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Abstract

We investigate existing Mixed Integer Programming (MIP) formulations for cost-optimal
delete-free STRIPS planning: these models are built by enforcing acyclicity in the underlying
causal relation graph using time labeling and vertex elimination methods. We then propose
two new approaches to modeling acyclicity, one based on subtour elimination constraints and
the other based on disjunctive landmark constraints. In addition, we propose to warm-start the
models with the landmarks computed by the LM-cut heuristic, and describe a simple greedy pri-
mal heuristic to provide a starting feasible solution to the MIP solver. Our results demonstrate
that the proposed techniques outperform the current state of the art.

1 Introduction

Al planning is a field of artificial intelligence that deals with planning tasks, i.e., problems where we
look for a cost-optimal sequence (a plan) of actions to reach a desired goal state from some initial
state. In its classical version, the current state is described by a finite set of boolean variables,
called facts, and each action is characterized by its cost, by its prerequisites (a subset of the facts
that need to be true for the action to be applicable), and by its effects, i.e., which facts become true
(add effects) and which become false (delete effects) as the result of applying the action. Solving
a planning task is in general very challenging, as both its feasibility and optimality versions are
known to be PSPACE-complete [7].

The delete-free relazation of a planning task is a relaxation where for each action we drop its
delete effects: in other words, in a delete-free planning task, once a fact becomes true it can never
become false again. This property has far reaching consequences: each action can be applied at
most once, as there is no benefit in using an action multiple times, feasibility can be checked in
polynomial time, and the length of any optimal plan becomes polynomial in the number of actions
and facts. At the same time, computing the cost h™ of the optimal delete-free plan is NP-hard [7].

The delete-free relaxation has been the subject of extensive research, for several reasons. First
of all, being a relaxation, h™ provides an admissible heuristic for A* search, which is one of the
state of the art approaches for domain independent planning. Second, it provides a measure of
informativeness for other common heuristic functions, such as h™** [5] and LM-cut [19], that are
admissible for the delete-free relaxation of a task, and thus dominated by ™. Another reason for the
importance of delete-free planning is that optimal plans for general planning tasks can be computed
by iteratively solving and reformulating delete-relaxed tasks [16]. Finally, some combinatorial
problems, like the minimal seed-set problem [15] and determining join orders in relational database
query plan generation [26], can be naturally modeled as delete-free problems, so delete-free planning
is interesting in its own right.
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The current state of the art for computing h™ in a domain independent setting consists in
formulating the problem as a combinatorial optimization problem, i.e., a declarative set of variables
and constraints, and using an off-the-shelf solver (SAT, CSP or MIP, depending on the chosen
paradigm). In this paper, we consider MIP formulations of delete-free planning tasks.

In section 3, we review the two MIP formulations known from the literature, namely the time-
stamp formulation by [21] and the formulation based on vertex elimination by [11], which is the
current state of the art. Those two formulations share a common base structure, but differ in the
way they model acyclicity, i.e., the fact that we cannot have a circular dependency between actions
in any feasible plan. The former uses a more compact encoding based on time-stamps, that results
in smaller problems but also weaker linear programming (LP) relaxations. The latter is based on
a vertex elimination order of the causal relation graph: this requires a number of constraints that
is the worst case cubic w.r.t. the number of facts in the task, and thus quite expensive as a MIP
encoding, in particular on large-scale tasks, yet it provides provably stronger LP relaxations, and
thus eventually proves to be the most effective method overall.

Both the formulations in [21] and [11] have polynomial size, and can thus be solved by just
feeding them into a blackbox MIP solver. Inspired by the connection to the traveling salesman
problem (TSP), where we also have to model acyclicity, but the current state of the art is not based
on polynomial formulations, in section 4 we introduce two new models with an exponential number
of constraints, thus requiring the dynamic separation of so-called violated lazy constraints on the
fly during the solution process. The first model is based on subtour elimination constraints [10],
again inspired by the TSP, while the second is based on the formulation of a delete-free planning
task as a hitting set problem over a set of (exponentially many) disjunctive landmark constraints,
an approach dating back to [4] and [17].

In section 5, we investigate how to improve the performance of the formulations described, both
old and new. In detail, we noticed empirically that the MIP solver sometimes struggled in finding
a good quality feasible solution early on in the search, which is unusual and quite surprising, given
that it is always trivial to find a feasible solution in the delete-free case: we thus designed a simple
greedy heuristic based on 2% [5], and used the solution obtained in this way as a MIP start for the
solver. We also noticed that in some tasks the LP relaxation of the MIP model was significantly
weaker than what could be obtained much faster by the well-known LM-cut heuristic [19], which
is also based on disjunctive landmarks. We thus decided to warm-start each formulation with the
set of landmarks computed by LM-cut itself.

Separating subtour elimination constraints (SEC) and/or disjunctive landmarks needs to be
done in our dynamic generation approach each time an integer solution is encountered, in order
to guarantee the correctness of the method. However, the current state of the art for many lazy
constraint approaches, like TSP [2] and Benders [3], does not just separate constraints at integer
solutions: to the contrary, it usually deploys a full branch-and-cut approach, where cutting planes
are separated also at fractional nodes. In section 6, we thus investigate how to separate SEC
and disjunctive landmarks on fractional solutions, showing that the former can still be done in
polynomial time, while for the latter the complexity is still unknown. We provide nevertheless an
exact approach based on a MIP formulation, and a polynomial separation heuristic.

In section 7 we provide an extensive computation evaluation of the proposed formulations,
comparing them against the previous state of the art, and measuring the impact of the different
enhancements, showing that some of the proposed methods significantly improve upon current state
of the art. Conclusions and potential lines of future work are finally drawn in section 8.



2 Background and notation

A STRIPS [12] planning task is a 5-tuple Il = (P, A, I, G, cost): P is a finite set of boolean variables
(or facts); A is a finite set of actions: each action a € A is a triple (pre(a),add(a),del(a)), where
pre(a),add(a),del(a) C P denote respectively the set of preconditions, add effects and delete effects
of a; I,G C P are, respectively, the initial state and goal state; cost : A — ]RE]F is a cost function
that maps each action to a non-negative real number.

Executing an action a from a state S C P transitions the system to a new state S’ =
evecy(S) = S\ del(a) U add(a). Let @ = (@n,,...,ar,) be a finite sequence of n actions and
S C P a state: we denote with S(7) = exec,, (...(ezecy, (5))), the state achieved through T,
starting from S. A solution to a planning task is a sequence of actions that transitions the system
from the initial state to a state I(w) O G. Moreover, a feasible solution, or plan, is a solution
m = (ary, ..., 0, ) that satisfies pre(ar,) C I((an,,...,ar, ,)) foralli € {1,...,n}, meaning that the
preconditions of each action are met before it is executed. Finally, the cost of an action sequence
m is cost(m) = Y ,cn cost(a), and our goal is to find an optimal plan 7* with minimum cost c¢*:
7 = argmin;{cost(m)| 7w is a plan for IT}.

