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Abstract

Feasibility pump (FP) is a successful primal heuristic for mixed-integer linear programs (MILP).
The algorithm consists of three main components: rounding fractional solution to a mixed-integer
one, projection of infeasible solutions to the LP relaxation, and a randomization step used when
the algorithm stalls. While many generalizations and improvements to the original Feasibility Pump
have been proposed, they mainly focus on the rounding and projection steps.

We start a more in-depth study of the randomization step in Feasibility Pump. For that, we
propose a new randomization step based on the WalkSAT algorithm for solving SAT instances.
First, we provide theoretical analyses that show the potential of this randomization step; to the
best of our knowledge, this is the first time any theoretical analysis of running-time of Feasibility
Pump or its variants has been conducted. Moreover, we also conduct computational experiments
incorporating the proposed modification into a state-of-the-art Feasibility Pump code that reinforce
the practical value of the new randomization step.

1 Introduction

Primal heuristics are used within mixed-integer linear programming (MILP) solvers for finding good
integer feasible solutions quickly [FL11]. Feasibility pump (FP) is a very successful primal heuristic
for mixed-binary LPs that was introduced in [FGL05]. At its core, Feasibility Pump is an alternating
projection method, as described below.

Algorithm 1 Feasibility Pump (Näıve version)

1: Input: mixed-binary LP (with binary variables x and continuous variables y)

2: Solve the linear programming relaxation, and let (x̄, ȳ) be an optimal solution
3: while x̄ is not integral do
4: (Round) Round each coordinate of x̄ to the closest integer, call the obtained vector x̃
5: (Project) Let (x̄, ȳ) be the point in the LP relaxation that minimizes

∑
i |xi − x̃i|

6: end while
7: Return (x̄, ȳ)

The scheme presented above may stall, since the same infeasible integer point may be visited in Step
4 at different iterations. Whenever this happens, the paper [FGL05] recommends a randomization step,
that after Step 4 flips the value of some of the binary variables as follows: Defining the fractionality
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of variable xi as |x̄i − x̃i| and let NN be the number of variables with positive fractionality, randomly
generate a positive integer TT and flip min{TT,NN} variables with largest fractionality.

Together with a few other tweaks, this surprisingly simple method works very well. On MIPLIB 2003
instances, FP finds feasible solutions for 96.3% of the instances in reasonable time [FGL05].

Due to its success, many improvements and generalizations of FP (both for MILPs and mixed integer
non-linear programs(MINLPs)) have been studied [AB07, BFL07, BCLM09, FS09, SLR10, DFLL10,
BEET12, DFLL12, BEE+14]. However, the focus of these improvements has been on the projection and
rounding steps or generalization for MINLPs; to the best of our knowledge, they use essentially the same
randomization step as proposed in the original algorithm [FGL05] (and its generalization to the general
integer MILP case of [BFL07]).

Moreover, even though FP is so successful and so many variants have been proposed, there is very
limited theoretical analysis of its properties [BEET12]. In particular, to the best of our knowledge there
is no known bounds on expected running-time of FP.

2 Our contributions

In this paper, we start a more in-depth study of the randomization step in Feasibility Pump. For that,
we propose a new randomization step RandWalkSAT` and provide both theoretical analysis as well
as computational experiments in a state-of-the-art Feasibility Pump code that show the potential of this
method.

Theoretical justification of RandWalkSAT`. The new randomization step RandWalkSAT` is in-
spired by the classical algorithm WalkSAT [Sch99] for solving SAT instances (see also [Pap91, MJPL92]).
The key idea of RandWalkSAT` is that whenever Feasibility Pump stalls, namely an infeasible mixed-
binary solution is revisited, it should flip a binary variable that participates in an infeasible constraint.
More precisely, RandWalkSAT` constructs a minimal (projected) infeasibility certificate for this solu-
tion and randomly picks a binary variable in it to be flipped (see Section 3 for exact definitions).

While the vague intuition that such randomization is trying to “fix” the infeasible constraint is
clear, we go further and provide theoretical analyses that formally justify this and highlight more subtle
advantageous properties of RandWalkSAT`.

First, we analyze what happens if we simply repeatedly use only the new proposed randomization
step RandWalkSAT`, which gives a simple primal heuristic that we denote by mbWalkSAT. Not only
we show that mbWalkSAT is guaranteed to find a solution if one exists, but its behavior is related to
the (almost) decomposability and sparsity of the instance. To make this precise, consider a decomposable
mixed-binary set with k blocks:

P I = P I1 × . . .× P Ik , where for all i ∈ [k] we have

P Ii = Pi ∩ ({0, 1}ni × Rdi), Pi = {(xi, yi) ∈ [0, 1]ni × Rdi : Aixi +Biyi ≤ bi}. (1)

Let P = P1 × . . .× Pk denote the LP relaxation of P I .

Note that since we allow k = 1, this also captures a general mixed-binary set. We then have the following
running-time guarantee for the primal heuristic mbWalkSAT.

Theorem 2.1. Consider a feasible decomposable mixed-binary set as in equation (1). Let si be such
that each constraint in P Ii has at most si binary variables, and define ci := min{si · (di + 1), ni}.
Then with probability at least 1 − δ, mbWalkSAT with parameter ` = 1 returns a feasible solution
within ln(k/δ)

∑
i ni 2ni log ci iterations. In particular, this bound is at most n̄k 2n̄ log n̄ · ln(k/δ), where

n̄ = maxi ni.

There are a few interesting features of this bound that indicates good properties of the proposed
randomization step, apart from the fact that it is already able to find feasible solutions by itself. First,
it depends on the sparsity si of the blocks, giving better running times on sparser problems. More
importantly, the bound indicates that the algorithm works almost independently on each of the blocks,
that is, it just takes about 2ni iterations to find a solution for each of the blocks, instead of 2n1+...+nk of
a complete enumeration over the whole problem. In fact, the proof of Theorem 2.1 makes explicit this
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almost independence of the algorithm over the blocks, and motivates the uses of minimal infeasibility
certificates. Moreover, we note the important point that the algorithm is not provided the knowledge of
the decomposability of the instance, it just automatically runs “fast” when the problem is decomposable.
This gives some indication that the proposed randomization could still exhibit good behavior on the
almost decomposable instances often found in practice (see discussion in [DMW16]).

RandWalkSAT` in conjunction with FP. Next, we analyze RandWalkSAT` in the context of
Feasibility Pump by adding it as a randomization step to the Näıve Feasbility Pump algorithm (Algorithm
1); we call the resulting algorithm WFP. This now requires understanding the complicated interplay of
the randomization, rounding and projection steps: While in practice rounding and projection greatly
help finding feasible solutions, their worst-case behavior is difficult to analyze and in fact they could take
the iterates far away from feasible solutions. Although the general case is elusive at this point, we are
nonetheless able to analyze the running time of WFP for decomposable subset-sum instances.

Definition 2.2. A separable subset-sum set is one of the form

{(x1, x2, . . . , xk) ∈ {0, 1}n1+n2+...+nk : aixi = bi ∀i} (2)

for non-negative (ai, bi)’s.

While this may seem like a simple class of problems, on these instances Feasibility Pump with the
original randomization step from [FGL05] (without restarts) may not even converge, as illustrated next.

