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Mixed Integer Linear Programming (MILP) is commonly used to model indicator
constraints, i.e., constraints that either hold or are relaxed depending on the value of a
binary variable. Unfortunately, those models tend to lead to weak continuous relaxations
and turn out to be unsolvable in practice, like in the case of Classification problems with
Ramp Loss functions that represent an important application in this context.

In this paper we show the computational evidence that a relevant class of these Classi-
fication instances can be solved far more efficiently if a nonlinear, nonconvex reformulation
of the indicator constraints is used instead of the linear one. Inspired by this empirical
and surprising observation, we show that aggressive bound tightening is the crucial ingre-
dient for solving this class of instances, and we devise a pair of computationally effective
algorithmic approaches that exploit it within MILP.

More generally, we argue that aggressive bound tightening is often overlooked in MILP,
while it represents a significant building block for enhancing MILP technology when in-
dicator constraints and disjunctive terms are present.

Keywords: Mixed-Integer Linear Programming, Mixed-Integer Quadratic Programming,
Indicator Constraints.
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1 Introduction
Let us consider the linear inequality

αTx ≤ x0, (1)

in which both x ∈ Rd and x0 ∈ R are variables, while α is a given d-dimensional vector.
It is a very well-known modeling trick in Mixed Integer Linear Programming (MILP) to
use a binary variable to control whether linear constraint (1) is active or not depending
on other parts of the model or at the price of paying a penalty in the objective function.
Then, the constraint is reformulated as the following big-M or indicator constraint

αTx ≤ x0 +Mt, (2)

where t ∈ {0, 1} and M is a big enough value that guarantees that the constraint is
inactive if t = 1.

Although they provide a clean and flexible modeling tool to deal with nonlinearities
and logical implications by staying within the MILP framework, it is well-known that in-
dicator constraints present the drawback of having a weak continuous relaxation. Indeed,
depending on the value M and on the value attained by expression “αTx−x0”, very small
(fractional) values of t might be sufficient to satisfy the constraint. This leads to quality
issues with a continuous relaxation value typically very far away from the mixed integer
optimum, but, sometimes even more importantly, might lead to numerical issues, with
the MILP solvers being unable to assert if a t value below the integer tolerance is in fact
a true solution.

An alternative for logical implications that has been used in the Mixed Integer Non-
linear Programming (MINLP) literature for decades is provided by the complementary
formulation

(αTx− x0)t̄ ≤ 0, (3)

where t̄ = 1 − t. However, (3) is a nonconvex constraint. Such a source of nonconvexity
might not significantly complicate the solution of already nonconvex MINLP models aris-
ing, for example, in Chemical Engineering applications, see [13]. In addition, numerical
issues on the choice of the value of M do not appear anymore, at least in the formulation.
On the contrary, in the cases where those logical constraints were the only sources of
nonconvexity, the common approach has always been that of using constraints (2) and
MILP techniques.

Before stating the contribution of the present paper it is worth mentioning that the
big-M formulation (2) is just the weakest (but easiest and commonly used) disjunctive
programming approach (see, e.g., [2, 8] and [13]) to deal with indicator constraints and
disjunctions in general. The reader is referred to [4] for a detailed and more theoretical
discussion on the topic that is outside the scope of this paper.
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Contribution of the paper. In this paper we expose a class of convex Mixed Inte-
ger Quadratic Programming (MIQP) problems arising in Supervised Classification where
the Global Optimization (GO) solver Couenne [10] using reformulation (3) is consistently
faster than virtually any state-of-the-art commercial MIQP solver like [15], [14] and [23].
This is quite counter-intuitive because, in general, convex MIQPs admit more efficient
solution techniques both in theory and in practice, especially by benefiting from virtually
all machinery of MILP solvers. Inspired by this empirical and surprising observation,
we show that aggressive bound tightening is the crucial ingredient for solving this class
of instances, and we devise a pair of computationally effective algorithmic approaches
that exploit it within MILP. In particular, we were able to optimally solve in just sec-
onds instances that could not be solved by state-of-the-art MILP solvers in hours. More
generally, we argue that aggressive bound tightening is often overlooked in MILP, while
it represents a significant building block for enhancing MILP technology when indicator
constraints and disjunctive terms are present.

Organization of the paper. The remainder of the paper is organized as follows. In
Section 2 we discuss the application we use as an example. In Section 3 we show the
initial set of surprising computational results. In Section 4 we discuss why those results
are surprising while in Section 5 we carefully analyze the reasons of the success of Couenne
versus IBM-Cplex. In Section 6 we present two approaches to enhance IBM-Cplex trying
to mimic Couenne’s behavior. Finally, some conclusions are drawn in Section 7.

2 Support Vector Machines with the ramp loss
In Supervised Classification, see, e.g., [22], we are given a set of objects Ω partitioned into
classes and the aim is to build a procedure for classifying new objects. In its simplest
form, each object i ∈ Ω has associated a pair (xi, yi), where the predictor vector xi takes
values on a set X ⊆ Rd and yi ∈ {−1, 1} is the class membership of object i, also known
as the label of object i.

