
Orbital Shrinking: a new tool for hybrid
MIP/CP methods

Domenico Salvagnin

DEI, University of Padova, salvagni@dei.unipd.it

Abstract. Orbital shrinking is a newly developed technique in the MIP
community to deal with symmetry issues, which is based on aggregation
rather than on symmetry breaking. In a recent work, a hybrid MIP/CP
scheme based on orbital shrinking was developed for the multi-activity
shift scheduling problem, showing significant improvements over previ-
ous pure MIP approaches. In the present paper we show that the scheme
above can be extended to a general framework for solving arbitrary sym-
metric MIP instances. This framework naturally provides a new way
for devising hybrid MIP/CP decompositions. Finally, we specialize the
above framework to the multiple knapsack problem. Computational re-
sults show that the resulting method can be orders of magnitude faster
than pure MIP approaches on hard symmetric instances.

1 Introduction

We consider a integer linear optimization problem P of the form

min cx (1)

Ax ≥ b (2)

x ∈ Zn+ (3)

For ease of explanation, we assume that the feasible set f(P) of P is bounded
and non-empty. Let Πn be the set of all permutations π of the ground set
In = {1, . . . , n}. The symmetry group G of P is the set of all permutations πi
such that if x is a feasible solution of P then πi(x) is again a feasible solution
of P of the same cost. Clearly, G is a permutation group of In, i.e., a subgroup
of In. In addition, G naturally induces a partition Ω = {V1, . . . , VK} of the set
of variables of P , called orbital partition. Intuitively, two variables xi and xj
are in the same orbit Vk if and only if there exists π ∈ G such that π(i) = j.
Integer programs with large symmetry groups occur naturally when formulating
many combinatorial optimization problems, such as graph coloring, scheduling,
packing and covering design.

Symmetry has long been recognized as a curse for the traditional enumeration
approaches used in both the MIP and CP communities—we refer to [1,2] for
recent surveys on the subject. The reason is that many subproblems in the
enumeration tree are isomorphic, with a clear waste of computational resources.

Various techniques for dealing with symmetric problems have been studied by
different research communities and the usual approach to deal with symmetry
is to try to eliminate it by introducing artificial symmetry-breaking constraints
and/or by using ad-hoc search strategies.

In [3], a new technique called orbital shrinking for dealing with symmetric
problems was presented, which is based on aggregation rather than on symmetry
breaking. Let G = {π1, . . . , πM} be the symmetry group of P . Given an arbitrary
feasible point x ∈ f(P), we can construct the average point x

x =
1

M

∑
πi∈G

πi(x)

Trivially, cx = cx. It is also easy to prove that x must have xj constant within
each orbit Vk, and that it can be efficiently computed by taking averages within
each orbit, i.e.

xj =
1

|Vk|
∑
i∈Vk

xi where j ∈ Vk

If P were a convex optimization problem (e.g. a linear program), then x would
be feasible for P , as it is a convex combination of feasible points of P . Thus, if
we wanted to optimize over P , the only unknowns would be the averages within
each orbit or, equivalently, their sums yk =

∑
j∈Vk

xj , and we could derive an
equivalent shrunken reformulation Q by

i) introducing sum variables yk

ii) replacing xj , j ∈ Vk with yk/|Vk| in each constraint and in the objective
function.

However, Q is not in general an equivalent reformulation of P when P is an
arbitrary integer program, since the average point x may not satisfy the inte-
grality requirements. However, it is still possible to prove (see [3] for details)
that, if we impose the integrality requirements on the aggregated variables yk,
Q is an equivalent reformulation of the problem obtained from P by relaxing
the integrality constraints on x with the surrogate integrality constraints on the
sums over the orbits, and thus Q itself is a relaxation of P . Note that the LP
relaxation of Q is equivalent to the LP relaxation of P and thus Q cannot be
weaker than the standard LP relaxation of P , and can be quite stronger.

