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Abstract. Branch-and-bound methods for mixed-integer programming
(MIP) are traditionally based on solving a linear programming (LP) re-
laxation and branching on a variable which takes a fractional value in the
(single) computed relaxation optimum. In this paper we study branch-
ing strategies for mixed-integer programs that exploit the knowledge of
multiple alternative optimal solutions (a cloud) of the current LP re-
laxation. These strategies naturally extend state-of-the-art methods like
strong branching, pseudocost branching, and their hybrids.
We show that by exploiting dual degeneracy, and thus multiple alter-
native optimal solutions, it is possible to enhance traditional methods.
We present preliminary computational results, applying the newly pro-
posed strategy to full strong branching, which is known to be the MIP
branching rule leading to the fewest number of search nodes. It turns out
that cloud branching can reduce the mean running time by up to 30%
on standard test sets.

1 Introduction

In this paper we address branching strategies for the exact solution of a generic
mixed-integer program (MIP) of the form (w.l.o.g.):

min{cx : Ax ≤ b xj ∈ Z ∀j ∈ J}

where x ∈ Rn and J ⊆ N = {1, . . . , n}.
Good branching strategies are crucial for any branch-and-bound based MIP

solver. Unsurprisingly, the topic has been subject of constant and active re-
search since the very beginning of computational mixed-integer programming,
see, e.g., [9]. We refer to [24,5,1] for some comprehensive studies on branching
strategies.

In mixed-integer programming, the most common methodology for branching
is to split the domain of a single variable into two disjoint intervals. In this
paper we will address the key problem of how to select such a variable. Let x?

be an optimal solution of the linear programming (LP) relaxation at the current
node of the branch-and-bound tree and let F = {j ∈ J : x?j 6∈ Z} denote the
set of fractional variables. A general scheme for branching strategies consists
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in computing a score sj for each fractional variable j ∈ F , and then picking
the variable with maximum score. Different branching rules then correspond to
different ways of computing this score.

Several branching criteria have been studied in the literature. The simplest
one (most-fractional branching) is to branch on the variable whose fractional
part is as close as possible to 0.5; however, this is well known to perform poorly
in practice [10]. A more sophisticated branching strategy is pseudocost branch-
ing [9], which consists in keeping a history of how much the dual bound (the
LP relaxation) improved when branching on a given variable in previous nodes,
and then using these statistics to estimate how the dual bound will improve
when branching on that variable at the current node. Pseudocost branching is
computationally cheap since no additional LPs need to be solved and performs
reasonably well in practice. Yet at the very beginning, when the most crucial
branching decisions are taken, there is no reliable historic information to build
upon.

Another effective branching rule is strong branching [7,8]. The basic idea
consists in simulating branching on the variables in F and then choosing the
actual branching variable as the one that gives the best progress in the dual
bound. Interestingly, this greedy local method is currently the best w.r.t. the
number of nodes of the resulting branch-and-bound tree, but introduces quite
a large overhead in terms of computation time, since 2 · |F | auxiliary LPs need
to be solved at every node. Many techniques have been studied to speedup
the computational burden of strong branching, in particular by heuristically
restricting the list of branching candidates and imposing simplex iteration limits
on the strong branching LPs [24] or by ruling out inferior candidates during the
strong branching process [18]. However, according to computational studies, a
pure strong branching rule is still too slow for practical purposes. Branching
rules such as reliability branching [5] or hybrid branching [4], that combine ideas
from pseudocost branching and strong branching, are considered today’s state
of the art.

Other approaches to branching include the active constraint method [26],
which is based on the impact of variables on the set of active constraints, branch-
ing on general disjunctions [20], inference branching and VSIDS [23,25,1] based
on SAT-like domain reductions and conflict learning techniques. Finally, infor-
mation collected through restarts is at the heart of the methods in [21,17].

All branching strategies described so far are naturally designed to deal with
only one optimal fractional solution. History-based rules use the statistics col-
lected in the process to compute the score of a variable starting from the current
fractional solution. Even with strong branching, the list of branching candidates
is defined according to the current fractional solution x?.

However, LP relaxations of MIP instances are well-known for often being
massively degenerate; multiple equivalent optimal solutions are the rule rather
than the exception. Thus branching rules that consider only one optimal solu-
tion risk taking arbitrary branching decisions (thus contributing to performance
variability, see [22]), or being unnecessarily inefficient. In the present paper we
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study the extension of some branching strategies to exploit the knowledge of
multiple optimal solutions of the current LP relaxations.

The contribution of the present paper is twofold. First, we introduce for the
first time, to the best of our knowledge, a branching strategy that makes use of
multiple relaxation solutions and show how it can be naturally integrated into
existing branching rules. Second, we evaluate one particular implementation of
it in the context of full strong branching, the branching rule commonly known
to be most efficient w.r.t. the number of branch-and-bound nodes [1,6]. We show
that it leads to significant savings in computation time while not increasing the
number of nodes.

