Self-splitting of workload in parallel computation

Matteo Fischetti, Michele Monaci, and Domenico Salvagnin

DEI, University of Padova,
{matteo .fischetti,michele.monaci,domenico. salvagnin}@unipd .it

Abstract. Parallel computation requires splitting a job among a set of
processing units called workers. The computation is generally performed
by a set of one or more master workers that split the workload into
chunks and distribute them to a set of slave workers. In this setting,
communication among workers can be problematic and/or time consum-
ing. Tree search algorithms are particularly suited for being applied in a
parallel fashion, as different nodes can be processed by different workers
in parallel. In this paper we propose a simple mechanism to convert a se-
quential tree-search code into a parallel one. In the new paradigm, called
SelfSplit, each worker is able to autonomously determine, without any
communication with the other workers, the job parts it has to process.
Computational results are reported, showing that SelfSplit can achieve
an almost linear speedup for hard Constraint Programming applications,
even when 64 workers are considered.

1 Introduction

Parallel computation requires splitting a job among a set of workers. A commonly
used parallelization paradigm is MapReduce [1]. According to the MapReduce
paradigm, the overall computation is organized in two steps, and performed
by two user-supplied operators, namely, map() and reduce(). The MapReduce
framework is in charge of splitting the input data and dispatching it to an appro-
priate number of map workers, and also of the shuffling and sorting necessary
to distribute the intermediate results to the appropriate reduce workers. The
output of all reduce workers is finally merged. This scheme is very well suited
for applications with a very large input that can be processed in parallel by a
large number of mappers, while producing a manageable number of intermediate
parts to be shuffled. However, the scheme may introduce a large overhead due to
the need of heavy communication/synchronization between the map and reduce
phases.

A different approach is based on work stealing [2,3,4]. The workload is ini-
tially distributed to the available workers. If the splitting turns out to be unbal-
anced, the workers that have already finished their processing steal part of the
work from the busy ones. The process is periodically repeated in order to achieve
a proper load balancing. Needless to say, this approach can require a significant
amount of communication and synchronization among the workers.

Tree search algorithms are particularly suited for being applied in a parallel
fashion, as different nodes can be processed by different workers in parallel.

However, traditional schemes can require an elaborate load balancing strategy, in
which the set of active nodes is periodically distributed among the workers [5,6,7],
in a work stealing fashion. Depending on the implementation, this may yield
a deterministic or a nondeterministic algorithm, with the deterministic option
being in general less efficient because of synchronization overhead. In any case, a
non-negligible amount of communication and synchronization is needed among
the workers, with negative effects on scalability [8,9].

Recently, strategies that try to overcome the traditional drawbacks of the
work stealing approach within enumeration algorithms have been proposed. In
particular, in [10] a master problem enumerates the partial solutions associated
with a subset of the variables of the problem to solve, each of which will be later
processed by a worker; the number of variables to consider is chosen in such a
way to have significantly more subproblems than workers. All subproblems are
put into a queue and distributed to workers as needed (usually, a subproblem is
assigned to a given worker as soon as the worker is idle). In [11], a parallelization
strategy for LDS [12] is presented, in which the leaves of the complete LDS tree
are deterministically assigned to the workers, and each worker processes a subtree
only if it contains a leaf assigned to it. These strategies share some similarities
with our approach, although some important differences remain.

In the present paper we show how to modify a given deterministic (sequential)
tree-search algorithm to let it run on a set of workers. The main features of the
approach, that we call SelfSplit, are that

1. each worker works on the whole input data and is able to autonomously
decide the parts it has to process;

2. almost no communication between the workers is required;
3. the resulting algorithm can be implemented to be deterministic;

4. in most cases, the modification only requires a few lines of codes.

The above features make SelfSplit very well suited for those applications
in which encoding the input and the output of the problem requires a reason-
ably small amount of data (i.e., it can be handled efficiently by a single worker),
whereas the execution of the job can produce a very large number of time-
consuming job parts. This is indeed the case when using an enumerative method
to solve an NP-hard problem. As such our method is well suited for, but not lim-
ited to, High Performance Computing (HPC) applications including Constraint
Programming (CP) and Mixed Integer Programming (MIP), whereas approaches
based on the MapReduce paradigm are more suited for Big Data applications.

