total

number of packets to send so that decoding of the original K
packets runs to completion at all neighbors. The cost associated

with the transmission process is a function of the round number

and xi, C(i, xi). Here, we consider C(i, xi) = xi, which

reflects our objective of minimizing the total number of packets

needed for full recovery at all neighbors. The controls of our

problem are the xis, i.e., the number of additional packets sent

during round i. Each round i is a decision epoch where, in case

of failure at round i− 1, the decision maker (the sender) must

pick a number of additional packets for the current round i.
This decision is made so as to minimize the expected cost over

all possible system dynamics. To carry out this minimization,

we define J(i,mi−1,Xi−1) as the minimum cost-to-go at the

beginning of round i, i.e., the cumulative cost incurred from

round i until all neighbors can decode, given that the state of

the HARQ system at the beginning of round i is represented

by the pair Si = (mi−1,Xi−1). The exact expression of J(·)
is the objective of the following derivations.

Now we introduce some quantities. We assign the same

channel erasure probability p to the wireless link connecting

the sender to each neighbor r = 1, 2, . . . , R. To simplify the

notation, we define B(x, y, p) =
(

x
y

)

py(1 − p)x−y . The joint

probability that a given user correctly decodes the K original

packets by the end of round i − 1 and that ξi−1 = x, given

Xi−1, is computed as:

Ps(i− 1, x) = B(Xi−1,Xi−1 − x, p)Ψ(x) . (7)

Similarly, the joint probability that the generic user r is still

unable to decode (unsuccessful decoding, u) at the end of round

i−1 and that ξi−1 = x, referred to as Pu(i−1, x), is obtained

by replacing Ψ(x) in (7) with 1−Ψ(x). At round i, for a given

Si = (mi−1,Xi−1) and for a given user r we can derive the

probability that ξi−1(r) = x, conditioned on the value mi−1

and the failure event, f :

P (ξi−1(r) = x|mi−1, f) =
P (ξi−1(r) = x,mi−1, f)

P (mi−1, f)
. (8)

Due to the symmetry involved, the above equation as well as

the following ones do not depend on the specific user r. Hence,

for readability, we will omit this dependence in what follows.

To compute P (mi−1, f), we first define the joint probability

of having a successful (s) or unsuccessful (u) decoding and

that ξi−1 ≥ y packets were correctly received at a specific

user by the end of round i− 1, given Xi−1, as (accounting for

all possible error patterns of length 0, . . . ,Xi−1 − y in rounds

1, 2, . . . , i− 1):

F≥
i−1,χ(y) =

Xi−1−y
∑

e=0

Pχ(i− 1,Xi−1 − e) , χ ∈ {s, u} , (9)

Equation (9) is used to find the tail distribution for the minimum

mi−1 (for brevity denoted as y in the next equation) as follows:

F≥
i−1(y,R) =

R
∑

r=1

(

R

r

)

F≥
i−1,u(y)rF≥

i−1,s(y)
R−r =

= (F≥
i−1,u(y) + F≥

i−1,s(y))
R − F≥

i−1,s(y)
R .

(10)

Note that F≥
i−1,u(y) + F≥

i−1,s(y) =
∑Xi−1−y

e=0 B(Xi−1, e, p)
does not depend on Ψ(·). The joint distribution of mi−1 and

failure (f ) at the end of round i − 1 (denominator in (8)) is

finally obtained as:

P (mi−1, f) = F≥
i−1(mi−1, R) − F≥

i−1(mi−1 + 1, R) . (11)

We now calculate the numerator in (8). To this end, we first

compute the tail probability P (ξi−1 = x,mi−1 ≥ y, f):

P (ξi−1 = x,mi−1 ≥ y, f) =











f(x, y) 0 ≤ y ≤ x and

0 ≤ x ≤ Xi−1

0 otherwise ,
(12)

with:

f(x, y) = Ps(i− 1, x)F≥
i−1(y,R− 1) +

+ Pu(i− 1, x)

( Xi−1−y
∑

e=0

B(Xi−1, e, p)

)R−1

.

(13)

where the two terms in the previous sum account for full (Ps(·))
or incomplete (Pu(·)) recovery for the user under observation

up to and including round i − 1. Now, P (ξi−1 = x,mi−1 =
y, f) may be found from (12) as:

P (ξi−1 =x,mi−1 =y, f) = P (ξi−1 =x,mi−1≥y, f) −
− P (ξi−1 =x,mi−1≥y+1, f).

