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Abstract—In the past few years, a large number of networking
protocols for data gathering through aggregation, compression
and recovery in Wireless Sensor Networks (WSNs) have utilized
the spatio-temporal statistics of real world signals in order
to achieve good performance in terms of energy savings and
improved signal reconstruction accuracy. However, very little
has been said in terms of suitable spatio-temporal models of
the signals of interest. These models are very useful to prove the
effectiveness of the proposed data gathering solutions as they can
be used in the design of accurate simulation tools for WSNs. In
addition, they can also be considered as reference models to prove
theoretical results for data gathering algorithms. In this paper, we
address this gap by devising a mathematical model for real world
signals that are correlated in space and time. We thus describe
a method to reproduce synthetic signals with tunable correlation
characteristics and we verify, through analysis and comparison
against large data sets from real world testbeds, that our model
is accurate in reproducing the signal statistics of interest.

I. INTRODUCTION AND RELATED WORK

The temporal and spatial correlations are key statistical

features of real signals, which are effectively exploited by

many networking applications in the Wireless Sensor Network

(WSN) domain. The temporal correlation captures the time

evolution of the signal, making it possible to find appropriate

sampling intervals for its accurate reconstruction. During these

intervals, sensor nodes may go into a low power state, thus

saving energy. The spatial correlation can instead be exploited

in the deployment phase of, e.g., WSNs for environmental

monitoring, to obtain suitable sensor densities as well as

good deployment strategies [1]. Moreover, these features can

be directly exploited in the design of networking protocols

and signal compression techniques that make use of signal

statistics. As an example, the authors of [2] design a distributed

and collaborative Medium Access Control (MAC) protocol for

WSNs that utilizes the spatial correlation of the monitored

signal and exploits the fact that a sensor node can act as

a representative node for other sensors in its neighborhood.

[3] seeks to minimize the energy consumption of WSNs

through the use of suitable spatio-temporal sampling rates.

The objective of this work is to adapt the sleeping and

spatial sampling behavior of the sensor nodes (readings from

closely located sensors are almost equivalent when the signal

is correlated in space) as a function of the signal statistics.

The aim is to reduce the number of sensors that sample

the signal per unit of time, while still allowing its accurate
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reconstruction. The problem of designing a data gathering tree

over a WSN is addressed, e.g., in [4], where the authors exploit

the spatial correlation of the signal to design a proper gathering

tree. [5] presents a system for data handling in WSNs, which

takes into account the spatio-temporal statistics of the signal,

incorporating long-term storage, multi-resolution data access

and spatio-temporal pattern mining.

In addition, recent techniques for in-network aggregation

and distributed data compression in WSNs use theoretical tools

such as Compressive Sensing (CS) [6], [7]. In CS, convex

optimization techniques exploit the sparsity of the data to

achieve distributed compression. As shown in [8], [9], the

spatio-temporal statistics of the signal can be used to design

an ad hoc sparsification basis that allows the effective use of

CS for reconstruction through random sampling.

Although many approaches in the WSN literature utilized

the spatio-temporal characteristics of real world signals, very

little attention has been paid to the definition of simple yet

accurate models, including lightweight, fast and accurate tools

for the reproduction of signals with the desired spatio-temporal

statistics. We believe that these models are instead very much

needed to prove performance limits of data gathering and

distributed signal processing solutions, as well as to carry out

their performance evaluation systematically.

In this paper, we address this gap by developing a frame-

work to statistically characterize real world signals in space

and time. This framework allows the accurate reproduction

of the spatio-temporal behavior of such signals, obtaining

synthetic models that can be effectively generated and sub-

sequently used for protocol design and testing. These models

are thus extensively validated against real world data, gathered

from our indoor testbed at DEI [10], as well as climate data

from [11]. The signal generation tool so obtained can be tuned

to generate spatially and temporally correlated signals, where

temporal and spatial correlations can be independently set. We

remark that the usage of this tool is not limited to the field

of WSN protocol optimization. As an example, the shadowing

that affects radio transmissions can also be generated through

our model. Note that in most previous papers only the spatial

correlation has been kept into account, see [12].

