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Abstract. SelfSplit is a simple mechanism to convert a sequential
tree-search code into a parallel one. In this paradigm, tree-search is dis-
tributed among a set of workers, each of which is able to autonomously
determine—without any communication with the other workers—the job
parts it has to process. SelfSplit already proved quite effective in paral-
lelizing Constraint Programming solvers. In the present paper we investi-
gate the performance of SelfSplit when applied to a Mixed-Integer Lin-
ear Programming (MILP) solver. Both ad-hoc and general purpose MILP
codes have been considered. Computational results show that SelfSplit,
in spite of its simplicity, can achieve good speedups even in the MILP
context. The role of performance variability in limiting scalability is also
discussed.

1 Introduction

Parallel computation requires splitting a job among a set of workers. A commonly
used parallelization paradigm is MapReduce [8], which is very well suited for
applications with a very large input that can be processed in parallel by a large
number of mappers, while producing a manageable number of intermediate parts
to be shuffled. However, the scheme may introduce a large overhead due to
the need of heavy communication/synchronization between the map and reduce
phases.

A different approach is based on work stealing [18,25,7]. The workload is
initially distributed to the available workers. If the splitting turns out to be
unbalanced, the workers that have already finished their processing steal part
of the work from the busy ones. The process is periodically repeated in order
to achieve a proper load balancing. Needless to say, this approach can require a
significant amount of communication and synchronization among the workers.

Tree search algorithms are particularly suited for being applied in a paral-
lel fashion, as different nodes can be processed by different workers in paral-
lel. Although different strategies have been proposed and developed during the
years [30,20], eventually traditional schemes have converged into a work stealing
approach, in which the set of active nodes is periodically distributed among the
workers [5,16,28], thus requiring an elaborate load balancing strategy. Depend-
ing on the implementation, this may yield a deterministic or a nondeterministic
algorithm, with the deterministic option being in general less efficient because



of synchronization overhead. In any case, a non-negligible amount of communi-
cation and synchronization is needed among the workers, with negative effects
on scalability [23,1].

Recently, strategies that try to overcome the traditional drawbacks of the
work stealing approach within enumeration algorithms have been proposed.

A parallelization scheme for branch-and-bound algorithms is given in [24],
where tree nodes are first collected by a master solver and then distributed to
the available workers so as to balance the worklaod. The effectiveness of the
approach was computationally evaluated on simple branch-and-bound codes for
three specific optimization problems (quadratic assignment, graph partitioning,
and weighted vertex cover).

As to CP solvers, in [27] a master problem enumerates the partial solutions
associated with a subset of the variables of the problem to solve, each of which
will be later processed by a worker; the number of variables to consider is chosen
in such a way to have significantly more subproblems than workers. All sub-
problems are put into a queue and distributed to workers as needed (usually, a
subproblem is assigned to a given worker as soon as the worker is idle). In [26], a
parallelization strategy for limited discrepancy search (LDS) [19] is presented, in
which the leaves of the complete LDS tree are deterministically assigned to the
workers, and each worker processes a subtree only if it contains a leaf assigned
to it.

In [12] we showed how to modify a given deterministic (sequential) tree-
search algorithm to let it run on a set of, say, K workers. The approach, called
SelfSplit, is in the spirit of [24] and is based on the following main features:

1. each worker works on the whole input data and is able to autonomously
decide the parts it has to process;

2. in the initial sampling phase, all workers execute exactly the same search
and generate the same tree nodes;

3. after the sampling phase, each worker skips the nodes that “belong to the
other workers” (according to some deterministic rules);

4. no communication between the workers is required (besides the final selection
of the best solution);

5. the resulting algorithm can be implemented to be deterministic;
6. in most cases, the modification only requires a few lines of codes.

