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Abstract. The n-queens puzzle is a well-known combinatorial problem
that requires to place n queens on an n × n chessboard so that no two
queens can attack each other. Since the 19th century, this problem was
studied by many mathematicians and computer scientists. While find-
ing any solution to the n-queens puzzle is rather straightforward, it is
very challenging to find the lexicographically first (or smallest) feasible
solution. Solutions for this type are known in the literature for n ≤ 55,
while for some larger chessboards only partial solutions are known. The
present paper was motivated by the question of whether Integer Linear
Programming (ILP) can be used to compute solutions for some open
instances. We describe alternative ILP-based solution approaches, and
show that they are indeed able to compute (sometimes in unexpectedly-
short computing times) many new lexicographically optimal solutions for
n ranging from 56 to 115.

Keywords: n-queens problem, mixed-integer programming, lexicographic sim-
plex.

1 Introduction

The n-queens puzzle is a well-known combinatorial problem that requires to place
n queens on an n × n chessboard so that no two queens can attack each other,
i.e., no two queens are on the same row, column or diagonal of the chessboard.
Initially stated for the regular 8×8 chessboard in 1848 [5], it was soon generalized
to the n × n case [17], and has attracted the interest of many mathematicians
(including Carl Friedrich Gauss) and, more recently, by Edsger Dijkstra who
used it to illustrate a depth-first backtracking algorithm. As a decision problem,
the n-queens puzzle is rather trivial, as a solution exists for all n > 3, and there
are closed formulas to compute such solutions; see, e.g., the survey in [4]. On the
other hand, the counting version of the problem, i.e., to determine the number of
different ways to put n queens on a n× n chessboard turns out to be extremely
challenging. The sequence, labelled A000170 on the Online Encyclopedia of In-
teger Sequences (OEIS) [20], is currently known only up to n = 27. The related
problem of finding all solutions to the problem was shown in [14] to be beyond
the #P-class.



Another variant of the problem, which is somewhat related to the one ad-
dressed in this paper, is the n-queens completion problem, in which some queens
are already placed on the chessboard and the solver is required to place the re-
maining ones, or show that it is not possible. The n-queens completion problem
is both NP-complete and #P-complete, as proved in [10].

Following a suggestion of Donald Knuth [16], in this paper we study an-
other very challenging version of the n-queens problem, namely, finding the
lexicographically-first (or smallest) feasible solution. This is sequence A141843

on OEIS. Solutions for this variant are known only for n ≤ 55 [19], while for
some larger chessboards only partial solutions are known.

It is worth noting that the lexicographically optimal solution is known for
the case of a chessboard of infinite size. Indeed, such a sequence can be easily
computed by a simple greedy algorithm that iterates over the anti-diagonals of
the chessboard and places a queen in each anti-diagonal in the first available
position (this is sequence A065188 on OEIS). Interestingly, as the size of the
chessboard increases, its lexicographically optimal solution overlaps more and
more with this greedy sequence.

The outline of the paper is as follows. In Section 2 we describe the basic
Integer Linear Programming (ILP) formulation for the n-queens model, as well
as potential families of valid inequalities. In Section 3 we describe the different
methods developed to solve the instances to lexicographic optimality, while com-
putational results are given in Section 4. Conclusions and future directions of
research are drawn in Section 5. Finally, we list in Appendix all the new optimal
solutions we found for n ranging from 56 to 115.

2 An ILP model

A basic ILP model for the n-queens problem can be obtained by introducing
the binary variables xij = 1 iff a queen is placed in row i and column j of the
chessboard, for each i, j = 1, . . . , n. Constraints in the basic model stipulate that
(i) there is exactly one xij = 1 in each row i; (ii) there is exactly one xij = 1
in each column j; and (iii) there is at most one xij = 1 in each diagonal of the
chessboard. Note that all such constraints are clique constraints.

In principle, it would be possible to encode the (row-wise) lexicographically
minimum requirement by just adding the objective function:

n∑
i=1

n∑
j=1

2ni+jxij (1)

and solve the problem with a black-box ILP solver. However, the size of the
coefficients makes such a method practical only for the smallest chessboards.
Still, this simple model, without the objective (1), is the basis of all the methods
that will be discussed in Section 3.