Previous work to generate spatially correlated signals for

WSNs [13] accounted for the spatial correlation of real world

signals through variogram functions, by however neglecting

the temporal correlation. Similar approaches can also be found

in the field of geostatistics [14]. However, the studies within

this field are mostly centered around finding optimal predictors

and interpolators for spatio-temporal varying signals, e.g.,

Kriged Kalman filtering [15], rather than giving simple, fast



and accurate models for their generation. A further and very re-

cent application is in cooperative cognitive radio sensing [16].

In this paper, we describe a general approach that can be

used in the aforementioned applications. In detail, our main

contributions are the following:

• we describe a method to generate synthetic signals with

tunable correlation characteristics; in this way it is pos-

sible to extract the statistical characteristics from real

datasets and use them to generate statistically similar

signals;

• we verify with standard analytical techniques and through

comparison against real and large data sets that these

characteristics are preserved;

• we provide a useful simulation tool that can be applied

in all the above fields [17].

The rest of the paper is organized as follows. In Section II

we discuss the general correlation models for real world

signals and introduce their properties. The model for space-

time correlated signals is presented in detail in Section III and

is validated against real world measurements in Section IV.

Section V concludes our work.

II. CHARACTERIZATION OF SIGNALS FROM SENSOR

NETWORK FIELDS

In this section we want to capture the relevant statistics from

real environmental signals, in order to exploit this information

for the generation of new samples with similar features. In the

following, we present the details of our mathematical model

for space-time correlated signals, introducing our notation,

reported in Tab. I, as well as our basic assumptions. We focus

on time varying two-dimensional (2D) fields of real-valued

measurements; with x and y we indicate the space coordinates,

whereas D = [−xD, xD] × [−yD, yD] is the space domain.

We consider that time is slotted where the slot time has a

fixed duration ∆T > 0. Thus, the time index is t = i∆T
with i = 0, 1, 2, 3, . . . , and the corresponding time domain is

denoted by T . A point in space p ∈ D is indicated by the

pair p = (x, y). With z(p, t) : D × T → R we indicate the

multidimensional random process that represents the space-

time correlated random field (which is the objective of our

analysis). When we fix a specific point with coordinates po in

space and to in time, z(po, to) represents a random variable

(r.v.) describing the value of this field at the specific point

considered, with mean µz(po, to) and variance σ2
z(po, to). We

assume that z is a stationary random process (weak-sense

stationarity) in both space and time, so that µz(po, to) = µz

and σ2
z(po, to) = σ2

z , ∀p ∈ D and ∀ t ∈ T . Moreover,

we assume that the correlation function of the considered

signal is separable in the temporal correlation and the spatial

correlation:

ρ(p1, t1,p2, t2) = ρS(p1,p2)ρT (t1, t2) . (1)

This is a general assumption used in the meteorology and

geology fields, e.g., see [18], [19]. In detail, we consider the

following models to study separately the temporal and spatial

characteristics of the real signals.

Symbol Meaning

D Spatial domain
T Time domain
F Frequency domain
p Point in space p = (x, y) ∈ D
ω Point in frequency ω = (u, v) ∈ F

z(p, t) Space-time correlated field
ρT (∆T ) Temporal correlation coefficient of z

d Euclidean distance between two points in D
ρS(d) Spatial correlation function of z between two points

p1 and p2 with distance d = |p1 − p2|
RS(ω) 2D Fourier transform of ρS(p)
w(p, t) i.i.d. random Gaussian field at time t

W (ω, t) 2D Fourier transform of w(p, t)
ε(p, t) i.i.d. random Gaussian noise field

TABLE I
NOTATION USED IN THE ANALYSIS.

A. Spatial correlation

ρS(p1,p2) is the spatial correlation function between any

two points p1,p2 ∈ D. Formally, ∀ t ∈ T :

ρS(p1,p2) =
cov(z(p1, t), z(p2, t))

σz(p1, t)σz(p2, t)
, (2)

where cov(·) is the covariance function. The weak-sense

stationarity assumption made to define our multidimensional

process implies also the correlation stationarity, i.e., for the

spatial correlation, if the Euclidean distance d1,2 = |p1 − p2|
is equal to d3,4 = |p3 − p4|, then ρS(p1,p2) = ρS(p3,p4).
For this reason, the spatial correlation function can be defined

as a function of the distance between two points, that is a

scalar d ∈ [0, dM ], where dM =
√

(2xD)2 + (2yD)2, i.e., the

maximum distance between two points in D. In the following,

with an abuse of notation we can write ρS(p1,p2) = ρS(d1,2),
without loss of generality.