Remark 2.3. Consider the feasible subset-sum problem

max x2

s.t. 3x1 + x2 = 3

x1, x2 ∈ {0, 1}.

Consider the execution of the original Feasibility Pump algorithm (without restarts). The starting point
is an optimal LP solution; without loss of generality, suppose it is the solution ( 2

3 , 1). This solution is
then rounded to the point (1, 1), which is infeasible. This point is then `1-projected to the LP, giving back
the point ( 2

3 , 1), which is then rounded again to (1, 1). At this point the algorithm has stalled and applies
the randomization step. Since only variable x2 has strictly positive fractionality | 23 − 1| = 1

3 , only the
first coordinate of (1, 1) is a candidate to be flipped. So suppose this coordinate is flipped. The infeasible
point (0, 1) obtained is then `1-projected to the LP, giving again the point ( 2

3 , 1). This sequence of iterates
repeats indefinitely and the algorithm does not find the feasible solution (1, 0).

The issue in this example is that the original randomization step never flips a variable with zero
fractionality. Moreover, in Section B of the appendix we show that even if such flips are considered,
there is a more complicated subset-sum instance where the algorithm stalls.

On the other hand, we show that algorithm WFP with the proposed randomization step always
finds a feasible solution of feasible subset-sum instances, and moreover its running time again depends
on the sparsity and the decomposability of the instance (in order to simplify the proof, we assume that
x̃ /∈ P , then `1-proj(P, x̃) is a vertex of P ; notice that since `1-proj(P, x̃) is a linear programming problem
and subset-sum instances are bounded, there is always a vertex satisfying the desired properties from
`1-proj).

Theorem 2.4. Consider a feasible separable subset-sum set P as in (2). Then with probability at least
1 − δ, WFP with ` = 2 returns a feasible solution within T = dln(k/δ)e

∑
i ni 22ni logni ≤ n̄k 22n̄ log n̄ ·

ln(k/δ) iterations, where n̄ = maxi ni.

To the best of our knowledge this is the first theoretical analysis of the running-time of a variant
of Feasibility Pump algorithm, even for a special class of instances. As in the case of repeatedly us-
ing just RandWalkSAT`, the algorithm WFP essentially works independently on each of the blocks
(inequalities) of the problem, and has reduced running time on sparser instances.

The high-level idea of the proof Theorem 2.4 is to: 1) Show that the combination of projection plus
rounding is idempotent for these instances, namely applying them once or repeatedly yields the same
effect (Lemma 4.3); 2) Show that a round of randomization step plus projection plus rounding has a
non-zero probability of generating an iterate closer to a feasible solution (Lemma 4.6).
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Computational experiments. While the analyses above give insights on the usefulness of using
RandWalkSAT` in the randomization step of FP, in order to attest its practical value it is important
to understand how it interacts with complex engineering components present in current Feasibility Pump
codes. To this end, we considered the state-of-the-art code of [FS09] and modified its randomization
step based on RandWalkSAT`. While the full details of the experiments are presented in Section 5,
we summarize some of the main findings here.

We conducted experiments on MIPLIP 2010 [KAA+11] instances and on randomly generated two-
stage stochastic models. In the first testbed there was a small but consistent improvement in both
running-time and number of iterations. More importantly, the success rate of the heuristic improved
consistently. In the second testbed, the new algorithm performs even better, according to all measures.
It is somewhat surprising that our small modification of the randomization step could provide noticeable
improvements over the code in [FS09], specially considering that it already includes several improvements
over the original Feasibility Pump (e.g. constraint propagation). In addition, the proposed modification
is generic and could be easily incorporated in essentially any Feasibility Pump code. Moreover, for
virtually all the seeds and instances tested the modified algorithm performed better than the original
version in [FS09]; this indicates that, in practice, the modified randomization step dominates the previous
one.

The rest of the paper is organized as follows: Section 3 we discuss and present out analysis of the
proposed randomization scheme RandWalkSAT`, Section 4 presents the analysis of the new random-
ization scheme RandWalkSAT` in conjunction with feasibility pump, and Section 5 describes details
of our empirical experiments.

Notation. We use R+ to denote the non-negative reals, and [k] := {1, 2, . . . , k}. For a vector v ∈ Rn,
we use supp(v) ⊆ [n] to denote its support, namely the set of coordinates i where vi 6= 0. We also use
‖v‖0 = |supp(v)|, and ‖v‖1 =

∑
i |vi| to denote the `1 norm.

3 New randomization step RandWalkSAT`

3.1 Description of the randomization step

We start by describing the WalkSAT algorithm [Sch99], that serves as the inspiration for the proposed
randomization step RandWalkSAT`, in the context of pure-binary linear programs. The vanilla version
of WalkSAT starts with a random point x̄ ∈ {0, 1}n; if this point is feasible, the algorithm returns it,
and otherwise selects any constraint violated by it. The algorithm then select a random index i from
the support of the selected constraint and flips the value of the entry x̄i of the solution. This process
is repeated until a feasible solution is obtained. It is known that this simple algorithm finds a feasible
solution in expected time at most 2n (see [MU05] for a proof for 3-SAT instances), and Schöning [Sch99]
showed that if the algorithm is restarted at every 3n iterations, a feasible solution is found in expected
time at most a polynomial factor from (2(1− 1

s ))n, where s is the largest support size of the constraints.
Based on this WalkSAT algorithm, to obtain a randomization step for mixed-binary problems we are

going to work on the projection onto the binary variables, so instead of looking for violated constraints
we look for a certificate of infeasibility in the space of binary variables. Importantly, we use a minimal
certificate, which makes sure that for decomposable instances the certificate does not “mix” the different
blocks of the problem.

Now we proceed with a formal description of the proposed randomization step RandWalkSAT`.
Consider a mixed-binary set

P I = P ∩ ({0, 1}n × Rd), where P = {(x, y) ∈ [0, 1]n × Rd : Ax+By ≤ b}. (3)

We use projbin P to denote the projection of P onto the binary variables x.

Definition 3.1 (Projected certificates). Given a mixed-binary set P I as in (3) and a point (x̄, ȳ) ∈
{0, 1}n ×Rd such that x̄ /∈ projbin P , a projected certificate for x̄ is an inequality λAx+ λBy ≤ λb with
λ ∈ Rm+ such that: (i) x̄ does not satisfy this inequality; (ii) λB = 0. A minimal projected certificate is
one where the support of the vector λ is minimal (i.e. the certificate uses a minimal set of the original
inequalities).
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Standard Fourier-Motzkin theory guarantees us that projected certificates always exist, and further-
more Caratheodory’s theorem [Sch86] guarantees that minimal projected certificates use at most d + 1
inequalities. Together these give the following lemma.

Lemma 3.2. Consider a mixed-binary set P I as in (3) and a point (x̄, ȳ) ∈ {0, 1}n × Rd such that
x̄ /∈ projbin P . There exists a vector λ ∈ Rm+ with support of size at most d+1 such that λAx+λBy ≤ λb
is a minimal projected certificate for x̄. Moreover, this minimal projected certificate can be obtained in
polynomial-time (by solving a suitable LP).