In this paper, we always work with the delete-relaxed task It = (P, A", I, G, cost), where
AT = {(pre(a),add(a),0),Va € A} is obtained by replacing, from each action, the delete effects
with the empty set. Without loss of generality, we can assume that I = (): in a delete-relaxed task, a
fact that is true in the initial state remains true throughout the whole plan, rendering it irrelevant.
If the delete-relaxed task does not have an empty initial state, we can obtain an equivalent task
from any relevant set, without changing its optimal plan. Going forward, we assume the task II to
be delete-free and with an empty initial state, in order to simplify notation.

3 Static MIP formulations

We now define the basic MIP formulation for a delete-free task. At a bare minimum, the model
needs to keep track of which actions are used in a plan: since in a delete-free task an action can be
used at most once in a plan 7, this naturally translates into a set of binary variables z,, one for
each a € A, that take value 1 if and only if @ € w. In general, we also need to keep track of which
facts become true, in order to enforce that the goal is reached and that the preconditions of actions
are met, and this translates into another set of binary variables x,, one for each p € P, that take
value 1 if and only if p € I(m). Finally, we need to keep track of which action is responsible for
making a fact true for the first time, i.e., which action a € A is the first achiever of a fact p € P,
so we have variables z,, that take value 1 if and only if a is the first achiever of p in . Of course,
Zq,p 1s defined only for pairs (a,p) in which p € add(a).

With this initial set of variables, a first (incomplete) model, first introduced in [21] and then
refined in [11], reads:

min Z cost(a)z, (Co)
acA
Z Tap = Tp Vpe PAy={ac A|pecadd(a)} (C1)
a€Ap
Z Taq < Tp Vp,q e P, Ay, ={a€ A| pe€pre(a),q €add(a)} (C2)
a€Ap 4
Tap < T4 Va € A,p € add(a) (C3)
zp=1 Vpe G (C4)



The objective function (C0) just sums up the costs of the actions used. As for the constraints:

(C1): a fact is achieved iff an action is its first achiever; moreover there can be at most one
first achiever per fact;

(C2): an action can be a first achiever only if its preconditions are achieved;
(C3): an action can be a first achiever only if it is used;
(C4): each fact in the goal state is achieved.

We denote with IP(IT) the solution obtained by the model described by (C0) — (C4). As antic-
ipated, unfortunately this model is incomplete, as it fails to forbid circular dependencies between
actions: for example, we can select an action a with prerequisite p and add-effect ¢, together with
an action b with prerequisite ¢ and add-effect p, without any other selected action. In order to
obtain a complete (and correct) model, we thus need to model causal acyclicity between the actions
in the plan.

3.1 Modeling acyclicity

A general framework for reasoning about acyclicity is the so-called causal relation graph [11]. Given
a delete-relaxed task II, its causal relation graph is defined as the directed graph G = (P, Er),
where an arc (p,q) € Epy if and only if there is an action a with p as a precondition and ¢ as an
add-effect.

Any solution & = IP(II) induces a subgraph G; = (P, E;) of Gy, where we select only the edges
(p, q) where ¢ is first achieved by some action a, and thus Z,, = 1, and p are all the preconditions
of such action. As shown in [11], for & to be associated to a feasible plan, G; needs to be acyclic: a
cycle in this graph constitutes a cyclical causal dependency between two or more facts, which means
none of these facts can be applied before the others. The existing formulations in the literature
differ in how cycles are forbidden in Gj.

3.2 Time labeling

The first approach to deal with acyclicity is due to [21], and further refined in [11]. The basic idea
is to simply assign a time label to each fact and ensuring that, whenever an action a is the first
achiever of a fact ¢, the time stamp assigned to ¢ must be greater by at least 1 of the timestamp
of any precondition p of a. Timestamps are encoded with integer variables t, € {1, ..., |P|} for any
p € P, and the model is completed with the constraints:

ty—ty+1 < |P|(1—244) Va € A,p € pre(a),q € add(a) (1)

We denote the model that uses Time Labeling as TL(II). Note that in the constraints (1), the
number of facts |P| acts as a big-M coefficient: as such, we do not expect the model TL(II) to
have a strong LP relaxation. On the other hand, the model is quite compact, requiring only |P)|
additional variables and O(|A| - |P|) additional constraints.

3.3 Vertex elimination

A completely different approach is based on vertex elimination graphs, a concept originally intro-
duced by [27]. Given a directed graph G = (P, E), let O = p,...,pp| be an arbitrary ordering of
the vertices P. According to the ordering O, we construct a sequence of graphs Gop = G, ..., G|p|
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by eliminating the vertices of G, where G; is produced from G;_; by eliminating p;, and adding
edges from all its in-neighbors to all its out-neighbors. Given an ordering O', we can apply the
vertex elimination procedure to the causal relation graph Gy, and obtain the graph G* = (P, Ey);
let A be the set of all ordered triplets (p;,pj,pi) encoding the set of edges (p;,pr) added when
eliminating p; in the vertex elimination process. We can enforce G; to be acyclic by adding the
binary variables e, , = {0, 1} for any edge (p, q) € Ej}, together with the constraints:

Zaq < epq Va€ A pepre(a),q € add(a)
epqtegp <1 VY(p,gq) € Ef
epqteqr—1<ep, Y(pgr)€A

We refer to [11] for the details and the proof of correctness of the resulting model, that we
denote with VE(II). The resulting model, while still polynomial, can be quite larger than TL(II),
as it requires O(|P|?) variables and O(|P|3) constraints. At the same time, its LP relaxation is
provably stronger than the one of TL(II).

4 Dynamic MIP formulations

Polynomial formulations, while appealing for their simplicity, are not necessarily the only approach
for enforcing acyclicity in GG;. Indeed, mathematical optimization has a decades-long experience in
dealing with it in the context of the well-known TSP: numerous formulations have been proposed
over the years, some of which polynomial, like those in [24, 14, 13, 8], but the most effective one,
dating back to [10], yet still at the core of the state of the art T'SP solver Concorde [9], is based on
the so-called subtour elimination constraint (SEC) formulation and it has an exponential number of
constraints. Of course, in this case we can no longer provide all the constraints upfront, but we need
to be able to separate them dynamically during the solution process, in a branch-and-cut fashion
[25]. All modern MIP solvers provide explicit support for this scenario, through the availability of
lazy constraint callbacks: each time an integer solution is found, either by some primal heuristic
or at an integer node, a user defined callback is invoked, to check whether the solution can be
accepted as a new incumbent, or rejected. In the latter case, one of more inequalities (the nominal
lazy constraints) violated by the integer point can be returned to the solver.

4.1 Subtour elimination constraints

Our first attempt at using a dynamic formulation is to exploit, with the due modifications, the
class of subtour elimination constraints for delete-free planning as well. For any cycle C in
the causal relation graph Gy, we could impose the corresponding subtour elimination constraint
X (pg)eC Tpq < |C| =1, which forces the removal of (at least) one edge in the cycle. As anticipated,
we cannot just add all those constraints upfront, as they are exponentially many. In addition, our
basic model does not contain variables x, 4, so we need to formulate the SEC in a different space.
We now provide the details of the separation procedure: given a point &, consider the corresponding
causal graph G, and denote with act;(p, ¢) the unique action a € A such that Z,, = 1. It is easy
to check whether G; is acyclic and, if not, for every cycle C' detected, return the violated SEC
inequality:

Z Tacty (pa).g = [C] — 1
(p.9)€C

'In practice, a minimum degree heuristic is used to compute O.