The remainder of the paper is organized as follows. In Section 2 we discuss
how to generate alternative optimal solutions (a cloud of solutions) and how
to exploit this information to enhance some standard branching rules such as
pseudocost branching and strong branching. In Section 3 we give more details
on the technique applied to full strong branching, while in Section 4 we report a
preliminary computational evaluation of the proposed method. Some conclusions
are finally drawn in Section 5.

2 A cloud of solutions

In order to extend standard branching strategies to deal with multiple LP optima
at the same time, we need to solve two problems:

1. How to generate efficiently multiple optimal solutions of the current LP
relaxation?

2. How to make use of the additional information provided by these solutions?

The first problem can be effectively solved by restricting the search to the
optimal face of the LP relaxation polyhedron. On this face, an auxiliary objective
function can be used to move to different bases. From the computational point
of view, fixing to the optimal face can be easily and safely implemented by fixing
all variables (structural and artificial) whose reduced costs are non-zero, using
the reduced costs associated to the starting optimal basis. As far as the choice
of the second level objective function(s) is concerned, different strategies can
be used. One option is to try to minimize and maximize each variable which
is not yet fixed: this is what optimality-based bound tightening techniques do
(see, e.g., [28,12]), with the additional constraint of staying on the optimal face.
Another option is to use a feasibility pump [16] like objective function, in which
the current LP point is rounded and a Hamming distance function is generated
to move to a different point (more details will be given in the next section): this
is related to the pump-reduce procedure that Cplex performs to achieve more
integral LP optima [3]. Finally, a random objective function might be used.

Suppose now that we have constructed, in one way or another, a cloud C =
{x1, . . . , xk} of alternative optimal solutions to the current LP relaxation. We
assume that the initial fractional solution x? ∈ C. Given C, we can define our
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initial set of branching candidates F (C) as

F (C) = {j ∈ J | ∃xi ∈ C : xij 6∈ Z}

i.e., F (C) contains all the variables that are fractional in at least one solution
of the cloud. For each variable in F (C) it is then possible to calculate its cloud
interval Ij = [lj , uj ], where:

lj = min{xij | xi ∈ C}

uj = max{xij | xi ∈ C}
Given the cloud interval for each branching candidate, we partition the set F (C)
into three subsets, depending on the relative intersection between each interval
Ij and the branching interval Bj = [bx?jc, dx?je]. In particular, we define:

F2 = {j ∈ F (C) | bx?jc < lj ∧ uj < dx?je}

F0 = {j ∈ F (C) | lj ≤ bx?jc ∧ dx?je ≤ uj}
F1 = F (C) \ (F2 ∪ F0)

In particular for binary variables, F2 contains exactly those variables which
are fractional for all xi ∈ C, or differently spoken: F (C) is the union (taken
over C) of all branching candidates, F2 is the intersection. If C contained all
vertices of the optimal face, then F2 would be exactly the set of variables that
are guaranteed to improve the dual bound in both child nodes. The hope is that
also with a limited set of sample point in C, F2 is still a good approximation to
that set.

A variable being contained in the set F0 is a certificate that branching on
it will not improve the dual bound on either side since alternative optima exist
which respect the bounds after branching. For the same reasoning, variables in
F1 are those for which the objective function will stay constant for one child,
but hopefully not for the other.

The details about how branching rules can be extended to deal with this
additional information, namely this three-way partition of the branching can-
didates (F2, F1, F0) and the set of cloud intervals Ij of course depends on the
particular strategy. For example, a rule based on strong branching can safely
skip variables in F0, thus saving some LPs (more details on how to extend a full
strong branching policy to the cloud will be given in the next section). In the
remaining part of this section, we will describe how pseudocost branching can
be modified to exploit cloud information.

Pseudocost branching consists mainly in two operations: (i) updating the
pseudocosts after an actual branching has been performed and the LP relaxations
of the child nodes have been solved and (ii) computing the score of a variable
using the current pseudocosts when deciding for a branching candidate. When
updating the pseudocosts, the objective gains ς+j and ς−j per unit change in
variable xj are computed, that is:

ς+j =
∆↑

dx?je − x?j
and ς−j =

∆↓

x?j − bx?jc
(1)
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Fig. 1. Graphical representation of pseudocosts update and usage.

where ∆↑ and ∆↓ are the differences between the optimal LP objectives of the
corresponding child nodes and the current LP value. These gains are then used
to update the current pseudocosts Ψ+

j and Ψ−j which are the averages of the
objective gains (per unit step length) that have been observed for that particular
variable so far. The thin line in Figure 1(a) illustrates the operation. These
estimation formulas are based on the assumption that the objective increases
linearly in both directions (hence the resulting triangle). This, however, may
be a too crude approximation of the real shape of the projection on the split
domain of xj . In the case of dual degeneracy, there might be many optimal LP
solutions with different values for xj . Which of these values x?j takes is more or
less arbitrary, but crucial for the current – and by that also for future – branching
decisions.