For completeness, see Appendix A for a proof of Lemma 3.2.
Now we can formally define the randomization step RandWalkSAT` (notice that the condition

λB = 0 guarantees that a projected certificate has the form ax ≤ b).

Algorithm 2 RandWalkSAT`(x̄)

1: //Assumes that x̄ does not belong to projbin P
2: Let ax ≤ b be a minimal projected certificate for x̄
3: Sample ` indices from the support supp(a) uniformly and independently, let I be the set of indices

obtained
4: (Flip coordinates) For all i ∈ I, set x̄i ← 1− x̄i

Note that in the pure-binary case and ` = 1, this is reduces to the main step executed during
WalkSAT. We remark that the flexibility of introducing the parameter ` will be needed in Section 4.

3.2 Analyzing the behavior of RandWalkSAT`

In this section we consider the behavior of the algorithm mbWalkSAT that tries to find a feasible
mixed-binary solution by just repeatedly applying the randomization step RandWalkSAT`.

Algorithm 3 mbWalkSAT

1: input parameter: Integer ` ≥ 1
2: (Starting solution) Consider any mixed-binary point (x̄, ȳ) ∈ {0, 1}n × Rd
3: loop
4: if x̄ does not belong to projbin P then
5: RandWalkSAT`(x̄)
6: else
7: (Output feasible lift of x̄) Find ȳ ∈ Rd such that (x̄, ȳ) ∈ P , return (x̄, ȳ)
8: end if
9: end loop

As mentioned in the introduction, we show that this algorithm find a feasible solution if such exists,
and the running-time improves with the sparsity and decomposability of the instance. Recall the defini-
tion of a decomposable mixed-binary problem from equation (1), and let certSuppi denote the maximum
support size of a minimal projected certificate for the instance P Ii which consists only of the ith block.

Theorem 3.3 (Theorem 2.1 restated). Consider a feasible decomposable mixed-binary set as in equation
(1). Then with probability at least 1− δ, mbWalkSAT with parameter ` = 1 returns a feasible solution
within T = dln(k/δ)e

∑
i ni 2ni log certSuppi iterations.

In light of Lemma 3.2, if each constraint in Pi has at most si integer variables, we have certSuppi ≤
min{si · (di+ 1), ni}, and thus this statement indeed implies Theorem 2.1 stated in the introduction. We
remark that similar guarantees can be obtained for general `, but we focus on the case ` = 1 to simplify
the exposition.

The high-level idea of the proof of Theorem 3.3 is the following:

1. First we show that if we run mbWalkSAT over a single block P Ii , then with high probability
the algorithm returns a feasible solution within ni 2ni log certSuppi · ln(1/δ) iterations. This analysis
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is inspired by the one given by Schöning [Sch99] and argues that with a small, but non-zero,
probability the iteration of the algorithm makes the iterate x̄ closer (in Hamming distance) to a
fixed solution x∗ for the instance.

2. Next, we show that when running mbWalkSAT over the whole decomposable instance each itera-
tion only depends on one of the blocks P Ii ; this uses the minimality of the certificates. So in effect
the execution of mbWalkSAT can be split up into independent executions over each block, and
thus we can put together the analysis from Item 1 for all blocks with a union bound to obtain the
result.

For the remainder of the section we prove Theorem 3.3. We start by considering a general mixed-
binary set as in equation (3). Given such mixed-binary set P I , we use certSupp = certSupp(P I) to
denote the maximum support size of all minimal projected certificates.

Theorem 3.4. Consider the execution of mbWalkSAT over a feasible mixed-binary program as in
equation (3). The probability that mbWalkSAT does not find a feasible solution within the first T
iterations is at most (1−p)bT/nc, where p = certSupp−n. In particular, for T = n·2n log(certSupp)·dln(1/δ)e
this probability is at most δ (this follows from the inequality (1− x) ≤ e−x valid for x ≥ 0).

Proof. Consider a fixed solution x∗ ∈ projbin P . To analyze mbWalkSAT, we only keep track of the
Hamming distance of the (random) iterate x̄ to x∗; let Xt denote this (random) distance at iteration
t, for t ≥ 1. If at some point this distance vanishes, i.e. Xt = 0, we know that x̄ = x∗ and thus
x̄ ∈ projbin P ; at this point the algorithm returns a feasible solution for P I .

Fix an iteration t. To understand the probability that Xt = 0, suppose that in this iteration x̄ does not
belong to projbin P , and let ax ≤ b be the minimal projected certificate for it used in RandWalkSAT1.
Since the feasible point x∗ satisfies the inequality ax ≤ b but x̄ does not, there must be at least one
index i∗ in the support of a such where x∗ and x̄ differ. Then if algorithm mbWalkSAT makes a “lucky
move” and chooses I = {i∗} in Line 3, the modified solution after flipping this coordinate (the next line
of the algorithm) is one unit closer to x∗ in Hamming distance, hence Xt+1 = Xt − 1. Moreover, since
I is independent of i, the probability of choosing I = {i∗} is 1/|supp(a)| ≥ 1/certSupp.

Therefore, if we start at iteration t and for all the next Xt iterations either the iterate belongs to
projbin P or the algorithm makes a “lucky move”, it terminates by time t+ Xt. Thus, with probability
at least (1/certSupp)Xt ≥ (1/certSupp)n = p the algorithm terminates by time t+ Xt ≤ t+ n.

To conclude the proof, let α = bT/nc and call iterations i · n, . . . , (i + 1) · n − 1 the i-th block of
iterations. If the algorithm has not terminated by iteration i · n− 1, then with probability at least p it
terminates within the next n iterations, and hence within the i-th block. Putting these bounds together
for all α blocks, the probability that the algorithm does not stop by the end of block α is at most (1−p)α.
This concludes the proof.

Going back to decomposable problems, we now make formal the claim that minimal projected cer-
tificates for decomposable mixed-binary sets do not mix the constraints from different blocks. No-
tice that projected certificates for a decomposable mixed-binary set as in equation (1) have the form∑
i λ

iAixi ≤
∑
i λ

ibi and λiBi = 0 for all i ∈ [k].

Lemma 3.5. Consider a decomposable mixed-integer set as in equation (1). Consider a point x̄ /∈
projbin P and let

∑
i λ

iAixi ≤
∑
i λ

ibi be a minimal projected certificate for x̄. Then this certificate
uses only inequalities from one block P j, i.e. there is j such that λi = 0 for all i 6= j. Moreover,
x̄j /∈ projbin Pj.

Proof. Let x̄ = (x̄1, x̄2, . . . , x̄k) and call the certificate (ax ≤ b) , (
∑
i λ

iAixi ≤
∑
i λ

ibi). By definition
of projected certificate we have

∑
i λ

iAix̄i >
∑
i λ

ibi, and thus by linearity there must be an index j
such that λjAj x̄j > λjbj . Moreover, as remarked earlier, decomposability implies that the certificate
satisfies λiBi = 0 for all i, so in particular for j. Thus, the inequality λj(Aj , Bj)(xj , yj) ≤ λjbj obtained
by combining only the inequalities form Pj is a projected certificate for x̄. The minimality of the original
certificate ax ≤ b implies that λi = 0 for all i 6= j. This concludes the first part of the proof.