Note that in the implementation we do not compute all cycles in the graph, but we limit
ourselves to disjoint cycles, i.e., cycles that do not share any edges: those cycles can be detected in
linear time with a simple depth first search, keeping track of already visited edges. We denote the
model that uses subtour elimination constraints as SEC(II).

4.2 Disjunctive action landmarks

A completely different approach, that implicitly removes all cycles in Gz, is based on the seemingly
unrelated concept of disjunctive action landmark (landmark, for short). A landmark L C A for 11
is a set of actions such that every plan for II must contain at least one action in L. A key result,
due to [6], is that the computation of the optimal plan for a delete-relaxed task can be formulated
as a minimum-cost hitting set problem over all its landmarks. In other words, given a complete set
of landmarks F7, for a delete-free planning task, a valid formulation reads:

acA
> wa>1 VL € Fp, (3)
aclL
zq € {0,1} Vaec A (4)

Note that this formulation does not enforce acyclicity explicitly, and does not even require
variables x, and z,,. However, we can still use the landmark constraints (3) as cycle breaking
constraints on top of our base model (C0) — (C4), as those alone are enough to obtain a complete
formulation. In addition, this is still a dynamic formulation, as the number of landmarks for a
given planning task is in general exponential in the problem size.

We now turn to the questions on how to separate violated landmark constraints given an integer
point Z. In the following, and without loss of generality, we will assume that:

o all actions have a non-empty set of preconditions;
e each action has a single add effect;
o there are two facts s and ¢ such that I = {s} and G = {t}.

If the original task does not satisfy these assumption, we can always construct an equivalent plan-
ning task that meet them via linear transformation. Note that those are different assumptions
from the one done so far, i.e., that I = (); however the treatment of landmark constraints is greatly
simplified in this new setting. We remark that this is only a conceptual simplification for ease of
exposition: the actual implementation does not depend on it.

Following the treatment in [19, 6, 4], let us introduce justification graphs. A justification graph is
a directed graph Gp = (P, Ep), that has again the set of facts as nodes, and whose edges are defined
by a so-called precondition choice function (pcf) D, i.e., a function D : A — P that associates to
each action a € A one of its preconditions p € pre(a), so that we have an edge (p, q) € Ep labelled
a if and only if there is an action a with D(a) = p and ¢ = add(a). For a given justification graph
Gp, an s-t-cut is a partition (S, P\ S) such that s € S and t ¢ S, and its cut-set is the set of edges
(p, q) crossing the cut in the forward direction, i.e., with p € S and ¢ € S. It is easy to show that,
since any feasible plan defines a s-t-path in Gp, the labels of the edges in any cut-set define a valid
landmark for II. It was shown in [6] that the set of landmarks that can be obtained in this way,
i.e., as cut-sets of justification graphs, is complete, meaning that they are sufficient to compute the
value of h™ via the hitting set formulation (2) — (4).



This, by itself, does not immediately give a polynomial separation procedure, as both the number
of pcfs D and the number of cut-sets of Gp for a given pcf are exponential in the problem size.
However, as shown in [4], the completeness proof in [6] readily gives a linear separation procedure,
even though it was not framed as a separation problem. Let H be the set of actions used in a
solution &, and R(H) C P be the set of facts reachable from I using only actions in H. Then, if
G € R(H), a violated landmark can be obtained simply as:

Ly ={a€ A|pre(a) € R(H),add(a) ¢ R(H)} (5)

This corresponds to constructing a pcf D by picking any p € pre(a) for the actions a such that
pre(a) € R(H), and p € pre(a) \ R(H) for the remaining ones. It is easy to show that H does not
hit the s-t cut (R(H), P\ R(H)), and thus (5) gives a (maximally violated) landmark.

As observed in [17], the landmark obtained in this way is not necessarily minimal, so the
corresponding cut could be dominated by other, equally violated, landmark constraints. In order
to produce a minimal landmark, and thus a stronger cut, the same paper proposes a greedy heuristic
that tries to obtain from H a maximal set of actions H’ O H such that the goal is still not reachable,
ie., G Z R(H'): if H' is such a maximal set, then A\ H’' is a minimal landmark, still violated by 2.
As noted in [17], with the appropriate data structures, the repeated reachability check implied by
the greedy procedure outlined above can be done incrementally, and is quite efficient in practice.
We denote the model that uses subtour elimination constraints as LMC(II).

5 Warm-starting the MIP formulations

While experimenting with the MIP formulations described in the previous section, both old and
new, we noticed a couple of common shortcomings. First, sometimes the MIP solver would struggle
in finding a good feasible solution, or even just any feasible solution, early on in the solution process:
this was common to all formulations, but even more severe in the dynamic formulations, where the
incomplete nature of the model hinders the effectiveness of the primal heuristics implemented in
the solver, a well-known side effect of dynamic constraint generation. Then, we noticed that in
some cases the LP relaxation at the root node was significantly worse than the value that could
be computed, much more efficiently, by the admissible heuristic LM-cut [19]. This is particularly
surprising for formulation LMC(II): since the LM-cut heuristic eventually just computes a clever
set of landmark constraints, formulation LMC(II) has always at least the potential, depending on
how often landmark constraints are separated and how they are chosen, to dominate the bound
from LM-cut. In this section we propose two techniques to fix those issues: a dedicated primal
heuristic and the warmstarting of the model with LM-cut.

5.1 MIP start

Computing a plan for a delete-relaxed task is trivial, since a simple dive, choosing at each step any
applicable action, either finds a feasible plan or proves the planning task to be infeasible. Based
on this observation, we designed a simple greedy heuristic that incrementally constructs a feasible
plan, to be provided as a MIP start to the MIP solver. The method starts with the initial state, and
chooses, at each iteration, an applicable action maximizing a given score. After some preliminary
experiments, we eventually settled on a lookahead strategy based on the h% heuristic function
[5]. For a given state S, we remind that the A% value of a given fact p can be computed as the
solution of the recursive relation:



0 ifpe S
hg*(p) = { - add : (6)
minge 4, {cost(a) + 3 gepre(a) 15" (¢)}}  otherwise

where A, = {a € A | p € add(a)}. Those values can be computed in polynomial time by a
generalized Dijkstra algorithm. Once h%%(p) is computed for every p € P, the h®? value of the
state S itself is defined as h%dd = 2 pec h‘gdd(p). Thus, in the greedy construction heuristic, we

choose at each step an action a, among the applicable ones, minimizing the quantity h%ﬂda dd(a)’ ie.,

hadd

minimizing the of the state that we would reach if we applied that action.

