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Abstract Dual degeneracy, i.e., the presence of multiple optimal bases to
a linear programming (LP) problem, heavily affects the solution process of
mixed integer programming (MIP) solvers. Different optimal bases lead to
different cuts being generated, different branching decisions being taken and
different solutions being found by primal heuristics. Nevertheless, only a few
methods have been published that either avoid or exploit dual degeneracy.
The aim of the present paper is to conduct a thorough computational study
on the presence of dual degeneracy for the instances of well-known public MIP
instance collections. How many instances are affected by dual degeneracy? How
degenerate are the affected models? How does branching affect degeneracy:
Does it increase or decrease by fixing variables? Can we identify different
types of degenerate MIPs? In this course, we introduce a new measure for dual
degeneracy: The variable-constraint ratio of the optimal face. It provides an
estimate for the likelihood that a basic variable can be pivoted out of the basis.
Furthermore, we study how the so-called cloud intervals–the projections of the
optimal face of the LP relaxations onto the individual variables–evolve during
tree search and the implications for reducing the set of branching candidates.
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1 Introduction

Degeneracy describes the case that multiple simplex bases correspond to the
same primal or dual solution of a linear program (LP). It has been a topic of
interest since the invention of the simplex method, see, e.g., [21,13]. A solution
to an LP is called primal degenerate if there are basic variables set to one of
their bounds in the solution. Those variables can be pivoted out of the basis to
obtain a different basis that still represents the same primal solution. Primal
degeneracy can be a consequence of redundant constraints, but may as well
be inherent in the specific problem and unavoidable.

In this paper, we are focusing on dual degeneracy. An LP solution is called
dual degenerate if the corresponding dual solution is (primal) degenerate. The
dual solution is degenerate if one of the primal non-basic variables has reduced
costs zero. These variables will be called dual degenerate in the following. A
dual degenerate optimal LP solution implies that there might be alternative
optimal solutions to this LP. More specifically, each dual degenerate variable
can be pivoted into the basis without changing the objective value. Thus,
multiple optimal bases are guaranteed to exist. If the variable that is pivoted
out of the basis is not subject to primal degeneracy, i.e., was not at its bound
before, this corresponds to a distinct primal optimal solution represented by
the new basis.

An illustration of the two types of degeneracy is given in Figure 1. The
upper black point lies at the intersection of exactly two hyperplanes defined
by constraints. With only two structural variables (plus slack variables), this
solution is primal non-degenerate. The lower black point lies at the intersection
of five hyperplanes. Even if both structural variables are basic, three of the
slack variables of those inequalities have to be basic as well although the
inequalities are fulfilled with equality, meaning that the slack variables have
value zero and are degenerate. Therefore, this solution is primal degenerate.
Both black points and all points on the line in between are optimal solutions;
thus, the two black points are both dual degenerate basic solutions. For the

Fig. 1 Illustration of primal and dual degenerate solutions.
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upper point, for example, the slack variable of the constraint drawn as a thin
black line is non-basic with reduced cost zero, since this constraint has non-zero
slack in the lower optimal solution.

In case of dual degeneracy, which of the alternative optimal solutions is
returned by the LP solver is arbitrary and cannot be predicted in most cases.
An exception is the use of the lexicographic pivoting rule in the simplex algo-
rithm, which is, however, not used in practical applications due to its inferior
performance. While obtaining a random optimal solution may be acceptable
when solving a pure LP, it quickly becomes an issue for LP relaxations be-
ing solved during the solving process of a mixed integer programming (MIP)
solver. A MIP solver takes many decisions based on the current LP solution,
and if this solution is just arbitrary among many possible ones, a slight change
in the algorithm can lead to a very different LP solution being returned. As
a conseuqence, the decisions that are taken based on the LP solution may
change, and therewith the subsequent solving process can vary significantly.
Such sensitivity to small, seemingly performance neutral, changes in the algo-
rithm is called performance variability [19,20] and should typically be avoided.
Taking into account dual degeneracy and potentially multiple optimal LP so-
lutions may be a mean to reduce performance variability and make the solver
more stable.