The results reported in [12] show that SelfSplit is in fact very well suited
for Constraint Programming applications. Indeed, SelfSplit was implemented
within the CP solver Gecode 4.0 [15], and tested on several instances taken from
the repository of modeling examples bundled with Gecode. As the goal of [12]
was to measure the scalability of the method, only some specific instances were
addressed, namely instances which are either infeasible or in which one is re-
quired to find all feasible solutions – as the parallel speedup for finding a first
feasible solution can be completely uncorrelated to the number of workers, mak-
ing the results hard to analyze. The SelfSplit algorithm was ran with number
of workers K ∈ {1, 4, 16, 64}. Each worker was configured to use only a single
thread, to guarantee a deterministic behavior during the sampling phase, and



hence the correctness of the algorithm. According to Table 1 (taken from [12])
even on moderately easy instances, that can be solved less than one minute,
SelfSplit can achieve an almost linear speedup with up to 16 workers, and the
speedup is still good for K = 64. On harder instances, the method scales almost
linearly also with 64 workers. In all cases, the resulting algorithm is deterministic.

Table 1. Speedups for the Constraint Programming solver Gecode.

time (s) speedup
instance K = 1 K = 4 K = 16 K = 64

golomb 12 41.5 3.84 14.31 41.50
golomb 13 1,195.8 4.00 15.67 57.49
golomb 14 19,051.9 3.97 15.71 61.34
partition 16 30.0 3.75 13.64 46.15
partition 18 354.8 3.90 14.78 54.58
partition 20 4,116.4 3.86 15.64 59.40
ortholatin 5 29.3 3.89 13.95 36.63
sports 10 98.7 3.91 14.51 44.86
hamming 7 4 10 32.3 3.85 14.04 40.38
hamming 7 3 6 2,402.4 3.91 15.44 59.76

Because of lack of communication among workers, one could argue that
SelfSplit is not suitable for solvers that collect/learn important global infor-
mation during the search, as this information can be crucial to reduce the search
tree. A notable example is Mixed-Integer Linear Programming (MILP), whose
solvers are in fact very hard to parallelize. We note however that most MILP
solvers—including branch-and-cut methods—do in fact collect their main global
information (cuts, pseudocosts, incumbent, etc.) in their early nodes, i.e., dur-
ing sampling, thus all such information is automatically available to all workers.
Therefore, performing the sampling phase redundantly in parallel by all work-
ers has the advantage of sharing a potentially big amount of global information
without communication—a distinguishing feature of SelfSplit.

In the present paper we investigate the potential of SelfSplit in a MILP
context. We first report artificial experiments aimed at studying the SelfSplit

behavior “in vitro”. The role of performance variability in limiting scalability
is also investigated. We then address the actual parallelization of both ad-hoc
and general purpose MILP solvers, namely (i) the branch-and-bound code for
the Asymmetric Traveling Salesman Problem (ATSP) of [13], (ii) the more-
sophisticated ATSP branch-and-cut algorithm given in [14,10], and (iii) the
general-purpose commercial MILP solver IBM ILOG CPLEX 12.5.1. Compu-
tational results are reported, showing that SelfSplit performs very well on
codes (i) and (ii) above, and has a reasonably good performance on (iii) as well.

The outline of the paper is as follows. Section 2 reviews the basic SelfSplit

algorithm, along with possible variants aimed at improving load balancing. Sec-



tions 3 and 4 study the effect of different SelfSplit parameters on the resulting
load balancing. Section 5 reports computational results in a MILP setting. Fi-
nally, in Section 6 we draw some conclusions and outline possible directions of
future work.

2 The SelfSplit paradigm

SelfSplit addresses the parallelization of a given deterministic algorithm, called
the original algorithm in what follows, that solves a given problem by breaking
it (recursively) into subproblems called nodes. The main SelfSplit features are
outlined below; more details can be found in [12]. The SelfSplit scheme is as
follows:

a) Each worker reads the original input data and receives an additional input
pair (k,K), where K is the total number of workers and k ∈ {1, . . . ,K}
identifies the current worker. The input is assumed to be of manageable size,
so no parallelization is needed at this stage.

b) The same deterministic computation is initially performed, in parallel, by
all workers. This initial part of the computation is called sampling phase.
No communication at all is involved in this stage. It is assumed that the
sampling phase is not a bottleneck in the overall computation, so the fact
that all workers perform redundant work introduces an acceptable overhead.