(14)

We can now calculate (8), which is subsequently used to define

two further equations, G≥
i,u(x) and G≥

i,s(x), representing the

joint probability of having a unsuccessful (u) or successful (s)
decoding for a given user by the end of round i > 1, and

ξi ≥ x, given mi−1:1

G≥
i,χ(x) =

Xi−1
∑

z=mi−1

P (ξi−1 = z|mi−1, f)

[ xi
∑

e=0

B(xi, e, p) ×

× gχ(z + xi − e) 1{z + xi − e ≥ x}
]

, (15)

1For an exact analysis, the packets correctly received by each user up to
and including round i − 1 should be tracked. However, the calculation of the
optimal policy is computationally infeasible in this case. To overcome this, we
describe the evolution of the process by tracking only the minimum mi−1.
We found that the results provided by this approach are very close to those of
the exact analysis.



where the total number of packets received up to and including

round i − 1, Xi−1, is bounded by
∑i−1

j=1 x
min
j ≤ Xi−1 ≤

∑i−1
j=1 x

max
j , the minimum number of correctly received pack-

ets, mi−1, is such that 0 ≤ mi−1 ≤ Xi−1, and the number

of packets xi sent in round i must satisfy xmin
i ≤ xi ≤ xmax

i .

Hence, the bounds for x are mi−1 ≤ x ≤ Xi−1 + xi. Also,

χ ∈ {s, u}, gs(x) = Ψ(x) and gu(x) = 1 − Ψ(x), 1{·}
is the indicator function, returning one when the expression

within parentheses is true and zero otherwise. It is used here

to account only for the cases where ξi ≥ x. The indices z
and e track the overall number of packets correctly received in

rounds 1, 2, ..., i− 1 and the number of erroneous packets out

of the xi sent in round i, respectively. We finally derive the

joint distribution of mi and failure at the end of round i, given

mi−1 (we assume m0 = 0) and that we had a failure at round

i− 1:

Ω(mi|mi−1) =

{

P ′(m1, f) i=1

G≥
i (mi, R) −G≥

i (mi + 1, R) i>1 ,
(16)

where G≥
i (mi, R) = (G≥

i,u(mi) + G≥
i,s(mi))

R − G≥
i,s(mi)

R

(see the derivation in (10)) and P ′(m1, f) is given by (11),

by substituting Xi−1 with x1 in the related calculations. We

are now ready to write the optimality equation (17) for our

problem [9]. In (17) i = 1, 2, . . . , L, J(L + 1, ·, ·) = T is

the terminal cost we incur in failing to deliver the original

K packets in L rounds. Note that the terminal cost should be

sufficiently large such that whenever a solution terminating with

success (full recovery at all nodes) in strictly less than L + 1
rounds exists, this solution will be preferred and consequently

found by the dynamic programming optimizer. As before,
∑i−1

j=1 x
min
j ≤ Xi−1 ≤ ∑i−1

j=1 x
max
j , mi−1 = 0, 1, . . . ,Xi−1.

Moreover, ℓ(i) is given by:

ℓ(i) =











xmin
1 i=1

xmin
i i>1 and mi−1≥K

min(K−mi−1, x
max
i ) i>1 and mi−1<K .

(18)

In fact, in round i > 1, if mi−1 < K at least K − mi−1

additional packets are to be sent so that all receivers r with

ξi(r) = mi−1 can collect at least K packets (which is

the minimum number of packets required for decoding). The

optimal transmission strategy, i.e., the optimal xi to use at each

round for any state Si = (mi−1,Xi−1), is found by solving

backwards (17), see [9].

B. Retransmission Policies for Users belonging to Multiple

Probability Classes

Consider now R receivers and C probability classes. Class

c has Rc > 0 users, all with the same packet error rate pc

and
∑

cRc = R. Let Xi−1 be the total number of encoded

packets transmitted up to and including round i− 1 and mc
i−1

be the minimum among the packets correctly received by users

of class c by the end of round i − 1. For each class c, the

optimal online policy µc(·) is found according to the analysis

in the previous section. At round i, we choose the number of

packets to send as: xi = maxi=1,2,...,C{µc
i (m

c
i−1,Xi−1)}. This

policy, which is very simple and easy to implement in practice,

is quasi-optimal. The criterion that we try to satisfy with the

above rule is that of satisfying all users. In fact, in our case

we want to transmit the smallest amount of redundancy that is

optimal for the worst case class. The exact calculation of overall

optimal policies would involve a straightforward generalization

of the analysis in Section V-A. This however leads to a very

large state space, which makes the calculation of the optimal

policy computationally infeasible.

VI. RESULTS

A. Scenario Description

The fountain codes introduced in Section IV are used along

with the optimal retransmission policies of Section V to per-

form efficient broadcasting in underwater networks. We stress

that the high transmission costs and the long propagation delays

imposed by the underwater channel constitute a challenge for

the efficiency of a broadcast protocol.

