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Abstract. In mixed-integer programming, the branching rule is a key
component to a fast convergence of the branch-and-bound algorithm.
The most common strategy is to branch on simple disjunctions that
split the domain of a single integer variable into two disjoint intervals.
Multi-aggregation is a presolving step that replaces variables by an affine
linear sum of other variables, thereby reducing the problem size. While
this simplification typically improves the performance of MIP solvers, it
also restricts the degree of freedom in variable-based branching rules.
We present a novel branching scheme that tries to overcome the above
drawback by considering general disjunctions defined by multi-aggregated
variables in addition to the standard disjunctions based on single vari-
ables. This natural idea results in a hybrid between variable- and con-
straint-based branching rules. Our implementation within the constraint
integer programming framework SCIP incorporates this into a full strong
branching rule and reduces the number of branch-and-bound nodes on a
general test set of publicly available benchmark instances. For a specific
class of problems, we show that the solving time decreases significantly.

1 Introduction

Since the invention of the branch-and-bound method for solving mixed-integer
linear programming in the 1960s [1,2], branching rules have been an important
field of research, being one of its core components. For surveys, see [3,4,5]. In this
paper we address branching strategies for mixed-integer linear programs (MIPs)
of the form

min{cTx : Ax ≤ b, ` ≤ x ≤ u, xi ∈ Z for all i ∈ I} (1)

with c ∈ Rn, A ∈ Rm×n, b ∈ Rm, `, u ∈ R̄n where R̄ := R ∪ {±∞}, and
I ⊆ N = {1, . . . , n} being the index set of integer variables. When removing the
integrality restrictions, we obtain the linear programming (LP) relaxation of the
problem.
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If the solution x̃ to the LP relaxation of (1) is fractional, i.e., if the index
set Ĩ := {i ∈ I : x̃i /∈ Z} of fractional variables is not empty, the task of a
branching rule is to split the problem into two or more subproblems. The strategy
is typically to exclude the LP solution from all subproblems while keeping the
feasible integer solutions, each being present in exactly one subproblem.

The choice of which subproblems to create is crucial for the performance of
the algorithm. The approach most widely used by MIP solvers is to branch on
simple disjunctions

xk ≤ bx̃kc
∨

xk ≥ dx̃ke. (2)

each side being enforced in one subproblem. As this procedure splits the domain
of a single variable at a time, it is also called branching on variables. Alterna-
tively, branching can be performed on a general disjunction

πTx ≤ π0

∨
πTx ≥ π0 + 1. (3)

where (π, π0) ∈ Zn × Z, and πi = 0 for all i /∈ I.
Branching on variables can be seen as the special case in which all considered

disjunctions are of the form (π, π0) = (ej , bx̃jc), ej being the j-th unit vector.
Note that for branching on variables the set of branching candidates among which
a branching rule chooses is usually the list of fractional variables Ĩ. For branching
on general disjunctions, the branching candidates consist of a potentially much
larger list of disjunctions of form (3). Research on general branching disjunctions
has largely been dedicated to determine a short list of promising candidates, see
our literature overview in Sec. 2.

Another key component of state-of-the-art MIP solvers is presolving. It is
applied before the branch-and-bound process and transforms a given MIP in-
stance into a typically smaller instance with a tighter relaxation, which is hope-
fully easier to solve. These reductions can be based on pure feasibility arguments
(keeping the set of feasible solutions unchanged) as well as optimality arguments
(excluding also feasible solutions as long as one optimal solution remains).

Important presolving operations are fixings, aggregations, and multi-aggre-
gations of variables. Here, fixing means that a variable gets permanently assigned
to a constant value, aggregation means that a variable is replaced by (a constant
value plus a scalar multiple of) another variable, and multi-aggregation means
that a variable gets replaced by an affine linear combination of several variables.
Hence, a multi-aggregated variable is a variable that is present in the original for-
mulation, but is represented by an affine linear sum of variables in the presolved
problem.