c) When enough open nodes have been generated, the sampling phase ends and
each worker applies a deterministic rule to color them, i.e., to identify (and
skip) the nodes that do not belong to it as they will be processed by other
workers. No communication among workers is involved in this stage. It is
assumed that processing the subtrees is the most time-consuming part of
the algorithm, so the fact that all workers perform non-overlapping work is
instrumental for the effectiveness of the self-splitting method.

d) When a worker ends its own job, it communicates its final output to a merge
worker that process it as soon as it receives it. The merge worker can in
fact be one of the K workers, say worker 1, that merges the output of the
other workers after having completed its own job. We assume that output
merging is not a bottleneck of the overall computation, as it happens, e.g., for
enumerative algorithms where only the best solution found by each worker
needs to be communicated.

In its simplest “vanilla” version, step c) is implemented by just assigning
each node n a (deterministic) pseudo-random integer c(n) ∈ {1, . . . ,K}, with
the rule that each worker k will skip all nodes n with c(n) 6= k.

Note that all steps but d) requires absolutely no communication among work-
ers. SelfSplit is therefore very well suited for those computational environ-
ments where communication among workers is time consuming or unreliable as,
e.g., in a large computational grid where the workers run in different geographi-
cal areas—a relevant context being cloud computing, or a constellation of mobile
devices.



Though very desirable, the absence of communication implies the risk that
workload is quite unbalanced, i.e., lucky and unlucky workers can complete
their computation at very different points in time. To contrast this drawback,
SelfSplit follows the recipe of [24,27] to keep a significant number of open
nodes for each worker after sampling. Load balancing is automatically obtained
by the modified algorithm in a statistical sense: if the condition that triggers the
end of the sampling phase is chosen appropriately, then the number of subprob-
lems to distribute is significantly larger than the number of workers K, thus it
is unlikely that a given worker will be assigned much more work to do than any
other worker [24,27].

SelfSplit is straightforward to implement if the original deterministic al-
gorithm is sequential, and the random/hash function used to color a node is
deterministic and identical for all workers. The algorithm can however be ap-
plied even if the original deterministic algorithm is itself parallel, provided that
the pseudo-random coloring at Step 3 is done right after a synchronization point.

A more elaborate version (see [12] for details), aimed at improving workload
balancing among workers, can be devised using an auxiliary queue S of paused
nodes. The modified algorithm reads as follows:

1. As before, two integer parameters (k,K) are added to the original input.
2. A paused-node queue S is introduced and initialized to empty.
3. Whenever the modified algorithm is about to process a node n, a boolean

function NODE PAUSE(n) is called: if NODE PAUSE(n) is true, node n is
moved into S and the next node is considered; otherwise the processing of
node n continues as usual and no modified action takes place.

4. When there are no nodes left to process, the sampling phase ends. All nodes
n in S, if any, are popped out and assigned a color c(n) between 1 and K,
according to a deterministic rule.

5. All nodes n whose color c(n) is different from the input parameter k are just
discarded. The remaining nodes are processed (in any order and possibly in
a nondeterministic way) till completion.

With respect to its vanilla counterpart, the coloring phase at Step 4 has
more chances to determine a balanced workload split among the workers than
its vanilla counterpart, at the expense of a slightly more elaborate implemen-
tation. In the paused-node version, both the decision of moving a node into S
as well as the color actually assigned to a node are based on an estimate of the
computational difficulty of the node. The idea is to move a node in S if it is ex-
pected to be significantly easier than the root node (original problem), but not
too easy as this would lead to an exceedingly time-consuming sampling phase.

Within NODE PAUSE, a rough estimate of the difficulty of a node is obtained
in [12] by computing the logarithm of the cardinality of the Cartesian product
of the current domains of the variables, to be compared with the same measure
computed at the end of the root node—for problems involving binary variables
only, this figure coincides with the number of free variables at the node. To
cope with the intrinsic approximation involved in this estimate, the following
adaptive scheme was be used to improve SelfSplit robustness. At the end of



the sampling phase, if the number of nodes in S is considered too small for the
number K of available workers, then the internal parameters of NODE PAUSE
are updated in order to make the move into the queue S less likely, and the
sampling procedure is continued after putting the nodes in S back into the
branch-and-bound queue—or the overall method is just restarted from scratch.