Besides the reduction of performance variability, exploiting dual degener-
acy and the knowledge of multiple LP optima can be used within a MIP solver
to take better decisions. Rather than relying on limited information that a sin-
gle computed LP solution provides, it may be preferable to take into account
multiple optimal LP solutions or to select a particular one among the set of
optimal solutions. The primal solution polishing method, as implemented in
SoPlex 3.1 [17], is an example for the latter case which mainly aims at in-
creasing integrality of the LP solution to aid primal heuristics and branching
rules. On the other hand, concurrent root cut loops [16] are an example for
the former case that exploits a small set of optimal solutions for the separa-
tion process. The pump-reduce procedure [2] combines both ideas by trying to
construct an LP solution with fewer fractionalities and using both the original
as well as the updated LP solution for the selection of cutting planes. For
primal degenerate LPs, dual variable picking [7] tries to increase the number
of reduced cost fixings by the investigation of multiple dual solutions. Mul-
tiple ways to exploit degeneracy in different algorithmic components of the
MIP solver Gurobi are discussed by Achterberg in [3]. Finally, the authors of
this paper investigated branching improvements obtained by exploiting dual
degeneracy and the knowledge of multiple optimal LP solutions [9,8].

All these works are based on the claim that degeneracy is very common in
real-world MIP instances. In this paper, we perform an empirical analysis of
dual degeneracy in MIP instances in order to reinforce that claim and provide
further motivation to consider degeneracy in more components of MIP solvers.
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2 Dual degeneracy measures

Let us investigate how common dual degeneracy is in real-world MIPs. For
that, we performed computational experiments using the academic MIP solver
SCIP 5.0.1 [1,17] with SoPlex 3.1.1 [22,17] as underlying LP solver. As test
set, we use the MMMC test set which contains all instances from MIPLIB
3 [11], MIPLIB 2003 [6], and the MIPLIB 2010 benchmark set [19] as well as
the Cor@l test set [14], which mainly contains instances that users worldwide
submitted to the NEOS server [15]. Duplicate instances were removed, leaving
us with a total of 496 instances. The observations we describe in the following
naturally depend on the branching rule used for the experiments. We used
reliability branching [5] and provided the optimum as a cutoff bound to focus
on the branching performance. We chose that branching rule because it is a
state-of-the-art rule used (in slight variations) by many solvers. Still, we are
optimistic that the results should transfer to other common branching rules.

To get a first impression, we focused on the degeneracy in the final root LP
solution of SCIP, i.e., the LP solution after presolving, node preprocessing, the
cutting plane separation loop, and potential restarts. In the next section, we
will examine the amount of degeneracy inherent in the LP solutions throughout
the branch-and-bound tree search.

We will use two measures of dual degeneracy in the following. The first one
is a classical measure in that context and follows directly from the definition
of dual degeneracy. The degeneracy rate counts the relative number of dual
degenerate non-basic variables. Figure 2 illustrates this number for the final
root LP solutions. Thereby, we disregard non-basic variables that have been
fixed at the root node, independently of their reduced costs. The degeneracy
rate is between 0% (if all non-basic unfixed variables have non-zero reduced
cost) and 100% (if all non-basic unfixed variables have reduced cost zero).
Each bar shows the number of instances with degeneracy rate in a certain
10% range (except for the first bar, all bars are left-open). Instances with the
extreme degeneracy rates of 0% and 100% are highlighted in the respective
bars by a darker color.

Out of the 496 instances, 56 instances are solved at the root node before
degeneracy information is computed. Of the remaining 440 instances, only 55
instances show no dual degeneracy in the solution of the final root LP. On the
other hand, 13 instances have only degenerate non-basic variables, i.e., have a
degeneracy rate of 100%. These instances are pure feasibility problems with
a zero objective function in the original model (6 instances), after presolving
(4 instances), or after root processing (3 instances). Overall, it looks like de-
generacy tends to cover either only a few or almost all variables: 158 instances
have a degeneracy rate no larger than 10% while the rate is larger than 90%
for 119 instances. The remaining instances distribute among the degeneracy
rates from 10% to 90% with slightly fewer instances at medium ranges.