Contribution. The intuitive appeal of branching on general disjunctions is
the increased degree of freedom that promises the creation of more balanced
subproblems with tighter relaxations. This obvious advantage comes with the
main challenge of determining promising candidate disjunctions. We address this
difficulty by considering specifically the subset of disjunctions that are defined
by the affine combinations stemming from multi-aggregations performed during
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the presolving stage. These disjunctions are naturally available in state-of-the-
art MIP solvers at no cost and branching on them mimics branching on decision
variables in the original model formulation.

Note that while the set of all general disjunctions of form (3) is exponen-
tially large even when restricting π to {−1, 0, 1}n, the set of multi-aggregated
variables provides a list of potential candidates that is linear w.r.t. the size of
the original model. Our experiments show that—in combination with standard
single-variable disjunctions—this restriction yields not only a managable, but
also computationally promising set of candidate disjunctions.

The remainder of the article is organized as follows. In Sec. 2, we give an
overview of the literature on branching in MIP, with a particular focus on
branching on general disjunctions. Sec. 3 introduces in more detail the con-
cept of multi-aggregation, and Sec. 4 describes the idea of our new branching
strategy and details about the implementation in the constraint integer program-
ming framework SCIP [6,7]. In Sec. 5 we presents our computational study and
Sec. 6 contains our conclusions and gives an outlook on potential extensions of
branching on multi-aggregated variables.

2 Related work

Various criteria for selecting fractional variables for branching on simple dis-
junctions have been presented in the literature. Most selection rules focus on the
improvement in the dual bound that the branching restrictions produce in the
created child nodes since this helps to tighten the global dual bound and prune
nodes early. A fundamental strategy of this type is strong branching [8], which
tentatively restricts the bound of a candidate variable and explicitly computes
the resulting dual bound of the potential child node by solving the LP relaxation.

The full strong branching rule applies this at every node for each fractional
variable. This typically leads to very small branch-and-bound trees, but on the
other hand invests considerable effort in analyzing candidates. On average, this
usually results in an overall performance deterioration w.r.t. computing time [5].
Nevertheless, the default branching rules in most state-of-the-art MIP solvers use
some restricted form of strong branching and combine it with history information
to reduce the computational effort for branching in later solving stages. Further
strategies based on the same criteria can be found in [9,4,7,10,11,12]. Recent
research efforts on different criteria for variable-based branching rules include,
e.g., [13,14,15,16,17,18].

Branching on general disjunctions dates back to the 1980s [19], and has been
addressed by various researchers in the last 15 years, see, e.g., [20,21,22,23,24].
The main challenge is to find a good class of general disjunctions that can lead
to a better and more accurate tightening process of the feasible region, and
consequently to a faster convergence of the dual bound to the optimal solution
value, ideally without requiring a high computational effort for its generation
and evaluation.
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Owen and Mehrotra [20] present an algorithm that determines the branching
disjunction via a neighborhood search heuristic. They prove that their algorithm
is finite, if all variables have finite bounds and the size of the coefficients in the
used disjunctions is bounded. As a consequence, they restrict their search to
coefficients πi ∈ {−1, 0, 1}. Combining this idea with [13], Mahmoud and Chin-
neck [24] choose a constraint that is active for the current LP optimum and
construct a general disjunction with coefficients in {−1, 0, 1} that is as perpen-
dicular or as parallel as possible to the chosen active constraint.

Karamanov and Cornuéjols [22] consider disjunctions which correspond to
Gomory mixed integer cuts (GMICs) [25]. They filter the GMICs to only keep
the ten deepest cuts, and apply a strong-branching-like procedure on the corre-
sponding candidate disjunctions. An extension of [22] is proposed by Cornuéjols
et al. [23] who not only consider GMICs on tableau rows, but also on linear
combinations of the tableau rows.