A compact way to represent a feasible solution is to use a permutation π =
(π1, . . . , πn) of the integers 1, . . . , n defined as follows:

πi :=

n∑
j=1

j xij , i = 1, . . . , n. (2)

Among all permutations π that correspond to a feasible x, we then look for the
lexicographically smallest one. For example, the lex-optimal solution for n = 10,
depicted in Figure 1, can be described as

(1, 3, 6, 8, 10, 5, 9, 2, 4, 7).

qZ0Z0Z0Z0Z
Z0l0Z0Z0Z0
0Z0Z0l0Z0Z
Z0Z0Z0ZqZ0
0Z0Z0Z0Z0l
Z0Z0l0Z0Z0
0Z0Z0Z0ZqZ
ZqZ0Z0Z0Z0
0Z0l0Z0Z0Z
Z0Z0Z0l0Z0

Fig. 1. Lexicographically optimal solution for n = 10.

The n-queens problem can also be easily reformulated as a maximum in-
dependent set problem, as noted for example in [8]. Indeed, one just needs to
construct a graph in which there is a node for each square of the chessboard and
an edge for each pair of conflicting squares, i.e., for any two squares in the same
row, column or diagonal. Then any independent set of cardinality n is a solution
to the puzzle. The independent set reformulation immediately suggests classes
of valid inequalities for the n-queens problem, namely all that are valid for the
stable set polytope, such as clique and odd-cycle [13] inequalities.

Among clique inequalities, the following (polynomial in n) family is particu-
larly relevant for our problem:

xij + xi,j+h + xi+h,j + xi−h,j + xi,j−h ≤ 1 (3)

xij + xi+h,j+h + xi−h,j+h + xi−h,j−h + xi+h,j−h ≤ 1 (4)

xij + xi+h,j + xi+h,j+h + xi,j+h ≤ 1 (5)



where i, j, h ∈ {1, . . . , n}; of course, variables xuv corresponding to a position
(u, v) outside the n×n chessboard are removed from the summations. The three
different types of cliques in this family are depicted in Figure 2.

0Z0l0Z
Z0Z0Z0
0l0l0l
Z0Z0Z0
0Z0l0Z
Z0Z0Z0

(a)

0Z0Z0Z
l0Z0l0
0Z0Z0Z
Z0l0Z0
0Z0Z0Z
l0Z0l0

(b)

0Z0Z0Z
ZqZ0l0
0Z0Z0Z
Z0Z0Z0
0l0ZqZ
Z0Z0Z0

(c)

Fig. 2. Three different families of clique cuts for n-queens.

Clique inequalities (3)–(5) can be trivially separated in time that is polyno-
mial in n. In addition, in preliminary experiments we implemented a general-
purpose exact clique separator based on the solution of an auxiliary ILP model,
and it never produced any additional violated clique inequality for the instances
in our testbed.

A second class of inequalities contains the so-called odd-cycle inequalities.
Given any odd cycle O in the graph, the following inequality:∑

k∈O

xk ≤
|O| − 1

2
(6)

is valid for the stable set polytope. Odd-cycle inequalities can be easily sepa-
rated as {0, 1/2}-cuts with the combinatorial procedures described in [6,7,2]. An
example of odd-cycle inequality occurring in the n-queens problem is illustrated
in Figure 3.

0Z0Z0Z
l0l0Z0
0Z0lqZ
Z0Z0Z0
0Z0Z0Z
Z0Z0l0

Fig. 3. Example of odd-cycle inequality for n-queens: no more than two of the five
positions can be occupied by a queen.



3 Solution methods

We next describe the solution algorithms that we implemented.

3.1 Using a Constraint Programming solver

The n-queens puzzle can be easily modeled as a Constraint Programming (CP)
problem. Indeed, working directly on the variables πi, the puzzle can be formu-
lated by just three alldifferent [18,21] global constraints:

alldifferent(πi, i = 1, . . . , n) (7)

alldifferent(πi + i, i = 1, . . . , n) (8)

alldifferent(πi − i, i = 1, . . . , n). (9)

We implemented the model above with Gecode [9]. In order to enforce the model
to find the lexicographically-smallest solution, we use Depth-First Search (DFS)
as search strategy, always branching on the first unfixed variable πi and picking
values in increasing order—in Gecode terminology, that amounts to using a
brancher specified by INT VAR NONE() and INT VALUES MIN(). In the following,
we will refer to this solution method as CP.