Moreover, there are other issues to be considered when

studying a real signal. Since the signal is sensed only at

specific locations, we can not evaluate the process z(p, t) at

every point p ∈ D, but we can observe the process only at the

points where the signal is sensed, i.e., pi ∈ D. This translates

to the fact that also ρS(d) may not be defined ∀ d ∈ [0, dM ].
Thus, in the literature there exist many models to capture

the spatial correlations for real signals [20]. In this paper we

consider the following two models:
Power Exponential (PE) model: the spatial correlation ρS(d)
is modeled with the function:

ρ̃SPE
(d) = exp{−(d/ζ)ν} , for 0 < ν ≤ 2 ; (3)

Rational Quadratic (RQ) model: the spatial correlation

ρS(d) is modeled with the function:

ρ̃SRQ
(d) =

1

1 + (d/ζ)νSν
, for 0 < ν ≤ 2 ; (4)

Both models above depend on the parameters ζ and ν,

that are the correlation length and the order of the function,

respectively, while Sν = 201/ν − 1 is a scaling factor. The

two algorithms set ζ and ν to best fit the correlation of the

real signal considered, that is defined only for a finite set

of distances dj , with j = 1, . . . , J . The best fit is obtained

minimizing the Root Mean Square Error (RMSE), i.e,

ξF =

√√√√ 1

J

J∑

j=1

(ρ̃SM
(dj)− ρS(dj))

2
, (5)
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Fig. 1. Diagram for the 2D filtering procedure.

where F = PE for the PE model and F = RQ for the RQ

model.

B. Temporal correlation

ρT (t1, t2) is the spatial correlation function between any

two time samples t1, t2 ∈ T . Formally, ∀p ∈ D:

ρT (t1, t2) =
cov(z(p, t1), z(p, t2))

σz(p, t1)σz(p, t2)
. (6)

Similar to the case of the spatial correlation, also in this case,

as a consequence of the weak-sense stationarity assumption,

the stationarity in the temporal correlation holds, i.e., we can

write with an abuse of notation ρT (t1, t2) = ρT (t2 − t1) =
ρT (i∆T ), where i∆T = t2 − t1. Since we aim at generating

a synthetic signal with an autoregressive model, as will be

detailed in the next section, we only consider the one step

time correlation, i.e., we are only interested in calculating the

coefficient ρT (∆T ).

III. MODEL FOR SPACE-TIME CORRELATED SIGNALS

Our objective is to devise a suitable and tractable model

for the generation of the colored signal z(p, t). Specifically,

we want to obtain a dynamic model, evolving at discrete

time instants and thus allowing the generation of z(p, i∆T )
for i = 0, 1, 2, 3, . . . . This model should retain, as much as

possible, the correlation characteristics of the original signal

that we sample from the sensor network field. Next, we present

a suitable method for the generation of such signal, whereas its

accuracy is demonstrated later on in Section IV by comparing

the generated signals against real data measurements.

The correlated signal z(p, t) is attained through the follow-

ing procedure:

S1 At time to = 0, we generate an i.i.d. random Gaussian

field w(p, to) : D × T → R, which for any specific

location is a Gaussian r.v. with zero mean and unit

variance, N (0, 1). w(p, to) is a stationary process (strict

sense) by construction.

S2 z(p, to) is obtained by coloring w(p, to) through a 2D

filtering procedure. In detail, we first obtain W (ω, to)
from w(p, to) using the 2D Fourier transform F [·], i.e.,

W (ω, to) = F [w(p, to)], where ω = (u, v) ∈ F and F
is the frequency domain. Given the reference point po =
(0, 0), for any point p ∈ D we enforce the correlation

ρS(|p−po|) and compute its Fourier transform, RS(ω) =
F [ρS(|p− po|)].