On the theoretical side, Mahajan and Ralphs proved that the problem of find-
ing a general disjunction with maximal objective gain is NP-hard [26]. Finally,
Local Branching by Fischetti and Lodi [27] is a strategy to interleave variable-
based branching with branching on general {−1, 0, 1}-disjunctions. These dis-
junctions measure the distance to the incumbent solution.

A typical result when branching on general disjunctions in MIP is that the
generated branching trees are smaller on average, but the performance deterio-
rates w.r.t. running time. One major reason for this computational overhead is
that the set of candidate disjunction for branching is much larger, so that a lot
of time is spent determining the best one to choose at each node. However, this
could in principle be overcome if we had more efficient (implicit) algorithms for
evaluating the set of candidates, and it is of course not an issue when such set
is still relatively small.

Another, more structural reason is that branching on variables changes a
variable bound, which often fixes the variable to the other bound (in particular
when branching on binary variables). This decreases the size of the LP relax-
ation for the subproblems by (at least) one column, whereas branching on general
disjunctions potentially increases the LP’s size by one row. This affects the sim-
plex algorithm, which in most cases is the method of choice for solving the LP
relaxations during LP-based branch-and-bound. Because the dimension of the
basis matrix increases when adding a new row, most simplex implementations
will have to recompute its factorization, causing computational overhead. In ad-
dition, many performance-relevant components of state-of-the-art MIP solvers
such as domain propagation and conflict analysis are currently designed to ben-
efit from branching on variables and become less effective when branching is
performed on general disjunctions.

3 Multi-aggregations of variables

Before the branch-and-bound process is started, state-of-the-art MIP solvers
perform a presolving phase during which they analyze the problem and remove
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redundancies, tighten the formulation, and collect information about the problem
structure, see [28,29,30,7,31] for examples. This procedure is exact in the sense
that each optimum of the simplified problem can be mapped to an optimal
solution of the original problem.

The presolving technique which forms the basis of our newly developed
branching rule is the multi-aggregation of variables. It reduces the number of
variables by

1. detecting that—in at least one optimal solution—variable xk equals an affine
linear combination of other variables, i.e.,

xk =
∑
j∈Sk

αk
jxj + βk, (4)

with Sk ⊆ N , k 6∈ Sk,
2. replacing every occurrence of xk in constraints and objective function by the

right-hand side in (4), and
3. enforcing the bounds on xk—if finite—by adding the new constraint

`k ≤
∑
j∈Sk

αk
jxj + βk ≤ uk. (5)

Equation (4) may either be explicitly present as one of the problem constraints5

or implied by a combination of constraints and optimality conditions. An exam-
ple for the latter is the case when xk appears in exactly one constraint and its
objective function coefficient ensures that this constraint will be fulfilled with
equality in an optimal solution. The constraint integer programming framework
SCIP, which we use for our computational experiments, has five different pre-
solving operations in which multi-aggregation is performed.

After this step, one of the constraints implying (4) usually becomes void or is
modified to enforce (5). If xk is an integer variable, multi-aggregations are only
performed if the integrality is enforced by the multi-aggregation. This holds, e.g.,
if (4) is an integer combination of integer variables, i.e., Sk ⊆ I, αk

j ∈ Z for all

j ∈ Sk, and βk ∈ Z.
In order to avoid a deterioration of performance and potential numerical

problems during LP solving, it is crucial to safe-guard against fill-in in the con-
straint matrix. This can be done a priori by comparing the number of non-zeros
that would be removed to the number of non-zeros that would get introduced
in the constraint matrix, the latter of which can be bounded from above by the
cardinality of S times the number of occurences of xk.