5.2 LM-cut initialization

LM-cut [19] is a state of the art admissible heuristic for classical Al planning, based on the iterative
computation of disjunctive landmarks: at each step of the process, a precondition choice function
based on the h™#* [5] values of the facts is chosen, an s-t cut-set is identified yielding a disjunctive
landmark L, and the cost of actions in L is reduced by the minimum between their costs. The
process is repeated until no cut-set of positive (reduced) cost can be found. We refer to [19, 22] for
details about the procedure.

The value h™ computed by LM-cut is valid for the delete-free relaxation of the a planning task,
and thus dominated by h+. Empirical studies have shown that hM is a very good approximation
of h™, often within a few percent. In other words, solving a hitting set problem over the set of
landmarks computed by LM-cut is guaranteed to give at least h“M, and thus any of the MIP
formulations in this study can potentially benefit from those landmarks in terms of initial LP
bound.

It is worth noting that the LM-cut procedure is not completely specified, as in general there
are degrees of freedom in the choice of the pcf based on A™2*: for a given action a, we might
have multiple preconditions achieving the maximum value. In addition, different pcfs can give,
sometimes significantly, different lower bounds. In our implementation, we follow the approach
described in [22], where LM-cut is run multiple times with different tie-breaking strategies, and
collect all the produced landmarks; in particular, we execute LM-cut three times, using the ARB,
INV and VDM policies in [22]. The runtime of LM-cut has always proved negligible w.r.t. the
overall solution process.

6 Separating cuts on fractional solutions

In a modern branch-and-cut framework, it is very uncommon to separate lazy constraints only at
integer solutions: it is, in general, more efficient to separate the same constraints also at fractional
solutions, in particular at the root node, in order to improve the LP bound faster. This is a
routine approach for both the TSP [9] and Benders decomposition [23], for example. Of course,
given a family of inequalities, the separation procedure must be extended to deal with fractional
solutions, and this sometimes becomes more expensive. For example, in the classical TSP case,
separating SECs on integer solutions can be done in linear time with a simple graph search, while
on fractional solutions this requires solving a sequence of max flow problems: still polynomial, but
more expensive both in theory and in practice. In this section we describe separation procedures
for separating SECs and landmarks over fractional solutions. We will see that the former can still
be separated in polynomial time, while for the latter the complexity is still unknown: in this case
we provide both an exact separation procedure based on a MIP formulation, and a polynomial
heuristic separation procedure.



6.1 SEC on fractional solutions

Given a fractional solution £* coming from the LP relaxation of any of our models, we can construct
a directed weighted graph G, = (P, E;»,w), where we still have the facts as nodes, and an arc
(p,q) € Ey« if and only if there is an action a with p as a precondition, ¢ as an add-effect, and
Tap > 0; its label is acty«(p, ¢) = argmin, {1 — 23 , | a € A,p € pre(a),q = add(a)} and its weight
is Wp,q = 1-— Tact (p,q)> q.

We have a violated SEC if and only if there exists a cycle C' in Gz« in which the sum of the
weights is strictly < 1. Indeed, a SEC constraint reads

Z Tact,«(p,q)r 4 = Il -1
(@) €C

but after complementing all the variables it can be rewritten into:

Z (1 — Lact (p,q)aQ) = Z Wp.q >1

(p,9)eC (p,q)eC

In other words, the separation problem over fractional solutions can be casted as the problem
of a minimum weighted cycle in a directed weighted graph. This can be computed in polynomial
time by the following algorithm. For any arc (p,q) with wy, < 1, we thus compute the shortest
path S, from ¢ back to p in G+, using the weights as costs in the shortest path computation: if
Wp,q + Sqp < 1, we have found a violated SEC. As in the integer case, in our implementation we
only separate disjoint cycles.

6.2 Landmarks on fractional solutions

The separation of landmark constraints is conceptually made of two steps: the choice of a precon-
dition choice function D, yielding a justification graph Gp, and the choice of an s-t cut. For a
given justification graph Gp, the choice of the s-t cut giving the most violated landmark constraint
can easily be encoded as a (polynomial) max-flow computation, using the values z as capacities
on the edges with label a. This is because the assumption of each action having exactly one add
effect implies that there are no duplicate action labels in any cut-set, and thus the capacity of the
cut corresponds to 1 minus the violation of the landmark.

In the integer case, a simple reachability analysis is enough to define a pcf D giving a maximally
violated landmark constraint. Our first step is thus to try to generalize the reachability computation
to the fractional case. The most natural approach consists in casting the reachability analysis as
the computation of recursive values, similar to h% or K™% based on the relations:

R = R Vp e P 7

o) = max Faa) pe (7)

Ri(a) =min{ min Ry(p),z,} Vaec A (8)
pepre(a)

with the starting condition R;j(s) = 1. Those conditions can be interpreted as replacing the
Boolean semiring defining reachability with a fuzzy counterpart, where max replaces OR and min
replaces AND. For binary z}, the resulting values of R;(p) encode exactly the reachability of each
fact, and we can claim that there is no violated landmark if and only if R;(¢) = 1. Unfortunately,
an analogous condition does not hold in the fractional case, as it is easy to construct planning tasks
where there is no violated landmark even if R;(t) < 1. A small example is given in fig. 1, where
each edge corresponds to a different action, and for which the corresponding fractional value is 1/2.
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Figure 1: Example of R;(z*) < 1 but no violated landmark exists.

In the following, we will denote with R (z*) the value of R;i(t) computed for a given fractional
solution z*.

We did not find a way to turn the fuzzy reachability values Ri(p) into an exact separation
procedure, akin to the one used in the integer case. However, we will show how to use them,
together with some tie-breaking conditions, to devise a heuristic separation procedure.

6.2.1 Exact algorithm

In order to gain insights on the landmark separation process, and to empirically evaluate the
effectiveness of potential heuristic procedures, we first formulated the exact separation of landmarks
constraints as a MIP. This is unlikely to be an effective approach in practice, but it proved quite
useful as a baseline. The MIP model is based on the definition of disjunctive landmarks from
justification graphs. Let us introduce binary variables z, encoding whether a given action a is part
of the cut-set defining the landmark, and binary variables y, encoding whether a fact p is on the
s-side of the cut. The separation model reads:

min Z Tyza 9)

a€A
2 > Z yp — |pre(a)| + (1 —yq) Va € A,q = add(a) (10)
pepre(a)
Ys = 1 (11)
ye =0 (12)

The objective (9) minimizes the left-hand side of the landmark w.r.t. the solution to separate
x*, while constraints (10) impose that a can be part of the landmark only if all its preconditions
are on the s side, but at least one of the effects is not. We are also imposing s to be on the s side
(11), while forbidding ¢ (12). In the following, we will denote with MC(z*) the optimal objective
value of this separation MIP model.