The outline of the paper is as follows. Section 2 describes the basic self-
splitting idea for tree search algorithms, along with possible variants aimed at
improving load balancing, while Section 3 describes possible implementation
strategies. Section 4 reports computational experiments of the application of
the above technique within a CP solver. Finally, in Section 5 we draw some
conclusions and outline future research directions.

2 SelfSplit paradigm

SelfSplit addresses the parallelization of a given deterministic algorithm, called
the original algorithm in what follows, that solves a given problem by breaking it
into subproblems called nodes. In this paper we will only deal with original algo-

rithms of enumeration type (branch-and-bound or alike), but other applications
of SelfSplit are possible.

(1,K) (2,K) (K,K)

\
O

2.1 The idea

Final Output

Fig. 1. Illustration of the SelfSplit paradigm.

Figure 1 illustrates our self-splitting method to parallelize an enumerative
original algorithm.

a) Each worker reads the original input data and receives an additional input
pair (k, K), where K is the total number of workers and k € {1,--- , K}
identifies the current worker. The input is assumed to be of manageable size,
so no parallelization is needed at this stage.

b) The same deterministic computation is initially performed, in parallel, by all
workers. This initial part of the computation is called sampling phase and
is illustrated in the figure by the fact that exactly the same enumeration

tree is initially built by all workers. No communication at all is involved in
this stage. It is assumed that the sampling phase is not a bottleneck in the
overall computation, so the fact that all workers perform redundant work
introduces an acceptable overhead.

¢) When enough open nodes have been generated, the sampling phase ends
and each worker applies a deterministic rule to identify and solve the nodes
that belong to it (gray subtrees in the figure), without any redundancy. No
communication among workers is involved in this stage. It is assumed that
processing the subtrees is the most time-consuming part of the algorithm, so
the fact that all workers perform non-overlapping work is instrumental for
the effectiveness of the self-splitting method.

d) When a worker ends its own job, it communicates its final output to a merge
worker that process it as soon as it receives it. The merge worker can in
fact be one of the K workers, say worker 1, that merges the output of the
other workers after having completed its own job. We assume that output
merging is not a bottleneck of the overall computation, as it happens, e.g., for
enumerative algorithms where only the best solution found by each worker
needs to be communicated.

Note that all steps but d) requires absolutely no communication among work-
ers. SelfSplit is therefore very well suited for those computational environ-
ments where communication among workers is time consuming or unreliable as,
e.g., in a large computational grid where the workers run in different geographi-
cal areas—a relevant context being cloud computing, or a constellation of mobile
devices.

Though very desirable, the absence of communication implies the risk that
workload is quite unbalanced, i.e., lucky and unlucky workers can finish their
computation at very different points in time. To contrast this drawback, our
recipe, as in [10], is to keep a significant number of open nodes for each worker
after sampling, so as to increase the chances that workload is split in a fair way.
More sophisticated rules can also be applied, as described later on.

2.2 Vanilla algorithm
In its simplest version, our method modifies the original algorithm as follows:

1. Two integer parameters (k, K) are added to the original input: K denotes the
number of workers, while k£ is an index that uniquely identifies the current
worker (1 <k < K).

2. A global flag ON_SAMPLING is introduced and initialized to true. The flag
becomes false when a given condition is met, e.g., when there are enough
open nodes in the branch-and-bound tree. When the flag ON_SAMPLING
is set to false we say that the sampling phase is over.

3. Each time a node n is created, it is deterministically assigned a color c(n)
which is a pseudo-random integer in {1,--- , K} during the sampling phase,
and ¢(n) = k otherwise.

4. Whenever the modified algorithm is about to process a node n, condition
(- ON_SAMPLING) A (¢(n) # k)

is evaluated. If the condition evaluates to true, node n is just discarded, as
it corresponds to a subproblem assigned to a different worker; otherwise, the
processing of node n continues as usual and no modified action takes place.