Using interval Ij on the other hand it is possible to replace this approximation
with a more precise model (thick line in Figure 1(a)). The corresponding way to
compute gains is then:

ς̃+j =
∆↑

dx?je − uj
and ς̃−j =

∆↓

lj − bx?jc
(2)

Where the values for ς+ and ς− may vary by chance, ς̃+ and ς̃− will be constant,
when the set of all corners of the optimal face is used as a cloud.

As far as the computation of the score sj is concerned, the standard formulas
to predict the objective gains when branching on variable xj are

∆+
j = Ψ+

j (dx?je − x?j ) and ∆−j = Ψ−j (x?j − bx?jc) (3)

Again, the underlying linear model may give a too optimistic estimate on the
dual bound improvements. A more accurate estimate exploiting interval Ij can
be obtained as:

∆̃+
j = Ψ+

j (dx?je − lj) and ∆̃−j = Ψ−j (uj − bx?jc) (4)
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A graphical representation is depicted in Figure 1(b). Furthermore, the following
observation holds:

Lemma 1. Let x? be an optimal solution of the LP relaxation at a given branch-
and-bound node and bx?jc ≤ lj ≤ x?j ≤ uj ≤ dx?je. Then

1. for fixed ∆↑ and ∆↓, it holds that ς̃+j ≥ ς
+
j and ς̃−j ≥ ς

−
j , respectively;

2. for fixed Ψ+
j and Ψ−j , it holds that ∆̃+

j ≤ ∆
+
j and ∆̃−j ≤ ∆

−
j , respectively.

Proof. Follows directly from Equations (1)–(4).

Thus, under the same preconditions, the standard pseudocosts will be an
underestimation of the pseudocosts based on the cloud intervals, whereas the
objective gain, on which the branching decision is made, will be an overesti-
mation. Of course these quantities interact directly which each other: as soon
as one of it gets altered, this will have an impact on all upcoming branching
decisions and pseudocost computations. The effects of continuous over- and un-
derestimation will amplify each other. The hope is that cloud branching helps
to make better, more reliable predictions and thereby leads to better branching
decisions.

3 Full strong branching with the cloud

In the present section we detail the extension of a full strong branching strategy
to the cloud. The first problem is again how to generate a cloud of optimal
LP solutions C. Following some preliminary computational results, we opted
for a feasibility pump like objective function, minimizing the distance to the
nearest integral point. More precisely, given a fractional solution x?, we define
the objective function coefficient cj of variable xj as

cj =


1 if 0 < fj < 0.5

−1 if 0.5 ≤ fj < 1

0 otherwise

where fj = x?j − bx?jc is the fractional part of x?j . Using the primal simplex, we
re-solve the LP (fixed to the optimal face) with this new objective function. We
update the interval bound vectors l and u, and iterate, using the new optimum
as x?. If, at a given iteration, the update did not yield a new integral interval
bound, we stop.

As far as the three-way partition (F2, F1, F0) is concerned, we perform full
strong branching on all variables in the set F2. If we can find even one variable
in this set with a strictly improved dual bound in both child nodes, then we
stop and pick the best variable within this set, completely ignoring sets F1 and
F0. In state-of-the-art solvers such as Cplex or SCIP the score of a variable is
computed as the product of the objective gains in both directions (maybe using
a minimum value of some epsilon close to zero for each factor). By this, the score
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of all variables in F1 ∩ F0 will be (nearly) zero and therefore none of them will
have maximum score.

Note that in this case cloud information is used essentially to filter out vari-
ables and solve a smaller number of LPs. If no such variable is found, different
strategies can be devised, depending on how we deal with the remaining vari-
ables. One option is to proceed with performing strong branching on the variables
in set F1, but solving only one LP per variable (because by definition we already
know that in one direction the dual bound change is zero). Note that variables
in F1 are not necessarily a subset of the fractional variables in x?: as such, while
we may still have some speedup because we only solve one LP per variable,
the number of variables may indeed be higher than what standard full strong
branching would have done. If we can find at least one variable in F2∩F1 with a
strictly improved dual bound in one direction, then we can stop and ignore set
F0 for the same reason as before. If this is not the case, then we know that for
all variables in F (C) no improvement can be obtained in any child node as far
as the dual bound is concerned, and so the branching variable should be chosen
with some other criterion.

Another, less computationally expensive, option is to always ignore variables
in F1 and stick to the variables in F2. Apart from the obvious computational
savings, this choice can be justified by the following argument: if there is a
variable in F2 with a strictly improved dual bound in both children, we will
not consider F1 ∩ F0 anyway. If there is none, this proves that the global dual
bound will not improve independent of the branching decision: at least one of
the two children will have the same dual bound as the current node. Therefore,
we take the current set of points C as evidence that variables in F2 are less likely
to become integral than variables in F1, and so should be given precedence as
branching candidates.