Support Vector Machines (SVM) methods, see, e.g., [11], have proven to be one of the
state-of-the-art methods for Supervised Classification. The SVM aims at separating the
two classes by means of a hyperplane, ω>x + b = 0, found by solving the optimization
problem

min
ω∈Rd, b∈R

ω>ω

2
+
C

n

n∑
i=1

g((1− yi(ω>xi + b))+),

where n is the size of the sample used to build the classifier, (a)+ = max{a, 0}, C is a
nonnegative parameter, and g a nondecreasing function in R+, the so-called loss function.
The reader is referred to [6] for a recent review on Mathematical Optimization and SVMs.

Several recent papers have been devoted to analyzing SVM with the so-called ramp
loss function, g(t) = (min{t, 2})+, discussed in details in the next section.
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An MIQP formulation. In this paper, we are interested in the SVM with the ramp
loss function, see [9] and [20]. In this model, objects are penalized in a different way
depending on whether or not they fall inside or outside the margin, i.e., if they fall
between ω>x + b = −1 and ω>x + b = 1. Misclassified objects that fall outside the
margin have a fixed loss of 2, while objects that fall inside the margin have a continuous
loss between 0 and 2. The state-of-the-art algorithm is given in [5], where the ramp loss
model, denoted as RLM, is formulated as the MIQP problem

min
ω,b,ξ,z

1

2

d∑
j=1

ω2
j +

C

n

(
n∑
i=1

ξi + 2
n∑
i=1

zi

)
(4)

s.t. (RLM)

yi(ω
>xi + b) ≥ 1− ξi −Mzi ∀i = 1, . . . , n (5)

0 ≤ ξi ≤ 2 ∀i = 1, . . . , n (6)
z ∈ {0, 1}n (7)

ω ∈ Rd (8)
b ∈ R, (9)

where M > 0 is a big enough constant, ξ = (ξi) denotes the vector of deviation/penalty
variables and C is the tradeoff parameter that calls for tuning. For a given object i,
the binary variable zi is equal to 1 if object i is misclassified outside the margin and 0
otherwise. The reader is referred to [5] for further details on this formulation, which is
denoted as “SVMIP1(ramp)” in [5].

The appeal of model (4)–(9) relies in the fact that it can (potentially) be solved by
a black-box MIQP solver, e.g., [15]. More precisely, objective function (4) is convex
while constraints are linear, thus virtually all the very sophisticated and effective machin-
ery for MILP problems can be applied. However, the solution method proposed in [5]
is able to solve to optimality only a quite limited number of instances, although some
problem-specific cutting planes and reductions are used to help the MILP solver, namely,
IBM-Cplex. Essentially, this difficulty is due to the big-M constraints (5) that make
the continuous relaxation of model (4)–(9) very weak. Branching is effective for small
problems but the almost-complete enumeration is ineffective for instances of serious size.
Cutting planes are not likely to solve the problem, unless they would be specifically de-
signed to face the big-M issue, or, more precisely, the disjunctive nature of constraints
(5).

A Nonconvex Formulation. Motivated by the discussed difficulty of dealing with
constraints (5), we analyzed the alternative nonlinear, nonconvex, formulation of the
RLM

min
ω,b,ξ,z̄

1

2

d∑
j=1

ω2
j +

C

n

(
n∑
i=1

ξi + 2
n∑
i=1

(1− z̄i)

)
(10)
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s.t.

(yi(ω
>xi + b)− 1 + ξi) · z̄i ≥ 0 ∀i = 1, . . . , n (11)

0 ≤ ξi ≤ 2 ∀i = 1, . . . , n (12)
z̄ ∈ {0, 1}n (13)

ω ∈ Rd (14)
b ∈ R. (15)

Precisely as in RLM (4)–(9), binary variables are used to disable constraints (11), which
replace constraints (5), but are the complemented version of z variables (13), i.e., z̄i =
1 − zi. Namely, z̄i = 1 forces the i-th constraint to be active, thus allowing a maximum
violation of ξi = 2, while z̄i = 0 disables the constraint in a classical “complementary”
way.

Of course, constraints (11) are responsible of the nonconvexity of the MINLP model
(10)–(15). However, its continuous version obtained by simply replacing constraints (13)
with z̄ ∈ [0, 1]n is solved to (local) optimality by the Nonlinear Programming (NLP)
solver [16] providing a mixed binary solution that is very accurate, and relatively quick
to compute. Indeed, it is easy to prove that

Proposition 2.1 Any local optimal solution of the continuous version of model (10)–(15)
is mixed binary.

Proof: The proposition is proven by contradiction. A local optimal solution (ω, b, ξ, z̄) is
feasible. Thus, constraints (11) are satisfied. For any i = 1, . . . , n, either z̄i = 0 (integer),
or if z̄i ∈ (0, 1), there exists an equivalent (still feasible) solution (ω, b, ξ, z̄1, . . . , z̄i−1, 1,
z̄i+1, . . . , z̄n) with z̄i = 1 having smaller objective function value. �

Theorem 2.1 above implies that the global optimal solution is mixed binary as well,
thus solving the continuous version of the problem with a GO solver like [10] solves the
overall problem to optimality. On the other hand, Couenne is an MINLP solver, hence
it can handle integrality constraints on (a subset of) the variables. Thus, in the results
presented in the next section we have kept integrality on variables z̄’s.