Each worker executes exactly the same algorithm, but receives a different
input value for k. The above method ensures that each worker can autonomously
and deterministically identify and skip the nodes that will be processed by other
workers, and each node is covered by (at least) one worker. A similar strategy is
exploited in [11], where however the details of the split are very much dependent
of the LDS algorithm, and cannot be easily (and efficiently) generalized to an
arbitrary tree search algorithm.

Load balancing is automatically obtained by the modified algorithm in a
statistical sense: if the condition that triggers the end of the sampling phase is
chosen appropriately, then the number of subproblems to distribute is signif-
icantly larger than the number of workers K, thus it is unlikely that a given
worker will be assigned much more work to do than any other worker. Static de-
composition and statistical load balancing were also at the base of the method
proposed in [10], with some key differences:

— a master process is used to generate the subproblems to distribute. Enumer-
ation in the master problem is more static than in SelfSplit, and some
communication is needed to distribute the subproblems;

— open problems are dynamically assigned to idle workers as soon as they
become available, which again requires some communication;

— the algorithm in [10] is non-deterministic because of dynamic scheduling.

SelfSplit is straightforward to implement if the original deterministic al-
gorithm is sequential, and the random/hash function used to color a node is
deterministic and identical for all workers. The algorithm can however be ap-
plied even if the original deterministic algorithm is itself parallel, provided that
the pseudo-random coloring at Step 3 is done right after a synchronization point.

2.3 Paused-node queue algorithm

A slightly more elaborate version, aimed at improving workload balancing among
workers, can be devised using an auxiliary queue S of paused nodes. The modified
algorithm reads as follows:

1. As before, two integer parameters (k, K) are added to the original input.

2. A paused-node queue S is introduced and initialized to empty.

3. Whenever the modified algorithm is about to process a node n, a boolean
function NODE_PAUSE(n) is called: if NODE_PAUSE(n) is true, node n is
moved into S and the next node is considered; otherwise the processing of
node n continues as usual and no modified action takes place.

4. When there are no nodes left to process, the sampling phase ends. All nodes
n in S, if any, are popped out and assigned a color ¢(n) between 1 and K,
according to a deterministic rule.

5. All nodes n whose color ¢(n) is different from the input parameter k are just
discarded. The remaining nodes are processed (in any order and possibly in
a nondeterministic way) till completion.

Because it has access to all the nodes in S, the coloring phase at Step 4 has
more chances to determine a balanced workload split among the workers than
its “vanilla” counterpart”, at the expense of a slightly more elaborate implemen-
tation.

3 Implementation details

We will next give more details about the application of our method within an
enumerative method for optimization problems. We will focus on the version
exploiting the queue S of paused nodes. In this version, both the decision of
moving a node into S as well as the color actually assigned to a node are based
on an estimate of the computational difficulty of the node. The idea is to move a
node in S if it is expected to be significantly easier than the root node (original
problem), but not too easy as this would lead to an exceedingly time-consuming
sampling phase.

Within NODE_PAUSE, a rough estimate of the difficulty of a node can be
obtained by computing the logarithm of the cardinality of the Cartesian product
of the current domains of the variables, to be compared with the same measure
computed at the end of the root node—for problems involving binary variables
only, this figure coincides with the number of free variables at the node. To
cope with the intrinsic approximation involved in this estimate, the following
adaptive scheme can be used to improve SelfSplit robustness. At the end of
the sampling phase, if the number of nodes in S is considered too small for the
number K of available workers, then the internal parameters of NODE_PAUSE
are updated in order to make the move into the queue S less likely, and the
sampling procedure is continued after putting the nodes in S back into the
branch-and-bound queue—or the overall method is just restarted from scratch.

As to node coloring, in our implementation the color ¢(n) associated with
each node n in S is obtained in three steps: (1) compute a score estimating the
difficulty of each node n, (2) sort the nodes by decreasing scores, and (3) assign
a color ¢ between 1 and K, in round-robin, so as to split node scores evenly
among workers.

4 SelfSplit for Constraint Programming

We implemented SelfSplit within the CP solver Gecode 4.0 [13]. While the
most natural option is to implement the scheme as a search engine, we opted
for implementing self-splitting as a custom constraint propagator. This is only

because we found the implementation much easier: implementing search engines
is somewhat more involved, and requires some expertise in Gecode programming.
In addition, our proof of concept implementation shows that the method can
be implemented with very limited effort. Of course, different implementation
strategies for different solvers can be devised.