3.2 Using an exact ILP solver

A simple algorithm to compute the lex-optimal solution by iteratively using a
black-box ILP solver is as follows: We scan all the chessboard positions (i, j) in
lexicographical order, i.e., row by row. For each (i, j), we are given the queens
already positioned in the previous iterations (i.e., we have a number of fixed x
variables), and our order of business is to decide whether a queen can be placed
in (i, j) or not. This in turn requires solving the basic ILP model with some
variables fixed in the previous iterations, by maximizing xij : if the final optimal
solution has value 1, we place a new queen in position (i, j) by fixing xij = 1,
otherwise we fix xij = 0 and proceed with the next chessboard position1. This
approach requires solving n2 ILPs.

In our actual implementation, a more effective scheme is used that exploits
representation (2). To be specific, we scan the rows i = 1, . . . , n, in sequence. For
each i, we have already fixed in the previous iterations the lex-optimal sequence
π1, · · · , πi−1 and the corresponding x variables, and we want to compute the
smallest feasible integer πi. To this end we solve the basic ILP model, with some
variables fixed in the previous iterations, by minimizing the objective function
(2), fix all the xij variables in row i accordingly, and proceed with the next row.
In this way, only n ILPs need to be solved. In the following, we will refer to this
solution method as ILP-ITER.

1 Alternatively, one could fix xij = 1, check the resulting model for feasibility, and
then move to the next position.



3.3 Using a truncated ILP solver

We also implemented an explicit depth-first backtracking algorithm to build
the lex-optimal permutation π, very much in the spirit of the CP approach
described in Subsection 3.1. At each iteration (i.e., at each node of the branching
tree) we have tentatively fixed a lex-minimal, but possibly infeasible sequence,
(π1, . . . , πi−1) and the corresponding x variables, and we have to decide the next
value in position i. This is in turn obtained by solving a relaxation of the current
ILP with objective function (2), to be minimized, i.e., by applying the following
three steps:

i) invoke the ILP solver (with its default cutting-plane generation and prepro-
cessing) for a limited number of nodes, say NN ;

ii) define πi as the best lower bound available at the node limit (rounded up);
iii) tentatively fix πi, along with the corresponding x variables, as the i-th value

in the sequence.

As a lower bound (instead of the true value) is used, it may happen that, at
a later iteration, the current ILP becomes infeasible, proving that the current
tentative subsequence (π1, · · · , πk) till position k (say) is infeasible as well. In
this case, a backtracking operation takes place, that consists in imposing that the
k-th position must hold a value strictly larger than πk. The latter requirement
can easily be enforced in the ILP model by setting xkj = 0 for j = 1, . . . , πk.The
algorithm ends as soon as the first feasible complete permutation (π1, . . . , πn) is
found.

After some preliminary tests, we decided to set NN = 0, i.e., to only solve
the root node of the ILP at hand. Note that this is not equivalent to solving the
LP relaxation of the ILP, as cutting planes and (most importantly) preprocessing
play a crucial role here. According to our computational experience, solving just
the LP relaxation is indeed mathematically correct and very fast, as the dual
simplex can be used to reoptimize each LP, but the number of backtrackings
becomes too large to have a competitive implementation. In the following, we
will refer to this solution method as ILP-TRUNC.

3.4 An enumerative method based on lexicographic simplex

Finally, given the strong lexicographic nature of the problem at hand, we de-
cided to implement a custom enumerative algorithm based on the lexicographic
simplex method [11,12]. The lexicographic simplex method not only finds an
optimal solution to a given LP, but it guarantees to return the lexicographically
smallest (or greatest) one among all optimal solutions. The lexicographic variant
of the simplex method can be implemented quite easily on top of a black-box
regular simplex solver, as described for example in [3,22]. The idea is as follows.
Given an ordered sequence of objective functions fk to optimize lexicographi-
cally, at each step we impose to stay on the optimal face of the current objective
by fixing all variables (including the artificial variables associated to inequality



constraints) with nonzero reduced cost, move to the next objective and reopti-
mize. Once all objectives have been optimized, in sequence, the original bounds
for all variables are restored, which does not change the optimality status of the
final basis, which is the lex-optimal one.

In our n-queens case, given our encoding of the permutation variables π as
xij , we are interested in the lexicographically maximal solution in the x space
or, equivalently, the sequence of objective functions to be minimized is −xij , for
all i, j = 1, . . . , n.