In order to gain a deeper understanding of dual degeneracy, we introduce
a second dual degeneracy measure. It is motivated by the observation that a
typical way to exploit dual degeneracy is to investigate the optimal face of the
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Fig. 2 Share of non-basic variables that are dual degenerate (final root LP). The darker
parts represent instances with the extreme degeneracy rates of 0% and 100%.
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Fig. 3 Variable-constraint ratios of the optimal face for instances in the MMMC test set
(final root LP).
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LP relaxation in order to generate additional points lying on this face. The LP
is reduced to the optimal face by fixing to their current value all variables—
including slacks–whose reduced costs are non-zero, using the reduced costs
associated with the starting optimal basis. Then, optimizing over the restricted
LP with changed objective functions allows to move to different optimal bases
that potentially represent alternative LP optima. Therefore, the size of this
restricted problem is of interest when investigating dual degeneracy. We denote
the number of unfixed variables in the restricted problem by n̄ and the number
of constraints by m and call β = n̄

m the variable-constraint ratio of the optimal
face. This ratio is 1 if no non-basic variable is dual degenerate, as only the
basic variables remain unfixed. It increases as the number of dual degenerate
non-basic variables increases.

The share of non-basic dual degenerate variables as illustrated in Figure 2
expresses how many non-basic variables may be pivoted into the basis, which
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potentially assigns a fractional solution value to these variables that are ini-
tially at their (integral) bound. However, it may be even more interesting to
know that a basic variable with a fractional value may be pivoted out of the
basis, making it integral. For example, such a variable is typically considered
a bad candidate for branching as the dual bound of at least one child node
will not be improved by branching on that variable. The larger the variable-
constraint ratio is, the higher we expect the probability to be that a basic
variable can be pivoted out of the basis. While this is also true for the share of
non-basic dual degenerate variables when looking at a particular instance, it
does not allow to easily compare instances with different problem sizes. As an
example, the share of non-basic dual degenerate variables would be the same
(50%) if one of only two non-basic variables were dual degenerate as it would
be if 500 000 out of a million non-basic variables were dual degenerate. For a
fixed basis size, however, the latter will probably allow pivoting more of the
current basic variables out of the basis.

The variable-constraint ratios for the final root LP of the 440 instances from
the MMMC test set not solved before degeneracy information was computed
are presented in Figure 3. There are 55 instances with a ratio of 1.0, which are
the instances showing no degeneracy at all. 111 and 129 instances have ratios
larger than 1 but no larger than 1.1, and larger than 1.1 but no larger than
1.5, respectively. Overall, 374 instances have a variable-constraint ratio of the
optimal face no larger than 2.0 and 412 instances have a still reasonable ratio
of 3.0 or smaller. On the other hand, there are 10 instances with a ratio larger
than 10; one of them even has a ratio of 120.

3 Evolution of dual degeneracy throughout the tree search

We observed degeneracy in the final root LPs of most of the regarded in-
stances, but how does the degeneracy change during the tree search? In order
to investigate this, we ran each instance with a node limit of 1 million and
a time limit of 2 days. We computed the average degeneracy per depth level
in the branch-and-bound tree by first averaging over all nodes of one depth
for each instance and then over the instances for each depth level. Note that
we disregard variables fixed by branching or domain propagation for the de-
generacy computation and only compute the degeneracy share of the unfixed
variables. The observed average degeneracy rate is almost constant during the
tree search. At the root node, the average degeneracy rate is 45.8%, at depth
100, it is 45.7%. In between, it varies slightly between 44.4% and 49.4%.