Example 1. Let us consider the very tiny Steiner Triple System (STS) instance
of size 7

minx1 + x2 + x3 + x4 + x5 + x6 + x7

x1 + x2 + x4 ≥ 1

x2 + x3 + x5 ≥ 1

x3 + x4 + x6 ≥ 1

x4 + x5 + x7 ≥ 1

x5 + x6 + x1 ≥ 1

x6 + x7 + x2 ≥ 1

x7 + x1 + x3 ≥ 1

x ∈ {0, 1}7

It is easy to see that all variables belong to the same orbit, and thus, after
introducing the sum variable y =

∑7
j=1 xj , the orbital shrinking model reads

min y

3/7y ≥ 1

y ≤ 7

y ∈ Z+

Its linear programming relaxation has value 7/3, which is of course the same value
as the LP relaxation of the original model. However, imposing the integrality
requirement on y, we can increase the value of the relaxation to 3. In this case,
this is also the value of an optimal integral solution of the original model, so
orbital shrinking closes 100% of the integrality gap. Unfortunately, this is not
always the case, even for instances from the same class. Indeed, if we move to
the STS instance of size 9, orbital shrinking is not able to improve over the LP
bound of 3, while the optimum is 5. ut

The STS example above shows that the orbital shrinking relaxation Q might
be a oversimplified approximation of P (in the worst case, reducing to a trivial
integer program with only one variable), thus providing no useful information
for solving P . This is however not always the case. In some particular cases, Q is
indeed an exact reformulation of P , even if P is an integer program. For example,
consider a knapsack problem with identical items: an orbital shrinking relaxation
would replace the binary variables xj associated with the identical items with
a general integer variable yk that counts how many items of type k need to be
taken in the solution, and this is clearly equivalent to the original formulation
(but symmetry free). In other cases, Q, although not a reformulation, still retains
enough structure from P such that that solving Q provides useful insights for
solving P . Of course the question is how to exploit this information to obtain a
sound and complete method for solving P .

A partial answer to this question was given in [4], where a hybrid MIP/CP
scheme based on orbital shrinking was developed for the multi-activity shift

scheduling problem, which is the problem of covering the demands of a finite
set of activities over a time horizon by assigning them to a set of employees. In
real-world applications, the set of feasible shifts (i.e., the set of feasible sequences
of activity assignments to a single employee) is defined by many regulation con-
straints. In this case, many constraints of the problem (in particular those formu-
lated with the aid of formal languages, such regular expressions or context-free
grammars) are preserved by the shrinking process, while some others are not. In
particular, cardinality constraints (e.g., the number of allowed working hours for
a single employee in a single day) are replaced by surrogate versions in Q. Still,
Q provides a very strong dual bound on P and its aggregated solutions can often
be turned into feasible solutions for P . In order to get a complete method, the
following strategy was proposed in [4]: solve the orbital shrinking model Q with
a black box MIP solver and, whenever an (aggregated) integer feasible solution
y∗ is found, check with a CP solver if it can be turned into a feasible solution
x∗ for P . The scheme is akin to a logic-based Benders decomposition [5], al-
though the decomposition is not based on a traditional variable splitting, but
on aggregation.

In the present paper we show that the scheme above can be extended to a gen-
eral framework for solving arbitrary symmetric MIP instances. This framework,
described in Section 2, naturally provides a new way for devising hybrid MIP/CP
decompositions. Then, in Section 3, we specialize the above framework to the
multiple knapsack problem. Computational results in Section 4 show that the
resulting method can be orders of magnitude faster than pure MIP approaches
on hard symmetric instances. Conclusions are finally drawn in Section 5.

2 A general Orbital Shrinking based decomposition
method

Let P be an integer linear program as in the previous section and let G be the
symmetry group of P . Note that if G is unknown to the modeler then the whole
scheme can be applied starting from a subgroup G′ of G, such as, for example,
the symmetry group GLP of the formulation, which is defined as

GLP = {π ∈ Πn|π(c) = c ∧ ∃σ ∈ Πm s.t. σ(b) = b, A(π, σ) = A}

where A(π, σ) is the matrix obtained by A permuting the columns with π and
the rows with σ. Intuitively, a variable permutation π defines a symmetry if there
exists a constraint permutation σ such that the two together leave the formula-
tion unchanged. Note that if the permutation group GLP is used, also constraints
of P are partitioned into constraint orbits: in this case, two constraints are in
the same orbit if and only if there exists a σ (as defined above) mapping one to
the other. GLP can be computed with any graph isomorphism package such as
Nauty [6] or Saucy [7], which perform satisfactorily in practice.