As to node coloring, the color c(n) associated with each node n in S can
be obtained in three steps: (1) compute a score estimating the difficulty of each
node n, (2) sort the nodes by decreasing scores, and (3) assign a color c between
1 and K, in round-robin, so as to split node scores evenly among workers.

3 Statistical Load Balancing

As SelfSplit is intended to be a communication-free scheme, it can achieve
a proper load balancing only in a statistical sense. Intuitively, if all subprob-
lems have a similar level of difficulty, we can hopefully balance the workload
assigned to the workers. In addition, the larger the number of subproblems that
are assigned to each worker, the higher the chances that all workers will have to
perform a comparable work. Although basic probability theory guarantees that
this happens for very large numbers only, in practice we need to check whether a
reasonable load balancing can be obtained (on average) even with “small” num-
bers – the method would clearly be unpractical if millions of subproblems had
to be assigned to each worker to obtain a good balancing.

In order to computationally evaluate whether statistical load balancing is a
viable option, we performed a preliminary artificial experiment, randomly gener-
ating a number of “virtual” subproblems with different difficulties and assigning
them to workers. The experiment works as follows:

– randomly generate N (say) integer numbers from a given distribution. In
our scheme we fixed N = K ×M , where K is the number of workers and M
is a parameter counting the number of subproblems that we would like to
assign to each worker. These random numbers measure the computational
difficulty of each subproblem expressed, e.g., in terms of enumeration nodes;

– randomly assign M subproblems to each worker; and
– evaluate the speedup that we would obtain with this assignment, w.r.t. a

single worker scenario in which a single worker has to process all the nodes
of all subproblems.

Note that this is admittedly a gross simplification of a real world scenario for
three main reasons. First, we are completely ignoring the overhead needed to
generate the subproblems (sampling phase). In addition, we are assuming that all
nodes require the same computational effort. Finally, we are implicitly assuming
that no interaction whatsoever exists between the subproblems assigned to the
same worker. On the other hand, our simple experiment is computationally cheap
(hence it can be repeated several times with different random seeds) and side
effects free, so it should provide meaningful insights into the problem. For each
choice of the parameters (namely, type of random distribution, K, and M), we



repeated the simulation 10, 000 times and recorded the population of speedups,
so as to evaluate the speedup as a random variable for which we can compute
classical statistical measures, e.g., average, standard deviation and percentiles.

The most natural choice for the initial distribution would be an “ideal” dis-
tribution that yields to subproblems of (almost) the same difficulty; however,
such a policy can only be a very rough approximation of real situations, mainly
for two reasons:

1. it is very difficult to accurately predict the size of the search tree associated
to a given subproblem starting from the pieces of information available before
solving it;

2. even if were able to predict the “inherent” difficulty of a given subproblem,
the underlying solver may still considerably vary in performance, because of
performance variability.

Thus, we chose two random distributions, namely a uniform distribution and a
Pareto distribution.

The uniform distribution models the case in which subproblems are well
behaved and their difficulty varies uniformly in a given range. In our experiments,
we considered two possible ranges, namely [100k, 200k] and [100k, 1M ], which
correspond to the cases in which our estimates can be wrong by a factor of 2
and 10, respectively.

The Pareto distribution, on the other hand, models the more realistic case in
which subproblems follow an heavy-tail distribution, which is the most common
case for enumerative algorithms (see [17]). In this case, there is no bound on how
wrong our estimates can be (even worse, arbitrarily bad subproblems show up
with non negligible probability). The general Pareto (type I) distribution has a
probability density function of

α

xα+1

where parameter α controls the heavy-tailedness of the distribution. In partic-
ular, the distribution has no finite moments of order n ≥ α (thus, the lower
the α, the more heavy-tail the distribution). In our experiments, we chose α ∈
{1.5, 2, 3}.