However, is the average degeneracy rate also constant for individual in-
stances? This question is answered by Figure 4, which focuses on the change
in the average degeneracy rate per depth level, compared to the degeneracy
of the final LP of the root node (after potential restarts). It shows the first 20
levels of the tree. We chose this limit because the number of instances reaching
this level is still reasonable: out of the 440 instances for which we computed
the degeneracy at the root node, 327 reached a tree depth of at least 20.
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Fig. 4 Difference between average degeneracy and root node degeneracy per depth level.
Each point represents one instance, their distribution is visualized by the underlying box
plot and the average is represented by +�.
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Each instance is represented by one point for each depth level; the color of
the point represents the root degeneracy of the instance. The x-axis represents
the depth level; coordinates are jittered, and points are drawn translucent to
better display the density of instances at common degeneracy differences. The
y-coordinate of a point represents the average difference between the degener-
acy of that instance at the corresponding depth level to its degeneracy rate at
the root node. Note that we use a square root scaling of the y-axis, i.e., we take
the square root of the absolute difference, but keep the sign. This scaling pro-
vides a higher resolution for smaller values while still allowing for values with
an absolute value smaller than 1, in particular, zero values, as opposed to a log
scaling. We observe that many instances change their degeneracy rate during
the tree search and that there are roughly the same number of instances with
increasing degeneracy rate at deeper levels as with decreasing degeneracy rate.
The variance increases with a higher depth in the tree, which is reasonable as
the deeper a subproblem is in the tree, the more different it is to the global
problem. In order to better evaluate the distribution of the points, Figure 4
also shows a box plot. It shows that the median is around 0 for most of the
depth levels; it reaches its highest absolute value at level 20, where it is at
−0.03%. Half of the instances do not change their degeneracy rate a lot, as
illustrated by the box. Up to depth level 5, 50% of the instances change their
degeneracy rate by less than 1%, compared to the root node; at level 10, by
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no more than 2%. Even at level 20, the average change in degeneracy rate of
50% of the instances is between −4.3% and 1.7%. On the other hand, there
are also 25.7% of the instances that change their average degeneracy rate by
more than 10% in either direction at level 20, and almost 12% that change by
more than 25%. Unsurprisingly, instances that reduce their degeneracy rate
typically started with a high degeneracy rate at the root node, while those
increasing the degeneracy rate often had small degeneracy rates at the root
LP.

Figure 5 shows the development of the variable-constraint ratio in the
tree. As in the previous figure, each instance is represented by one point for
each depth level, jittered to better show the number of instances in common
regions. The y-coordinate corresponds to the variable-constraint ratio, using
a log10 scale this time as all values are no smaller than 1.0. The color of each
point displays the average degeneracy rate of this instance at the corresponding
depth level. The y-axis is capped at 10 to allow a more detailed view of the
most interesting region although we had 134 instance/depth combinations (of
27 different instances) with higher ratios.

We observe a tendency for slightly decreasing variable-constraint ratios
with higher depths. An exception is the higher ratio in depth one compared
to the root node, which is consistently identified by average, median, and
the quartiles in the box plot. An implementation detail of SCIP causes this
increase: at the end of the root node, all cutting planes that are not tight are
removed from the LP. Thus, the denominator of the variable constraint ratio
is decreased for the following nodes so that the ratio increases. The box plot

Fig. 5 Average variable-constraint ratio of the optimal face per depth level in the branch-
and-bound tree. Each point represents one instance, their distribution is visualized by the
underlying box plot, and the average is presented by +�.
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shows that 75% of the instances have an average variable constraint ratio of
less than 1.75 at depth 1 and 2. This number decreases by increasing depth
level and is below 1.5 for depth levels 19 and 20. We can also see that no
more than 25% of the instances have a ratio smaller than 1.02, which means
that for more than half of the instances, the ratio is in a reasonable range. We
also observe that instances with a high variable constraint ratio typically have
a high degeneracy as well. There are exceptions, though, one of them being
instance neos-495307, which has an average degeneracy rate of less than 4% at
all depth levels. However, since its matrix dimensions are very unbalanced (it
has more than 9000 variables and only 3 constraints), the variable constraint
ratio is very high and slowly decreases from 26 at the root node to 18 at depth
20.

This study of degeneracy allows us to give an answer to the question we
posed at the beginning of Section 2 concerning the frequentness of dual de-
generacy in standard MIP models. For 87.5% of the instances, the root LP
solution is subject to dual degeneracy. Throughout the tree, almost half of the
non-basic variables are dual degenerate on average. On the other hand, the
variable-constraint ratio is larger than 1.2 for more than half of the instances
up to depth level 17. Together, these numbers indicate that both many non-
basic variables can become basic in alternative optimal LP solutions as well
as many of the basic variables are non-basic in alternative optima.

We conclude that dual degeneracy is prevalent in standard MIP models,
and this should provide a strong motivation to consider it within MIP solvers.
In addition, the analysis above also shows that different models exhibit dif-
ferent kinds of degeneracy, ranging from constant degeneracy to degeneracy
affected (in either direction) by branching. As such, MIP solving components
should be aware of the different scenarios and react accordingly, not just with
the aim of handling existing degeneracy, but also trying to avoid introducing
it.