S3 Thus, we multiply W (ω, to) by RS(ω)1/2 and compute

the inverse Fourier transform of the result so obtained

to attain the wanted colored random field z(p, to). Note

that z is still Gaussian and stationary. This procedure

is sketched in the diagram of Fig. 1. This (S1–S3) is

a known method for coloring a random Gaussian field,

whose proof as well as further mathematical details can

be found in [21]. The field z so obtained is correlated in

space and its spatial correlation can be controlled through

a valid correlation function ρS(|p− po|) [20].

S4 In order to enforce a temporal correlation as well, we

adopt an autoregressive filter as follows:

w(p, to +∆T ) = ρT (∆T )w(p, to)

+
√

1− ρT (∆T )2ε(p, to +∆T ) , (7)

where ε(p, to +∆T ) is an i.i.d. random Gaussian noise,

N (0, 1). ρT (∆T ) is a temporal correlation coefficient

that we enforce in the model. Thus, the procedure S1–S4

is iterated for all future time steps to calculate w(p, to +
i∆T ) from w(p, to+(i−1)∆T ), for i = 1, 2, 3, . . . . Note

that ρT (∆T ) is obtained from actual field measurements,

as further discussed in Section IV. Also, note that w(p, t)
is still i.i.d. in the space domain, whereas thanks to (7),

it is time-correlated with correlation coefficient ρ(∆T ).
As we demonstrate shortly, w(p, t) is again a stationary

and Gaussian random process which maintains the same

mean and variance of the original process w(p, to).

In what follows, we show that the autoregressive model that

we superimpose to the spatially correlated signal preserves

the statistical properties of the random field w(p, t), i.e., the

autoregressive filtering is stable and the signal that it generates

is time-stationary. To this end, we need to show that both

mean and variance of w(p, t) are preserved using (7), and we

do it using standard statistical techniques for continuous time

processes, e.g., see [22].

Conservation of the mean of w(p, t). For the mean, we

have that:

µw(p, t+∆T ) = E[w(p, t+∆T )] = 0 , (8)

that is obtained using (7) and the linearity of the expectation.

It is easy to verify (8) for t = to, then the result is proven

inductively for all time steps. Finally, note that this result holds

∀p ∈ D.

Conservation of the variance of w(p, t). For the variance,

we have:

σ2
w(p, t+∆T ) =

= E[(w(p, t+∆T )− µw(p, t+∆T ))2] = 1 , (9)

where we use the definition of autoregressive filter in (7) and a

mathematical reasoning similar to the one used in (8). Again,

the result in (9) holds for t = to, so we have that σ2
w(p, to +

∆T ) = 1 by construction, and the result ∀ t ∈ T follows

inductively.

Conservation of the temporal correlation of z(p, t). In

what follows, we prove that the random process z(p, t) that

we obtain through steps S1–S4 is also correlated in time and

that its correlation coefficient is ρ(∆T ) at all time instants and

for all points p ∈ D. Without loss of generality (the result also

holds in the continuous case), we consider our spatial signal

as being sampled from a rectangular sensor grid of N × M
points evenly spaced in D. Owing to this assumption, let the

space point p = (x, y) be defined with x ∈ {1, 2, . . . , N} and

y ∈ {1, 2, . . . ,M}. Also, let us define rS(p) as:

rS(p) = F−1
[
F [ρS(|p− po|)]

1

2

]
= F−1

[
RS(ω)

1

2

]
. (10)



cov(z(p, t), z(p, t+∆T ))
(a)
= E[z(p, t)z(p, t+∆T )]

(b)
= E




N∑

i=1

M∑

j=1

w(i, j, t)rS(x− i, y − j)
N∑

k=1

M∑

q=1

w(k, q, t+∆T )rS(x− k, y − q)




(c)
= E

[
N∑

i=1

M∑

j=1

w(i, j, t)rS(x− i, y − j)

N∑

k=1

M∑

q=1

(
ρT (∆T )w(k, q, t) +

√
1− ρT (∆T )2ε(k, q, t+∆T )

)
rS(x− k, y − q)

]

(d)
=

N∑

i,k=1

M∑

j,q=1

ρT (∆T )E

[
w(i, j, t)w(k, q, t)

]
+
√
1− ρT (∆T )2E

[
w(i, j, t)ε(k, q, t+∆T )