Note that using additional points to filter out strong branching candidates is
similar in spirit to the strategy called nonchimerical branching proposed in [18],
where the optimal solutions of the strong branching LPs (which might have a
different objective function value) were used for this purpose. The two strategies
have complementary strengths: nonchimerical branching does not need to solve
any additional LP w.r.t. strong branching, but needs the strong branching LPs
to be solved to optimality, because of the usage of the dual simplex. Cloud
branching on the other hand needs additional LPs, but these are in principle
simpler (we are fixed to the optimal face), need not be solved to optimality
(primal simplex is used), and do not impose any requirements to the solution
of the final strong branching LPs. As such, the two techniques can be easily
combined together and might synergize. Moreover, cloud branching can be used
independent of strong branching, as argued in Section 2.

4 Computational experiments

For our computational experiments, we used SCIP 3.0.0.1 [2] compiled with So-
Plex 1.7.0 [27] as LP solver. The results were obtained on a cluster of 64bit
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Table 1. comparison of Cloud branching and full strong branching on MMM and
cor@l instances, averages of success rate, cloud points, saved LPs per node, and rate
of saved LPs; shifted geometric means of branch-and-bound nodes and running time
in seconds

cloud statistics SCIP cloud branch SCIP strong branch

Test set %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

MMM 12.2 2.19 74.34 21.7 661 68.2 691 72.0

cor@l 40.8 2.71 70.97 51.8 569 118.3 593 157.3

Intel Xeon X5672 CPUs at 3.20GHz with 12 MB cache and 48 GB main mem-
ory, running an openSuse 12.1 with a gcc 4.6.2 compiler. Hyperthreading and
Turboboost were disabled. We ran only one job per node to reduce random noise
in the measured running time that might be caused by cache-misses if multiple
processes share common resources.

We used two test sets of general, publically available MIP instances: the
cor@l test set [14], which mainly contains instances that users worldwide sub-
mitted to the NEOS server [15] and the MMM test set which contains all in-
stances from miplib3.0 [11], miplib2003 [6], and miplib2010 [22]. We compare
the performance of SCIP when using full strong branching versus a cloud branch-
ing version of full strong branching as described in the previous section. In par-
ticular, we compare to the cloud branching variant that only considers variables
in F2 as possible branching candidates. Since we want to explicitly measure the
impact of using the cloud for variable selection, we did not exploit the alternative
LP optima by any other means, e.g. for cutting plane generation, primal heuris-
tics, reduced cost domain propagation, etc. Results by Achterberg [3] indicate
that this would be likely to give further improvements on the overall perfor-
mance. Further, we used the default implementation of full strong branching in
SCIP, which does not employ the methods suggested in [18] (yet). We expect
that nonchimerical branching and cloud branching will complement each other
nicely, however, this is left for future implementation and experiments. We used
a time limit of one hour per instance. All other parameters were left at their
default values.

For the MMM test set both, SCIP with cloud branching and with full strong
branching, both solved the same number of instance; for the cor@l test set, one
more instances was solved within the time limit when using cloud branching. Ta-
bles 2 and 3 in the Appendix show results for all instances which both variants
could solve within the time limit, excluding those which were directly solved at
the root node (hence no branching was performed). This leaves 68 instances for
MMM and 104 instances for cor@l. Column “%Succ” shows the ratio of nodes
on which cloud branching was run successfully, hence at least one additional
cloud point was used. Considering those nodes, columns “Pts” and “LPs” de-
pict of how many points the cloud consisted on average and how many strong
branching LPs were saved on average per node, i.e., how many integral interval
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bounds could be found. The Column “%Sav” shows how many percent of all
strong branching LPs could be saved for that instance. When the success rate
is zero, these three columns show a dash. For both branching variants, “Nodes”
and “Time” give the number of branch-and-bound nodes and the computation
time needed to prove optimality.

Table 1 shows aggregated results. It gives averages over the corresponding
numbers (the success rates, the used points, the saved LPs per node and the
percentage of overall saved LPs) from Tables 2 and 3. Shifted geometric means
are shown for the number of branch-and-bound nodes and the computation
times, which are absolute performance measures. The shifted geometric mean
of values t1, . . . , tn with shift s is defined as n

√∏
(ti + s) − s. We use a shift

of s = 10 for time and s = 100 for nodes in order to reduce the effect of very
easy instances in the mean values. Further, using a geometric mean prevents
hard instances at or close to the time limit from having a huge impact on the
measures. Thus, the shifted geometric mean has the advantage that it reduces
the influence of outliers in both directions.

The results for the MMM test set show a slight improvement of 6% w.r.t.
mean running time and 5% w.r.t. the mean number of nodes when using cloud
branching. For cor@l, the mean number of nodes again is slightly larger, about
4%, when using full strong branching instead of cloud branching. The result
when comparing computation times is much more explicit: the shifted geometric
means differ by about 33%. As can be seen in Table 1, the success rate of cloud
branching is much better on the cor@l test set than it is on MMM; and even
further, on the successful instances, the average ratio of saved LPs is much larger.
Taking these observations together explains why the improvement is much more
significant for the cor@l test set.