Using a lexicographic simplex method within an enumerative DFS scheme,
in which again we always branch on the first unfixed variable and explore the
1-branch first, provides the following advantages over using a “regular” simplex
method:

– Whenever the LP relaxation turns out to be integer, i.e., there are no frac-
tional variables, we are guaranteed that this is the lex-optimal integer so-
lution within the current subtree, hence we can prune the node. Given our
branching and exploration strategy, this also implies that we are done.

– If the first unfixed variable at the current node gets a value strictly less than
one, then we can fix the variable to zero. This is easily proved using the
lex-optimality of the LP solution as an argument. Being the first unfixed
variable, this is the first objective to be considered by the lexicographic
simplex at the current node, so a lex-optimal value < 1 means that there
is no feasible solution (in the current subtree) in which this variable takes
value 1. Note that this reduction can be applied iteratively until the first
unfixed variable gets a value of 1. We call this process mini-cutloop.

The basic scheme above can be improved with some additional modifications.
First of all, we do not need to branch on single variables but we can branch
directly on rows, again always picking the first row that contains an unfixed
variable. For example, let the first unfixed variable be xij : instead of branching
on the binary dichotomy xij = 1 ∨ xij = 0, we use the n-way branching xi1 =
1∨xi2 = 1∨ . . .∨xin = 1. Of course, variables that are already fixed are removed
from the list. This basically mimics the branching that would have been done
by working directly with the π variables, as done by the CP solver.

Note that, because of our rigid branching strategy, there is no need for a full
lexicographic optimization at each node. Indeed, for the purpose of branching,
we can stop the lexicographic optimization at the first fractional variable, as
we will be forced to branch on its row, or on a previous one. For this very
reason, and because of the n-queens structure, we implemented a specialized
lexicographic simplex method, where instead of optimizing one variable at the
time, we optimize row by row, also integrating the mini-cutloop in the process.
In particular, we do the following:

1. Let i∗ be the first row with an unfixed variable. Set the objective function
to

∑n
j=1 jxi∗j and minimize it.

2. Apply the mini-cutloop, by iteratively fixing the first unfixed variable in the
row if its fractional value is < 1 and by reoptimizing with the dual simplex.



3. If all variables in the current row are fixed this way, then we can move to
the next row and go to step (1). Otherwise stop.

Note that the method above does not need to temporarily fix variables as the
regular lexicographic simplex would. It is also important to note that, in the loop
above, if the current fractional solution is integer, we are no longer guaranteed
that this is the lexicographically optimal solution. In this (rare) case, we resort
to a full-blown lexicographic simplex method to tell whether we can prune the
node or need to branch.

The effectiveness of the node processing above greatly depends on the mini-
cutloop, which in turn relies on being able to recognize fixed variables, i.e., to
distinguish between a variable that happens to be zero or one in the current
fractional solution, and a variable that is actually fixed at that value in the
current node. For this purpose, we implemented a specialized propagator for the
clique constraints of the basic model—while there is no need to propagate the
clique constraints (3)–(5) as those can never lead to additional fixings.

Finally, separation of the clique inequalities (3)–(5) and odd-cycle inequali-
ties has also been implemented and added to the node processing code. In the
following, we will refer to this solution method as LEX-DFS.

4 Computational comparisons

We implemented our ILP models with the MIP solver IBM ILOG CPLEX 12.7.1

[15], while we used Gecode 5.1.0 [9] as the CP solver for model (7)-(9). All
experiments were done on a cluster of 24 identical machines, each equipped with
an Intel Xeon E3-1220 V2 quad-core PC and 16GB of RAM.

The testbed is made of all instances with n ranging from 21 to 60. A time
limit of 2 days was given for each instance to each method. Detailed results are
given in Table 2, where we report the running time, in seconds, for all of our
methods. The last two rows of the table report the shifted geometric mean [1] of
the computing time (with a shift of 10 sec.s) and the number of solved instances.
According to the table, the CP model is able to solve models up to size 40 in
a reasonable amount of time, after which it can no longer solve any model.
Comparing with the numbers reported in [19], this can be already considered a
good achievement, and a testament to how efficient Gecode’s implementation is.
On the other hand, all methods based on ILP, while initially slower, turn out
to be able to solve almost all models in the testbed. Among the ILP methods,
ILP-ITER, while being the easiest to implement, is also the slowest method,
while ILP-TRUNC and LEX-DFS are the fastest methods, with very similar average
running times.