3 A raw set of computational results
We have performed an exploratory test for the nonconvex MINLP formulation proposed
in Section 2. We consider only the artificial datasets proposed by [5], to be able to control
both the dataset and the problem size. In this paper we concentrate on a challenging
subset of instances, namely 23 instances of size n = 100, d = 2, TypeB proposed in [5]. We
show the surprising behavior of [10] that used “out-of-the-box” performs better on model
(10)–(15) than [15] on model (4)–(9). Table 1 reports the straightforward comparison.
Computing times (time) in CPU seconds, number of nodes (nodes), percentage gap of
the upper (ub) and lower (lb) bounds are reported, as well as the optimal value of each
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Table 1: Computational results for Couenne and IBM-Cplex. Instances of TypeB proposed
by [5], n = 100, time limit of 1 hour, executed on an Intel Xeon E3-1220V2.

Couenne IBM-Cplex
% gap % gap

optimal value time (sec.) nodes ub lb time (sec.) nodes ub lb
1 157,994.959 151.87 22,574 – – × 13,807,517 – 13.28
2 179,368.534 595.06 108,682 – – × 15,676,267 – 24.00
3 220,673.592 × 646,606 4.59 10.60 × 16,436,987 – 38.23
4 5,225.994 142.95 22,934 – – × 8,883,191 – 16.68
5 5,957.083 1,180.24 251,678 – – × 14,841,992 – 28.44
6 11,409,617.494 1,571.70 257,749 – – × 15,367,015 – 23.05
7 11,409,058.363 698.72 120,425 – – × 15,765,182 – 23.53
8 10,737,725.660 448.38 70,342 – – × 14,794,402 – 18.64
9 5,705,364.054 1,433.84 238,028 – – × 16,212,686 – 23.54
10 5,704,804.923 578.12 104,368 – – × 15,075,606 – 23.54
11 5,369,016.540 348.82 56,161 – – × 14,624,208 – 18.62
12 2,853,237.334 1,637.12 267,588 – – × 15,225,643 – 23.10
13 2,852,678.203 565.32 101,677 – – × 14,846,871 – 23.23
14 2,684,661.980 340.74 54,212 – – × 14,453,730 – 18.46
15 1,427,173.974 1,508.68 247,860 – – × 15,213,788 – 23.36
16 1,426,614.843 525.55 93,268 – – × 16,113,468 – 23.56
17 1,342,484.700 394.45 61,247 – – × 15,237,849 – 18.77
18 714,142.294 1,156.81 186,351 – – × 15,550,460 – 23.30
19 713,583.163 513.23 91,329 – – × 15,762,471 – 23.59
20 671,396.060 498.46 77,747 – – × 15,355,449 – 18.79
21 357,626.454 1,084.87 180,408 – – × 15,889,182 – 23.66
22 357,067.323 669.17 117,288 – – × 15,280,262 – 23.63
23 335,851.740 448.92 71,110 – – × 15,322,743 – 18.82

instance for future reference. A time limit of 1 hour is provided to each run and in case
such a limit is reached the entry in the column “time” indicates a “×” (computing times
are in CPU seconds on an Intel Xeon E3-1220V2). For instances solved to optimality gaps
are reported as “–”.

The results of Table 1 are quite straightforward to interpret, with a strict dominance
of Couenne with respect to IBM-Cplex. In the unique instance Couenne is unable to solve
to optimality (instance 3) the issue is probably that the upper bound is not improved
enough, thus being unable to propagate (see next section) and strengthen the formulation.
Conversely, IBM-Cplex is always able to find the right upper bound (namely, the optimal
solution value) but the lower bound value remains far from the optimal value, thus being
unable to prove optimality.

Table 1 reports detailed numbers only for IBM-Cplex but we solved the convex MIQP
model (4)–(9) with the convex MIQP solvers developed extending the three major MILP
solvers, namely [14] and [23], and IBM-Cplex itself. The three solvers behave very sim-
ilarly in the considered instances, thus indicating that the weakness shown in Table 1 is
structurally associated with solving the big-M formulation, or, conversely, that solving
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the nonconvex formulation through a GO solver is effective.

4 Why are these results surprising?
Although, as anticipated in the introduction, convex MIQP solvers should be more ef-
fective than GO ones especially because they can exploit the very sophisticated MILP
machinery, one can still argue that a comparison in performance between two different
solution methods and computer codes is anyway hard to perform. However, digging into
the way Couenne solves the problem leads to confirm the initial surprise or even increase
it.

McCormick Linearization. The first observation is that the way constraints (11) are
managed by Couenne is through the classical McCormick linearization (see, [17]). Namely,
for i = 1, . . . , n, two new auxiliary variables ϑi and ui are introduced that are associated
with expressions in (11):

1. ϑi = yi(ω
>xi + b)− 1 + ξi, with ϑLi ≤ ϑi ≤ ϑUi

2. ui = ϑiz̄i.

Then, the product corresponding to each new variable ui is linearized as

ui ≥ 0 (16)
ui ≥ ϑLi z̄i (17)
ui ≥ ϑi + ϑUi z̄i − ϑUi (18)
ui ≤ ϑi + ϑLi z̄i − ϑLi (19)
ui ≤ ϑUi z̄i, (20)

again for i = 1, . . . , n, where (16) corresponds precisely to (11). Essentially, setting z̄i = 0
again deactivates constraint i by simply enforcing the loose ϑi ∈ [ϑLi , ϑ

U
i ], where ϑLi plays

the role of the big M .
In other words, Couenne initially builds a linear big-M formulation itself, with the

difference that a specific ϑLi value for each i is computed. Although such an internal
computation is not responsible of the higher effectiveness of Couenne (typically Couenne
is more conservative than the static values of M used in the literature and especially by
[5], this is, in practice, not a negligible issue because a safe value of M is not trivial to be
determined a priori.