Our global constraint, node_pause, is implemented as a generic n-ary prop-
agator, that takes on input an array x of variables, a pointer to the queue S
to store delayed nodes, a measure of node difficulty Vj computed from the do-
mains of the variables in z at the root node, and a threshold #. Each time the
propagate method of our propagator is called, the node-difficulty measure V' is
computed based on the local domains of the variables in x, and the resulting
value is compared with Vy. If their ratio is greater than 6, then the local do-
mains of the variables x are copied into a custom node class, which is stored in
S, and the propagator returns a failure in order to kill the node. Otherwise, we
just return. Note that this implementation is compatible with Gecode copy and
recomputation backtracking model.

We next address the computation of the node-difficulty estimate within
NODE_PAUSE, namely, the logarithm of the cardinality of Cartesian product of
the variable domains. We provide an implementation both for arrays of integer
variables and for arrays of set variables.

In the integer case, for each variable x; in x we consider its current domain
as a list of ranges {[lf,ué““k € K;}, as implemented in Gecode. As such, the
contribution of variable z; to the difficulty measure can be computed as

log, Z (u;C - lf +1)
keEK;

which is a refinement of the simpler expression log,(u; — [; + 1).
In the set case, Gecode approximates the domain of a variable x; with three
pieces of information:

i) a set of elements glb; which is known to be contained in any feasible value
for z;, i.e., glb; C x;
ii) a set of elements lub; which is known to contain any feasible value for x;,
i.e., Z; Q lubj
iii) bounds (m,, M;) on the cardinality of z, i.e., m; < |x;| < M;.

With this encoding, we can compute the contribution of variable x; as

Mj*l’u,bj

lub; \ glb;
log, Z <| J>9 J|)

i=m;—|glb|

Note that the above expression can become expensive to compute, and prone to
overflow for even modest values of |lub; \ glb,|. For this reason, if the resulting
number is greater than 64 we use the valid upper bound |[lub; \ glb;|.

The overall scheme is implemented as follows:

— the model to solve is coded into a C++ class (as usually done in Gecode)
and the node_pause constraint is added to the model with the appropri-
ate parameters. Note that the array z of variables that are considered for
computing the measure of difficulty of the current subproblem is possibly a
subset of the whole set of variables, chosen by exploiting knowledge about
the model. We do not consider this an issue, since modeling a problem in
Gecode requires some problem-specific coding in any case;

— the model (with the node_pause) propagator is completely enumerated (sam-
pling phase);

— the nodes collected in S that survive the coloring phase are used to con-
struct new models, copying the domains from the nodes, each of which is
enumerated by Gecode. Note that the propagator node_pause is not used in
this phase.

To avoid to have too few nodes in S after the sampling phase, we implemented
the following simple adaptive mechanism, along the lines of the previous section.
The boolean value returned by NODE_PAUSE(n) is true when the difference
between the estimated difficulty of the root node and that of node n, computed
as outlined above, is greater or equal to § = 10 (corresponding to a reduction
of the cardinality of the Cartesian product of at least 1,024 times). When the
sampling phase is over, if |S| < 2000 then 6 is doubled and the overall method
is just restarted.

We tested our implementation on several instances taken from the repository
of modeling examples bundled with Gecode. Since we are interested in measuring
the scalability of our method, we considered only instances which are either
infeasible or in which we are required to find all feasible solutions (the parallel
speedup for finding a first feasible solution can be completely uncorrelated to the
number of workers, making the results hard to analyze). On some instances we
added some form of symmetry breaking constraints in order to make the search
for all solutions more efficient. We ran our method with number of workers
K € {1,4,16,64}. Each worker is configured to use only a single thread: this is
because a deterministic behavior is needed for correctness in the sampling phase,
and it also makes the results more easily reproducible.