Using G (or GLP) we can compute the orbital partition Ω of P and construct
the shrunken model Q

min dy (4)

By ≥ r (5)

y ∈ ZK+ (6)

where yk =
∑
j∈Vk

xj and constraints (5) are obtained from the constraints (2)
by replacing each occurrence of variable xj with yk/|Vk|, where k is the index
of the orbit to which xj belongs. It is easy to show that all constraints in the
same orbit will be mapped to the same constraint in Q, so in practice Q has one
variable for each variable orbit and one constraint for each constraint orbit in P .
In the small STS example of the previous section, all constraints are in the same
constraint orbit, and indeed they are all are mapped to 3/7y ≥ 1 in the orbital
shrinking reformulation (the other constraint, y ≤ 7, is derived from the upper
bounds of the binary variables). Note that model Q acts like a master problem
in a traditional Benders decomposition scheme.

For each integer feasible solution y∗ of Q, we can then define the following
(slave) feasibility check problem R(y∗)

Ax ≥ b (7)∑
j∈Vk

xj = y∗k ∀k ∈ K (8)

x ∈ Zn+ (9)

If R(y∗) is feasible, then the aggregated solution y∗ can be disaggregated into
a feasible solution x∗ of P , with the same cost. Otherwise, y∗ must be rejected,
in either of the following two ways:

1. Generate a nogood cut that forbids the assignment y∗ to the y variables.
As in logic-based Benders decomposition, an ad-hoc study of the problem is
needed to derive stronger nogood cuts.

2. Branching. Note that in the (likely) event that the solution y∗ is the integral
LP relaxation of a node, then branching on non-fractional y variables is
needed, and y∗ will still be a feasible solution in one of the two child nodes.
However, the method would still converge, because the number of variables is
finite and the tree has a finite depth. Note that in this case the method may
repeatedly check for feasibility the same aggregated solution: in practice, this
can be easily avoided by keeping a list (cache) of recently checked aggregated
solutions with the corresponding feasibility status.

It is important to note that, by construction, problem R(y∗) has the same
symmetry group of P , so symmetry may still be an issue while solving R(y∗).
This issue is usually solvable because (i) the linking constraints (8) may make
the model much easier to solve and (ii) the (easier) structure of the problem may
allow for more effective symmetry breaking techniques. Note also that R(y∗) is
a pure feasibility problem, so a CP solver may be a better choice than a MIP
solver.

3 Application to the Multiple Knapsack Problem

In the present section, we specialize the general framework of the previous section
to the multiple knapsack problem (MKP) [8,9]. This a natural generalization of
the traditional knapsack problem [10], where multiple knapsack are available.
Given a set of n items with weights wj and profits pj , and m knapsacks with
capacity Ci, MKP reads

max

m∑
i=1

n∑
j=1

pjxij (10)

n∑
j=1

wjxij ≤ Ci ∀i = 1, . . . ,m (11)

m∑
i=1

xij ≤ 1 ∀j = 1, . . . , n (12)

x ∈ {0, 1}m×n (13)

where binary variable xij is set to 1 if and only if item j is loaded into knapsack
i. Since we are interested in symmetric instances, we will assume that all m
knapsacks are identical and have the same capacity C, and that also some items
are identical.

When applied to problem MKP, the orbital shrinking reformulation Q reads

max

K∑
k=1

pkyk (14)

K∑
k=1

wkyk ≤ mC (15)

0 ≤ yk ≤ |Vk| ∀k = 1, . . . ,K (16)

y ∈ ZK+ (17)

Intuitively, in Q we have a general integer variable yk for each set of identical
items and a single knapsack with capacity mC. Given a solution y∗, the corre-
sponding R(y∗) is thus a one dimensional bin packing instance, whose task is to
check whether the selected items can indeed be packed into m bins of capacity
C.

To solve the bin-packing problem above, we propose two different approaches.
The first approach is to deploy a standard compact CP model based on the global
binpacking constraint [11] and exploiting the CDBF [12] branching scheme for
search and symmetry breaking. Given an aggregated solution y∗, we construct
a vector s with the sizes of the items picked by y∗, and sort it in non-decreasing
order. Then we introduce a vector of variables b, one for each item: the value of
bj is the index of the bin where item j is placed. Finally, we introduce a variable

li for each bin, whose value is the load of bin i. The domain of variables li is
[0..C]. With this choice of variables, the model reads:

binpacking(b, l, s) (18)

bj−1 ≤ bj if sj−1 = sj (19)

where (19) are symmetry breaking constraints.
The second approach is to consider an extended model, akin to the well

known Gilmore and Gomory column generation approach for the cutting stock
problem [13]. Given the objects in y∗, we generate all feasible packings p of a
single bin of capacity C. Let P denote the set of all feasible packings and, given
packing p, let apk denote the number of items of type k picked. The corresponding
model is ∑

p∈P
apkxp = y∗k (20)