]
rS(x− i, y − j)rS(x− k, y − q)

(e)
= ρT (∆T )σ2

w

N∑

i=1

M∑

j=1

rS(x− i, y − j)2 (13)

σz(p, t)σz(p, t+∆T )
(a)
= E[z(p, t)2] = E




N∑

i=1

M∑

j=1

w(i, j, t)rS(x− i, y − j)

N∑

k=1

M∑

q=1

w(k, q, t)rS(x− k, y − q)




=

N∑

i=1

M∑

j=1

E
[
w(i, j, t)2

]
rS(x− i, y − j)2 = σ2

w

N∑

i=1

M∑

j=1

rS(x− i, y − j)2 (14)

From this definition and the diagram of Fig. 1, we see that

z(p, t) is obtained in the domain D as the spatial convolution

between w(p, t) = w(x, y, t) and rS(p) = rS(x, y), i.e.,

z(p, t) =

N∑

i=1

M∑

j=1

w (i, j, t) rS(x− i, y − j) , (11)

where i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,M}. We now com-

pute the mean of process z(p, t), that is µz(p, t) = E[z(p, t)]:

µz(p, t) = E




N∑

i=1

M∑

j=1

w(i, j, t)rS(x− i, y − j)




=
N∑

i=1

M∑

j=1

E [w(i, j, t)] rS(x− i, y − j) = 0 , (12)

where the result follows from the linearity of the expectation,

the fact that rS(p) is a deterministic function (as it is directly

derived from the spatial correlation function, which is a known

quantity) and the result in (8).

We are now ready to calculate the numerator of (6), which

is given by (13): in this equation, equality (a) follows from

(12), whereas (b) follows from (11) and (c) follows from

(7). Also, (d) follows as the temporal correlation coefficient

ρT (∆T ) and rS(p) are a constant and a deterministic function,

respectively. For (e), note that E[w(i, j, t)ε(k, q, t+∆T )] = 0,

as process ε is independent of w by construction and its mean

is zero. Moreover, when indices i 6= k or j 6= q, we have

E[w(i, j, t)w(k, q, t)] = E[w(i, j, t)]E[w(k, q, t)] = 0, since

w(p, t) is i.i.d. in the space domain and E[w(p, t)] = 0,

∀p ∈ D. Thus, for the only non zero case in which i = k and

j = q, we have E[w(i, j, t)w(k, q, t)] = E[w(i, j, t)2] = σ2
w.

The denominator of (6) is computed in (14). From (11), it

follows that the variance of z(p, t) does not depend on t, since

w(p, t) is stationary and rS(p) is a deterministic mapping

function that only depends on the spatial correlation. Hence,

equality (a) follows as σz(p,t) = σz(p,t+∆T ) and µz(p, t) =
0, see (12). The remaining equalities follow using the same

reasonings as those done above for Eq. (13).

Taking the ratio of (13) and (14), we have proved the

conservation of the temporal correlation, ∀ t ∈ T and ∀p ∈ D.

Discussion. The method presented in S1–S4 above allows

one to obtain a stationary signal which is correlated in space

and time according to an arbitrary spatial correlation function

ρS(p) and a temporal correlation coefficient ρT (∆T ). These

parameters are tunable and can be fit to any real data set.

From (12) we see that the random process so obtained has

zero mean; however, we observe that any non-zero mean can

be enforced and all the results obtained here still hold.

Finally, from (14) and recalling that σ2
w = 1, we see that

the variance of z(p, t) equals σ2
z(p, t) =

∑N
i=1

∑M
j=1 rS(x−

i, y− j)2. Thus, the variance follows directly from the spatial

correlation properties of the signal. However, we can tune the

amplitude of this variance through the multiplication of z(p, t)
by a constant. Also in this case the properties discussed above

remain unchanged.

In the model above we do not keep into account the mean

and variance characteristics of the signal. From our previous

discussion, we see that these can be promptly accounted for by

our model in case the application is also influenced by them.