MIP solvers are known to be prone for an effect called performance variability.
Loosely speaking, this term comprises unexpected changes in performance which
are triggered by seemingly performance-neutral changes in the environment or
the input format. Besides others, peformance variability is caused by imperfect
tie breaking [22]. This results in small numerical differences caused by the use
of floating point arithmetics which may lead to different decisions being taken
during the solution process. A branch-and-bound search often amplifies these
effects, which can be similarly observed for all major MIP (and also other opti-
mization) softwares. As a consequence, small changes in performance might in
fact be random noise rather than a real improvement or deterioration. This can,
e.g., be seen for instance cap6000 from MMM: Although cloud branching was
never successful, the number of branch-and-bound nodes alters.3. Then again,
improvements brought by single components of a MIP solver typically lie in the
range of 5–10%, see, e.g., [1]. In addition, even if MIP solvers did not exhibit
performance variability, we would have the issue of assessing whether the mea-

3 This can be explained by the intermediate cloud LPs being solved – after this, the
original LP basis gets installed again and a resolve without simplex iterations is
performed. However, solution values, reduced costs etc. might be slightly different
than before.
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sured difference in performance is statistically significant, a problem common to
all empirical studies.

We performed two additional experiments to validate our computational re-
sults. First, we ran identical tests on four more copies of the test sets, with
perturbed models that were generated by permuting columns and rows of the
original problem formulation. This has been introduced in [22] as a good variabil-
ity generator that affects all types of problems and all components of a typical
MIP solver. Another benefit of this experiment is that it counters overtuning
since the evaluation testbed is no longer the same as the development test bed.

As can be expected, the results differ in detail from the default permutation
run. For MMM, the improvements w.r.t. computation time were 3%, 4%, 4% and
7%, and w.r.t. branch-and-bound nodes -3%, 0%, 1% and 2%. On cor@l, the
improvements w.r.t. time were 25%, 29%, 32%, and 42% and w.r.t. branch-and-
bound nodes 3%, 5%, 8%, 14%. We conclude the cloud branching was faster in
all five times two experiments (including the original ones) and also consistently
reduced the number of branch-and-bound nodes on the cor@l test set. For
MMM, it can be argued that the changes are performance neutral w.r.t. the
number of branch-and-bound nodes.

As far as the statistical significance of these differences is concerned, we
performed randomized tests [13] on the detailed results. Randomized tests are
standard non-parametric statistics that do not make any assumptions on the
underlying population distributions (assumptions are very likely to be violated
in our computational settings) but are still as powerful as standard parametric
tests. According to these tests, the performance difference, both w.r.t. time and
nodes, measured on the MMM is not statistically significant. As far as cor@l
is concerned, the difference in branch-and-bound nodes is again not significant,
while the difference in running times is. Note that on heterogeneous test sets
such as MMM and cor@l, it is rather difficult to pass statistical significance
tests when testing single MIP solver components, because the improvements are
almost always in the single digit range and standard test sets are relatively small.
In other words, one method might indeed be better than the other, but not by
enough to pass the statistical test. We also applied these randomized tests to
the other four copies of the test sets, with consistent results.

Having a closer look at Tables 2 and 3, it can be seen that the success rate
of cloud branching is negligible, i.e., close to zero, for a significantly higher ratio
of the MMM test set than for the cor@l test set. This is also reflected by
the much smaller average success rate shown in Table 1. This partially explains
why the differences on cor@l are much more significant than on MMM: there
are simply more instances on which degenerate LP solutions are detected in
the pump-reduce step of our algorithm. A reason for this might be that miplib
instances contain more industry-based models with real, perturbed data whereas
cor@l has more combinatorial models which often contain symmetries and are
prone for degeneracy.

Our interpretation of the given results therefore is that cloud branching does
not hurt a test set where only few degeneracy is detected but is clearly superior
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on a test set which contains many highly degenerated problems, at least time-
wise.

5 Conclusion and outlook

In this paper, we introduced branching strategies for mixed-integer programs
that exploit the knowledge of a cloud of alternative optimal LP solutions. We
discussed extensions of full strong branching and pseudocost branching that
incorporate this idea. Our computational experiments showed that a version of
full strong branching that uses cloud intervals is about 30% faster than default
full strong branching on a standard test set with high dual degeneracy. Even
the mean number of branch-and-bound nodes could be reduced, though not
significantly.

The presented preliminary results are very encouraging for further research
on cloud branching. A natural next step is to implement the described modifi-
cations on pseudocost branching and a development of hybrid strategies such as
reliability branching that make use of the cloud. In this paper, we used multi-
ple optima from a single relaxation as cloud set. In particular in the context of
MINLP, employing optima from multiple, alternative relaxations seems promis-
ing. From the implementation point of view, it could be further exploited that
the cloud LPs are solved by the primal simplex algorithm, hence also interme-
diate, suboptimal solutions will be feasible and could be used as cloud points.
Finally, two other improvements of strong branching were suggested recently:
nonchimerical branching [18] and a work of Gamrath [19] on using domain prop-
agation in strong branching. It will be interesting to see how these ideas combine
and whether it will even be possible to make full strong branching competitive
to state-of-the-art hybrid branching rules w.r.t. mean running time.
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Appendix

Tables 2 and 3 show the detailed results for the computational evaluation given
in Section 4. They report statistics on all instances from our two test sets MMM
and cor@l which SCIP could solve to optimality in less than one hour for either
strong branching variant, but needed more than one node in both cases.