As already noted in [19], the size of the chessboard is not a direct indicator of
instance difficulty, as some bigger chessboards can be solved significantly faster
than smaller ones. This is true in particular for ILP-based methods, where for
example n = 48 is unsolved while n = 49 can be cracked in a few seconds.
Interestingly, chessboards with even n seem to be consistently harder than the
ones with odd n.



As for the advanced techniques implemented in LEX-DFS, we have to admit
that for some of them the overall effect was rather disappointing. In particular,
the separation of clique and odd-cycle inequalities, while able to reduce the
number of enumerated nodes by more than a factor of 2, does not lead to a
faster algorithm overall. To the contrary, disabling cut separation leads to a
slightly faster method with an average runtime of 246 sec.s. Note that this is
not due to the complexity of separating cuts, separation being extremely fast for
both classes of inequalities, but rather for the reduced node throughput.

5 Conclusions and future directions of work

Finding a lexicographically minimal (also called “first”) solution of the n-queens
puzzle is a very difficult problem that attracted some research interest in recent
years. Following a suggestion by Donald E. Knuth, we have developed new so-
lution methods based on Integer Linear Programming, and have been able to
provide the optimal solution for several open problems.

The two main outcomes of our research are as follows: (1) ILP has been
able to solve many previously unsolved models for this problem, sometimes in
unexpectedly-short computing times; (2) the yet-unsolved cases provide excel-
lent benchmark examples on which to base the next advances in ILP technology.
In addition, we think that improving our understanding on how to solve lexico-
graphic variants of combinatorial problems is an interesting topic on its own.

Future research should address the unsolved cases, and in particular should
try to better understand the reason why, in the ILP setting, the instances with
even n seem to be much more difficult to solve than those with n odd.
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A New solutions

Here are the solutions we found for some open problems from the literature:

n Solution

56 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 33 42 44 46
43 51 53 55 45 54 50 47 56 48 52 49 12 14 23 21 32 34 26
16 30 17 24 18 37 28 40 20 39 41 35 38 36

(continued on next page)



n Solution

57 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 34 43 45
47 50 52 54 44 57 49 46 56 51 48 55 53 14 28 17 33 23 16
18 30 24 37 20 32 21 26 40 35 41 39 42 36 38

58 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 42 45 48
52 54 43 53 55 49 44 46 50 57 47 51 58 56 28 26 20 34 30
18 14 17 24 21 16 35 23 40 33 36 38 32 41 39 37

59 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 34 36 45
47 49 52 56 53 46 57 59 48 51 54 50 55 58 16 14 17 32 23
26 20 18 33 35 28 21 43 41 37 24 40 44 30 39 42 38

60 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 34 44 46
48 45 51 54 58 50 59 57 60 47 49 52 55 53 56 18 33 23 32
28 16 20 17 21 37 35 26 24 30 14 42 38 43 41 39 36 40

61 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 45
47 49 52 54 56 50 60 46 61 58 48 51 53 55 57 59 23 32 16
33 21 17 26 36 18 20 38 24 28 34 40 30 41 44 42 37 39 43

63 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
47 49 51 53 59 57 52 60 62 48 50 54 63 55 58 56 61 32 16
33 17 21 26 36 20 18 38 28 23 40 24 30 34 41 39 44 46 43
45 42

65 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 49 51 53 50 56 59 63 55 64 62 65 52 54 57 60 58 61 16
30 17 21 26 36 33 20 18 41 38 23 32 24 28 48 46 34 43 40
44 47 45 42

67 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 51 53 55 52 58 61 65 57 66 64 67 54 56 59 62 60 63
16 18 34 30 38 20 24 17 21 23 43 32 40 33 36 26 28 46 48
50 44 47 45 42 49

69 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 43 53 55 57 54 60 63 67 59 68 66 69 56 58 61 64 62
65 17 20 16 30 24 33 40 38 18 21 34 26 23 42 49 28 32 50
36 51 46 44 52 48 45 47

71 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 53 55 57 54 56 62 68 66 69 59 70 67 58 71 61 64
60 65 63 21 30 17 40 18 24 36 20 42 44 26 34 23 33 38 32
28 49 51 45 47 52 50 48 46 43

73 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 44 55 57 59 56 58 63 67 69 71 73 61 70 72 65 60
62 64 66 68 20 34 21 18 42 17 38 24 43 23 28 45 33 40 36
26 32 30 54 47 50 52 46 48 53 51 49