∑
p∈P

xp = m (21)

xp ∈ Z+ (22)

where integer variables xp count how many bins are filled according to packing p.
In the following, we will denote this model with BPcg. Model BPcg is completely
symmetry free, but it needs an exponential number of columns in the worst case.

4 Computational Experiments

We implemented our codes in C++, using IBM ILOG Cplex 12.4 [14] as black
box MIP solver and Gecode 3.7.3 [15] as CP solver. All tests have been performed
on a PC with an Intel Core i5 CPU running at 2.66GHz, with 8GB of RAM (only
one CPU was used by each process). Each method was given a time limit of 1
hour per instance.

In order to generate hard MKP instances, we followed the systematic study
in [16]. According to [16], difficult instances can be obtained introducing some
correlation between profits and weights. Among the hardest instances presented
in [16] are the so-called almost strongly correlated instances, in which weights wj
are distributed—say uniformly—in the range [1, R] and the profits pj are dis-
tributed in [wj +R/10−R/500, wj +R/10+R/500]. These instances correspond
to real-life situations where the profit is proportional to the weight plus some
fixed charge value and some noise. Given this procedure, a possibility for gener-
ating hard-enough instances is to construct instances where the coefficients are
of moderate size, but where all currently used upper bounds have a bad perfor-
mance. Among these difficult classes, we consider the spanner instances: these
instances are constructed such that all items are multiples of a quite small set of
items—the so-called spanner set. The spanner instances span(v, l) are character-
ized by the following three parameters: v is the size of the spanner set, l is the

multiplier limit, and we may have any distribution of the items in the spanner
set. More formally, the instances are generated as follows: a set of v items is
generated with weights in the interval [1, R], with R = 1000, and profits accord-
ing to the distribution. The items (pk, wk) in the spanner set are normalized by
dividing the profits and weights by l + 1, with l = 10. The n items are then
constructed by repeatedly choosing an item (pk, wk) from the spanner set, and a
multiplier a randomly generated in the interval [1, l]. The constructed item has

profit and weight (apk, awk). Capacities are computed as C =
∑n

i=1 wi

8 .

In order to have a reasonable test set, we considered instances with a num-
ber of items n in {30, 40, 50} and number of knapsacks m in {3, 4, 5, 6}. For each
pair of (n,m) values, we generated 10 random instances following the procedure
described above, for a total of 120 instances. All the instances are available from
the author upon request. For each set of instances, we report aggregate results
comparing the shifted geometric means of the number of branch-and-cut nodes
and the computation times of the different methods. Note that we did not use
specialized solvers, such as ad-hoc codes for knapsack or bin packing problems,
because the overall scheme is very general and using the same (standard) op-
timization packages in all the methods allows for a clearer comparison of the
different approaches.

As a first step, we compared 2 different pure MIP formulations. One is the
natural formulation (10)−(13), denoted as cpxorig. The other is obtained by
aggregating the binary variables corresponding to identical items. The model,
denoted as cpx, reads

max

m∑
i=1

K∑
k=1

pjzik (23)

K∑
k=1

wjzik ≤ C ∀i = 1, . . . ,m (24)

m∑
i=1

zik ≤ Uk ∀k = 1, . . . ,K (25)

z ∈ Zm×K+ (26)

where Uk is the number of items of type k. Note that cpx would be obtained
automatically from formulation cpxorig by applying the orbital shrinking pro-
cedure if the capacities of the knapsacks were different. While one could argue
that cpxorig is a modeling mistake, the current state-of-the-art in preprocessing
is not able to derive cpx automatically, while orbital shrinking would. A com-
parison of the two formulations is shown in Table 1. As expected, cpx clearly
outperforms cpxorig, solving 82 instances (out of 120) instead of 65. However,
cpx performance is rapidly dropping as the number of items and knapsacks in-
creases.