6.2.2 Heuristic approach using max-flow

Even though the fuzzy R;(p) values seem not to be enough to devise an exact separation procedure,
we devised a heuristic approach based on them. While computing R;, we can at the same time
also compute the relaxed values Ry, which are obtained with the similar relations:

R3(p) = min{ Z Ry(a), 1} Vpe P (13)
ac€Alp=add(a)

Ry(a) = min{ min Rs(p),x,} Vaec A (14)
pepre(a)
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Clearly, we have 0 < Ri(p) < Ra(p) < 1 for any fact p € P, and analogously for actions.
As usual, we denote with Ry(z*) the value of Rs(t) computed for a given fractional solution z*.
Intuitively, we would expect the condition R;i(z*) < MC(z*) < Ra(z*) to always be satisfied, and,
indeed, we have yet to find a counterexample for it. Even assuming it is true, however, note that we
can still have MC(z*) < 1 but Ra(z*) = 1. A small example is given in fig. 2, where again we have
a planning task where each edge corresponds to a different action, and for which the corresponding

fractional value is 1/2.
ROX
0.5 0.5
~ ~
@7 0-5 »@ /
~
0.5 0.5
\@/
Figure 2: Example of Ry(z*) =1 but MC(z*) < 1.

An important property of the values R; and Ry is that, as with A values, we can always
choose a pcf D that justifies them, i.e., such that the R; (resp. R2) value of each fact/action
is preserved in the simplified task: we just need to choose as precondition of a given action a a
fact with minimum R;(p) (resp. Ra(p)). This property is at the basis of our proposed heuristic
separation: after computing the values of Ry and Ro, we choose a pcf D that justifies Ry, using
Ry as a tie-breaker, preferring lower values of Ry. We then identify a min-cut in the resulting
justification graph Gp, via a max-flow computation: if the resulting cut has capacity < 1, then we
have found a landmark constraint violated by z*. Otherwise we fail to return a cut, even though one
might exist. In our computation evaluation, this separation heuristic managed to find a violated
inequality in > 97% of the cases in which one existed, as certified by the exact MIP separation,
while being, on average, one order of magnitude faster.

7 Computational results

We implemented our approaches in C++, and evaluated them on the standard IPC benchmarks?,
for a total of 2799 planning tasks. The corresponding PDDL files were fed into the state of the
art planner FastDownward [18], to obtain an equivalent SAS™ description. All of our models start
from this grounded SAS™ representation. The resulting instances are then solved using a black box
MIP solver, namely IBM ILOG CPLEX 22.1.0 [20], with default settings. The MIP solver was run
on a cluster of 16 identical machines, each equipped with an Intel Xeon CPU E5-2623 V3 CPU
running at 3.00 GHz, and 16 GB of RAM. Each method was run on each task with a time limit of
15 minutes. The source code is available as a single solver on GitHub?: the results are measured
on version 2.4.2 of the solver.

Before constructing a MIP model, each planning task went through a preprocessing phase, con-
sisting of landmark-based model reduction, relevance analysis and dominated actions elimination,
as described in [21], as well as forward relevance analysis [17]. This preprocessing phase is com-
mon to all the formulations under test, and is well known to significantly speed up the solution of
delete-free tasks when encoded as MIP formulations.

https://github.com/AI-Planning/classical-domains
3https://github.com/Zanzibarr/MIPxHPLUS
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In this section, the results are presented in tables comparing various models against a baseline.
The baseline’s absolute results appear on the left side of each table, while other methods are mea-
sured as ratios relative to the baseline (except for the number of instances solved, shown as deltas).
Each row of the table corresponds to a subset of the instances, selected based on difficulty: in
particular, the bracket [/, u) collects all the instances where the smaller computing time among the
methods under comparison is contained in the corresponding interval. Beyond the time brackets,
three additional categories are shown: all, showing the results over all instances; solvable, select-
ing only the instances that could be solved to optimality by at least one method under comparison,
and all-solvable, selecting only the instances that could be solved to optimality by all methods
under comparison. Within each category, for time and nodes we report shifted geometric means
[1], with a shift of 1.

For each comparison between the baseline and another method, we perform statistical tests on
the results within each category to determine whether the difference is significant. We apply the
Wilcoxon paired signed-rank test for nodes and times, using ratios of shifted values rather than
differences to maintain consistency with the shifted geometric mean. For the number of instances
solved, we use the McNemar’s test on the binary success status. When a method shows statistically
significant differences from the baseline in a given category, i.e., the test returns a p-value < 0.05,
its results are displayed in bold.

7.1 Analysis of the current state of the art

In our first experiment, we compare the two known static models, namely TL(II) and VE(II),
without any of the techniques proposed in this paper, in order to define a baseline for future com-
parisons. Aggregated results are given in table 1. As expected from the literature, VE(II) clearly
outperforms TL(II), by solving 165 more instances; moreover, given the stronger LP relaxation,
VE(II) requires only a fraction of the nodes and it is on average almost 40% faster. The improve-
ment is also quite consistent across different brackets. Going forward, we use VE(II) as the baseline
for future comparisons.

TL(II) VE(II)
Category Count Solved  Nodes Time (s) A Solved Nodes (rel.) Time (rel.)
all 2799 2268 13.990 5.660 +165 0.152 0.623
solvable 2450 2268 9.093 2.364 +165 0.131 0.513
all-solvable 2251 2251 4.235 1.092 0 0.198 0.686
[0,1) 1822 1812 1.863 0.295 +10 0.133 0.483
[1,10) 354 292 180.612 18.515 +62 0.021 0.213
[10,100) 188 129 583.999 115.768 +49 0.025 0.261
[100, 900) 134 35 401.762 712.435 +44 0.074 0.418

Table 1: Comparison between state of the art models TL(II) and VE(II).

7.2 Effectiveness of dynamic models

Next, we evaluate the effectiveness of dynamic MIP formulations, based on subtour elimination
(SEC(II), described in section 4.1) and landmark constraints (LMC(II), described in section 4.2).
As far as landmarks is concerned, we tested their separation both with and without the greedy
strengthening procedure that makes the landmark minimal, and the former proved more effective,
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using on 70% less nodes and 50 — 80% less time on average. We thus enable this strengthening
step in LMC(IT). We also tested the combined separation of both type of cuts, and we refer to this
combination as (LM + SE)C(II).

VE(IT) SEC(TI) LMC(IT)
Category Count Solved Nodes Time (s) A Solved Nodes (rel.) Time (rel.) A Solved Nodes (rel.) Time (rel.)
all 2799 2433 2.121 3.521 -141 10.461 1.452 +8 3.173 0.936
solvable 2517 2433 1.410 1.582 -141 10.078 1.606 +8 2.820 0.882
all-solvable 2217 2217 0.691 0.747 0 6.637 1.107 0 2.628 0.766
[0,1) 1934 1934 0.450 0.248 -33 8.174 2.000 -14 2.600 0.836
[1,10) 350 338 5.618 9.160 -84 85.599 3.124 -10 7.116 0.801
[10, 100) 156 130 16.675 69.634 -29 48.309 1.561 +9 6.898 0.795
[100, 900) 114 31 30.315 423.745 +5 21.047 1.528 +23 4.559 1.257

Table 2: Comparisons between static and dynamic models.

table 2 shows that using subtour elimination constraints is not competitive with the current
state of the art, resulting in significantly fewer models solved to optimality and increased runtimes
across the board; on the other hand, using landmarks constraints proves to be an improvement,
reducing the computation time, with the only exception of the harder bracket. We note that the
higher number of nodes explored is to be expected, given the fact that SEC(II) and LMC(II) are
dynamic models, and that constraints are added on the fly. We also tested the use of SEC on top
of LMC(II), but it did not provide a significant benefit (table 3).