The results of our experiments are depicted in Figure 1, where we show
boxplots [29] for the 5 chosen distributions, for M = 10, 100 and 1, 000, and for
K ∈ {4, 16, 64}. Each box extends from the lower to the upper quartile, while
the red line shows the median of the corresponding population. The whiskers
extend from the box to show the range of the data.

Our experiments show that the distribution of the speedup is highly influ-
enced by the distributions from which the subproblems sizes are drawn, whereas
marginal effects are experienced when changing the values ofM , provided the lat-
ter be “large enough”. Indeed, while almost linear speedups can be obtained (on
average) starting from a uniform distribution or from a very mildly heavy-tailed
one, that is not the case with strongly heavy-tailed distributions, even assigning
1, 000 subproblems to each worker. Interestingly, the subproblem distributions
also affect the variance of the speedup population, with the most heavy-tailed
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Fig. 1. Boxplots for statistical load balancing.



ones leading again to the worst results. Finally, the number of workers K is a
marginal factor when “well-behaved” distributions are concerned, but turns into
a very important one with heavy-tailed distributions. This shows that, even in
this simplified experiment, the average speedup that can be obtained does not
scale very well with the number of workers in the heavy-tailed case.

As a concluding remark, we observe that our analysis clearly shows the im-
portance of reducing performance variability in a distributed setting—even if
this reduction implies a significant performance deterioration in a sequential
framework.

4 Node-pausing strategies comparison

Different criteria can be used to implement the NODE PAUSE function. Pre-
liminary computational tests showed that measuring the effectiveness of such a
criterion can be very difficult (or even misleading) if directly implemented within
a solver. The reason is that many state-of-the-art implementations of enumera-
tive methods exhibit a high performance variability, and differences in the shape
of the tree can be caused by changes that are supposed to be performance neu-
tral. The issue is particularly severe in the MILP case [22], but any solver that
bases some of its decisions on pieces of information collected during the search
itself—such as pseudocosts, nogood clauses, or primal bounds—is sensitive to
this phenomenon.

To compare different strategies in a clean environment, we set up a further
artificial experiment as follows. Using the callback mechanism of a commercial
MILP solver, namely IBM ILOG CPLEX 12.5.1 [21], we collected the branch-
and-cut trees enumerated when solving all the instances in the MIPLIB 2010
testbed. The solver was run with default options, in single-thread mode; for
each instance we provided the optimal (or best known) solution on input to
the solver, while disabling primal heuristics to minimize their variability effect.
Then we discarded all the trees with less than 500, 000 nodes, remaining with 32
instances. In this way we collected and stored a number of frozen enumeration
trees that are significant (both in terms of size and shape) for our experiments.

We then simulated the behavior of different NODE PAUSE criteria on the
frozen trees. This experimental environment has several advantages:

– it is side-effects free;
– all strategies are compared on the same set of trees;
– with most node-pausing strategies, the final partitioning is independent of

the order of visit of the nodes;
– it is computationally very cheap to test many alternative strategies, as no

real enumeration is taking place—only tree visits.

On the other hand, the environment is admittedly artificial and the speedup we
measured, which can only be computed by considering the size of the subtrees
assigned to the different workers, are only a rough approximation of the real



speedup in computing time. As such, a final validation of the results in a live
environment is needed, as given in the next section.

We compared two simple criteria for estimating the difficulty of a given node
n, to be used within the boolean function NODE PAUSE():

– volume: we compute the volume of the Cartesian product of the domains of
the integer variables in the model, i.e.,

V (n) =
∏
j∈J

(uj − lj + 1) (1)

where J denotes the set of integer variables and {lj , . . . , uj} is the domain of
variable j. This measure is compared against the one computed at the end
of the root node, say V (1). Value NODE PAUSE=true is returned if the
ratio V (1)/V (n) is above a given threshold, say ρ. To avoid overflow, in the
implementation we consider the logarithms of the above expressions.

– depth: value NODE PAUSE=true is returned if the node depth in the tree
is larger than a given threshold θ.