Table 2: comparison of cloud branching and full strong branching on MMM instances, smaller
(better) numbers are bold

cloud statistics SCIP cloud branch SCIP strong branch

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

10teams 64.3 2.7 50.3 79.3 129 105.3 348 488.1

aflow30a 0.0 – – – 166 19.6 182 21.7

air04 91.3 2.0 9.1 32.3 55 2087.9 57 2074.6
air05 46.8 2.0 3.0 3.4 166 1597.0 153 1541.6
ash608gpia-3col 100.0 4.3 2240.1 86.7 5 1072.1 9 2406.8

bell3a 0.0 – – – 26 588 6.6 26 590 6.3
bell5 0.2 2.0 2.0 0.6 851 0.7 865 0.7

bienst2 25.5 2.4 6.6 34.1 21 729 1586.4 21 210 1707.6

binkar10 1 4.4 2.0 4.8 3.3 45 080 1715.7 48 835 1744.9

blend2 9.3 2.0 2.0 5.4 108 0.8 110 0.7
cap6000 0.0 – – – 1 601 3.3 1 545 3.1
dcmulti 0.0 – – – 120 2.3 120 2.5

dfn-gwin-UUM 0.0 – – – 5 897 435.1 5 918 431.6
eil33-2 0.0 – – – 484 739.8 480 734.2
enigma 5.2 2.0 9.2 14.6 27 0.5 249 0.6

fiber 0.0 – – – 16 1.1 16 1.3

fixnet6 0.0 – – – 9 2.3 9 2.2
flugpl 0.0 – – – 134 0.5 134 0.5

gesa2-o 0.0 – – – 5 1.4 5 1.5

gesa2 0.0 – – – 3 1.0 3 1.0

gesa3 0.0 – – – 11 1.4 15 1.5

gesa3 o 0.0 – – – 9 1.5 9 1.7

khb05250 0.0 – – – 4 0.5 4 0.5

l152lav 3.9 2.0 6.7 3.5 53 4.7 65 7.1

lseu 15.4 2.1 3.4 12.7 364 0.7 382 0.5
map18 0.0 – – – 103 1454.7 101 1701.6

map20 0.0 – – – 87 1129.0 91 1384.7

mas74 0.0 – – – 574 769 1389.5 574 769 1321.8
mas76 0.0 – – – 81 106 123.7 84 280 123.0
mik-250-1-100-1 0.0 – – – 290 018 1681.4 290 038 1628.3

http://dx.doi.org/10.1145/378239.379017
http://dx.doi.org/10.1023/A:1008312714792
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Table 2 continued

cloud statistics SCIP cloud branch SCIP strong branch

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

mine-166-5 0.0 – – – 2 001 142.6 1 994 155.6

misc03 11.7 2.3 10.4 25.4 68 1.4 65 1.5

misc06 5.9 2.0 4.0 6.7 13 0.8 13 0.6
misc07 13.2 2.1 7.1 23.5 2 300 62.9 2 365 57.9
mod008 0.0 – – – 104 0.8 111 0.8

mod010 0.0 – – – 10 1.0 10 1.1

mod011 0.0 – – – 321 989.9 321 1069.9

modglob 0.0 – – – 299 2.9 299 2.8
neos-1109824 51.9 2.3 26.0 68.4 1 246 473.0 1 023 390.9
neos-1396125 69.4 2.2 8.3 55.1 2 714 2355.7 2 976 2653.2

neos-476283 0.0 – – – 445 887.5 323 680.2
neos-686190 3.7 2.0 9.7 4.8 1 451 540.6 2 085 774.5

noswot 86.9 2.4 16.5 74.2 337 012 957.6 210 056 869.0
ns1766074 0.0 2.1 5.5 0.1 241 641 492.3 241 801 470.2
nw04 0.0 – – – 5 54.8 5 46.4
p0033 0.0 – – – 5 0.5 5 0.5

p0201 47.0 2.3 23.2 64.6 52 2.6 51 3.0

p0282 0.0 – – – 3 0.5 3 0.5

p0548 0.0 – – – 5 0.5 5 0.5

p2756 2.6 2.0 4.0 2.5 82 1.9 146 2.0

pk1 0.1 2.8 16.4 0.6 76 569 257.8 77 616 233.1
pp08a 0.0 – – – 300 3.7 251 3.0
pp08aCUTS 0.2 2.0 2.0 0.1 213 3.2 284 4.2

qiu 10.3 2.1 10.3 17.9 14 858 1515.7 16 290 1895.5

qnet1 17.6 2.0 6.0 4.4 5 3.8 5 3.4
qnet1 o 20.0 2.0 3.8 2.8 22 9.2 22 10.3

ran16x16 4.4 2.0 2.3 2.6 28 684 1184.3 27 051 964.4
reblock67 0.0 – – – 28 052 1528.8 33 290 1773.3