In the next section we will extensively discuss howMcCormick inequalities are strength-
ened, as well as the bounds on ϑ variables. This will be shown to be crucial for Couenne
but, at first, this similarity confirms the surprise.
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Branching. It is well known that a major component of GO solvers is the iterative
tightening of the convex (most of the time linear) relaxation of the nonconvex feasible
region by branching on continuous variables (see, e.g., [3]). Another surprising fact here
is that the default version of Couenne does not take advantage of this possibility and
branches on the binary variables z̄’s. Because everything is linear (after McCormick
linearization) and the objective function convex, as soon as all binaries are fixed the
problem is solved.

Even better performance for Couenne could be obtained by branching on continuous
variables. Namely, instructed to branch preferably on continuous variables, Couenne
always selects ϑ variables, which clearly lead to additional bound tightening with respect
to branch on binaries. Indeed, if in a given relaxation we have ϑi = c, the two branches
ϑi ≤ c OR ϑi ≥ c propagate as follows: (i) if c < 0 then ϑi ≤ c implies z̄i = 0 OR (ii) if
c > 0 then ϑi ≥ c implies z̄i = 1. The results are reported in Table 2 and clearly show
the computational advantage of this choice. Thus, again, it is surprising that the default
branching strategy of Couenne leads to an improvement over the sophisticated branching
framework of IBM-Cplex.

Table 2: Computational results for Couenne default and Couenne branching emphasis on
continuous variables. Instances of TypeB proposed by [5], n = 100, time limit of 1 hour,
executed on an Intel Xeon E3-1220V2.

Couenne default Couenne continuous
% gap % gap

optimal value time (sec.) nodes ub lb time (sec.) nodes ub lb
1 157,994.959 151.87 22,574 – – 257.54 74,424 – –
2 179,368.534 595.06 108,682 – – 479.86 140,405 – –
3 220,673.592 × 646,606 4.59 10.60 774.60 216,118 – –
4 5,225.994 142.95 22,934 – – 408.33 121,896 – –
5 5,957.083 1,180.24 251,678 – – 724.94 209,346 – –
6 11,409,617.494 1,571.70 257,749 – – 640.58 184,391 – –
7 11,409,058.363 698.72 120,425 – – 912.07 269,332 – –
8 10,737,725.660 448.38 70,342 – – 492.00 143,426 – –
9 5,705,364.054 1,433.84 238,028 – – 609.29 177,236 – –
10 5,704,804.923 578.12 104,368 – – 921.80 276,704 – –
11 5,369,016.540 348.82 56,161 – – 505.37 145,282 – –
12 2,853,237.334 1,637.12 267,588 – – 624.38 176,251 – –
13 2,852,678.203 565.32 101,677 – – 855.99 255,654 – –
14 2,684,661.980 340.74 54,212 – – 466.56 138,252 – –
15 1,427,173.974 1,508.68 247,860 – – 571.29 163,552 – –
16 1,426,614.843 525.55 93,268 – – 811.76 251,205 – –
17 1,342,484.700 394.45 61,247 – – 361.27 108,762 – –
18 714,142.294 1,156.81 186,351 – – 513.45 148,947 – –
19 713,583.163 513.23 91,329 – – 722.22 219,986 – –
20 671,396.060 498.46 77,747 – – 382.18 118,811 – –
21 357,626.454 1,084.87 180,408 – – 459.15 133,964 – –
22 357,067.323 669.17 117,288 – – 611.38 185,459 – –
23 335,851.740 448.92 71,110 – – 404.87 116,966 – –
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L1 norm. A natural question is if the results reported in Table 1 are due to the somehow
less sophisticated evolution of IBM-Cplex in its MIQP extension with respect to the MILP
one. In order to answer this question we performed an experiment in which the quadratic
part of the objective function was replaced by the L1 norm on ω. More precisely, the
sum of the absolute values of ωi is minimized (and linear constraints to deal with the
absolute value are added). This results in a pure MILP once the big-M constraints (5) are
considered (solved by IBM-Cplex) or a nonconvex MINLP with linear objective function
(solved by Couenne) if constraints (11) are used instead. This linear objective variant
of the RLM does not result in any change for the comparison and Couenne continues
achieving better results than IBM-Cplex.

5 Bound reduction in nonconvex MINLP problems
Bound reduction is a crucial tool in MINLP: it allows one to eliminate portions of the
feasible set while guaranteeing that at least one optimal solution is retained. Although
its origins can be traced back to Artificial Intelligence (see, [12]), it finds wide application
in Constraint Programming and in solvers for both Nonlinear Optimization ([18]) and for
MILP problems ([1] and [19]).