For sorting the nodes n in S according to their expected difficulty, we considered
the following two options:

– ideal: Sorting (by decreasing order) with respect to the actual number of
nodes in the subtree rooted at n. Of course, this number is not available in a
real implementation, but it is nevertheless interesting to consider what would
happen if we had a perfect oracle able to predict the size of the subtrees.

– score: Sorting (by increasing order) with respect to the score

score(n) = 103 · dualBound(n) + depth(n)

– random: nodes are just shuffled according to a random permutation.

Finally, we considered two strategies for coloring the nodes:

– offline: nodes are assigned to the workers in round-robin, as in the SelfSplit
paradigm, and no communication or synchronization is needed.

– online: nodes are assigned to the first available worker by a master sched-
uler. This is supposed to yield a better load balancing, at the expenses of
communication between the workers. Note that this is exactly the kind of
communication that we would like to avoid when using our self-splitting
framework, nevertheless it is interesting to measure how much of the theo-
retical speedup is lost when forbidding any synchronization among workers.

As to the parameter ρ or θ used by NODE PAUSE() in its volume or depth
case, respectively, for each instance we tried several candidates and kept the
best one. This is equivalent to assuming that NODE PAUSE() is able to auto-
matically determine the best parameter for each instance (the so-called“Virtual
Best Case” scenario). The outcome of this preliminary experiment is reported
in Table 2 for the case of K = 16 workers.



Table 2. Comparison of the two methods (speedups with 16 workers).

offline online

volume depth volume depth

ideal 10.77 10.20 12.51 12.65
score 10.25 9.78 12.31 12.44
random 9.92 9.42 11.57 11.31

A first comment about the results in Table 2 is that all options produce a
speedup of about 10 or more (out of 16 workers), which is an extremely good
figure. This confirms the effectiveness of our self-splitting method, at least in an
enumerative context with no (or little) variability.

As expected, the online approach works better than its offline counter-
part, the speedup difference being interpretable as the “price of communication”
that SelfSplit has to pay to avoid any communication among workers. This
difference is however of just 20%, which is likely to be smaller than the overhead
incurred by a deterministic parallel method with synchronization points.

A surprising result is instead that the sorting option ideal is only slightly
better than its score counterpart, meaning that a perfect estimate of the node
difficulty is not really required in our setting. An explanation is that a statistical
workload balancing among workers occurs in any case, making the node difficulty
estimation less critical. This is confirmed by the fact that the random option leads
to a performance deterioration of just 10%, which is much less than what we
would have expected.

Finally, for the offline setting (which is the only that can be actually imple-
mented within SelfSplit) the performance of volume is (slightly) better that
that of depth. Note however that in both cases the internal parameter (ρ or θ)
is chosen a posteriori in an optimal way, instance by instance, while a practical
implementation can only guess it (or use a dynamic update policy).

5 SelfSplit for Mixed-Integer Linear Programming

We next address three different applications of SelfSplit to parallelize enumer-
ative MILP codes of different degree of complexity (and performance variability).
All the experiments of this section were executed on a cluster of 24 identical Intel
Xeon E3-1220V2 machines running at 3.10 GHz, with 16GB of RAM each, in
single thread mode.

5.1 Parallelization of a sequential ATSP branch-and-bound code

Our first exercise was to apply SelfSplit to the sequential branch-and-bound
code of [13] for the Asymmetric Traveling Salesman Problem (ATSP). This is an
optimized yet legacy FORTRAN code of about 3,000 lines based on the following



main ingredients: (i) lower bounds are computed by a very efficient parametrized
code for the assignment problem relaxation, (ii) branching is based on subtours,
and can produce more than two children per node, (iii) a best-bound-first tree
exploration strategy is used; see [13] for details. We implemented two variants
of SelfSplit where:

a) The optimal solution value is provided on input to the solver;
b) The value of the overall best incumbent is periodically written/updated on a

single global file; each worker periodically reads it and only uses to possibly
abort its own run (just 46 new lines of code added to the sequential original
code).