LMC(II) (LM + SE)C(IT)
Category Count  Solved Nodes Time (s) A Solved Nodes (rel.) Time (rel.)
all 2799 2444 6.424 3.214 +7 1.160 1.005
solvable 2490 2444 3.458 1.236 +7 1.069 1.008
all-solvable 2405 2405 2.565 0.865 0 1.004 1.045
[0,1) 1902 1902 0.898 0.131 0 0.860 1.017
[1,10) 327 323 26.199 4.685 0 1.212 1.243
(10, 100) 176 157 119.592 49.852 +9 1.503 0.761
[100, 900) 89 62 1046.660  415.373 -2 4.721 0.938

Table 3: Adding SEC to LMC(II).

7.3 Warm-starting the MIP formulations

In this section we evaluate the effectiveness of the warm start techniques discussed in section 5.1
and section 5.2, namely the addition of a greedy primal heuristic to provide a MIP start to the
solver and the addition of the landmark constraints generated by LM-cut as constraints to the
formulation. For each of the formulations TL(II), VE(II), SEC(IT), LMC(II), (LM + SE)C(II), we
consider the versions with the added MIP start, that we denote with A subscript, and then finally
the versions where we also add the landmark constraints, that we denote with the h, LM subscript.

Both TL(II) and VE(II) benefit from the proposed warm start techniques, with a significant
improvement on every aspect (tables 4 and 5). These results show a significant improvement while
still using a ready-to-use MIP formulation, without the need of a dynamic approach based on lazy
constraints. We also note that both improvements contribute to the overall speedup, consistently
across formulations and brackets.
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TL(II) TLy, (IT) TLp, 1w (IT)

Category Count Solved Nodes Time (s) A Solved Nodes (rel.) Time (rel.) A Solved Nodes (rel.) Time (rel.)
all 2799 2268 13.844 5.647 +42 0.705 0.835 +122 0.266 0.636
solvable 2396 2268 6.849 1.953 +42 0.619 0.756 +122 0.182 0.471
all-solvable 2257 2257 3.983 1.082 0 0.701 0.787 0 0.242 0.565
[0,1) 1871 1863 2.033 0.381 -1 0.675 0.747 +8 0.138 0.315
[1,10) 312 270 96.709 15.390 +14 0.446 0.546 +42 0.063 0.232
[10,100) 156 104 374.789 128.544 +28 0.180 0.509 +52 0.029 0.239
[100, 900) 59 31 7812.194 550.706 +1 1.109 0.876 +20 0.612 0.681

Table 4: Improvements on TL(II).

VE(II) VEp, (IT) VEp, Lm (IT)
Category Count Solved Nodes Time (s) A Solved Nodes (rel.) Time (rel.) A Solved Nodes (rel.) Time (rel.)
all 2799 2435 2.126 3.526 +14 0.817 0.923 +61 0.389 0.793
solvable 2505 2435 1.506 1.531 +14 0.764 0.890 +61 0.308 0.704
all-solvable 2415 2415 1.119 1.049 0 0.791 0.907 0 0.347 0.758
[0,1) 1904 1904 0.604 0.210 0 0.833 0.891 0 0.313 0.573
[1,10) 324 315 3.722 6.825 0 0.600 0.802 +9 0.146 0.519
[10, 100) 217 187 16.138 67.519 +13 0.514 0.749 +29 0.150 0.503
[100, 900) 225 29 9.229 392.234 +1 0.971 0.902 +23 0.550 0.832

Table 5: Improvements on VE(II).

TLj, 1 (IT) VE; 1m(IT)
Category Count Solved Nodes Time (s) A Solved Nodes (rel.) Time (rel.)
all 2799 2394  3.695 3.599 +104 0.224 0.778
solvable 2517 2394  2.541 1.557 +104 0.176 0.714
all-solvable 2375 2375 1.215 0.844 0 0.250 0.940
[0,1) 1939 1931 0.764 0.220 +8 0.222 0.665
[1,10) 334 285  20.793 11.339 +44 0.031 0.422
[10, 100) 180 146 34.848 60.264 +26 0.068 0.633
[100, 900) 235 32 73.069  629.846 +26 0.114 0.477

Table 6: Comparison between state of the art models with warm start.

Comparing the static methods directly, we see that warmstarting did not change the relative
ranking between TL(II) and VE(II), with the vertex elimination approach still clearly superior, see
table 6. We will thus use VE, 1 (II) as the baseline for future comparisons.

SEC(II) SECy, (IT) SECy,,1.m (IT)
Category Count Solved Nodes Time (s) A Solved Nodes (rel.) Time (rel.) A Solved Nodes (rel.) Time (rel.)
all 2799 2290 22.211 5.154 +21 0.742 0.917 +120 0.253 0.651
solvable 2421 2290 9.659 1.854 +21 0.698 0.877 +120 0.191 0.493
all-solvable 2278 2278 5.318 0.997 0 0.711 0.870 0 0.263 0.652
[0,1) 1911 1880 2.658 0.423 -1 0.836 0.896 +31 0.146 0.253
[1,10) 306 271 169.606 13.576 +7 0.448 0.757 +35 0.059 0.298
(10, 100) 141 107 2290.830 97.085 +14 0.139 0.652 +33 0.037 0.385
[100, 900) 67 32 13482.374 575.280 +1 0.821 0.943 +21 0.506 0.633

Table 7: Improvements on SEC(IT).
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LMC(IT)

LMCy, (IT)

LMCyp, v (IT)

Category Count Solved Nodes Time (s) A Solved Nodes (rel.) Time (rel.) A Solved Nodes (rel.) Time (rel.)
all 2799 2442 6.660 3.288 +22 0.732 0.923 +73 0.328 0.697
solvable 2531 2442 3.871 1.465 +22 0.684 0.891 +73 0.245 0.575
all-solvable 2417 2417 2.621 0.894 0 0.666 0.899 0 0.273 0.677
[0,1) 2014 1992 1.475 0.308 -5 0.699 0.936 +22 0.175 0.353
[1,10) 328 315 30.438 9.845 +7 0.626 0.761 +13 0.135 0.386
[10, 100) 124 96 143.679 93.496 +13 0.190 0.591 +26 0.050 0.367
[100, 900) 262 39 800.856 441.708 +7 1.288 1.097 +12 0.925 0.796

Table 8: Improvements on LMC(II).

In tables 7 and 8 we show the improvements on the dynamic models as well. Again, both
techniques give consistent improvements. Lastly, we reevaluate our dynamic models against the
baseline taking warm start techniques into account: while SECy, 1, (II) is still not competitive with
our baseline, LMCy, ;\(IT) further widens the gap with VEj pa(II) by solving 22 more instances
and reducing the computation time below 70% (table 9).