Consider a generic optimization problem min{f(x) : x ∈ X, ` ≤ x ≤ u}, where
X ⊂ Rn and x, `, u ∈ Rn. Also, suppose an upper bound U ∈ R∪{+∞} on the objective
function value of the optimal solution is available: if U < +∞, then a feasible solution
x ∈ X ∩ [`, u] is available such that f(x) = U . Bound reduction attempts to find tighter
lower bounds `′i > `i and upper bounds u′i < ui. In general, a good upper bound is often
the key to a strong bound reduction.

An ideal bound reduction procedure obtains bounds by exploiting the full problem
structure:

`′i = max {xi : x ∈ X, ` ≤ x ≤ u, f(x) ≤ U},
u′i = min {xi : x ∈ X, ` ≤ x ≤ u, f(x) ≤ U}. (21)

However, the 2n optimization problems above can be as hard as the original optimization
problem itself, therefore this approach is impractical.

A fast bound reduction procedure, known as Feasibility Based Bound Tightening
(FBBT), yields new bounds on a variable xi using bounds on other variables that are
linked to xi through a constraint or the objective function. For instance, the constraint
x1x2 ≤ 4 and the bounds x1 ≥ 1, x2 ≥ 1 yield new upper bounds x1 ≤ 4, x2 ≤ 4. An
example that is closer to our application is the constraint x2

i ≤ u, where u ≥ 0, which
obviously implies xi ∈ [−

√
u,
√
u].

A specialized version of this procedure applies to affine functions, and is commonly
used in MILP solvers, see [1]. Consider the range constraint

`0 ≤ α0 +
n∑
j=1

αjxj ≤ u0.
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Define J+ = {j = 1, . . . , n : αj > 0} and J− = {j = 1, . . . , n : αj < 0}. Bounds `0, u0 on
the expression imply new (possibly tighter) bounds `′j, u′j on xj, j = 1, . . . , n : αj 6= 0:

∀j : αj > 0, `′j = 1
αj

(
`0 −

(
α0 +

∑
i∈J+\{j} αiui +

∑
i∈J− αi`i

))
,

u′j = 1
αj

(
u0 −

(
α0 +

∑
i∈J+\{j} αi`i +

∑
i∈J− αiui

))
;

∀j : αj < 0, `′j = 1
αj

(
u0 −

(
α0 +

∑
i∈J+ αi`i +

∑
i∈J−\{j} αiui

))
,

u′j = 1
αj

(
`0 −

(
α0 +

∑
i∈J+ αiui +

∑
i∈J−\{j} αi`i

))
.

(22)

5.1 Applying bound reduction to model (10)-(15)
Couenne is a branch-and-bound solver for MINLP problems that uses, among others,
several bound reduction techniques, including FBBT. At the beginning, Couenne runs
a greedy rounding procedure to obtain a feasible solution of the problem, and hence an
upper bound U . Applying FBBT using two rules mentioned above (for affine functions
and for the square operator) yields tight bounds on ωi at the root node of Couenne’s
branch-and-bound tree. Consider the objective function of our problem

1

2

d∑
j=1

ω2
j +

C

n

(
n∑
i=1

ξi + 2
n∑
i=1

(1− z̄i)

)
,

which is bounded from above by U . Also, note that
∑n

i=1 ξi+2
∑n

i=1(1−z̄i) is nonnegative.
Since

∑d
j=1 ω

2
j ≥ 0 and

∑n
i=1 ξi + 2

∑n
i=1(1− z̄i) ≥ 0, and also ξi and z̄i are nonnegative,

we have
ωi ∈

[
−
√

2U,
√

2U
]

∀i = 1, . . . , d.

A related observation concerns the constraints of our model. The tighter bounds on
the ωi’s variables, which are initially unbounded in the definition of the problem, do not
seem to have an influence on constraints (11), where the variable b remains unbounded.
This family of nonlinear constraints can be simplified to ϑiz̄i ≥ 0, with ϑi = (yi(ω

>xi +
b)− 1 + ξi) ∈ [−∞,+∞] and z̄i ∈ {0, 1}, for all i = 1, . . . , n. Due to the infinite bounds,
this constraint does not admit a linear relaxation, which is useful for any MINLP solver to
obtain a lower bound. When imposing fictitious bounds [−M,M ] on ϑi, with large enough
M , one gets the constraint ϑi ≥M(z̄i − 1), which is the big M constraint used in MILP.
In these cases, probing techniques can be of help. A probing bound reduction algorithm
works as follows: impose a fictitious upper bound λi ∈ (`i, ui) on a variable xi, thereby
restricting xi to [`i, λi]. If the restricted problem can be proven (through FBBT, for
example) to be infeasible or to have a lower bound that is above a cutoff U , then no feasible
solution with better objective function value can be found in the restriction. Therefore,
the new lower bound xi ≥ λi is valid. This procedure can be applied to tighten the upper
bound as well, by imposing a fictitious lower bound µi ∈ (`i, ui). Although applying it to
all variables is time consuming, it is especially useful for unbounded variables. Probing is
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a common tightening technique in MILP and MINLP solvers (see [19], and [3] and [21],
respectively.)

We will now describe the specific reductions that Couenne applied to the RLM, and we
will computationally show that these reductions are crucial to obtain the results shown
in Section 4.

5.2 Strengthening McCormick constraints

The coefficients of the McCormick constraints are the lower and upper bounds on the
variables involved. Hence, these constraints can be replaced by stronger ones as soon as
tighter bounds on the variables are available. Couenne does this automatically by means
of a cut separator that is called at every branch-and-bound node, and only adds tighter
McCormick cuts if they are violated by the Linear Programming (LP) solution available
at that node.