In the following, we call a variable inactive, if presolving removed it from the
problem. This includes variables which are already fixed to some value as well as
aggregated and multi-aggregated variables. All other variables are called active.
During the subsequent solving process, inactive variables are disregarded since

5 Although in (1) we have formulated MIPs in terms of inequalities, this also includes
equality constraints formulated via two inequalities.
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their solution value is uniquely defined by the value of the active variables. In
the remainder of this article, a MIP of form (1) always refers to the presolved
problem containing only active variables. When referencing the original problem,
we are using the following notation: the index sets of original and corresponding
integer variables are denoted by N ′ and I ′, respectively. Original variables are
written as x′i and the variable on the left-hand side of a multi-aggregation (4)
is an original variable x′k, while all variables on the right-hand side are active
variables xj .

6

4 Branching on multi-aggregated variables

Simple aggregations of form x′k = αk
jxj +βk performed during presolving do not

restrict the choices of variable-based branching rules since branching on the sub-
sequently inactive variable x′k remains implicitly possible by branching on xj . In
contrast, branching on multi-aggregated variables cannot be realized via branch-
ing on active variables. We are not aware of any study that has investigated the
effect of multi-aggregation on the performance of branching rules and note that
this restriction may indeed have negative performance impact—especially since
this effect is currently not considered during presolving.

Our new branching strategy considers the general disjunctions defined by all
multi-aggregations (4) for which k ∈ I ′ but

∑
j∈Sk α

k
jxj + βk evaluates to a

fractional value in the current LP solution. In a strong branching fashion, we
tentatively test which improvement in the local dual bounds we would obtain by
adding one part of the corresponding general disjunction. We compare this to
the improvements obtained by simple disjunctions on fractional active variables
and choose the best among all branching disjunctions.

The motivation is twofold: first, to compensate for the above drawback, and
second, to obtain a set of candidates for general branching disjunctions that is
available at no cost in state-of-the-art MIP solvers and computationally man-
agable. As mentioned earlier, the set of all general disjunctions of form (3) is
exponentially large even when restricting π to {−1, 0, 1}n, in contrast to that,
the number of multi-aggregations is linear w.r.t. the size of the original model.

In an LP-based branch-and-bound algorithm, the multi-aggregated branching
rule is called whenever the optimal solution x̃ to the linear relaxation of the
current node is fractional. Its procedure is outlined in Algorithm 1.

First, strong branching is performed on all elements in the set of fractional
variables Ĩ. For each candidate variable xi, two auxiliary LPs are solved to
compute dual bounds z̃− and z̃+ for the potential child nodes. If both are larger
than or equal the given upper bound (usually the objective function value of
the incumbent solution), we can stop since no better solution can be found in
the current subproblem and the node can be cut off. If only one of the two
dual bounds is smaller than the upper bound, the corresponding bound change

6 Note that nested multi-aggregations can be transferred into this form by (recursively)
replacing inactive variables in the right-hand side of a multi-aggregation (4) by the
corresponding constant or affine linear combination of variables.
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Algorithm 1: Multi-aggregated branching rule

input : – a MIP of form (1),
– an optimal solution x̃ of the LP relaxation,
– an upper bound z∗ on the objective value of solutions, and
– the index set A′ ⊆ N ′ of multi-aggregations of form (4),
x′k =

∑
j∈Sk α

k
jxj + βk, k ∈ A′, Sk ⊆ N

output : – a branching disjunction of form (3) given as (π̃, π̃0) ∈ Zn × Z, or
– a valid inequality, or
– the conclusion that the current node can be pruned