VEj, LM (1) SECy,, LM (1) LMCy, 1M (D)
Category Count Solved Nodes Time (s) A Solved Nodes (rel.) Time (rel.) A Solved Nodes (rel.) Time (rel.)
all 2799 2498 0.826 2.804 -84 6.871 1.194 +22 2.687 0.824
solvable 2563 2498 0.502 1.344 -84 7.528 1.239 +22 2.388 0.729
all-solvable 2357 2357 0.270 0.792 0 5.266 0.893 0 1.953 0.690
[0,1) 2017 2017 0.238 0.211 -29 6.217 1.648 -11 1.635 0.722
[1,10) 339 326 0.502 9.257 -48 56.004 1.520 +9 8.280 0.421
[10, 100) 138 120 3.951 70.187 -4 11.928 0.805 +11 4.113 0.583
[100, 900) 200 35 10.397 363.968 -3 21.489 1.725 +13 8.445 1.399

Table 9: Comparison between static and dynamic models with warmstarting.

We also compare LMCp, m(I1) with (LM + SE)C), (1), to see whether the improvements
made by the warm start techniques help the hybrid method, but as shown in table 10, the use

of SEC is still not justified by any significant improvement.

LMCy, rm(IT) as the baseline for future comparisons.

LMCy, 1,m(IT) (LM + SE)Ch,LM (11)
Category Count Solved  Nodes Time (s) A Solved Nodes (rel.) Time (rel.)
all 2799 2520 2.220 2.310 +7 1.195 1.029
solvable 2546 2520 1.073 0.900 +7 1.255 1.046
all-solvable 2501 2501 0.779 0.725 0 1.280 1.090
[0,1) 2004 2002 0.271 0.111 +2 1.299 1.044
[1,10) 333 330 4.264 3.626 +1 1.742 1.430
[10,100) 147 137 21.465 42.407 +7 0.977 0.689
[100, 900) 62 51 354.147  325.437 -3 1.871 1.052

Table 10: Adding SEC to LMCy, pm(II).

7.4 Separating cuts on fractional solutions

Going forward, we will thus use

In this section we enable the separation of violated constraints on fractional solutions, to see whether
those can provide further improvements. In preliminary experiments, we found that, if implemented
naively, the root cutloop with the separation of cuts at fractional solution could become way too
expensive, with the vast majority of the solution time spent in adding cuts with a very small effect
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on the LP bound. Due to this fact, and to have full control on the cutloop strategy, we implemented
our own root cutloop, to be executed before solving the problem as a MIP with CPLEX. Our cutloop
terminates when no violated cut has been found in the last iteration, if the relative MIP gap drops
below 10% (w.r.t. the primal bound obtained by the solution constructed by our greedy heuristic)
or if the improvement on the lower bound, with respect with the last 10 iterations, is below 0.5%.
Other than at the root node, we separate cuts on fractional nodes as well, but only once per node.
We evaluate the following models:

o fSEC(II): LMCy, ,m(IT) with violated subtour elimination constraints, as described in sec-
tion 6.1;

o fLMyp(IT): LMCp, 1m(IT) with violated landmark constraints, computed with the exact ap-
proach described in section 6.2.1;

o fLM(II): LMCp, 1,m(IT) with violated landmark constraints, computed with the heuristic ap-
proach described in section 6.2.2;

o fLS(II): combination of {LM(II) and fSEC(II).

LMC}MLM(H) fLMMIp(H)
Category Count Solved  Nodes Time (s) A Solved Nodes (rel.) Time (rel.)
all 2799 2519 2.213 2.306 -2 0.661 1.069
solvable 2541 2519 1.026 0.879 -2 0.716 1.113
all-solvable 2495 2495 0.750 0.701 0 0.726 1.142
[0,1) 1998 1998 0.242 0.102 0 0.735 1.309
[1,10) 342 339 4.801 3.680 +3 0.612 1.178
[10,100) 132 124 13.166 38.143 +3 0.511 1.047
[100, 900) 69 58 378.944 312.727 -8 0.327 1.410

Table 11: Use of the MIP LM-based fractional separator.

As shown in table 11, separating violated landmark constraints on fractional solutions manages
to reduce the number of nodes explored; however, the total computation time is not yet competitive
with our best model.

fLMwrp (11) fLM(I)
Category Count Solved Nodes Time (s) A Solved Nodes (rel.) Time (rel.)
all 2799 2516 1.439 2.464 —+6 1.201 0.961
solvable 2537 2516 0.722 0.963 +6 1.229 0.938
all-solvable 2501 2501 0.583 0.820 0 1.219 0.933
[0,1) 1969 1969  0.155 0.117 0 1.264 0.837
[1,10) 349 349 2.941 3.701 0 1.273 0.933
[10,100) 156 151  7.369 37.884 -3 1.688 0.929
[100, 900) 63 47  89.542 434.676 +9 1.497 0.796

Table 12: MIP vs polynomial LM-based fractional separator.

The heuristic separator manages to reduce the computation time (table 12), at the expense of
an increased number of nodes, due to the fact that it can fail to find a violated cut when one exists.
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Unfortunately, when comparing it with the baseline, it is still not competitive enough time-wise,
see table 13.

LMCp, v (II) FLM(IT)
Category Count Solved  Nodes Time (s) A Solved Nodes (rel.) Time (rel.)
all 2799 2518 2.209 2.306 +4 0.793 1.027
solvable 2540 2518 1.005 0.879 +4 0.868 1.045
all-solvable 2500 2500 0.787 0.717 0 0.896 1.071
[0,1) 2005 2005 0.257 0.105 0 0.866 1.094
[1,10) 331 328 4.372 3.725 +3 0.883 1.092
[10,100) 135 131 12.114 35.398 +1 0.748 1.009
[100, 900) 256 54 349.565 341.793 0 0.489 1.163

Table 13: Use of the polynomial LM-based fractional separator.

Finally, we evaluate the use of the SEC-based fractional-separator on our baseline but, once
again, SEC do not seem to help significantly (table 14).

LMC}, 1 (I1) fSEC(IT) LS(IT)
Category Count Solved Nodes Time (s) A Solved Nodes (rel.) Time (rel.) A Solved Nodes (rel.) Time (rel.)
all 2799 2519 2.210 2.308 +16 0.992 1.049 +12 0.692 1.071
solvable 2561 2519 1.170 0.973 +16 1.013 1.076 +12 0.755 1.110
all-solvable 2485 2485 0.708 0.695 0 1.009 1.104 0 0.758 1.142
[O, 1) 2009 2008 0.282 0.110 +1 1.101 1.107 +1 0.695 1.096
[1,10) 338 333 5.111 4.050 -3 0.968 1.461 -2 0.807 1.628
[10,100) 145 129 19.944 50.938 +11 0.940 0.793 +12 0.523 0.802
[100, 900) 69 49 530.190 379.259 +7 0.878 0.994 +1 0.329 1.155

Table 14: Use of the SEC-based fractional separator.

7.5 Overall improvement

In this section, we measure the impact of all the methods proposed, comparing our best method
LMCy, v (IT) with the previous state of the art VE(II). Aggregated results are given in table 15:
overall, with the proposed model and warm-starting techniques, we manage to reduce to 70% the
average number of nodes used to find the optimal solution, and to reduce the overall computing
time by approximately by 35%, and, more importantly, we can solve more instances to optimality
within the time limit.