Moreover, since λjAj x̄j > λjbj and λjBj = 0 we have that λj(Aj , Bj)(x̄j , y) > λjbj for all y, and
hence x̄j does not belong to projbin Pj . This concludes the proof.
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We can finally prove the desired theorem.

Proof of Theorem 3.3. We use the natural decomposition x̄ = (x̄1, . . . , x̄k) ∈ {0, 1}n1 × . . . × {0, 1}nk
of the iterates of the algorithm. From Lemma 3.5, we have that for each scenario, each iteration of
mbWalkSAT is associated with just one of the blocks P Ij ’s, namely the P Ij containing all the inequalities
in the minimal projected certificate used in this iteration; let Jt ∈ [k] denote the (random) index j of the
block associated to iteration t. Notice that at iteration t, only the binary variables xJt can be modified
by the algorithm.

Let Ti = ni 2ni lognidln(k/δ)e. Applying the proof of Theorem 3.4 to the iterations {t : Jt = i} with
index i, we get that with probability at least 1− δ

k the algorithm finds some x̄i in projbin Pi within the
first Ti of these iterations. Moreover, after the algorithm finds such a point, it does not change it (that
is, the remaining iterations have index Jt 6= i, due to the second part of Lemma 3.5).

Therefore, by taking a union bound we get that with probability at least 1 − δ, for all i ∈ [k] the
algorithm finds x̄i ∈ projbin Pi within the first Ti iterations with index i (for a total of

∑
i Ti = T

iterations). When this happens, the total solution x̄ belongs to projbin P and the algorithm returns.
This concludes the proof.

4 Randomization step RandWalkSAT` within Feasibility Pump

In this section we incorporate the randomization step RandWalkSAT` into the Näıve Feasibility Pump,
the resulting algorithm being called WFP. We describe this algorithm in a slightly different way and
using a notation more convenient for the analysis.

Consider a mixed-binary set P I as in equation (3). Given a 0/1 point x̃ ∈ {0, 1}n, let `1-proj(P, x̃)
denote a point (x, y) in P where ‖x̃ − x‖1 is as small as possible. Also, for a vector v ∈ [0, 1]p, we use
round(v) to denote the vector obtained by rounding each component of v to the closest integer; we use
the convention that 1

2 is rounded to 1, but any consistent rounding would suffice. Notice that operations
‘`1-proj’ and ‘round’ correspond precisely to Steps 5 and 4 in the Näıve Feasibility Pump. With this
notation, algorithm WFP can be described as follows.

Algorithm 4 WFP

1: input parameter: integer ` ≥ 1

2: Let (x̄0, ȳ0) be an optimal solution of the LP relaxation
3: Let x̃0 = round(x̄0)
4: for t = 1,2,. . . do
5: (x̄t, ȳt) = `1-proj(P, x̃t−1)
6: x̃t = round(x̄t)

7: if (x̃t, ȳt) ∈ P then . equivalently, x̃t ∈ projbin(P )
8: Return (x̃t, ȳt)
9: end if

10: if x̃t = x̃t−1 then . iterations have stalled
11: x̃t = RandWalkSAT`(x̃

t)
12: end if
13: end for

Note that stalling in the above algorithm is determined using the condition x̃t = x̃t−1. What about
‘long cycle’ stalling, that is x̃t = x̃t

′
where t′ < t− 1, but x̃t

′
, . . . , x̃t−1 are all distinct binary vectors. As

it turns out (assuming no numerical errors) a consistent rounding rule implies that stalling will always
occur with cycles of length two.

Theorem 4.1. With consistent rounding, long cycles cannot occur.

We present a proof of 4.1 in Appendix C. For the remainder of the section, we analyze the behavior
of algorithm WFP on separable subset-sum instances, proving Theorem 2.4 stated in the introduction.
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4.1 Running time of WFP for separable subset-sum instances: Proof of
Theorem 2.4

Notice that the projection operators ‘`1-proj’ and ‘round’ now present also act on each block indepen-
dently, namely given a point x = (x1, . . . , xk) ∈ Rn1 × . . . × Rnk , if (x̌1, . . . , x̌k) = `1-proj(P, x) then
x̌i = `1-proj(Pi, x

i) for all i ∈ [k], and similarly for ‘round’. Therefore, as in the proof of Theorem 3.3,
it suffices to analyze the execution of algorithm WFP over a single block/inequality of the separable
subset-sum problem. More precisely, it suffices to prove the following guarantee for WFP on a general
subset-sum instance.

Theorem 4.2. Consider a feasible subset-sum problem P ⊆ Rn. Then for every T ≥ 1, the probability
that WFP with ` = 2 does not find a feasible solution within the first 2T iterations is at most (1−p)bT/nc,
where p = (1/n2)n. In particular, for T = n · 22n logn · dln(1/δ)e this probability is at most δ.

The high-level idea of the proof of this theorem is the following. We use a similar strategy as before,
where we consider a fixed feasible solution x∗ and track its distance to the iterates x̃t generated by
algorithm WFP. However, while again the randomization step RandWalkSAT2 brings x̃t closer to x∗

with small but non-zero probability, the issue is that the projections ‘`1-proj’ and ‘round’ in the next
iterations could send the iterate even further from x∗. To analyze the algorithm we then use the structure
of subset-sum instances to: 1) First control the combination ‘`1-proj + round’ in Steps 5 and 6, showing
that in this case they are idempotent, namely applying them once or repeatedly yields the same effect
(Lemma 4.3); 2) Strengthen the analysis of Theorem 3.3 to show that a round of RandWalkSAT2 plus
‘`1-proj + round’ still has a non-zero probability of generating a point closer to x∗ (Lemma 4.6). For
this, it will be actually important that we use ` = 2 in algorithm WFP (actually ` ≥ 2 suffices).

For the remainder of the section we prove Theorem 4.2. To simplify the notation we omit the polytope
P from the notation of `1-proj. We assume that our subset-sum problem P = {x ∈ [0, 1]n : ax = b}
is such that all coordinates of a are positive, since components with ai = 0 do not affect the problem
(more precisely, after the first iteration of the algorithm, the value of x̃ti is set to 0 or 1 and does not
change anymore, and this value does not affect the feasibility of the solutions x̃t’s). Also remember that
subset-sum problems only have binary variables.

Given a point x̃ ∈ {0, 1}n, let AltProj(x̃) ∈ {0, 1}n be the effect of applying to x̃ `1-proj(.) and then
round(.). Notice that if x̃ belongs to P , then AltProj(x̃) = x̃. Then algorithm WFP can be thought
as performing a AltProj operation, then checking if the iterate obtained either belongs to P (in which
case it exits) of if it equals the previous iterate (in which case it applies RandWalkSAT2); if neither
of these occur, then another AltProj operation is performed. So an important component for analyzing
this algorithm is getting a good control over a sequence of AltProj operations. For that, define the
iterated operation AltProjt(x̃) = AltProj

(
AltProjt−1(x̃)

)
(with AltProj1 = AltProj) and if the sequence

(AltProjt(x̃)) stabilizes at a point, let AltProj∗(x̃) denote this point.
A crucial observation, given by the next lemma, is that for subset-sum instances the operation of

AltProj is idempotent, namely it stabilizes after just one operation.