To highlight the relevant tradeoffs, we focus here on the fol-

lowing scenario. We consider a source that needs to broadcast a

message to R nodes. We assume that these nodes are placed at

the same distance from the source, i.e., they all belong to the

same probability class.2 The broadcast message is composed

of K = 32 packets of length b = 1000 bits, that are to be

transmitted within L = 5 rounds, according to the analysis in

Section V. The minimum and maximum number of packets to

send in round i > 1 is constant and fixed to xmin
i = 1 and

xmax
i = ∆, i > 1, respectively. At round i = 1, xmin

i = K
and xmax

1 = K + ∆. We set ∆ = 16, which provides adequate

protection. At the end of each round, each receiver feeds back

the overall number of correctly received packets to the source.

In this study, we assume that this feedback is error-free: at

the end of any round i the transmitter knows exactly which

nodes need further transmissions and the value of mi. The

transmission attempts are terminated if some nodes are still

unable to decode the broadcast message at the end of round L.

In this case we have a transmission failure as the system could

not deliver the K original packets to all receivers.

We compare our fountain code-based approach to a plain

ARQ protocol working as follows. A maximum of L retrans-

mission rounds is considered. At the first round, the trans-

mitter sends the K original packets and subsequently collects

2It is observed that the protocol performance is largely dominated by the
nodes placed farther away from the sender. Hence, considering that all nodes
are at the same distance allows to precisely capture the dependence on the
distance from the transmitter as well as on the number of receivers R.

J(i,mi−1,Xi−1) = min
ℓ(i)≤xi≤xmax

i

{

C(i, xi) +

mi−1+xi
∑

mi=mi−1

Ω(mi|mi−1)J(i+ 1,mi,Xi−1 + xi)

}

. (17)
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Fig. 2. Nt as a function of d for varying R, AP case.

feedback from the receivers, as explained above. At the next

round, only the packets that have been erroneously received or

lost by one or more nodes are retransmitted. The performance

comparison between the fountain-based ARQ and the plain

ARQ schemes is done through Monte-Carlo simulations. For

each setting of the involved parameters, we repeated a number

of experiments so as to get sufficiently tight confidence intervals

about our performance measures. In particular, the 95% con-

fidence intervals for the subsequent plots are all within ±5%
of the average values. These intervals are not shown in the

graphs for improved readability. The considered metrics are the

average total number of packet transmissions Nt, the broadcast

failure probability Pfail , the average number of rounds Nrnd

required to complete the delivery process and the corresponding

transmission delay D. All metrics are obtained as a function of

the distance d, by varying the number of receivers R.

Transmission bandwidth and frequency are chosen according

to the channel model in Section III, where the values s = 0.5
and w = 0 have been used in (3). The transmission rate is

1 kbps. For simplicity we fix the propagation speed of acoustic

waves to c = 1.5 km/s. The transmission power is set so that

the average probability of error per packet at a distance of 5 km
from the receiver is 0.25. All results are obtained for a set of

distances d from 4 to 6 km, which translates into packet error

probabilities ranging from 10−4 to roughly 0.9.

B. Simulation Results

We start by looking at the average total number of packet

transmissions, Nt. Note that the optimal policies for the

fountain code case are obtained so that the total number

of transmissions is minimized, under the constraint that the

broadcast dissemination is completed within L rounds. This

limit on the maximum number of rounds is very important

for an underwater environment, where the propagation delay is

substantially longer than that experienced over radio channels.

Two types of fountain based ARQ are considered in the

following. In the first type, an optimal transmission policy is

obtained for each distance. This approach is referred to as AP
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(for adapted policy) in the figures. Alternatively, one could fix

a policy that is optimal for a certain error probability (and

thus for a certain distance), and use it regardless of the actual

probability value. This policy is referred to as FP (for fixed

policy) in the plots. The latter approach may be more desirable

in practice, e.g., when nodes have a limited amount of memory

and thus cannot store optimal policies for a large set of error

probabilities. The results concerning these two cases are shown

in Figures 2 and 3, respectively. The performance of plain ARQ

is also plotted for comparison. From Figure 2 we see that with

an increasing number of receivers R, the fountain approach is

much better than plain ARQ. For instance, with 16 users at

d = 5.25 km, only 75 transmissions are required, compared to

ARQ that needs about 128 transmissions. In addition, while the

fountain code approach is generally better than plain ARQ, at

short distances the fountain code requires more transmissions

for full recovery. This is because it has an inherent overhead

to allow the reconstruction of the original message, i.e., K ′

packets have to be correctly received, where K ′ is slightly

larger than K, see Section IV.

This is further confirmed by Figure 3, where the policy for

the fountain code is optimal for an error probability of 0.25 (i.e.,

d = 5km) but is kept fixed for all other distances. Since the

error probability at 4 km is much smaller than 0.25, the number

of packets sent at the first round is over-dimensioned with

respect to the real needs. Due to the excessive overhead sent at

low error probabilities (small d) the fountain code is successful

(i.e., the matrix G in Section IV has full rank) with high

probability. This, however, causes an unnecessary transmission

overhead, as can be seen from Figure 3 for d ≤ 4.4 km.