Detailed results are available in Table 1. According to the table, even on
moderately easy instance requiring half a minute to solve, SelfSplit can achieve
an almost linear speedup with up to 16 workers, and the speedup is still good
for K = 64. On harder instances, the method scales almost linearly also with 64
workers. In all cases, the resulting algorithm is deterministic. Note that, despite
the fact that our instances are very different, we used exactly the same parameter
tuning on all of them, showing that the method is quite robust.

5 Conclusions and future work

We have presented SelfSplit, a new deterministic and (almost) communication
free parallelization paradigm for tree search methods. The idea is that a given
deterministic algorithm can easily be parallelized by letting each processing unit

Table 1. Measuring scalability with Gecode.

time (s) speedup
instance K=1 K=14 K =16 K =64
golomb_12 41.5 3.84 14.31 41.50
golomb_13 1195.8 4.00 15.67 57.49
golomb_14 19051.9 3.97 15.71 61.34
partition_16 30.0 3.75 13.64 46.15
partition_18 354.8 3.90 14.78 54.58
partition_20 4116.4 3.86 15.64 59.40
ortholatin b 29.3 3.89 13.95 36.63
sports_10 98.7 3.91 14.51 44.86
hamming 7 4_10 32.3 3.85 14.04 40.38
hamming_7_3_6 2402.4 3.91 15.44 59.76

autonomously decide which are the parts of work it can skip as they will be
performed by other units. This is achieved without any communication among
the units, and only requires a same deterministic selection rule be applied by all
units in the early part of the computation.

A main feature of the method is that exactly the same code is run indepen-
dently by all units, without the need of any external coordination nor master-
slave hierarchy—the work gently “splits itself” over the units. As a consequence,
SelfSplit is very well suited for HPC on a computational grid (or cloud) where
the processing units are geographically distributed and communication is expen-
sive or unreliable, and task synchronization becomes a bottleneck of the overall
computation.

Two different implementations of SelfSplit have been outlined, that only
require minor changes of the deterministic algorithm to be parallelized. Com-
putational results on a Constraint Programming implementation on top of an
open-source solver show that an almost linear speedup can be achieved, even
on 64 processing units, without any communication among them—besides the
final merge of the solution(s) returned by each unit, and still with deterministic
behavior.

A practically very important feature of SelfSplit is that it often requires
just minor code changes. As an exercise, we took the Asymmetric TSP sequential
codes in [14] (pure branch-and-bound) and in [15] (branch-and-cut code), which
are optimized yet legacy FORTRAN codes. We parallelized them by using the
SelfSplit approach, adding about 10 new lines of codes in the both cases,
obtaining surprisingly good speedups.

Because of lack of communication among workers, SelfSplit can turn out
to be not suitable for solvers that collect/learn important global information
during the search, as this information can be crucial to reduce the search tree.
Observe however that some solvers—notably, MIP branch-and-cut methods—do
in fact collect their main global information (cuts, pseudocosts, incumbent, etc.)

in their early nodes, i.e., during sampling, thus all such information is automat-
ically available to all workers. Therefore, performing the sampling phase redun-
dantly in parallel by all workers has the advantage of sharing a potentially big
amount of global information without communication—a distinguishing feature
of SelfSplit. In any case, for those solvers a limited amount of communication
(e.g., of the incumbent value) can be advisable.

Possible SelfSplit variants to be addressed in future work are outlined

below:

2)

SelfSplit can be run with just K/ < K workers, with input pairs (1, K),
(2,K), -+, (K', K). In this case the overall procedure is heuristic in nature,
meaning that some nodes will not be explored by any worker (namely, those
with color ¥ = K’ + 1,---, K). This setting is particularly attractive for
the parallelization of heuristics for optimization/feasibility problem, as it
guarantees that the solution spaces explored (exactly or heuristically) by
the K’ workers after sampling is non-overlapping—though their union does
not necessarily cover the whole solution space.

The previous variant of running K’ < K workers can also be used to obtain a
lower bound on the amount of computing time needed to solve the problem
with K workers (just take the maximum computing time among the K’
workers) as well as an estimate of the amount of computing time 77 needed
to solve the problem with the original (unmodified) algorithm by a single
worker, e.g., through the simple formula

T,=T,+K-T

where T, is the sampling time and T is the average time spent by a worker
after sampling.