In all cases, we implemented SelfSplit in its simplest variant, ending the
sampling phase when the number of open nodes in the branch-and-bound tree
was equal to 1, 000.

According to our preliminary computational tests, variant b) often achieves
a more-than-linear speedup in that SelfSplit is able to find the optimal ATSP
solution much quicker than the sequential version, thus saving a considerable
number of nodes. This is because, after sampling, diversified solution subspaces
are searched in parallel by the K workers, increasing the chances of early finding
good feasible solutions. The improved behavior of SelfSplit as a heuristic is
of course a positive side effect of our method, however it is partly due to the
very rigid best-bound search strategy implemented in the sequential code. To
better evaluate the speedup coming from the parallel processing of tree nodes,
we therefore decided to concentrate on variant a) above.

Our experiments are aimed at evaluating the speedup that SelfSplit can
achieve on difficult instances requiring a large number of tree nodes, given for
granted that for easy instances any parallelization technique working at the
tree-search level cannot produce interesting speedups. Our testbed then con-
tains instances randomly generated as in class B in [13], which were the hardest
instances for our code among those considered in [13]. Namely, the cost of each
arc (i, j) in the graph is defined as cij = σij + αij where σij = σji and αij
are uniformly random integers in [1, . . . , 1, 000] and in [1, . . . , 20], respectively.
We randomly generated 100 instances with 200 vertices and 100 instances with
250 vertices, and solved all of them with the branch-and-bound code of [13]
in sequential mode, providing the optimal solution value on input. Then, we
disregarded all instances that turned out to be “too easy” with these settings,
i.e., that could be solved in less than 1,000 CPU seconds on our machine. The
resulting benchmark was finally composed of 20 instances—6 with 200 nodes
and 14 with 250 nodes. Note that our instance filtering policy (though based
on the performance of the sequential solver alone) is not unfair, as we are not
comparing the behavior of different solvers but the speedups resulting from the
parallelization of a single solver.

Table 3 gives the outcome of our experiments and reports

– the average (in geometric mean) computing time for the sequential version
of the code, and



– the average speedups (geometric mean) that were obtained with different
values of K with respect to the sequential version of the code, again in
terms of CPU time.

Table 3. Parallelization of a sequential ATSP branch-and-bound code.

time (sec.s) time speedup
K = 1 K = 8 K = 16 K = 32 K = 64

1,504 7.76 13.37 21.56 30.55

Figures of Table 3 show that an almost linear speedup can be obtained with
up to 16 workers, whereas some saturation occurs for larger values of K. Tak-
ing into account that only a very minor code change was implemented, the
SelfSplit performance on these instances can be considered very good.

Our results confirm the findings of [24], namely, that simple branch-and-
bound codes for specific applications can effectively be parallelized by no-communication
paradigms like SelfSplit. Indeed, the experiments reported in Section 3 sug-
gest that this is mainly due to the low performance variability experienced by
simple enumeration codes—that by the way makes them rather appealing in a
massively distributed setting.

5.2 Parallelization of a sequential ATSP branch-and-cut code

We then addressed a more sophisticated ATSP code, namely the sequential
branch-and-cut code of [14,10]. This is FORTRAN code of about 10,000 lines
where node bounds are computed through an LP solver (IBM ILOG CPLEX
12.5.1 in our case). Various classes of facet-defining ATST cuts—including SEC’s,
SD’s, and DK’s [9,2,3,4]—are separated at each tree node, and variables are dy-
namically generated and/or fixed according to a Lagrangian pricing mechanism.
A best-bound tree exploration is implemented, and primal heuristics are applied
for an early update of the incumbent.

In this more challenging setting, a paused-node version of SelfSplit was
implemented, according to the following trivial scheme that required just 11
new lines of code to implement. Each time a node is popped from the active-
node queue, we count the number of open nodes. As soon as this number becomes
larger than NO (say), the sampling phase ends and the node lower bound is used
as the node-difficulty measure used for node coloring. In our implementation we
set NO = max{160, 5K}, where parameters 160 and 5 (not tuned to avoid
overfitting) are intended to guarantee a reasonable number of nodes for each
worker—which is nontrivial as branch-and-cut codes for specific problems tend
to produce a small number of open nodes due to the effectiveness of their ad-hoc
cutting planes.