IV. RESULTS

In this section we present the real datasets that we have

used to validate our model. We want to show that the signal

model of Section III can effectively capture the correlation

characteristics of real signals. To this end, we first compute the

correlation characteristics of the real data. These are thus used

to tune the spatial correlation models of Section II and obtain

the temporal correlation coefficient, which are subsequently

used with the procedure of Section III to obtain the synthetic

signals with the desired correlation properties. These are
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Fig. 2. Spatial correlation for the real data, the two correlation fitting models (PE and RQ), and the correlation of the synthetic data generated according to
the best fitting model, for the following signals: (a) global precipitation, CP; (b) global temperature, CT; and (c) indoor luminosity, DL1.

finally examined to check how well they can reproduce the

correlation characteristics of the real data sets.

A. Real Signals analyzed

We hereby consider two types of real signals, both avail-

able online. The former is a dataset of global climate data

from the Center for Climatic Research (CCR), Department

of Geography, University of Delaware, available at [11]. This

dataset is obtained interpolating the observations from about

104 climatic stations, and sampling uniformly the sensed field

into a total of 85794 different points. The maximum distance

between any two points is dM ≃ 2 · 104 km, while the

time step is ∆T = 1 month. Within the large set of data

available in the website, we selected eight representative sig-

nals, namely, Air Temperature (CT), Total Precipitation (CP),

EvapoTranspiration (CE), the Difference among Precipitation

and EvapoTranspiration (CD), Snow Cover (CC), Snow Melt

(CM), Soil Moisture (CS) and Moisture Indices (CI). For more

information about these signals, see [11].

For the latter dataset, we considered a number of indoor

signals gathered from the environmental monitoring WSN

testbed deployed on the ground floor of the Department

of Information Engineering (DEI), University of Padova,

Italy [10]. The data from this dataset were sampled from

N = 68 IEEE 802.15.4–compliant TelosB wireless nodes

deployed according to an irregular topology, with maximum

distance among any two sensors of dM ≃ 36 m. The time

step in this case is ∆T = 360 s. These sensors can measure

five different signals: temperature, humidity, luminosity in two

different ranges (DL1 : 320−730 and DL2 : 320−1100 nm),

and their battery voltage. For the performance analysis we

considered temperature (DT) and humidity (DH), which have

high spatial and temporal correlation, and luminosity in the

two ranges (DL1 and DL2).

For each signal in both CCR and DEI databases, we

considered about 500 time samples, we calculated the spatial

correlation function using (2) and the one step temporal corre-

lation coefficient using (6). Thus, we fit the spatial correlation

of each signal through the PE model of (3) and the RQ model

of (4). In the columns of Tab. II we show: 1. all the signals

considered, 2-7. the parameters inferred and the values of the

corresponding RMSE for the two correlation models (PE and

Signal
Spatial Correlation Temporal

PE Model RQ Model Corr.
ζ ν ξPE ζ ν ξRQ ρT (∆T )

CD 0,12 0,65 0,042 0,91 0,47 0,058 0,85
CP 0,11 0,68 0,034 0,71 0,52 0,050 0,90
CI 0,25 0,96 0,046 1,05 0,71 0,073 0,88

CM 0,06 0,53 0,040 0,49 0,51 0,034 0,27
CE 0,24 1,00 0,057 0,87 0,80 0,085 0,85
CT 0,42 2,00 0,073 0,94 2,00 0,103 0,98
CC 0,31 0,96 0,121 1,62 0,60 0,117 0,99
CS 0,05 0,62 0,022 0,33 0,60 0,019 0,94

DT 272 0,18 0,119 12916 0,13 0,146 0,99
DH 11640 0,31 0,008 9273 0,17 0,024 0,99
DL1 0,38 0,56 0,081 25,46 0,23 0,095 0,98
DL2 0,43 0,58 0,081 28,47 0,23 0,089 0,99

TABLE II
CORRELATION OF REAL SIGNALS

RQ), and 8. the value of the temporal correlation ρT (∆T )
estimated from the real data. Boldface text is used in the table

to indicate the best fitting model for each signal.

In order to calculate the spatial correlation (shown in Fig. 2

and discussed shortly), we had to consider each pair of points

in the dataset. Since this number for the CCR dataset is very

large, we picked at random only a subset of the total number

of pairs (105 pairs, randomly selected, were considered for the

results in this paper), while for the DEI dataset we considered

all possible pairs. For each pair of points pi and pj , we

calculated the distance di,j and the spatial correlation ρS(di,j),
using (2). For representation purposes, we considered the

maximum distance dM and we divided it into 20 intervals.