In table 16, we show the comparison divided by problem domain: according to the table, our
model outperforms the state of the art for most domains, but there are still some domains, like
barman, elevators, rovers, in which the new method is not competitive with VE(II). There are also
domains, like petri and thoughtful, in which, even though we manage to beat the state of the art
time-wise, we are exploring a much larger number of nodes, which might suggest that either the LP
relaxation is still too weak or that our MIP start is not a good primal heuristic in those domains.

Finally, in fig. 4, we provide a survival plot comparing the state of the art VE(II) against its
warm-started counterpart VEj, 1m(II) and our dynamic methods SECy 1 (II) and LMCy, pa(I1).
The plot confirms that even just warm-starting VE(II) has a positive effect, consistently increasing
the number of instances that can be solved to optimality within each time limit, and the same
applies in turn to our method LMCp, 1 m(IT). SEC), 10 (IT) can be considered somewhat competitive
on smaller time limits, but it becomes less and less competitive as the instances become more
difficult to solve.
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VE(II) LMCp, 1 (IT)
Category Count Solved Nodes Time (s) A Solved Nodes (rel.) Time (rel.)

all 2799 2435  2.126 3.526 +81 1.045 0.653
solvable 2549 2435  1.510 1.773 481 0.747 0.523
all-solvable 2402 2402 1.057 1.076 0 0.736 0.501
[0,1) 2017 2013 0.704 0.342 -8 0.548 0.459
[1,10) 334 306 4.460 17.966 +26 0.813 0.205
[10, 100) 143 96 30.462 111.187 437 0.748 0.396
[100, 900) 208 20 8981  401.510 +26 4.724 1.212

Table 15: Comparison between state of the art and proposed model.
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Figure 3: Scatter plot comparing the state of the art model VE(II) against the new model
LMCy, i (IT).
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VE(IT) LMCp, 1m (ID)

Domain Count Solved  Nodes Time (s) A Solved Nodes (rel.) Time (rel.)
agricola 40 40  41.286 10.763 0 0.033 0.213
airport 50 50 3.429 0.395 0 0.000 0.652
barman 94 94 7.073 0.450 -13 1.361 4.744
blocks 35 35 0.000 0.006 0 1.000 0.900
childsnack 40 40 0.000 0.078 0 1.000 0.735
data 40 29 177.039 44.519 +7 0.170 0.215
depot 22 22 0.468 0.654 0 0.495 0.337
driverlog 20 19 6.497 2.842 0 0.738 0.874
elevators 100 100 0.452 0.855 -1 128.460 2.430
floortile 80 80 3.141 0.300 0 0.014 0.324
freecell 80 80 0.047 3.142 0 65.547 0.390
ged 40 40 0.000 3.293 0 1.000 1.077
grid 5 5 40.400 0.374 0 0.035 0.349
gripper 20 20 0.000 0.010 0 1.000 0.970
hiking 60 60 0.000 0.540 0 1.000 0.875
logistics00 28 28 0.000 0.009 0 1.000 0.672
logistics98 35 31 4.769 4.274 +4 0.000 0.161
miconic 150 150 0.000 0.012 0 1.000 0.699
movie 30 30 0.000 0.004 0 1.000 0.680
mprime 35 33 6.369 6.204 -1 0.228 0.395
mystery 30 30 2.198 1.763 -1 0.170 0.511
nomystery 40 40 0.000 2.638 0 1.000 0.158
openstacks 170 169 0.000 0.733 0 1.000 0.889
organic 52 27 0.619 45.339 +7 1.075 0.953
parcprinter 70 70 0.000 0.022 0 1.000 0.741
parking 80 80 0.064 1.587 0 49.099 1.213
pathways 30 30 0.000 0.130 0 1.000 1.155
pegsol 70 70 38.590 0.598 0 0.011 0.052
petri 20 20 0.149 9.982 0 576.100 0.128
pipesworld 100 47 6.565 79.699 +4 18.597 0.901
psr 50 50 0.000 0.005 0 1.000 0.815
rovers 40 40 0.000 0.170 0 1.000 1.637
satellite 36 36 0.000 1.770 0 1.000 1.097
scanalyzer 70 57 0.265 28.427 +5 12.724 0.209
schedule 150 149 0.000 0.008 0 1.000 0.798
snake 40 8 1.970  432.741 +8 5.585 0.375
sokoban 100 100 0.365 0.241 0 0.000 0.125
spider 40 18 5.529  143.843 +20 0.876 0.107
storage 30 30 0.000 0.361 0 1.000 0.716
termes 40 40 0.149 0.058 0 2.057 1.068
tetris 37 27 0.000 45.673 +10 1.000 0.052
thoughtful 40 5 0.653  553.137 0 548.092 0.793
tidybot 60 13 187.651  429.444 +21 0.210 0.146
tpp 30 30 3.053 1.585 0 0.000 0.187
transport 140 54 406.793  129.364 -10 0.617 0.971
trucks 30 30 0.000 0.100 0 1.000 0.833
visitall 80 59  35.402 18.907 +21 0.008 0.144
woodworking 100 100 0.000 0.280 0 1.000 0.904
zenotravel 20 20 0.177 0.538 0 0.000 0.327

Table 16: Comparison between state of the art and proposed model, divided by domain.
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8 Conclusions and future work

We analyzed existing MIP formulations for computing A, which consists of a base model plus a
set of constraints required to model acyclicity in the causal relation graph associated to the task II,
using timestamps and vertex elimination graphs. We then introduced different MIP formulations,
which require an exponential number of constraints, and thus require the dynamic separation of
violated constraints during the solution process: one formulation is based on SECs, while the other
is based on disjunctive action landmarks. While the former did not prove competitive with the other
methods, the latter managed to outperform the current state of the art. In addition, we proposed
two warm-starting techniques, applicable to all MIP formulations, one providing a primal heuristic
solution as a MIP start and the other initializing the set of constraints with the set of landmarks
computed using the LM-cut heuristic. The warm-starting techniques proved effective in improving
both the primal and dual behaviour of the MIP solution process, consistently across formulations.
Finally, we tried separating cuts on fractional solutions, deploying a full branch-and-cut approach:
unfortunately, with the current separation methods, we did not manage to obtain improvements in
computing time, despite an encouraging reduction in the number of enumeration nodes. Combining
the warm-starting techniques and the dynamic model using landmarks, we managed to significantly
improve over the current state of the art, reducing both the number of nodes and the time needed
to compute AT with a MIP approach. (tables 15 and 16 and figs. 3 and 4).

The present work leaves some interesting lines for future research: first of all, it would be
interesting to assess the theoretical complexity of disjunctive landmark separation over fractional
solutions. Finally, we found quite surprising that cutting planes separated from fractional solutions
did not prove effective in speeding up the solution process, despite being relatively inexpensive to
separate: even though preliminary experiments with more sophisticated separation strategies based
on in-out also proved ineffective, we think that other approaches, in particular improvements in
the selection of violated cuts and a better tuning of the separation frequency, will eventually lead
to an improved computation of ™.
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