Note that McCormick cuts are only useful if both variables ϑi and z̄i are not fixed, as,
otherwise, the constraint ui = ϑiz̄i becomes linear. Of course, new McCormick cuts are
making previous ones redundant and Couenne relies on the branch-and-bound manager
(specifically, [7]) to deal with redundancy in the constraint set.

While looking for reasons of Couenne’s performance, we have run an experiment where
McCormick cuts were only added to the initial LP relaxation but excluded from separation
at all nodes. The performance worsened dramatically on all instances, which indicates
that the bound on the involved variables ui, ϑi, z̄i is tightened and should be exploited.

5.3 Bound tightening

Couenne uses several techniques for bound tightening among those described above. In
the context of this problem, tightening is based on the following elements:

• the objective function, if a cutoff U is available;

• the definition ui = ϑiz̄i(≥ 0) and related constraint ui ≥ 0;

• the definition ϑi = (yi(ω
>xi + b)− 1 + ξi).

Propagation possibly generates new bounds on ω, b, ξ, which are obtained through stan-
dard presolve procedures ([1]). For the sake of completeness, we add them here by defin-
ing the coefficients αik = xikyi, where xik is the k−th feature (k = 1, . . . , d) of object i
(i = 1, . . . , n). Also, we use superscripts “L” (resp. “U ”) to denote lower (resp. upper)
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bounds. The bounds are then updated by formulas

∀k : αik > 0 ωLk = 1
αik

(
ϑLi −

∑
j:αij<0 αijω

L
j −

∑
j 6=k:αij>0 αijω

U
j − (yib)

U − ξU + 1
)
,

ωUk = 1
αik

(
ϑUi −

∑
j:αij<0 αijω

U
j −

∑
j 6=k:αij>0 αijω

L
j − (yib)

L − ξL + 1
)
,

∀k : αik < 0 ωLk = 1
αik

(
ϑUi −

∑
j 6=k:αij<0 αijω

U
j −

∑
j:αij>0 αijω

L
j − (yib)

L − ξL + 1
)
,

ωUk = 1
αik

(
ϑLi −

∑
j 6=k:αij<0 αijω

L
j −

∑
j:αij>0 αijω

U
j − (yib)

U − ξU + 1
)
,

∀i : yi > 0, bL = 1
yi

(
ϑLi −

∑
j:αij<0 αijω

L
j −

∑
j:αij>0 αijω

U
j − ξU + 1

)
,

bU = 1
yi

(
ϑUi −

∑
j:αij<0 αijω

U
j −

∑
j:αij>0 αijω

L
j − ξL + 1

)
,

∀i : yi < 0, bL = 1
yi

(
ϑUi −

∑
j:αij<0 αijω

U
j −

∑
j:αij>0 αijω

L
j − ξL + 1

)
,

bU = 1
yi

(
ϑLi −

∑
j:αij<0 αijω

L
j −

∑
j:αij>0 αijω

U
j − ξU + 1

)
,

ξL = ϑLi −
∑

j:αij<0 αijω
L
j −

∑
j:αij>0 αijω

U
j − (yib)

U + 1,

ξU = ϑUi −
∑

j:αij<0 αijω
U
j −

∑
j:αij>0 αijω

L
j − (yib)

L + 1,

where, as an example, the value ωLk is the maximum lower bound value on ωk over all
i = 1, . . . , n of the first formula above. The same holds for all other bounds.

When solving an instance of our problem, tightening typically happens after obtaining
a new integer feasible solution or after branching on a variable. We describe here in detail
the tightening steps. Note that the sequence of tightening steps is often repeated to ensure
“tight enough” bounds on all variables, especially the “critical” ones, i.e., those that can
be free and unbounded, like ω’s and b in out case. This loop is of fundamental importance
in GO solvers that, generally, cannot rely on tight continuous relaxations.

• After branching on a binary variable z̄i, if z̄i is fixed to 0 the lower bound on the
objective function is increased, which may allow for extra tightening on the variables
appearing in the objective or, if the lower bound is above the cutoff, for pruning the
node.

• If z̄i is instead fixed to 1, Couenne uses the new lower bound on ϑi to obtain a better
bound on ω and b.

• When a new upper bound U is found (Couenne finds a good one at the beginning),
this triggers a tightening of ω. No tightening is done on any z̄i variable since all of
them have the same coefficient in the objective.

Note that in both cases (branching on z̄i and new bound U) the tightening of ω’s and
b above allows one to strengthen the McCormick inequalities, that are necessary to build
a linear relaxation of the problem. To summarize, both branches and a new cutoff value
allow to tighten the bounds on ϑ, ω, and b, and this, in turn, allows for strengthening
McCormick inequalities at every node.

Needless to say, disabling bound reduction in Couenne leads to a dramatic worsening
of the performance. It appears therefore that both bound reduction and McCormick cuts
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are the responsible of the success of Couenne on this class of instances, and, conversely,
the lack of those ingredients, or at least their “too light” use, seems to be crucial in the
troubles encountered by MILP solvers. In the next section we will show that enhancing
the MILP solvers in this line is possible.