rentacar 27.3 2.0 3.3 22.2 13 3.4 14 3.5

rmatr100-p10 0.1 2.0 2.0 0.0 163 952.8 164 950.2
rmatr100-p5 0.0 – – – 33 1327.1 33 1321.6
rout 32.6 2.2 11.8 46.0 1 561 79.3 1 712 85.8

set1ch 0.0 – – – 16 0.9 17 1.0

sp98ir 2.1 2.0 3.5 1.3 609 404.1 876 507.4

stein27 29.1 2.3 6.2 22.9 787 2.2 775 2.0
stein45 20.7 2.1 5.8 11.2 7 909 73.8 8 446 77.3

tanglegram2 0.0 – – – 2 27.3 2 34.3

vpm2 9.4 2.0 2.2 3.4 46 1.3 48 1.3

Table 3: comparison of cloud branching and full strong branching on Cor@l instances, smaller
(better) numbers are bold

cloud statistics cloud branching full strong branching

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

22433 0.0 – – – 4 1.1 4 1.2

23588 0.2 2.0 14.0 0.3 148 6.0 174 6.3

aligninq 1.8 2.0 9.0 1.1 24 20.6 32 23.1

bc1 0.0 – – – 604 132.6 616 124.0

bc 0.0 – – – 1 985 2437.7 1 985 2323.3

bienst1 31.7 2.2 6.0 39.0 2 712 151.1 2 737 172.1

bienst2 25.5 2.4 6.6 34.1 21 729 1587.7 21 210 1703.3

binkar10 1 4.4 2.0 4.8 3.3 45 080 1714.4 48 835 1744.8

dano3 3 0.0 – – – 9 235.5 9 153.3
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Table 3 continued