For each interval and for each pair of points whose distance

falls within such interval, we calculated the average spatial

correlation. In this way, we obtained one spatial correlation

value for each interval (associating it with the center of the

interval), similarly to the procedure adopted in [13] for the

variogram calculation.

B. Model Validation

In Fig. 2 we show on the y-axis the spatial correlation

ρS(d) for three selected signals vs the normalized distance

d/dM ∈ [0, 1]. For comparison, in this figure we plot the

empirical correlation obtained from the real data, the auto-

correlation function obtained from the PE (ρ̃SPE
(d)) and RQ

(ρ̃SRQ
(d)) models, as well as the spatial correlation obtained



Signal Model ξF ξS ∆ρT

CD PE 0,042 0,021 3,92E-3
CP PE 0,034 0,021 2,71E-3
CI PE 0,046 0,030 1,18E-2

CM RQ 0,034 0,035 3,82E-3
CE PE 0,057 0,040 2,60E-3
CT PE 0,073 0,035 2,16E-3
CC RQ 0,117 0,069 2,14E-6
CS RQ 0,019 0,031 2,60E-4

DT PE 0,119 0,560 1,39E-4
DH PE 0,008 0,542 1,16E-5
DL1 PE 0,081 0,040 6,62E-4
DT2 PE 0,081 0,072 2,24E-4

TABLE III
CORRELATION OF SYNTHETIC SIGNALS

from the synthetic signal. Note that the synthetic signals are

generated through the procedure of Section III, using the best

fitting model among PE and RQ, in terms of ξF . As shown

in this figure, the chosen correlation models both nicely fit

empirical correlation values. Moreover, the spatial correlation

obtained from the synthetic signal is also very close to the

empirical one.

In Figs. 2-(a) and 2-(b) we respectively show ρS for the

Total Precipitation (CP) and the Air Temperature (CT) signals

from the CCR dataset. In Fig. 2-(c) we plot ρS for the

Luminosity signal (DL1) from the DEI dataset. From these

figures we see that our model can very nicely fit the spatial

characteristics of the real signals for both PE and RQ models.

Furthermore, with the proposed method we are able to gen-

erate a synthetic signal that also follows with good accuracy

the real signal correlation. Tab. III shows the results of the

fitting of the synthetic signal for all the considered datasets.

In particular, in the columns of this table we represent: 1.

the considered signal, 2. the best fitting model among PE and

RQ, 3. the corresponding RMSE ξF for the best model, 4. ξS ,

the RMSE between the chosen fitting model and the spatial

correlation of the synthetic signal, 5. the relative error ∆ρT
among the temporal correlation ρT (∆T ) and ρ̃T (∆T ), of the

real and the synthetic signal, respectively. ∆ρT is calculated

as follows:

∆ρT =
|ρT (∆T )− ρ̃T (∆T )|

ρT (∆T )
. (15)

From Tab. III, we observe that for all signals: (a) ∆ρT is

sufficiently small, so we represent with high accuracy the

temporal correlation, (b) both fitting models PE and RQ

accurately reproduce the spatial correlation of the real signals.

Furthermore, (c) the synthetic data very nicely follows the

real spatial characteristics for all the CCR signals and for the

DEI luminosity signals DL1 and DL2, (d) we introduce some

error while representing the spatial characteristics for the DEI

signals DT and DH. This is due to the fact that these two

signals have a correlation length ζ, see Tab. II, that is very

large compared to the size of the network dM . In this case,

we are not able to reproduce with high accuracy the actual

correlation of the signal due to border effects.

V. CONCLUSIONS

In this paper we have presented a model for the statistical

characterization of real world signals that are correlated in

space and time. Our model allows the efficient generation of

synthetic signals with the desired correlation properties, where

spatial and temporal correlations can be independently set and

fit to those of the real signals of interest. The accuracy of the

proposed model has been verified through comparison against

real data sets from large sensor testbeds. Future extensions of

our work include the application of our statistical model to

other types of signals, such as sensor data from smart grids,

e.g., to model the distributed space and time dependent energy

production and consumption process.
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