SelfSplit can also be used to split the overall workload into K chunks
to be solved at different points in time by a single (or few) worker(s), thus
implementing a simple strategy to pause and resume the overall computation.
This is also beneficial in case of failures, as it allows one to re-execute the
affected chunks only.

A limited amount of communication may be introduced between the work-
ers after the sampling and coloring phases. This communication is meant to
exchange globally valid information, such as the primal bound in an enumer-
ative scheme, which can be used to avoid unnecessary work. For example, if
a feasibility problem is addressed, as soon as a worker finds the first feasible
solution all the other workers can be interrupted as the overall problem is
solved. Similarly, if the incumbent is periodically shared among the workers,
each worker can be interrupted in case its own best bound is worse than the
incumbent value. If the incumbent is not used in any other way, the search
path followed by each workers is not affected by communication and each
worker behaves deterministically till its own abort point.

Workers can be allowed to (periodically) communicate to deal with failures
in the computational environment that require re-running a certain (k, K)
pair.

f) After sampling, each worker can decide not to discard the nodes that have

two or more colors ¢y, ca, ..., ¢y, Where ¢; = k and the other colors ¢, - - - , ¢,
are selected according to some rules. In this case some redundant work is
performed by the workers, e.g., with the aim of coping with failures in the
computational environment. The final merge worker can stop the overall
computation when all colors have been processed by some worker, even if
other workers are still running or were aborted for whatever reason. Alterna-
tively, two or more workers with the same (k, K) pair can be run, in parallel,
making the event that all of them fail very unlikely, and still keeping the
communication overhead negligible.

References

10.

11.

12.

13.

14.

. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

CACM 51(1) (2008) 107-113

. Grama, A., Kumar, V.: State of the art in parallel search techniques for discrete

optimization problems. IEEE Trans. Knowl. Data Eng 11(1) (1999) 28-35
Michel, L., See, A., Hentenryck, P.V.: Transparent parallelization of constraint
programming. INFORMS Journal on Computing 21(3) (2009) 363-382

Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel
constraint programming. In Gent, I.LP., ed.: CP 2009. Volume 5732., Springer
(2009) 226241

Bordeaux, L., Hamadi, Y., Samulowitz, H.: Experiments with massively parallel
constraint solving. In Boutilier, C., ed.: IJCAI 2009. (2009) 443-448

Gent, I.P.; Jefferson, C., Miguel, 1., Moore, N.C., Nightingale, P., Prosser, P.,
Unsworth, C.: A preliminary review of literature on parallel constraint solving.
In: Proceedings PMCS 2011 Workshop on Parallel Methods for Constraint Solv-
ing. (2011)

Shinano, Y., Heinz, S., Vigerske, S., Winkler, M.: Fiberscip — a shared memory
parallelization of scip. Technical report, ZIB (2013)

Koch, T., Ralphs, T.K., Shinano, Y.: Could we use a million cores to solve an
integer program? Mathematical Methods of Operations Research 76(1) (2012)
67-93

Achterberg, T., Wunderling, R.: Mixed integer programming: Analyzing 12 years
of progress. In: Facets of Combinatorial Optimization. (2013) 449-481

Régin, J.C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In Schulte,
C., ed.: Principles and Practice of Constraint Programming. Volume 8124 of Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg (2013) 596-610
Moisan, T., Gaudreault, J., Quimper, C.G.: Parallel discrepancy-based search. In
Schulte, C., ed.: CP. Volume 8124 of Lecture Notes in Computer Science., Springer
Berlin Heidelberg (2013) 30-46

Harvey, W.D., Ginsberg, M.L.: Limited discrepancy search. In: IJCAI 1995. (1995)
607-615

Gecode Team: Gecode: Generic constraint development environment (2012) Avail-
able at http://www.gecode.org.

Fischetti, M., Toth, P.: An additive bounding procedure for the asymmetric trav-
elling salesman problem. Mathematical Programming 53 (1992) 173-197

15. Fischetti, M., Lodi, A., Toth, P.: Exact methods for the asymmetric traveling
salesman problem. In: The traveling salesman problem and its variations. Springer
US (2004) 169205

	Self-splitting of workload in parallel computation