4 The effect of dual degeneracy on LP solution values

So far, we demonstrated that dual degeneracy is very common in real-world
problems. How many of the non-basic variables are affected by dual degeneracy
is represented by the degeneracy rate. But being dual degenerate alone does
not guarantee that a variable can indeed take different values on the optimal
face. In this section, we investigate how often this happens and how this relates
to our degeneracy measures. In particular, we are trying to answer the two
following questions. How many of the integer variables can change their value
while staying on the optimal face? And how often can they even achieve an
integer value on the optimal face? We introduced the variable-constraint ratio
as a measure for dual degeneracy with the intent to capture those effects better
than the degeneracy rate. Our analysis will show if this goal was accomplished.

The range in which a variable’s value can be moved while staying on the
optimal face is captured in the cloud interval introduced in [9]. For a set S
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of alternative LP optima, the cloud interval Ij for an integer variable xj is
defined as

Ij =
[
min{x′

j | x′ ∈ S},max{x′
j | x′ ∈ S}

]
.

We are particularly interested in the cloud intervals of integer variables. In
particular, we want to identify variables that can be moved while staying on the
optimal face, which corresponds to a non-trivial cloud interval with |Ij | > 0.
Additionally, we are interested in the case that the cloud interval contains an
integer value, because this implies that there is at least one optimal solution
for which that variable is integral. This might have implications for solver
components, e.g., branching on such variables should typically be avoided as
they are guaranteed to not improve the dual bound for at least one child node.

In order to compute alternative LP optima, the LP can be restricted to
the optimal face by fixing all variables (including slacks) whose reduced costs
are non-zero in the starting optimal basis. The validity of this approach fol-
lows directly from the fact that the objective value of any LP solution can
be expressed as the sum of the current LP objective and the product of the
current reduced cost with the change in the value of every non-basic variable,
see [13]. Then, auxiliary objective functions can be used to move to different
bases and generate alternative LP optima [2]. In this paper, we minimize and
maximize each variable which is not yet fixed: this is what optimization-based
bound tightening techniques do (see, e.g., [23,12]), but applied to the optimal
face. In the worst case, this requires to solve 2m + n auxiliary LPs: two LPs
for each of the m basic variables and one LP for each non-basic variable as
they are initially set to one of their bounds and can only move in one di-
rection. Using filtering techniques, see [18], the number of LPs to be solved
can often be reduced, but typically stays too large to use this approach in a
practical application at every node of the branch-and-bound tree. From a the-
oretical point of view, however, this method is interesting since it determines
the largest possible cloud intervals for each variable. Therefore, we will use this
method for a deeper analysis of the effects of dual degeneracy in MIP models
in the following. More practical methods to sample alternative LP optima are
discussed in [8].

Figure 6 shows how many of the integer variables that remained unfixed
after fixing to the optimal face have a non-trivial cloud interval. Each instance
is represented by one cross that is positioned according to the share of non-
basic variables that are degenerate (x-coordinate) and the variable-constraint
ratio of the optimal face (y-coordinate, log scale). The color encodes the rela-
tive number of integer variables with non-trivial cloud interval. First, we can
see that a small degeneracy rate typically leads to a small variable-constraint
ratio and a small number of integer variables that can change their value
on the optimal face. That is the expected behavior, but there are outliers as
well, typically with larger variable-constraint ratios, that result in a high share
of variables with non-trivial cloud intervals. In general, a variable-constraint
ratio of 2.0 or larger leads to non-trivial cloud intervals for the majority of
integer variables. Out of the 63 instances that fall into this category, 26 have
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Fig. 6 Share of unfixed integer variables that can change their value on the optimal face,
plotted by dual degeneracy share (x-axis) and variable-constraint ratio of the optimal face
(y-axis).
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a non-trivial cloud interval for all unfixed integer variables, 48 for at least
90% of the variables. For high degeneracy rates, the variable-constraint ratios
increase as does the relative number of non-trivial cloud intervals. Out of the
152 instances with a degeneracy rate of 80% or higher, 81 can move all unfixed
integer variable on the optimal face, while this holds for 90% of the variables
for 124 of the instances. As a comparison: out of the 256 instances that have
a variable-constraint ratio smaller than 2.0 and a degeneracy rate of less than
80%, only 33 have a non-trivial cloud interval for at least 90% of the unfixed
integer variables.