Lemma 4.3. Let P be a subset-sum instance. Then for every x̃ ∈ {0, 1}n, AltProj∗P (x̃) = AltProjP (x̃).

Proof. Again to simplify the notation we omit the polyhedron P when writing `1-proj and AltProj.
Let x̄ = `1-proj(x̃) and recall it is an extreme point of P . Clearly, if x̃ ∈ P then AltProj(x̃) = x̃
and hence AltProj∗(x̃) = AltProj(x̃). Similarly, if x̄ is a 0/1 point then AltProj(x̃) = x̄, and again
AltProj∗(x̃) = AltProj(x̃).

Thus, assume that x̃ /∈ P and x̄ is not a 0/1 point. Since x̄ is an extreme point of the subset-sum LP
P it has exactly 1 fractional coordinate, so by permuting indices we assume without loss of generality:

1. x̄1 = · · · = x̄k = 1.

2. x̄k+1 ∈ (0, 1).

3. x̄k+2 = · · · = x̄n = 0

4. ak+2 ≥ ak+3 ≥ · · · ≥ an.

5. a1 ≤ a2 ≤ a3 ≤ · · · ≤ ak.
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Now we look at the points obtained after applying round(.) and `1-proj(.) to x̄, namely let x̃′ :=
round(x̄) = AltProj(x̃) and let x̄′ := `1-proj(x̃′). Notice that x̄′ is obtained by solving:

min
∑
{j | x̃′

j=0} xj +
∑
{j | x̃′

j=1}(1− xj)

s.t. ax = b (4)

0 ≤ x ≤ 1.

Case 1: x̄k+1 < 1/2. Then x̃′i = 1 for all i ≤ k, x̃′i = 0 for all i ≥ k + 1; also notice x̃′ ≤ x̄, and hence
ax̃′ < b; thus x̄′ is obtained from x̃’ by increasing some components of 0 value. We have three subcases:

a. If ak+1 > ak+2: then ak+1 is the largest coordinate of a where x̃′ has value 0, so it follows
from (4) that x̄′ is obtained from x̃′ by raising its (k + 1)-component from 0 to x̄k+1. Thus,
x̄′ = x̄, and hence AltProj(AltProj(x̃)) = round(x̄′) equals round(x̄) = AltProj(x̃); this implies
AltProj∗(x̃) = AltProj(x̃).

b. If ak+1 < ak+2: then x̄′ is obtained from x̃ by raising its (k + 2)-component to a value that is at
most x̄k+1 < 1/2. Now, round(x̄′) = x̃′, so again we get AltProj(AltProj(x̃)) = round(x̄′) = x̃′ =
AltProj(x̃) and we are done.

c. If ak+1 = ak+2: Since x̄′ is a vertex of the subset-sum LP P , again it only has 1 fractional
component (either k + 1 or k + 2) and then it is easy to see that x̄′ is equal to the one in either
Case (a) or Case (b) above; thus the result also holds for this case.

Case 2: x̄k+1 ≥ 1/2. Then x̃′ is such that x̃′i = 1 for all i ≤ k + 1 and x̃′ = 0 for all i ≥ k + 2; also
notice x̃′ ≥ x̄ and hence ax̃′ > b. Now, consider x̄′ = `1-proj(x̃′):

a. If ak < ak+1: This is analogous to Case 1a: x̄′ is obtained by lowering the (k+ 1)-coordinate of x̃′

from 1 to x̄, and thus x̄′ = x̄; the rest of the proof is identical to Case 1a.

b. If ak > ak+1: In this case, x̄′ is obtained by lowering the k-component of x̃′. Since ax̄ = ax̄′ = b, and
k and (k+1) are the only components where x̄ and x̄′ differ, we have: ak+ak+1x̄k+1 = akx̄

′
k+ak+1.

Hence x̄′k = 1− ak+1

ak
(1− x̄k+1) ≥ 1/2 and round(x̄′) = x̃′; the rest of the proof is identical to Case

1b.

c. If ak = ak+1: Identical to Case 1c.

Therefore, there is not much loss in looking at a “compressed” version of algorithm WFP that packs
repeated applications of AltProj until stalling happens into a single AltProj∗; more formally, we have
the following algorithm (stated in the pure-binary case to simplify the notation).

Algorithm 5 WFP-Compressed

1: input parameter: integer ` ≥ 1

2: Let x̄0 be an optimal solution of the LP relaxation
3: Let z̃0 = round(x̄0)
4: for τ = 1,2,. . . do
5: z̄τ = AltProj∗(z̃τ−1)

6: if z̃τ ∈ P then
7: Return z̃τ

8: end if

9: z̃τ = RandWalkSAT`(z̃
τ )

10: end for

Intuitively, Lemma 4.3 should imply that packing the repeated applications of AltProj into a single
AltProj∗ should not save more than 1 iteration. To see this more formally, assume that both algorithms
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use as starting point the same optimal solution of the LP, so z̃0 = x̃0. Now condition on a scenario
where we have z̃τ = x̃t at the beginning of iterations τ and t of algorithms WFP-Compressed and
WFP respectively (for τ, t ≥ 1). Then we claim that either both algorithms return at the current
iteration, or z̃τ+1 has the same distribution as either x̃t+1 or x̃t+2 (at the beginning of they respective
iterations): If z̃τ = x̃t ∈ P , then both algorithms return; if x̃t /∈ P but x̃t = x̃t−1, then both algorithms
WFP-Compressed and WFP employ RandWalkSAT2 over z̃τ = x̃t, in which case z̃τ+1 has the
same distribution as x̃t+1; finally, if x̃t 6= x̃t−1, then WFP at the beginning of the next iteration will
have x̃t+1 = AltProj(x̃t), which by Lemma 4.3 (and t ≥ 1) equals x̃t itself, and so it will employ
RandWalkSAT2 to x̃t+1 = x̃t and again we have that x̃t+2 has the same distribution as z̃τ+1.

Therefore, since we can employ this argument to couple iterations ≤ τ of WFP-Compressed with
iterations ≤ 2τ of WFP, we have the following result.

Lemma 4.4. Consider the application of algorithms WFP and WFP-Compressed over the subset-sum
problem P . Then the probability that algorithm WFP returns after at most 2T iterations is at least the
probability that algorithm WFP-Compressed after at most T iterations.

Therefore, it suffices to upper bound the number of iterations of WFP-Compressed until it returns.
To avoid ambiguity, let zτ be the value of z̃τ at the beginning of iteration τ of WFP-Compressed. Notice
that z1 = AltProj∗(x̃0), and zτ+1 = AltProj∗(RandWalkSAT2(zτ )) for τ ≥ 2. It suffices to show that
with probability at least 1− (1− p)T/n, there is τ ≤ T/2 such that zτ belongs to P .

To do so, for x̃ ∈ {0, 1}n and I ⊆ [n] let flip(x̃, I) denote the 0/1 vector obtained starting from x̃
and flipping the value of all coordinates that belongs to I. Notice that (up to scaling) the only possible
projected certificates for our subset-sum problem are ax ≥ b and ax ≤ b. Since we have assumed that
the vector a has full support, it follows that on this problem RandWalkSAT2(x̃) = flip(x̃, I) for I being
the set obtained by sampling independently two indices uniformly from [n].