77 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 18 45 57 59 61 58 60 65 68 72 74 76 73 75 63 67
64 62 77 70 66 71 69 38 40 28 17 21 24 26 20 43 46 42 23
36 34 32 30 44 33 52 55 47 50 53 56 54 48 51 49

(continued on next page)



n Solution

79 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 18 45 47 59 61 63 60 62 67 70 74 71 77 79 76 78
64 68 65 69 66 73 75 72 20 38 17 21 44 24 30 23 46 48 36
42 40 34 26 28 33 50 32 53 43 57 52 58 56 54 51 49 55

85 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 18 45 17 48 50 63 65 67 64 66 71 73 75 80 82 84
81 83 72 70 68 85 69 78 74 77 79 76 20 23 43 24 21 49 44
42 34 46 28 30 52 26 38 51 32 40 33 61 47 60 36 53 58 54
57 59 56 62 55

91 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 18 45 17 48 20 51 53 67 69 71 68 70 75 77 79 81
85 87 90 86 91 89 72 74 76 73 80 82 84 78 83 88 21 34 26
49 46 24 47 52 43 23 30 33 55 28 42 32 54 40 36 44 64 50
38 59 61 65 57 66 60 63 56 58 62

93 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 18 45 17 48 20 51 53 55 69 71 73 70 72 77 79 81
83 87 89 92 88 93 91 74 76 78 75 82 84 86 80 85 90 24 21
23 46 49 47 52 38 30 56 33 26 28 43 32 54 57 42 44 36 34
40 50 61 68 65 62 59 63 58 67 64 66 60

97 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 18 45 17 48 20 51 53 21 56 71 73 75 72 74 79 81
83 85 87 89 93 95 97 94 96 76 80 77 86 78 82 84 91 88 90
92 46 24 28 52 23 49 47 34 30 26 57 50 33 61 42 44 36 32
55 43 38 54 60 66 40 70 68 63 58 69 62 65 67 64 59

101 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 18 45 17 48 20 51 53 21 56 58 60 75 77 79 76 78
83 85 87 89 91 93 97 99 101 98 100 80 84 81 90 82 86 88 95
92 94 96 23 26 28 40 43 54 57 24 32 47 50 42 59 33 30 34
52 62 68 46 38 36 44 55 66 71 74 70 49 73 63 72 67 61 64
69 65

103 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 18 45 17 48 20 51 53 21 56 58 60 62 77 79 81 78
80 85 87 89 91 93 95 99 101 103 100 102 82 86 83 92 84 88
90 97 94 96 98 23 26 24 30 28 36 46 55 59 52 54 44 61 34
66 33 42 32 47 49 40 38 57 73 71 63 72 43 64 70 75 50 69
67 76 74 68 65

109 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 18 45 17 48 20 51 53 21 56 58 60 23 63 65 81 83
85 82 84 89 91 93 95 86 100 104 106 101 109 107 105 108
88 92 87 96 90 97 102 94 98 103 99 26 24 32 28 36 55 57 40
64 61 54 50 30 66 34 42 38 33 49 43 67 59 62 77 52 44 47
75 71 46 76 80 73 70 79 69 78 72 74 68

(continued on next page)



n Solution

115 1 3 5 2 4 9 11 13 15 6 8 19 7 22 10 25 27 29 31 12 14 35 37
39 41 16 18 45 17 48 20 51 53 21 56 58 60 23 63 24 66 68
85 87 89 86 88 93 95 97 99 90 102 108 111 113 107 109 112
115 91 114 98 101 92 94 96 100 105 103 110 106 104 26 28
30 32 36 50 59 62 64 55 43 34 72 67 52 33 40 65 57 44 42
38 74 54 61 46 83 47 77 69 49 82 79 75 84 71 80 78 81 73
70 76
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n CP ILP-ITER ILP-TRUNC LEX-DFS

21 0.01 0.30 0.45 0.08
22 0.95 1.63 16.67 9.20
23 0.02 0.40 0.60 0.11
24 0.20 0.60 2.95 0.82
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42 t.l. t.l. t.l. t.l.
43 23528.50 21.65 162.13 6.08
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Table 2. Comparison of different methods for n = 21, . . . , 60, with a time limit of
172800 sec.s (2 days).
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