begin1

// 0. initialization

for k ∈ A′ ∩ I′ do // compute LP values of multi-aggregated vars2

x̃′k :=
∑
j∈Sk α

k
jxj + βk3

Ĩ := {i ∈ I : x̃i /∈ Z} // single-variable candidates4

Ã := {k ∈ A′ ∩ I′ : x̃′k /∈ Z} // multi-aggregated candidates5

(π̃, π̃0) := (0, 0) // incumbent disjunction6

s(π̃,π̃0) := −∞ // incumbent score7

// 1. full strong branching on simple disjunctions

for i ∈ Ĩ do8

z̃− ← min{cTx : Ax ≤ b, ` ≤ x ≤ u, xi ≤ bx̃ic}9

z̃+ ← min{cTx : Ax ≤ b, ` ≤ x ≤ u, xi ≥ bx̃ic+ 1}10

if min{z̃−, z̃+} ≥ z∗ then return current node can be pruned11

else if z̃− ≥ z∗ then return valid inequality xi ≥ bx̃ic+ 112

else if z̃+ ≥ z∗ then return valid inequality xi ≤ bx̃ic13

else if score(z̃−, z̃+) > s(π̃,π̃0) then14

(π̃, π̃0) := (ei, bx̃ic)15

s(π̃,π̃0) := score(z̃−, z̃+)16

// 2. full strong branching on multi-aggregated disjunctions

for k ∈ Ã do17

z̃− ← min{cTx : Ax ≤ b, ` ≤ x ≤ u,
∑
j∈Sk α

k
jxj ≤ bx̃′kc − βk}18

z̃+ ← min{cTx : Ax ≤ b, ` ≤ x ≤ u,
∑
j∈Sk α

k
jxj ≥ bx̃′kc − βk + 1}19

if min{z̃−, z̃+} ≥ z∗ then return current node can be pruned20

else if z̃− ≥ z∗ then return
∑
j∈Sk α

k
jxj ≥ bx̃′kc − βk + 1 valid21

else if z̃+ ≥ z∗ then return
∑
j∈Sk α

k
jxj ≤ bx̃′kc − βk valid22

else if score(z̃−, z̃+) > s(π̃,π̃0) then23

(π̃, π̃0) := (
∑
j∈Sk α

k
j ej , bx̃′kc − βk)24

s(π̃,π̃0) := score(z̃−, z̃+)25

return branching disjunction (π̃, π̃0)26

end27
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can directly be applied at the current problem, since the other child node does
not contain an improving solution. If both dual bounds are smaller than the
upper bound, the score for the candidate variable is computed and the simple
disjunction (ei, bx̃ic) corresponding to branching on this variable is stored as
new best candidate if its score exceeds the best one found so far. The branching
score used in SCIP is the product of the objective gains of the two child nodes,
more specifically,

score(z̃−, z̃+) = max{∆−j , ε} ·max{∆+
j , ε} (6)

with ε = 10−6 and ∆−j = z̃−−cT x̃ and ∆+
j = z̃+−cT x̃ being the objective gains

in the child nodes when branching on xj .

In the second step of the algorithm, full strong branching is performed on
the general disjunctions defined by the multi-aggregated variables of the orig-
inal problem. To this end, all integer multi-aggregated variables x′k are taken
into account for which the LP solution translates into a fractional solution x̃′k.
Analogously to the first step, two auxiliary LPs are solved with the potential
branching disjunction added and the computed dual bounds are compared to the
upper bound in order to prune the node or identify valid constraints. The score
of the candidate disjunction is evaluated and compared to the best score found
so far. If it is higher, the candidate disjunction is updated. Note that possible
ties are broken in favor of candidate variables, since those are evaluated first and
we are looking for strict improvements.

In the case that a valid bound change or inequality was found, we stop the
branching rule, tighten the formulation, and return to the MIP solving process,
which will continue by applying domain propagation, reoptimizing the LP, and
calling the branching rule again if needed. After the evaluation of all candidate
variables and disjunctions, and if no such valid bound or inequality was found,
the best disjunction is returned and branching is performed on it.

5 Computational results

In the following, we present our experiments with branching on multi-aggregated
variables. We used the academic constraint integer programming framework
SCIP 3.1.0 [6,7] with SoPlex 1.7.0.4 [32] as underlying LP solver and imple-
mented Algorithm 1 as a branching rule plug-in. Our new method builds on the
full strong branching scheme and extends it by choosing as the set of candidates
to evaluate via strong branching not only candidate variables, but also candi-
date disjunctions given by multi-aggregations. Therefore, it is consequential to
compare our strategy with the basic full strong branching rule of SCIP.