The next lemma then shows that there is always a “lucky choice” of set I in RandWalkSAT2(zτ )
that brings zτ+1 = AltProj∗(RandWalkSAT2(zτ )) closer to a fixed solution x∗ to the subset-sum
problem.

The following definition is convenient.

Definition 4.5. A point x̃ ∈ {0, 1}n is called a stalling solution if AltProj(x̃) = x̃.

Lemma 4.6. Let x∗ ∈ {0, 1}n be a feasible solution to the subset-sum problem. Consider x̃ ∈ {0, 1}n with
ax̃ 6= b that satisfies the fixed point condition AltProj(x̃) = x̃. Then there is a set I ⊆ [n] of size at most
2 such that the point x′ = AltProj∗P (flip(x̃, I)) is closer to x∗ than x̃, namely ‖x′−x∗‖0 ≤ ‖x̃−x∗‖0− 1.

Proof. Again to simplify the notation we omit P from `1-proj and AltProj, and use flip(x̃, j) instead of
flip(x̃, {j}) in the singleton case.

We start with a couple of claims.

Claim 1 Suppose x̃ ∈ {0, 1}n is a stalling point. If ax̃ < b, then there is k /∈ supp(x̃) such that
`1-proj(x̃)i = x̃i for all i 6= k, and `1-proj(x̃)k ∈ (0, 1

2 ). Similarly, if ax̃ > b, then there is k ∈ supp(x̃)
such that `1-proj(x̃)i = x̃i for all i 6= k, and `1-proj(x̃)k ∈ [ 1

2 , 1).

Proof of Claim 1. We only prove the first statement, the proof of the second is completely analogous.
Since x̃ is stalling we have that round(`1-proj(x̃)) = x̃, and since `1-proj(x̃) is an extreme point of the
subset-sum problem P it has at most 1 fractional component, and hence only differs in one component
k from

round(`1-proj(x̃)) = x̃.

Since a · `1-proj(x̃) = b > a · x̃, we have that x̃k = 0 and `1-proj(x̃)k > 0; since round(`1-proj(x̃)k) =
x̃k = 0, we have `1-proj(x̃)k <

1
2 .

Claim 2 Consider a point x̃ ∈ {0, 1}n.

1. If the objective value of (4) is strictly less than 1
2 , then AltProj(x̃) = x̃.

2. If the objective value of (4) is strictly less than 1, then ‖AltProj(x̃)− x̃‖0 ≤ 1.
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Proof of Claim 2. Let x̄ = `1-proj(x̃) be an optimal solution for (4). Proof of Part 1: the assumption
implies that |x̄i − x̃i| < 1

2 for all i, which directly implies that AltProj(x̃) = round(x̄) = x̃.
Proof of Part 2: the assumption implies that there can be at most one index j with |x̄j − x̃j | ≥ 1

2 ,
which implies that for all i 6= j, AltProj(x̃)i = round(x̄i) = x̃i and the result follows.

Now we are ready to present the proof of Lemma 4.6. Let x∗ and x̃ be as in the statement of the
Lemma. From Lemma 4.3 we know that

AltProj∗(flip(x̃, J)) = AltProj(flip(x̃, J)),

so it suffices to work with the right-hand side instead. Since x̃ 6= x∗ we have supp(x̃) 6= supp(x∗). We
separate the proof in three cases depending on the relationship between these supports.

Case 1: supp(x̃) ( supp(x∗): Pick any j ∈ supp(x∗) \ supp(x̃) and notice that ‖flip(x̃, j) − x∗‖0 =
‖x̃ − x∗‖0 − 1. Notice that both supp(x̃) and supp(flip(x̃, j)) are contained in the support of x∗, and
hence we have ax̃ ≤ b and a · flip(x̃, j) ≤ b. Moreover, since flip(x̃, j) ≥ x̃, it is easy to see that the
optimal value of (4) for flip(x̃, j) is strictly less than that for x̃ (we need to raise fewer variables to make
the point satisfy ax = b), which by Claim 1 is at most 1

2 . Thus, employing Part 1 of Claim 2 to flip(x̃, j)
gives that AltProj(flip(x̃, j)) = flip(x̃, j), which is the desired point closer to x∗.

Case 2: supp(x∗) ( supp(x̃): The proof is the same as above, with the only change that we take
j ∈ supp(x̃) \ supp(x∗).

Case 3: The supports supp(x∗) and supp(x̃) are not contained in one another. In this case ax̃ can be
either < b or > b:

1. If ax̃ < b. Take m ∈ supp(x∗) \ supp(x̃). If a · flip(x̃,m) ≤ b, then we can argue exactly as in Case
1 to get that AltProj(flip(x̃,m)) = flip(x̃,m), which is closer to x∗ than x̃. So consider the case
a · flip(x̃,m) > b. Take i ∈ supp(x̃) \ supp(x∗) and consider flip(x̃, {m, i}), which is 2 units closer
to x∗ in Hamming distance.

We claim that the optimal value of (4) for flip(x̃, {m, i}) is strictly less than 1. Suppose a ·
flip(x̃, {m, i}) ≤ b; since a · flip(x̃,m) > b (notice flip(x̃,m) is obtained from flip(x̃, {m, i}) by
increasing coordinate i to 1), this means that we can make flip(x̃, {m, i}) satisfy ax = b by increasing
coordinate i to a value strictly less than 1, thus upper bounding the optimum of (4). On the other
hand, consider a · flip(x̃, {m, i}) > b; notice a · flip(x̃, i) ≤ a · x̃ < b (the last uses a running
assumption), and thus again we can make flip(x̃, {m, i}) satisfy ax = b by decreasing coordinate m
to a value strictly smaller than 1. This proves the claim.

With this claim in place, we can just employ Part 2 of Claim 2 to flip(x̃, {m, i}) and triangle
inequality to obtain that ‖AltProj(flip(x̃, {m, i}))− x∗‖0 is at most

1 + ‖flip(x̃, {m, i})− x∗‖0 = 1 + ‖x̃− x∗‖0 − 2,

which gives the desired result.

2. If ax̄ > b. The proof of this case mirrors that of the above case (only with the inequalities < and
> reversed throughout).

Notice that since zτ is obtained from AltProj∗(.), it satisfies the fixed point condition AltProj(zτ ) =
zτ . Thus, as long as zτ does not belong to P we can apply the above lemma to obtain that with
probability at least 1

n2 we have I in RandWalkSAT2 equal to the set I in the lemma and thus the
iterate moves closer to a feasible solution; more formally we have the following.

Corollary 4.7. Let x∗ ∈ {0, 1}n be a feasible solution to the subset-sum problem P . Then

Pr
(
‖zτ+1 − x∗‖0 ≤ ‖zτ − x∗‖0 − 1

∣∣∣ zτ /∈ P) ≥ 1

n2
.