The one outlier in the upper left area is again instance neos-495307 with a
degeneracy rate of 3.7% and a variable-constraint ratio of 25.9. Consequently,
all 352 integer variables at the root node with reduced costs 0 have non-trivial
cloud intervals. We would not have expected this based on the degeneracy
rate alone, which illustrates the usefulness of the variable-constraint ratio as
a degeneracy measure.

Figure 7 illustrates the share of integer variables with non-trivial cloud
intervals per depth level of the branch-and-bound tree for all instances reaching
depth 20. The color scale is similar to the one in Figure 6 but split into 10%
buckets with extra buckets for candidate reductions of 0% and 100%. As for
the degeneracy rate, the extreme cases are the common ones at the root node.
At the root node, almost 25% of the instances have non-trivial cloud intervals
for all unfixed integer variables. For half of the instances, at least 80% of the
unfixed integer variables have non-trivial cloud intervals. The other extreme—
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Fig. 7 Share of integer variables with non-trivial cloud interval by depth level. Each bar is
split into multiple pieces according to the relative number of instances that have non-trivial
cloud intervals for a share of variables in a particular range (color).
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no integer variable can be moved on the optimal face–can be observed for 8.3%
of the instances; about 25% of the instances have non-trivial cloud intervals for
few (less than 20%) of the variables. The remaining instances are split among
the other buckets. For the deeper levels of the tree, we again averaged over
all nodes in that level for each instance before averaging over the instances.
We can see that the two extreme cases happen less frequently in deeper levels
of the tree. At depth 20, only 3.2% of the instances can move no unfixed
integer variable on the optimal face at all nodes in this depth. This decrease,
however, comes with an increase in the number of instances where more than
0% and less than 10% of the unfixed integer variable have a non-trivial cloud
interval. The sum of these two cases stays almost the same over the different
depth levels in the tree and stays at about 20% of the instances. For instances
with high number of non-trivial cloud intervals, the picture looks similar. At
depth level 20, only 5% of the instances have a non-trivial cloud intervals for
all unfixed integer variables. In return, the number of instances where not all,
but at least 80% of the variables have non-trivial cloud intervals increases, but
still, their share together with the extreme case of 100% reduces to 40.9%.
As a result, there are more instances where some, but not (close to) all or
none of the unfixed integer variables have a non-trivial cloud interval. These
observations are in line with the slightly decreased variable-constraint ratio in
deeper levels we observed in Section 3.

We have seen that for many instances, most of the variables that remained
unfixed when fixing to the optimal LP face have a non-trivial cloud interval.
On the one hand, those are non-basic dual degenerate variables that can be
pivoted into the basis and can then move away from their bound. On the
other hand, also the basic variables can often be moved to different values.
That case is of particular interest since the fractional basic variables play
an important role in many algorithms within MIP solvers, in particular, for
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Fig. 8 Share of branching candidates with integer value in their cloud interval, plotted by
dual degeneracy share (x-axis) and variable-constraint ratio of the optimal face (y-axis).
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branching. In case of branching, it is particularly interesting to know whether
a fractional variable can be moved to an integer value, i.e., whether it has
an integer value in its cloud interval. If this is the case, the variable would
typically not be considered for branching by many branching rules since it is
already guaranteed to not improve the dual bound for at least one child node.
Therefore, we call the share of fractional branching candidates with integer
value in their cloud intervals the branching candidate reduction. Intuitively,
a large branching candidate reduction is favorable as it allows to restrict the
set of promising branching candidates. A special case in this context is a
candidate reduction of 100%. This proves that no branching candidate will
improve the dual bound of both child nodes. Nevertheless, branching needs
to be performed. Therefore, knowledge about an integer value in the cloud
intervals cannot be used to restrict the branching candidate set anymore, but
branching rules may profit from that knowledge in different ways, see [8].

Figure 8 shows the branching candidate reduction at the root node for the
instances of the MMMC test set. As in Figure 6, each instance is represented
by one cross positioned according to degeneracy rate and variable-constraint
ratio with the color encoding the relative reduction in the number of branching
candidates. Note that the variable base set is a different one than in Figure 6,
as we only consider branching candidates and disregard non-basic variables.