All results were obtained on a cluster of 3.2 GHz Intel Xeon X5672 CPUs
with 48 GB main memory, running each job exclusively on one node. To keep the
computation time under control, a time limit of 7200 seconds for each instance
was imposed.
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Settings. We compare the methods for two different settings. The first one,
called pure, focuses on the main goal of a branching rule, namely proving the
optimality of a solution. To this end, it disables cutting plane separation, primal
heuristics, domain propagation, restarts, and conflict analysis. Additionally, we
provide the optimal objective value as a cutoff bound at the beginning of the
solving process. This is done in order to measure only the impact of branching
without side-effects to and from other solver components. In particular, this
reduces performance variability, cf. [33]. The second setting is called default and
runs full strong branching (SB) and multi-aggregated branching (MA) in the
SCIP default environment.

Instances. Our first experiments were performed on a test set of schedul-
ing [34,35] instances. More specifically, we were investigating resource allocation
and scheduling problems, where jobs are assigned to machines, thereby mini-
mizing the processing costs which depend on the machine on which a job is
performed. Given sets J of jobs and M of machines, the capacity C ∈ N of the
machines, and assignment cost cj,m, resource allocation and scheduling can be
expressed via the following MIP model [36]:

min
∑

m∈M

∑
j∈J

cj,mxj,m

s.t.
∑

m∈M
xj,m = 1 for all j ∈ J ,∑

t∈Tj,m

xtj,m = xj,m for all m ∈M, j ∈ J ,

∑
j∈J

∑
t̄∈T t

j,m

cjx
t̄
j,m ≤ C for all m ∈M, t ∈ T ,

xtj,m ∈ {0, 1} for all m ∈M, j ∈ J , t ∈ Tj,m,
xj,m ∈ {0, 1} for all m ∈M, j ∈ J .

The formulation uses binary variables xj,m and xtj,m, which represent the
decision whether job j ∈ J is processed on machine m ∈ M, and whether the
processing of job j ∈ J on machine m ∈M is started at time t ∈ T , respectively.
We use two subsets of the time periods: Tj,m which contains all time steps in
which job j can start on machine m, and T t

j,m which further restricts Tj,m to
those starting times causing j to be (still) running in period t. When solving
these instances, the xj,m variables are frequently multi-aggregated, which makes
this problem an interesting test case for our first experiments.

We used a collection of 335 scheduling instances modeled this way in [36]. We
excluded all instances that were solved either during presolving or at the root
node. This left a total of 263 problem instances with the default setting and 276
instances with the pure setting.

In our second experiment, we used a test set of general MIP instances from
different sources, including MIPLIB [37,38,33] and the Cor@l test set [39]. We
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removed some instances which to the best of our knowledge have never been
solved so far and two numerically unstable instances giving slightly different
results with both branching rules. Additionally, we restricted the test set to in-
stances in which presolving performed multi-aggregations and removed instances
which were solved during presolving or at the root node without branching. This
gave us two test sets for the pure and default settings of 76 and 107 instances,
respectively.

In the following, we present aggregated results over these test sets. Detailed
computational results for each instance can be found in the appendix of the
preprint version of this article.7

5.1 Results for scheduling instances

Table 1 compares the multi-aggregated branching strategy (MA) against the
basic version of full strong branching (SB) available in SCIP with both pure
and default settings, as indicated in the first column.

The remainder of the table is split into two parts: The four columns below
the “scheduling test set” label display numbers about the performance on the
complete scheduling test set. Column “size” shows the number of instances in
the test set, “solved” gives the number of instances solved to proven optimality
within the time limit of two hours. Column “faster” (“slower”) show the num-
ber of instances that the MA strategy solved at least 10 % faster (slower) than
standard full strong branching.