Now we can conclude the proof of Theorem 4.2 arguing just like in the proof of Theorem 3.4.
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Proof of Theorem 4.2. Consider x∗ ∈ P and let Zτ = ‖zτ − x∗‖0. Notice that Zτ = 0 implies zτ = x∗

and hence zτ ∈ P . Corollary 4.7 gives that Pr(Zτ+1 ≤ Zτ − 1 | zτ /∈ P ) ≥ 1
n2 . Therefore, if we start at

iteration τ and for all the next Zτ iterations either the iterate zτ
′

belongs to P or the algorithm reduces
Zτ ′ , it terminates by time τ +Zτ . Thus, with probability at least (1/n2)Zτ ≥ (1/n2)n = p the algorithm
terminates by time t+ Zτ ≤ t+ n.

To conclude the proof, let α = bT/nc and call time steps i ·n, . . . , (i+1) ·n−1 the i-th block of time.
From the above paragraph, the probability that there is τ in the ith block of time such that zτ ∈ P
conditioned on zi·n−1 /∈ P is at least p. Using the chain rule of probability gives that the probability
that there is no zτ ∈ P within any of the α blocks is at most (1− p)α. This concludes the proof.

5 Computations

In this section, we describe the algorithms that we have implemented and report computational experi-
ments comparing the performance of the original Feasibility Pump 2.0 algorithm from [FS09], which we
denote by FPorig, to our modified code that uses the new perturbation procedure. The code is based
on the current version of the Feasibility Pump 2.0 code (the one available on the NEOS servers), which is
implemented in C++ and linked to IBM ILOG CPLEX 12.6.3 [ILO] for preprocessing and solving LPs.
All features such as constraint propagation which are part of the Feasibility Pump 2.0 code have been
left unchanged.

All algorithms have been run on a cluster of identical machines, each equipped with an Intel Xeon
CPU E3-1220 V2 running at 3.10GHz and 16 GB of RAM. Each run had a time limit of half an hour.

5.1 WalkSAT-based perturbation

In preliminary tests, we implemented the algorithm WFP as described in the previous section. However,
its performance was not competitive with FPorig. In hindsight, this can be justified by the following
reasons:

• Picking a fixed ` can be tricky. Too small or too big a value can lead to slow convergence in
practical implementations.

• Using RandWalkSAT` at each perturbation step can be overkill, as in most cases the original
perturbation scheme does just fine.

• Computing the minimal certificate is too expensive, as it requires solving LPs.

For the reasons above, we devised a more conservative implementation of a perturbation procedure
inspired by WalkSAT, which we denote by WFPbase. The algorithm works as follows. Let F ⊂ [n]
be the set of indices with positive fractionality |x̃j − x̄j |. If TT ≤ |F |, then the perturbation procedure
is just the original one in FPorig. Else, let S be the union of the supports of the constraints that are
not satisfied by the current point (x̃, ȳ). We select the |F | indices with largest fractionality |x̃j − x̄j | and
select uniformly at random min{|S|, TT −|F |} indices from S, and flip the values in x̃ for all the selected
indices.

Note also that the above procedure applies only to the case in which a cycle of length one is detected.
In case of longer cycle, we use the very same restart strategy of FPorig.

5.2 Computational results

We tested the two algorithms on two classes of models: two-stage stochastic models, and the MIPLIB
2010 dataset.

Two-stage stochastic models. In order to validate the hypothesis suggested by the theoretical re-
sults that our walkSAT-based perturbation should work well on almost-decomposable models, we tested
WFPbase on two-stage stochastic models. These are the deterministic equivalent of two-stage stochastic
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programs and have the form

Ax+Diyi ≤ bi , i ∈ {1, . . . , k}
x ∈ {0, 1}p

yi ∈ {0, 1}q , i ∈ {1, . . . , k}.
The variables x are the first-stage variables, and yi are the second-stage variables for the ith scenario.
Notice that these second-stage variables are different for each scenario, and are only coupled through
the first-stage variables x. Thus, as long as the number of scenarios is reasonably large compared to
dimensions of x, y1, . . . , yk, these problems are to some extent almost-decomposable.

For our experiments we randomly generated instances of this form as follows: (1) the entries in A
and the Di’s are independently and uniformly sampled from {−10, . . . , 10}; (2) to guarantee feasibility,
a 0/1 point is sampled uniformly at random from {0, 1}p+k·q and the right-hand sides bi are set to be the
smallest ones that make this point feasible. We generated 50 instances, 5 for each setting of parameters
k = {5, 15, 25, 35, 45}, p = {10, 20}, q = 10.

We compared the two algorithms FPorig and WFPbase over these instances using ten different
random seeds. A seed by seed comparison is reported in Table 1. In the tables, #found denotes the
number of models for which a feasible solution was found, while time and itr. report the shifted
geometric means [Ach07] of running times and iterations, respectively.

# found time (s) itr.

Seed FPorig WFPbase FPorig WFPbase FPorig WFPbase

1 28 31 4.12 3.36 124.43 76.02
2 26 35 4.06 3.17 122.51 82.85
3 25 37 4.00 3.02 117.74 72.50
4 26 36 4.28 3.40 119.82 75.17
5 25 31 4.20 3.44 124.41 81.66
6 26 35 3.98 3.56 122.74 79.73
7 25 27 4.22 3.98 126.77 91.59
8 28 38 3.82 3.10 112.91 73.92
9 25 31 4.22 3.67 117.61 83.46
10 25 32 4.12 3.57 116.92 88.23

Table 1: Aggregated results on two-stage stochastic models.

Notice that WFPbase performed substantially better than FPorig, in agreement with our theoret-
ical results. Using the walkSAT-based perturbation the average number of successful instances increased
by 28%, while average runtime was reduced by 17% and average number of iterations was reduced by
33%.

MIPLIB 2010. We also compared the algorithms on a subset of models from MIPLIB 2010 [KAA+11].
The subset is defined by the models for which at least one of the two algorithms took more than 20
iterations to find a feasible solution (if any); the remaining models are basically too easy and not useful
for comparing the two perturbation procedures. We are thus left with a subset of 82 models. Again we
compared the two algorithms using ten different random seeds. A seed by seed comparison is reported
in Table 2.

Even though the improvement in this heterogeneous testbed was less dramatic as in the two-stage
stochastic models, as expected, WFPbase still consistently dominates FPorig: it can find more solu-
tions in 7 out 10 cases (in the remaining 3 cases it is a tie), taking always less time and almost always
fewer iterations. On average over the seeds, WFPbase increased the number of successfully solved
instances by 6%, reduced by the computation time by 8.4% and reduced the number of iterations by
5.9%.

In conclusion, given that the suggested modification is very simple to implement, and appears to
dominate FPorig consistently, it suggests it is a good idea to add it as a feature in all future feasibility
pump codes.
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# found time (s) itr.

Seed FPorig WFPbase FPorig WFPbase FPorig WFPbase

1 33 34 1070.35 1068.09 103.38 104.59
2 34 34 1073.03 1004.84 108.65 104.05
3 34 39 1125.44 976.16 107.10 96.18
4 34 36 1045.10 976.31 101.30 96.24
5 31 32 1033.60 974.56 96.67 94.36
6 34 34 974.47 880.05 99.61 91.20
7 33 36 972.96 877.45 102.39 95.04
8 29 32 1085.82 1049.22 104.63 103.22
9 37 37 1065.50 937.19 101.44 91.73
10 32 37 1096.99 913.50 103.01 90.85

Table 2: Aggregated results on MIPLIB2010.
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Appendix

A Minimal projected certificates can be found in polynomial
time

Consider the following LP:

max λAx̄− λb
s.t. BTλ = 0

eTλ = 1

λ ≥ 0,

where e is the all-ones vector. Since we assumed a projected certificate exists, this LP is feasible and has
strictly positive optimal value.