A second observation is in order here. Recall that encoded

packets are obtained by randomly picking a number of original

packets and XORing them together. From a practical point

of view, this selection is obtained through a random number

generator, which is initialized with the same seed at both

sender and receivers. A convenient choice of the initial seed

is such that the encoding vectors associated with the first K
packets sent are linearly independent. In this way, decoding
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requires no transmission overhead at short distances. Hence,

even though the observed degradation of fountain codes (higher

Nt) makes sense from a theoretical point of view, it may not

be so important in practice.

Let us now consider the behavior of the fountain code scheme

beyond d = 5.5 km in the adaptive policy case (Figure 2).

There, the number of transmissions reaches its maximum before

decreasing to around 96. This is peculiar to the way the policy is

derived, and can be better explained with the aid of Figure 4,

which shows the average failure probability, Pfail . From this

graph, we see that the probability that the broadcast is in

fact completed within L rounds is still sufficiently high up to

5.5 km. This means that the optimal policy in these cases will

always try to send enough packets to allow full recovery. Be-

tween 5.75 and 6 km, instead, the per-packet error probability

becomes very large and the policy deems it unworthy to send

too many packets. In fact, these packets would be lost with high

probability, thereby only wasting resources. Under these very

high error rates the optimal policy sends the minimal amount

of allowed redundancy, i.e., K − mi−1 packets, where mi−1

is the minimum number of correct packets at round i − 1, as

dictated by the third line in (18). Observe that in this case the

optimal policy would send no packets at all if the lower bound

ℓ(i) in (18) were not imposed. This bound is however required

to obtain proper policies for lower error rates.

Figure 4 is also interesting because of the error probability

floor of the fountain approach at low d. This is due to the

adopted optimization criterion, which achieves the minimum

number of transmissions, not the minimum error probability.

It is observed that the policy which minimizes the error prob-

ability is very simple and corresponds to transmitting exactly

xmax
1 = K+∆ packets at the first round and xmax

i = ∆ packets

at each following round, i > 1.

We proceed by analyzing the average number of rounds re-

quired to complete the broadcast transmission, Nrnd . Figures 5

and 6 show results for the AP and the FP cases, respectively.

It is observed that AP is better than plain ARQ. Nevertheless,

note that the number of transmission rounds is not minimized
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by the transmission policy. As for the failure probability, this

is due to the optimality criterion used to derive the policy,

according to which we minimize the overall number of packets

transmitted within L rounds. In detail, in the first round the

transmitter sends a limited number of packets and compensates

for residual errors if needed. Again, the optimal policy for

minimizing Nrnd would consist of transmitting the maximum

number of packets at the beginning of each round. As we see in

Figure 6 at short distances, when the number of transmissions

is over-dimensioned the fountain code achieves full recovery in

just one round. We finally observe that the oscillations shown

by the fountain-based ARQ for d ≤ 5 km is correct and due

to the fact that the optimal behavior, in terms of transmission

overhead, consists of using the same policy until the error

probability reaches a certain critical value, after which the

policy is changed. Discontinuities in Nrnd occur at these points.

If a fixed policy is used for all distances, as we do in Figure 6,

this phenomenon is absent.

We now discuss the average delay to complete the broadcast,

D, which is shown in Figure 7 (AP case). This delay is obtained
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considering all sources of delay, including the propagation time.

These results look similar in shape to those of Figure 2 and

confirm the superiority of HARQ and the importance of using

efficient communication techniques for transmission in the

underwater environment. Our fountain-based approach proves

to be very effective in reducing the broadcast delay in all but a

very limited set of scenarios (small d). Practical considerations

can be implemented to account for these cases as well. These

are, however, left for future research.

We conclude our study observing that HARQ, as expected,

scales better for increasing R, while the performance of ARQ

is substantially impacted.

VII. CONCLUSIONS

In this paper we presented a preliminary investigation of

the theoretical performance improvements offered by hybrid

ARQ in underwater communication networks. As the specific

coding technique, we focused on fountain codes, a family of

rateless codes that is lightweight and easy to use within online

retransmission policies. We formulated the transmission process

using dynamic programming, obtaining optimal policies which

minimize the number of transmissions needed for full recovery

at all receivers. We compared our scheme with a plain ARQ

policy, concluding that fountain codes present a number of

advantages which can be leveraged to suit the peculiar needs

of underwater communications.

Future directions of this work include the extension of the

presented results to general topologies as well as the design of a

practical schemes for the dissemination of broadcast messages

in multihop underwater networks.
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