The right side of the table, labeled “all optimal”, shows results for the subset
of instances that both variants in the respective setting solved to optimality.
Column “size” shows the number of instances in this subset, “nodes” the shifted
geometric mean of the B&B nodes and “time (s)” the shifted geometric mean
of the running time in seconds. We use shifts of 100 and 10 for the number of
nodes and the solving time, respectively. For a discussion of the shifted geometric
mean, we refer to [40, Appendix A3].

Let us first look at the results with the pure settings, which focus on the plain
branch-and-bound performance. They are promising: 25 more instances (142 vs.
117) can be solved by branching on multi-aggregated variables compared to
standard strong branching; this corresponds to an increase of more than 20 %.
Furthermore, 100 instances are solved at least 10 % faster with the new method,
compared to 13 which slow down by 10 % or more. This corresponds to 70 % of
the instances being solved faster with branching on multi-aggregated variables.
Looking at the instances that were solved to optimality by both variants, both
the number of nodes and the requested time are reduced by a factor of two on
average: 58 % less nodes are needed and 49 % less time.

When looking at the results with default settings, the effect is smaller, but
still significant: the multi-aggregated branching strategy is able to solve 9 more
instances to optimality, with 56 instances being solved faster and 31 slower. On

7 Available electronically under http://www.zib.de/gamrath/GamrathEtAl2014.pdf.

http://www.zib.de/gamrath/GamrathEtAl2014.pdf
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Table 1: Results for scheduling instances with default and pure settings

scheduling test set all optimal
setting size solved faster slower size nodes time (s)

SB-pure 276 117 115 472 51.8
MA-pure 276 142 100 13 115 196 26.4

SB-default 263 126 122 349 84.6
MA-default 263 135 56 31 122 221 70.3

instances that both variants solve to optimality, it needs 37 % less nodes and
reduces the solving time by 17 %.

Let us note that the positive effect of branching on multi-aggregated vari-
ables grows stronger the harder an instance is. This seems reasonable since the
additional overhead might not pay off if a standard strong branching is able to
solve an instance within a few nodes. When taking into account only instances
which needed more than 100 seconds to solve by at least one setting, the re-
duction in the number of nodes and the solving time goes up to 42 % and 25 %,
respectively.

This first computational experiment shows that branching on multi-aggre-
gated variables can significantly improve the performance of SCIP compared
to a pure variable-based branching rule: more instances are solved, with less
enumeration, in shorter time. Note that in all cases the relative reduction in
running time was smaller than the relative reduction in the number of branch-
and-bound nodes, which is a typical result for branching strategies that involve
general disjunctions (see Sec. 2).

In order to analyze the impact of the new branching rule in more detail,
we collected some statistics during the execution of SCIP. On average over the
test set, the number of integer multi-aggregations is only 5.7 % of the number of
integer variables. Thus, the list of branching candidates is only slightly extended
in most cases, which overcomes a typical issue for branching on general disjunc-
tions. Interestingly, despite this relatively small number of multi-aggregations,
39 % of the branching decisions select a multi-aggregated disjunction for branch-
ing. Even more, in 85 % of the cases, the first branching on a multi-aggregated
disjunction was performed at the root node.

Finally, each time we perform a multi-aggregated branching, we store the
ratio of the gain that we would have obtained when branching on the best
fractional variable compared to the gain obtained by branching on the current
multi-aggregated variable. The gain is computed as the square root of the SCIP
branching score value and thus measures the improvement in the score SCIP
tries to maximize. On average over all calls where we branched on a multi-
aggregated disjunction, the gain would have been reduced to 22 % by branching
on the best variable instead.
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Table 2: Results for general MIP instances with default and pure settings

MIP test set all optimal
setting size solved faster slower size nodes time (s)