Then, we compared three variants of the hybrid MIP/CP procedure described
in Section 3, that differs on the models used for the feasibility check. The first

Table 1. Comparison between cpxorig and cpx.

solved time (s) nodes
n m cpxorig cpx cpxorig cpx cpxorig cpx

30 3 10 10 1.16 0.26 3,857 1,280
30 4 9 10 12.28 3.42 65,374 16,961
30 5 6 8 291.75 79.82 2,765,978 1,045,128
30 6 7 7 108.83 48.05 248,222 164,825

40 3 9 10 19.48 2.72 103,372 9,117
40 4 8 8 351.07 35.56 3,476,180 421,551
40 5 2 3 2,905.70 1,460.95 25,349,383 23,897,899
40 6 3 5 308.29 234.19 626,717 805,007

50 3 6 9 70.73 12.44 259,099 32,310
50 4 2 7 1,574.34 254.58 8,181,128 4,434,707
50 5 0 2 3,600.00 700.69 26,017,660 4,200,977
50 6 3 3 308.29 307.98 586,400 1,025,907

Table 2. Comparison between hybrid methods.

solved time (s) nodes
n m BPstd BPcgCP BPcgMIP BPstd BPcgCP BPcgMIP BPstd BPcgCP BPcgMIP

30 3 10 10 10 0.07 0.05 0.05 245 270 270
30 4 10 10 10 0.18 0.12 0.08 157 160 160
30 5 10 10 10 1.28 0.26 0.14 90 88 88
30 6 10 10 10 1.24 0.25 0.13 42 40 40

40 3 10 10 10 0.64 0.42 0.17 502 540 540
40 4 10 10 10 0.54 0.20 0.17 225 224 224
40 5 9 10 10 8.63 1.20 0.62 202 225 225
40 6 8 10 10 17.96 1.65 0.46 48 60 60

50 3 10 10 10 1.59 0.93 0.44 837 914 914
50 4 10 10 10 4.06 1.11 0.60 337 335 335
50 5 6 8 10 137.52 23.97 3.58 172 245 335
50 6 7 7 10 17.15 12.73 2.85 17 16 140

variant, denoted by BPstd, is based on the compact model (18)−(19). The sec-
ond and the third variants are both based on the extended model (20)−(22), but
differs on the solver used: a CP solver for BPcgCP and a MIP solver for BPcgMIP.
All variants use model (14)−(17) as a master problem, which is feed to Cplex and
solved with dual reductions disabled, to ensure the correctness of the method.
Cplex callbacks are used to implement the decomposition. A comparison of the
three methods is given in Table 2. Note that the number of nodes reported for
hybrid methods refers to the master only—the nodes processed to solve the feasi-

bility checks are not added to the count, since they are not easily comparable, in
particular when a CP solver is used. Of course the computation times refer to the
whole solving process (slaves included). According to the table, even the simplest
model BPstd clearly outperforms cpx, solving 110 instances (28 more) and with
speedups up to two orders of magnitude. However, as the number of knapsacks
increases, symmetry can still be an issue for this compact model, even though
symmetry breaking is enforced by constraints (19) and by CDBF. Replacing the
compact model with the extended model, while keeping the same solver, shows
some definite improvement, increasing the number of solved instances from 110
to 115 and further reducing the running times. Note that for the instances in
our testbed, the number of feasible packings was always manageable (at most
a few thousands) and could always be generated by Gecode in a fraction of a
second. Still, on some instances, the CP solver was not very effective in solving
the feasibility model. The issue is well known in the column generation commu-
nity: branching on variables xp yields highly unbalanced trees, because fixing a
variable xp to a positive integer value triggers a lot of propagations, while fixing
it to zero has hardly any effect. In our particular case, replacing the CP solver
with a MIP solver did the trick. Indeed, just solving the LP relaxation was suf-
ficient in most cases to detect infeasibility. Note that if infeasibility is detected
by the LP relaxation of model (20)−(22), then standard LP duality can be used
to derive a (Benders) nogood cut violated by the current aggregated solution
y∗, without any ad-hoc study. In our implementation, however, we did not take
advantage of this possibility, and just stuck to the simpler strategy of branching
on integer variables. BPcgMIP is able to solve all 120 instances, in less than four
seconds (on average) in the worst case. The reduction in the number of nodes
is particularly significant: while cpx requires millions of nodes for some classes,
BPcgMIP is always solving the instances in fewer than 1,000 nodes.