An optimal extreme point solution provides a projected certificate that can be computed in polynomial
time [Sch86]; we just need to verify that there cannot exist a projected certificate with smaller support.

Let λ∗ be an extreme point optimal solution, and by contradiction assume that λ̃ gives a projected
certificate and is such that supp(λ̃) is strictly contained in supp(λ∗). Since λ̃ ≥ 0 and also different from

0, by scaling we can assume without loss of generality that eT λ̃ = 1, and thus λ̃ is a feasible solution for
the LP above. This implies that

BT
(
λ∗ − λ̃

)
= 0

eT
(
λ∗ − λ̃

)
= 0,

so the assumption supp(λ̃) ( supp(λ∗) implies that the columns of the matrix

[
BT

eT

]
in the support of

λ∗ are linearly dependent. But since λ∗ is an extreme point, it is a basic solution, namely the columns
of the matrix in the support of λ∗ are linearly independent. This reaches a contradiction and concludes
the proof.

B Original Feasibility Pump stalls even when flipping variables
with zero fractionality is allowed

In Section 2 we showed that the original Feasibility Pump without restarts may stall; we now show that
this is still the case even if variables with zero fractionality can be flipped in the perturbation step.

Let TT , the number of variables to be flipped, be randomly selected from the set [t, T ] ∩ Z, where
T ∈ Z++ is a pre-determined constant in the FP code (independent of the instance). Moreover assume
the reasonable convention that for two variables with equal fractionality, we break ties using their index
number, that is, if the xi and xj have the same fractionality and i < j, then xi is picked before xj to be
flipped.

Consider the following subset-sum problem:

max xT+2

s.t. 5x1 + · · ·+ 5xT+1 + 2xT+2 = 5T + 5

xi ∈ {0, 1} ∀ i ∈ [T + 2]

Clearly the LP optimal solution x̄0 is of the form x̄0
T+2 = 1, x̄0

i = 3
5 for some i ∈ [T + 1] and x̄0

j = 1

for all j ∈ [T + 1] \ {i}. Rounding this we obtain x̃0 which is of the form x̃0
T+2 = 1 and x̃0

j = 1 for all

j ∈ [T + 1]. It is also straightforward to verify that x̃0 is a stalling solution (see Definition 4.5). So that
algorithm randomly selects TT from the set [t, T ] ∩ Z and flips TT variables. Note that only xi has a
fractionality of | 35 − 1| and all the other variables have a fractionality of 0 for some i ∈ [T + 1]. So using
the convention for breaking ties, we flip xi and TT − 1 other variables. Since TT ≤ T < T + 1, the new
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point x̃ is of the form x̃T+2 = 1 and x̃j = 0 for j ∈ S ⊆ [T + 1] and x̃j = 1 for j ∈ [T + 1] \ S. (Note
that S can also be ∅ since we make no assumption on t).

First note that x̃ is not a feasible solution since x̃T+2 = 1. Moreover,

1. If S = ∅, then x̃ = x̃0, a stalling solution visited before.

2. If S 6= ∅, then 5x̃1 + · · ·+ 5x̃T+1 + 2x̃T+2 < 5T + 5 and on projecting to the LP relaxation we will
obtain a point of the form of x̄0. Rounding this again gives us x̃0, a stalling solution visited before.

This completes the proof.

C No long cycles in stalling

Lemma C.1. Suppose that following is a sequence of points visited by Feasibility Pump (without any
randomization):

(x̄1, ȳ1)→ (x̃1, ȳ1)→ (x̄2, ȳ2)→ (x̃2, ȳ2),

where (x̄i, ȳi), i ∈ {1, 2} are the vertices of the LP relaxation, x̃i, i ∈ {1, 2} are 0 − 1 vectors, x̃i =
round(x̄i) and (x̄2, ȳ2) = `1-proj(x̃1, ȳ1). Then,

‖x̄1 − x̃1‖1 ≥ ‖x̄2 − x̃2‖1.

Proof. This result holds due to the fact that we are sequentially projecting using the same norm. In
particular, we have that

‖x̄1 − x̃1‖1 ≥ ‖x̄2 − x̃1‖1,

since (x̄2, ȳ2) = `1-proj(x̃1, ȳ1), i.e., x̄2 is a closest point in l1-norm to x̃1 in the projection of the LP
relaxation in the x-space. Then

‖x̄2 − x̃1‖1 ≥ ‖x̄2 − x̃2‖1,

since x̃1 and x̃2 are both integer points and x̃2 is obtained by rounding x̄2 (and a rounded point is the
closest integer point in `1 norm).

A long cycle in feasibility pump is a sequence

(x̄1, ȳ1)→ (x̃1, ȳ1)→ (x̄2, ȳ2)→ (x̃2, ȳ2)→ . . . (x̄k, ȳk)→ (x̃k, ȳk)

where

1. (x̄i, ȳi), i ∈ {1, 2, . . . , k} are the vertices of the LP relaxation, x̃i, i ∈ {1, 2, . . . , k} are 0− 1 vectors,
x̃i = round(x̄i) and (x̄i+1, ȳi+1) = `1-proj(x̃i, ȳi),

2. x̃1, x̃2, . . . , x̃k−1 are unique integer vectors,

3. x̄1 = x̄k, x̃1 = x̃k, and

4. k ≥ 3.

The statement of Theorem 4.1 is that such a scenario cannot occur, assuming 0.5 is always rounded
consistently.

Proof of Theorem 4.1. Without loss of generally, we assume that 0.5 is rounded up to 1. Consider the
sub-sequence (x̄i, ȳi)→ (x̃i, ȳi)→ (x̄i+1, ȳi+1)→ (x̃i+1, ȳi+1). By Lemma C.1, since there is cycling, we
have that

‖x̄i − x̃i‖1 = ‖x̄i+1 − x̃i‖1 = ‖x̄i+1 − x̃i+1‖1.

For simplicity and without loss of generality, we may assume that x̃i is the all ones vector. (This can
be achieved by reflecting on coordinates the LP relaxation and the [0, 1]n hypercube. Note that under
such mappings, the sequence of points in feasibility pump will not be altered. Moreover, a point with
value 0.5 in some coordinates I ⊆ [n] will be mapped to a point with 0.5 in the coordinates I.)
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Let ∅ 6= J ⊆ [n] be the set of indices where x̃ij 6= x̃i+1
j , that is x̃i+1

j = 0 for all j ∈ J . Since

‖x̄i+1 − x̃i‖1 = ‖x̄i+1 − x̃i+1‖1, we have

n∑
j=1

(1− x̄i+1
j ) =

∑
j∈[n]\J

(1− x̄i+1
j ) +

∑
j∈J

x̄i+1
j

⇔
∑
j∈J

x̄i+1
j =

|J |
2
. (5)

Now observe that since x̃i+1
j = 0 for j ∈ J , we must have that x̄i+1

j < 0.5 for all j ∈ J . This contradicts,
(5).
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