SB-pure 76 33 32 983 150.9
MA-pure 76 32 0 26 32 852 188.9

SB-default 107 55 49 253 100.4
MA-default 107 57 1 33 49 269 126.3

5.2 Results for general MIP instances

The results for our collection of general MIP instances are presented in Ta-
ble 2. The columns and rows show the same statistics as described in Sec. 5.1.
We can see that on these instances, multi-aggregated branching is significantly
slower and solved one less instance in both settings, compared to standard strong
branching. With pure settings, the solving time increases by 25 % while the num-
ber of branch-and-bound nodes is decreased by 13 %. Compared to the scheduling
instances, multi-aggregated variables are much less effective for branching. That
the increased effort in strong branching outweighs the observed node reduction
seems plausible. These results confirm our observation from the scheduling in-
stances in the sense that the impact on the number of branch-an-bound nodes
was better than the impact on the overall running time. For the scheduling
instances, the additional candidates were structurally different and allowed dif-
ferent, higher-level decisions which had an enormous effect on the tree size that
even allowed for a running time reduction. For standard MIPs, however, such a
large effect is apparently obtained rarely, thus, the performance deteriorates on
average. The picture looks even worse for the default settings. Here, the solving
time increases by 26 % and the number of nodes now increases by 6 % as well.

This increase in the number of nodes is surprising as the branching disjunc-
tions we are using have a better score and should therefore lead to a faster
convergence. It can be explained, however, by the tailoring of many MIP solving
algorithms towards variable-based branching. Domain propagation (or node pre-
processing, see, e.g., [28] for MIP), for example, tries to tighten the local domains
of variables by inspecting the constraints and current domains of other variables
at the local subproblem. Tightening or fixing variables by branching is naturally
beneficial for domain propagation, the impact of adding general disjunctions is
rather opaque. Furthermore, techniques like primal heuristics, cutting plane sep-
aration, or conflict analysis profit from tightened variable bounds rather than
from added general disjunctions. Since all these techniques help to reduce the
size of the branch-and-bound tree, branching on general disjunctions with a high
branching score can even increase the number of nodes, since as a side effect it
makes the named procedure less effective.
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We see our results for general MIPs as an important negative result that con-
firms previous observations by other authors that it is hard to find a branching
rule on general disjunctions which is competitive on standard MIP benchmarks.
Our results indicate that this holds even when restricting the selection to rela-
tively few additional candidates that are naturally obtained from the problem
structure. Finally, adapting procedures like primal heuristics or conflict analysis
in such a way that they benefit from added constraints as much as from tight-
ened or fixed variables might be a prerequisite to excel with constraint-based
branching schemes in state-of-the-art MIP solvers.

6 Conclusions and outlook

In this paper, we presented a new branching rule which takes into account a
specific type of general disjunctions. These general disjunctions, so-called multi-
aggregations, are the affine linear sums of active variables in the presolved prob-
lem, which correspond to a decision variable in the original problem. We extended
the full strong branching rule of SCIP by taking additionally into account all
general disjunctions induced by multi-aggregations. On a set of scheduling in-
stances, this significantly improved the performance of SCIP w.r.t. the tree size
as well as the solving time and the number of solved instances.

We tested the same branching rule on standard MIP benchmark sets. The
results were much less convincing, but a certain potential for branching on
multi-aggregated variables was indicated by the observation that in a “pure”
setting, it led to a reduction in the number of branch-and-bound nodes for gen-
eral MIPs. However, before this potential can be harnessed, we conclude that
many advanced solution techniques applied in state-of-the-art MIP solvers—
domain propagation, conflict analysis, etc.—must be extended towards a more
efficient handling of general disjunctions. An additional performance bias is the
slow-down in current simplex implementations when adding and removing con-
straints. This bottleneck may be alleviated by the recent developments of [41,42],
which improve the underlying linear algebra routines such that the factorization
of the basis matrix is preserved when adding new rows. We identify these points
as important directions for future research.

The proposed strategy has been studied and implemented for the first time
in the constraint integer programming framework SCIP. Since it proved its
effectiveness for certain problem classes, it will be available in the next release
of SCIP.
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