cloud statistics cloud branching full strong branching

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

dano3 4 0.0 – – – 4 176.7 4 177.4

haprp 0.0 – – – 20 289 1696.4 19 844 1629.9

neos-1053591 94.5 2.3 8.7 70.0 1 794 19.2 46 259 367.4

neos-1109824 51.9 2.3 26.0 68.4 1 246 482.7 1 023 390.7

neos-1120495 38.7 2.2 19.4 49.7 102 18.7 75 17.6

neos-1122047 100.0 3.5 42.0 96.6 3 80.6 2 34.1

neos-1200887 86.2 2.5 13.8 63.5 981 234.4 1 465 381.7

neos-1211578 74.9 2.4 10.9 74.6 49 619 315.6 32 225 323.5

neos-1224597 98.6 6.7 631.1 95.0 70 406.8 80 864.5

neos-1228986 74.8 2.4 11.7 70.2 42 072 358.7 39 690 400.6

neos-1281048 91.8 5.8 133.8 88.1 59 49.8 80 170.7

neos-1337489 74.9 2.4 10.9 74.6 49 619 312.0 32 225 320.5

neos-1367061 0.0 – – – 16 1601.4 16 1683.2

neos-1396125 69.4 2.2 8.3 55.1 2 714 2359.8 2 976 2659.6

neos-1413153 81.8 2.9 292.5 88.6 192 219.9 462 2546.4

neos-1415183 90.9 2.6 252.4 85.7 19 6.6 56 43.6

neos-1420205 82.5 2.1 8.0 33.5 10 674 46.8 7 840 45.5

neos-1437164 74.7 2.2 11.0 47.1 80 1.8 47 1.9

neos-1440225 92.3 4.7 381.7 96.6 6 11.0 134 1387.4

neos-1440447 88.7 2.8 18.4 80.6 7 676 207.5 22 496 747.9

neos-1441553 78.0 2.3 26.0 58.1 133 16.2 215 86.7

neos-1445743 0.0 – – – 2 101.1 2 64.4

neos-1445755 5.0 2.0 4.0 16.7 3 75.0 3 57.6

neos-1445765 1.6 2.0 2.0 0.3 5 374.9 5 236.2

neos-1460265 99.8 4.0 216.2 80.2 6 997 1354.8 1 125 540.5

neos-1480121 23.0 2.0 3.5 25.0 1 288 3.3 1 961 4.0

neos-1489999 0.0 – – – 21 28.6 21 32.0

neos-476283 0.0 – – – 445 885.7 323 687.4

neos-480878 24.2 2.0 3.2 7.3 2 803 230.9 3 517 279.0

neos-494568 94.2 3.0 181.7 76.8 291 398.2 285 1082.3

neos-501474 48.2 2.0 4.0 46.9 158 1.3 104 0.7

neos-504674 50.5 2.0 5.9 16.6 1 256 399.7 1 230 426.9

neos-504815 35.6 2.1 6.1 16.5 510 75.4 502 83.3

neos-506422 16.2 2.1 3.7 20.9 1 451 540.7 959 337.3

neos-512201 48.7 2.0 6.0 15.5 665 175.7 436 149.2

neos-522351 0.0 – – – 3 1.1 3 1.0

neos-525149 55.3 3.0 88.7 45.8 46 17.9 187 193.4

neos-530627 0.0 – – – 2 0.5 2 0.5

neos-538867 72.8 3.0 21.4 76.2 6 697 318.1 4 358 208.9

neos-538916 77.5 3.2 23.9 77.4 4 642 371.5 3 496 294.6

neos-544324 99.9 2.0 15.2 92.3 7 301.4 7 149.9

neos-547911 90.0 2.1 10.8 85.1 30 244.3 30 184.5

neos-555694 71.3 2.6 98.6 69.9 65 36.5 177 301.7

neos-555771 92.7 2.4 107.7 80.2 32 17.8 70 72.4

neos-570431 71.0 2.0 8.1 59.4 60 290.2 76 314.7

neos-584851 47.0 2.1 20.0 60.3 56 778.1 38 840.5

neos-585192 0.0 – – – 333 40.1 345 40.6

neos-585467 1.2 2.0 12.0 1.4 125 10.6 133 10.7

neos-593853 0.0 – – – 10 157 52.4 12 204 56.0

neos-595905 0.0 – – – 418 25.2 473 29.5

neos-595925 0.0 – – – 1 166 51.6 1 189 51.8

neos-598183 0.0 – – – 488 6.8 486 7.1

neos-611838 0.0 – – – 193 89.5 193 94.0

neos-612125 0.0 – – – 92 47.1 92 50.3

neos-612143 0.0 – – – 130 55.1 128 59.7

neos-612162 0.0 – – – 122 74.6 126 80.3

neos-631694 93.9 2.9 56.8 49.5 94 57.3 101 93.6
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Table 3 continued

cloud statistics cloud branching full strong branching

instance %Succ Pts LPs %Sav Nodes Time (s) Nodes Time (s)

neos-686190 3.7 2.0 9.7 4.8 1 451 537.9 2 085 776.4

neos-709469 12.5 2.3 22.4 58.6 1 608 3.5 28 1.6

neos-717614 0.0 – – – 1 059 65.9 1 061 65.3

neos-775946 95.4 2.8 93.4 81.3 234 140.6 413 343.6

neos-785899 93.0 2.8 94.2 77.7 179 130.7 266 247.6

neos-785914 83.8 3.4 135.0 92.0 109 123.4 20 296.6

neos-801834 0.0 – – – 11 841.5 11 817.6

neos-803219 0.1 2.0 2.0 0.0 4 131 72.8 4 231 70.9

neos-803220 0.0 – – – 18 713 179.3 17 175 166.5

neos-806323 28.1 2.0 2.7 11.0 3 258 137.6 3 645 142.6

neos-807639 4.1 2.0 2.6 3.1 1 130 18.6 1 120 17.2

neos-807705 20.3 2.0 2.2 6.3 2 373 88.3 2 241 80.0

neos-808072 72.1 2.3 32.3 51.7 43 379.0 90 1905.3

neos-810326 34.9 2.0 4.0 6.2 267 2394.3 266 2431.7

neos-820879 45.1 2.0 3.8 9.6 127 281.1 114 210.3

neos-825075 84.6 3.9 60.0 80.5 18 3.0 49 7.8

neos-839859 0.1 2.0 12.0 0.1 1 084 773.1 1 628 938.6

neos-862348 35.8 2.1 19.8 21.9 99 33.9 70 38.4

neos-863472 32.8 2.2 15.6 63.2 88 330 2330.9 68 169 2264.0

neos-880324 62.8 2.4 22.2 78.7 62 1.8 15 1.0

neos-892255 100.0 2.5 278.6 97.3 8 720.1 5 1590.8

neos-906865 0.0 – – – 7 079 462.4 7 065 453.8

neos-912015 93.2 5.1 130.8 94.2 791 473.3 209 322.1

neos-916173 0.0 – – – 1 497 390.2 1 478 392.0

neos-933550 83.3 8.4 638.8 96.6 5 10.1 25 58.2

neos-933815 47.7 2.0 5.7 32.3 61 797 801.5 55 797 661.4

neos-934531 99.3 3.4 89.8 96.1 27 293.0 51 1432.9

neos-941698 97.7 6.1 357.2 95.8 19 14.2 44 70.5

neos-942323 99.7 4.0 187.8 97.7 189 64.0 2 205 1240.4

neos-955215 68.4 2.1 9.1 53.0 7 574 61.3 6 593 52.9

neos-957270 83.1 2.8 159.9 89.0 14 471.3 17 228.4

nsa 0.0 – – – 258 2.8 258 3.0

nug08 0.0 – – – 3 24.9 3 23.2

prod1 0.0 2.0 8.0 0.0 4 053 33.8 3 820 31.4

prod2 0.0 – – – 25 200 361.6 25 227 354.0

qap10 33.3 2.0 2.0 40.0 2 177.3 2 157.3

sp98ir 2.1 2.0 3.5 1.3 609 403.5 876 503.2

Test3 0.0 – – – 10 8.0 10 8.0
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