6 Enhancing MILP solvers
Inspired by the outperforming results of Couenne over IBM-Cplex (and virtually all other
MILP solvers), and by the analysis in the previous section, we have tried to exploit the
successful MINLP tools, namely bound tightening, to deal with the weak MILP relaxations
associated with big-M constraints. We will show two ways of enhancing the behavior of
IBM-Cplex

• either by using online (and cheap) tightening of Section 5.3 and locally-valid Mc-
Cormick constraints,

• or by an a priori (more expensive) strengthening of the formulation, where the
bounds on ω’s and b are computed by solving MILPs as in (21).

The former approach, outlined in Section 6.1, leans towards a real integration of aggressive
bound tightening in MILP, while the latter can be seen as a sophisticated MILP algorithm
that exploits bound tightening and is described in Section 6.2.

6.1 Local cuts

As explained in Section 5.2, one of the main ingredients used by Couenne to solve the
classification instances is the iterative strengthening of constraints (5) in the tree. This
process can be mimicked in a MILP solver by using locally valid versions of the big-M
constraints (5).

Basically, any time one tightens the upper and lower bounds on ω and b through
propagation, one can recompute a potentially smaller value of M by recomputing the
minimal value the left-hand-side of constraint (5) can take under these new bounds. If
this value is indeed smaller, one can add a tighter version of (5). Note that this new
constraint strictly dominates the previous one. As explained in Section 5, the combination
of branching and propagation gives tighter bounds for ω and b at the nodes of the branch-
and-bound tree. However, since these bounds on ω and b are computed for a node of the
tree, the resulting strengthened version of (5) is only valid for the sub-tree rooted in that
node.

In [15], locally valid versions of constraints (5) can be automatically added as local
cuts within the branch-and-bound tree. These inequalities as refereed to as local implied
bound cuts.

The way in which IBM-Cplex generates these cuts is through the use of so-called
implications. An implication is the logical description of an indicator constraint: t =
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0 (or 1)⇒ α>x ≤ x0. Implications can be either automatically found by presolve proce-
dures that analyze the structure of the model or, alternatively, they can be directly given
as an input to the solver [15, 23]. Implications naturally imply linear cuts by using their
big-M form (2).

To assess the efficiency of local implied bound cuts on the supervised classification
instances, we replaced the constraints (5) with the indicator constraints

z = 0⇒ yi(ω
>xi + b) ≥ 1− ξi ∀i = 1, . . . , n.

We then solved the 23 instances of Table 1, without local implied bound cuts (default
settings) and with a very aggressive setting for separating local implied bound cuts. In
this very aggressive settings, Cplex tries to recompute a smaller big M for each indicator
constraint at every node of the branch-and-bound tree. Every time a smaller big M is
found, the previous big-M constraint is removed and replaced by the tighter one.

Computing times in CPU seconds and number of nodes are reported in Table 3.
IBM-Cplex is executed (using 4 threads), in the default settings and with local implied
bound cuts set to very aggressive. While default IBM-Cplex is able to solve to optimality
just one instance within the time limit, the enhanced version solves to optimality 15 out
of 23 instances.

6.2 Iterative domain reduction

Iterative domain reduction can be seen as a preprocessing tool to enhance the behavior
of IBM-Cplex. An initial bound tightening is performed by solving a sequence of MILP
problems to strengthen the lower and upper bounds on the ω variables and on b.

Let us denote by P the set of feasible solutions of the RLM, by Z(ω, ξ, z) the objective
value (4) of solution (ω, ξ, z), and by U the value of an upper bound on (4). To simplify
notation, let ω0 denote the b variable. Lower (li) and upper (ui) bounds on each ωi are
iteratively tightened by solving the following MILP problems:

li = min{ωi : (w, ξ, z) ∈ P,Z(w, ξ, z) ≤ U},∀i = 0, . . . , d, (23)
ui = max{ωi : (w, ξ, z) ∈ P,Z(w, ξ, z) ≤ U},∀i = 0, . . . , d. (24)

where, at each step, solutions in P must satisfy all the ω-bounds computed in the previous
iterations. In order to limit computing time, MILP problems (23) and (24) are solved
within a node limit. This iterative process is applied in a cyclic way until no bound
improvement is obtained.

We have tested this approach on the 23 instances from Table 1. First, an initial upper
bound U is computed by solving the RLM with a node limit of 100k (plus 25 polish nodes).
Then, for each lower and upper bound tightening, the MILP problems are solved within a
node limit of 10k. When no bound improvement is obtained, the final RLM is solved with
all new bounds on ω variables, unless each variable has lower and upper bounds equal
each other. The results are reported in Table 4, where computing times and nodes refer to
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Table 3: Computational results for IBM-Cplex default and IBM-Cplex with local implied
bound cuts . Instances of Type B proposed by [5], n = 100, executed using 4 threads on
an Intel Xeon E3-1220V2 at 3.10 GHz.