As for the non-trivial cloud intervals, a variable-constraint ratio of 2.0 or
larger leads to very high candidate reductions. Out of the 63 instances that
fall into this category, 79.4% can move all branching candidates of the final
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Fig. 9 Branching candidate reduction by depth level. Each bar is split into multiple pieces
according to the share of instances with branching candidate reduction in a particular range
(color).
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root LP to an integer value while retaining LP optimality.1 On one instance,
the candidate reduction amounts to 71.4%, while the remaining ones show
reductions of around 90% and more. For high degeneracy rates we observe
high branching candidate reductions as well. Out of the 152 instances with a
degeneracy rate of 80% or higher, 127 have an optimal face in which every
initial branching candidate can take an integer value.

Again, we regard the branching candidate reduction for different depth
levels in the tree up to depth 20, see Figure 9. At the root node, almost 25%
of the instances do not have a single fractional variable that ca be moved to
an integer value on the optimal face. That number is considerably larger than
the number of instances where all unfixed integer variables have trivial cloud
intervals, see Figure 7. Also the other extreme, a branching candidate reduction
of 100%, is more often observed than that all unfixed integer variables have
non-trivial cloud intervals. It is the case for almost 40% of the instances. The
remaining instances are split among the other buckets with more instances
going into the more extreme buckets. As for non-trivial cloud intervals, the
two extreme cases happen less frequently in deeper levels of the tree. Only
11.3% of the instances have a branching candidate reduction of 0% at all
nodes in depth 20. At the same time, however, the number of instances with
more than 0% and less than 10% candidate reduction increases. The sum of
these two cases stays almost the same over the different depth levels in the
tree. For high candidate reductions, the picture looks similar. At depth level
20, only 16.5% of the instances have a candidate reduction of 100%, while
the share of instances with a candidate reduction between 90% and 100%
increases from 6% to 18.7%. Nevertheless, their sum decreases by more than
10% so that there are more instances where some, but not (close to) all or
none of the candidates can be moved to an integer point. When it comes

1 Note however that this does not mean that all variables cat be moved to an integral
value at the same time.
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to exploiting degeneracy within MIP solvers, this may actually be beneficial,
see our discussion of reducing the set of branching candidates. Thus, taking
degeneracy into account may be even more important and promising in deeper
levels of the tree, where degeneracy is often still present to almost the same
extend as at the root node but the candidate reduction is less extreme.

5 Conclusions

We performed a computational analysis of dual degeneracy in MIP instances
and demonstrated that it is very common in practical instances from stan-
dard MIP problem collections. To this end, we introduced a new metric, the
variable-constraint ratio, and combined it with the share of degenerate non-
basic variables to obtain an improved measure of dual degeneracy. The ma-
jority of the analyzed instances tend to behave extreme with respect to dual
degeneracy, i.e., either almost all or only very few variables are affected.

During the branch-and-bound process, the average degree of dual degener-
acy stays almost constant. However, we regularly observed large changes in the
grade of dual degeneracy for individual instances in deeper levels of the tree.
For some instances, branching increases dual degeneracy, while for others, it
is decreased. Additionally, we analyzed the effect of dual degeneracy on the
uncertainty of the LP solution. Instances with high dual degeneracy measures
often allow many variables to vary their value across different optimal LP solu-
tions. Perhaps most importantly, a high dual degeneracy often leads to a large
number of branching candidates obtaining integer values in alternative LP
optima, which indicates that they are poor candidates for branching. Again,
both effects tend to occur in extreme manifestations, but get less extreme at
deeper levels of the tree.

The omnipresence of dual degeneracy implies that MIP solvers should take
degeneracy into account; the changes in the grade of degeneracy advocate that
the dual degeneracy of instances should be measured continuously and not only
for the original formulation. A prerequisite for that is an effective measure of
dual degeneracy. The combination of two measures that we introduced in this
paper fulfills that role and captures the impact of dual degeneracy well, as
we demonstrated in our analysis. It has already been successfully applied to
improve the hybrid branching rule [4] of SCIP, see [8], and in recent work on
local rapid learning [10].
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