Finally, Table 3 shows the average gap closed by the orbital shrinking relax-
ation with respect to the initial integrality gap, and the corresponding running
times (obtained by solving the orbital shrinking relaxation with a black box
MIP solver, without the machinery developed in this section). According to the
table, orbital shrinking yields a much tighter relaxation than standard linear
programming, while still being very cheap to compute.

5 Conclusions

In this paper we presented a general framework for deploying hybrid MIP/CP
decomposition methods for symmetric optimization problems. This framework
is similar in spirit to logic-based Benders decomposition schemes, but it is based
on aggregation rather than on the usual variable splitting argument, thus being
applicable to a completely different class of problems. The overall scheme can be
obtained as a generalization of a recent approach developed for the multi-activity
shift scheduling problem, where it showed significant improvements over previous
pure MIP approaches. In order to further test its effectiveness, we specialized
the general scheme to the multiple knapsack problem, giving a clear example

Table 3. Average gap closed by orbital shrinking and corresponding time.

n m gap closed time (s)

30 3 45.3% 0.007
30 4 46.6% 0.004
30 5 42.8% 0.004
30 6 54.4% 0.002

40 3 48.4% 0.013
40 4 67.2% 0.007
40 5 55.3% 0.005
40 6 58.6% 0.003

50 3 52.7% 0.031
50 4 64.5% 0.030
50 5 61.1% 0.006
50 6 76.7% 0.003

on how to apply the method in practice and some recommendations on how to
solve the possible pitfalls of the approach. Computational results confirmed that
the resulting method can be orders of magnitude faster than standard pure MIP
approaches on hard symmetric instances.

References

1. Margot, F.: Symmetry in integer linear programming. In Jünger, M., Liebling,
T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey,
L., eds.: 50 Years of Integer Programming 1958-2008. Springer Berlin Heidelberg
(2010) 647–686

2. Gent, I.P., Petrie, K.E., Puget, J.F.: Symmetry in constraint programming. In
Rossi, F., van Beek, P., Walsh, T., eds.: Handbook of Constraint Programming.
Elsevier (2006) 329–376

3. Fischetti, M., Liberti, L.: Orbital shrinking. In Mahjoub, A.R., Markakis, V.,
Milis, I., Paschos, V.T., eds.: ISCO. Volume 7422 of Lecture Notes in Computer
Science., Springer (2012) 48–58

4. Salvagnin, D., Walsh, T.: A hybrid mip/cp approach for multi-activity shift
scheduling. In: CP. (2012) 633–646

5. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical
Programming 96(1) (2003) 33–60

6. McKay, B.D.: Practical graph isomorphism (1981)
7. Katebi, H., Sakallah, K.A., Markov, I.L.: Symmetry and satisfiability: An update.

In: Theory and Applications of Satisfiability Testing - SAT 2010, 13th International
Conference, SAT 2010, Edinburgh, UK, July 11-14, 2010. Proceedings. Volume
6175. (2010) 113–127

8. Scholl, A., Klein, R., Jürgens, C.: Bison: A fast hybrid procedure for exactly solving
the one-dimensional bin packing problem. Computers & OR 24(7) (1997) 627–645

9. Pisinger, D.: An exact algorithm for large multiple knapsack problems. European
Journal of Operational Research 114(3) (1999) 528–541

10. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implemen-
tations. Wiley (1990)

11. Shaw, P.: A constraint for bin packing. In Wallace, M., ed.: CP. Volume 3258 of
Lecture Notes in Computer Science., Springer (2004) 648–662

12. Gent, I.P., Walsh, T.: From approximate to optimal solutions: Constructing prun-
ing and propagation rules. In: IJCAI, Morgan Kaufmann (1997) 1396–1401

13. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock
problem. Operations Research 9 (1961) 849–859

14. IBM ILOG: CPLEX 12.4 User’s Manual. (2011)
15. Gecode Team: Gecode: Generic constraint development environment (2012) Avail-

able at http://www.gecode.org.
16. Pisinger, D.: Where are the hard knapsack problems? Computers & Operations

Research 32 (2005) 2271–2284

	Orbital Shrinking: a new tool for hybrid MIP/CP methods
	Introduction
	A general Orbital Shrinking based decomposition method
	Application to the Multiple Knapsack Problem
	Computational Experiments
	Conclusions