default local implied bound cuts
% gap % gap

optimal value time (sec.) nodes ub lb time (sec.) nodes ub lb
1 157,994.959 × 14,751,130 – 0.45 118.09 1,087,597 – –
2 179,368.534 × 23,937,160 – 18.07 2,403.80 23,626,498 – –
3 220,673.592 × 26,815,311 – 35.08 × 12,614,389 – 31.69
4 5,225.994 699.49 24,047,360 – – 137.69 1,124,760 – –
5 5,957.083 × 23,669,434 – 22.59 × 19,269,146 – 15.68
6 11,409,617.494 × 22,575,895 – 16.09 × 17,916,288 – 13.05
7 11,409,058.363 × 24,923,091 – 17.65 652.26 10,103,379 – –
8 10,737,725.660 × 21,271,292 – 9.50 2,894.60 20,226,701 – –
9 5,705,364.054 × 22,662,326 – 16.16 2,735.92 23,849,291 – –
10 5,704,804.923 × 25,715,542 – 18.57 × 14,419,022 – 24.45
11 5,369,016.540 × 20,587,001 – 10.65 × 17,361,715 – 14.94
12 2,853,237.334 × 22,655,051 – 16.22 × 19,850,228 – 2.40
13 2,852,678.203 × 25,200,627 – 17.66 563.05 6,833,483 – –
14 2,684,661.980 × 20,656,438 – 8.99 × 16,340,754 – 12.12
15 1,427,173.974 × 22,523,409 – 15.90 1,422.46 13,136,479 – –
16 1,426,614.843 × 26,691,246 – 20.29 1,029.83 13,181,911 – –
17 1,342,484.700 × 21,233,022 – 10.30 1,101.30 14,605,572 – –
18 714,142.294 × 22,664,594 – 16.33 × 28,391,324 – 5.90
19 713,583.163 × 26,342,005 – 18.17 489.94 6,124,166 – –
20 671,396.060 × 21,371,127 – 10.29 394.34 5,979,371 – –
21 357,626.454 × 22,634,311 – 16.05 1,314.65 14,112,522 – –
22 357,067.323 × 24,273,339 – 17.72 979.23 12,231,339 – –
23 335,851.740 × 25,632,766 – 12.69 844.96 11,706,613 – –

the overall scheme, i.e., they include the computation of the initial solution, the iterative
bound tightening and possibly the final run. To our pleasant surprise, all instances were
solved to optimality in less than one minute, and required less that 30 seconds and 150k
nodes on average.

7 Conclusions
We have shown that the nonconvex reformulation of so-called big-M constraints and
the consequent use of a general-purpose MINLP solver instead of an MIQP solver can
lead, surprisingly, to faster computing times for a special class of classification problems.
Through a careful analysis of Couenne’s features and components we have been able to
isolate those that make a difference, namely aggressive bound tightening and iterative
strengthening of the McCormick linearization. We have proposed two ways of integrating
these ingredients within MILP approaches, both leading to finally being able to compu-
tationally solve these classification problems. One of these methods is currently part of
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Table 4: Computational results for IBM-Cplex default and IBM-Cplex enhanced with
iterative domain reduction (i.d.r.). Instances of TypeB proposed by [5], n = 100, executed
using 4 threads on an Intel Xeon E3-1220V2 at 3.10 GHz.

IBM-Cplex default IBM-Cplex i.d.r.
% gap % gap

optimal value time (sec.) nodes ub lb time (sec.) nodes ub lb
1 157,994.959 × 14,751,130 – 0.45 25.60 145,300 – –
2 179,368.534 × 23,937,160 – 18.07 33.87 148,105 – –
3 220,673.592 × 26,815,311 – 35.08 29.12 149,472 – –
4 5,225.994 699.49 24,047,360 – – 31.03 145,718 – –
5 5,957.083 × 23,669,434 – 22.59 23.01 148,848 – –
6 11,409,617.494 × 22,575,895 – 16.09 28.63 148,595 – –
7 11,409,058.363 × 24,923,091 – 17.65 24.68 145,889 – –
8 10,737,725.660 × 21,271,292 – 9.50 43.15 146,024 – –
9 5,705,364.054 × 22,662,326 – 16.16 26.94 147,621 – –

10 5,704,804.923 × 25,715,542 – 18.57 28.82 145,978 – –
11 5,369,016.540 × 20,587,001 – 10.65 31.38 145,956 – –
12 2,853,237.334 × 22,655,051 – 16.22 33.67 147,909 – –
13 2,852,678.203 × 25,200,627 – 17.66 22.66 145,568 – –
14 2,684,661.980 × 20,656,438 – 8.99 27.92 146,771 – –
15 1,427,173.974 × 22,523,409 – 15.90 28.98 148,504 – –
16 1,426,614.843 × 26,691,246 – 20.29 25.61 145,754 – –
17 1,342,484.700 × 21,233,022 – 10.30 31.55 156,405 – –
18 714,142.294 × 22,664,594 – 16.33 28.39 148,358 – –
19 713,583.163 × 26,342,005 – 18.17 25.13 146,030 – –
20 671,396.060 × 21,371,127 – 10.29 36.44 146,281 – –
21 357,626.454 × 22,634,311 – 16.05 28.65 161,660 – –
22 357,067.323 × 24,273,339 – 17.72 25.74 145,992 – –
23 335,851.740 × 25,632,766 – 12.69 26.86 145,656 – –

the arsenal of IBM-Cplex 12.6.1.
More generally, we argue that aggressive bound tightening is often overlooked in MILP,

while it represents a significant building block for enhancing MILP technology when in-
dicator constraints and disjunctive terms are present. Finally, it is also conceivable that
other ingredients that are fundamental in MINLP could prove beneficial for MILP.
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