We considered randomly generated instances with n = 200 and n = 250
nodes. According to [14], the most challenging instances for our sequential branch-
and-cut code correspond to instances of type C in [13], in which the coordinates
of each node are randomly generated in [1, . . . , 1, 000] and the cost of each arc
(i, j) is given by cij = dij+αij , where dij = dji is the Euclidean distance between
i and j (rounded down) and αij is a uniformly random integer in [1, . . . , 20].

As in the previous experiments, we ran our sequential code on all instances,
providing the optimal ATSP solution value on input, and removed all those
problems that were solved within 1,000 seconds. This produced a benchmark of
44 instances—22 with 200 nodes, and 22 with 250 nodes. Table 4 reports the
same information as Table 3 for both the sequential and the SelfSplit version
of our code.

Table 4. Parallelization of a sequential ATSP branch-and-cut code.

time (sec.s) time speedup
K = 1 K = 8 K = 16 K = 32 K = 64

2,465 6.74 10.89 14.54 17.91

In this case too, SelfSplit produces considerable speedups for K ≤ 16,
though the current figures are less impressive that those of Table 3. This behavior
was not unexpected, as the branch-and-cut ATSP code has more variability
than the branch-and-bound one addressed in the previous subsection, and we
know from the previous discussions that variability can interfere with scalability.
In addition, as already mentioned, branch-and-cut codes for specific problems
typically produce a limited number of nodes, making SelfSplit less attractive
due to the sampling-phase overhead incurred when several workers are available.

5.3 Parallelization of a general-purpose MILP solver

Our third set of experiments concerns the applicability of SelfSplit to a general
MILP solver. This is indeed the most challenging setting for our method, due to
the large performance variability experienced in many difficult MILP instances.

We implemented SelfSplit in its node-pause version using IBM ILOG
CPLEX 12.5.1 through callback functions. In particular, at each node n, we
compute the ratio V (1)/V (n) where V (1) and V (n) give a measure of the do-
main at the current node and after the root node, respectively, as defined by (1):
if this ratio is above a given threshold, say ρ, the node is paused. As explained
in Section 2, during the sampling phase we always extract from the queue a
non-paused node, if any. If the tree contains only paused nodes, and there is a
sufficiently large number of nodes, say N , the sampling phase is terminated and
colors are assigned to the nodes. Otherwise, the current value of ρ is increased by
a quantity equal to δ, and function NODE PAUSE is re-executed for each node.



In our implementation we used the same parameters for all instances, namely
ρ = 1, N = 2, 000 and δ = 10.

As in the previous experiments, we decided to provide the optimal solution
on input to the MILP solver and to disable all heuristics. In our view this setting
is not too far from a production implementation involving some limited amount
of communication, in which the incumbent value is shared among workers.As
SelfSplit is intended to be used for problems with a large enumeration tree,
we selected all the 32 instances from MIPLIB 2010 [22] that were selected for the
experiments described in Section 4, namely all those instances for which CPLEX
took more than 500,000 nodes.

Table 5 compares the performances of CPLEX in its default settings (with
empty callbacks) and of algorithm SS(1), i.e., SelfSplit with 1 worker. The
comparison is performed for 5 different random seeds separately, to mitigate the
effects of performance variability of the MILP solver (see, e.g., [11]). For each
random seed and algorithm, we report the number of instances solved to proven
optimality and the geometric mean of the associated computing time—a time
equal to 10, 000 was counted for those instances that hit the time limit.

Table 5. CPLEX vs SelfSplit in a single-worker setting.

CPLEX SS(1)

seed #opt time #opt time

1 22 2,673 21 3,284
2 22 2,679 21 2,814
3 24 2,515 21 3,184
4 22 2,688 22 2,633
5 25 2,603 24 3,106

The results of Table 5 show that the slowdown incurred when deviating
from CPLEX defaults node selection policy (that SelfSplit changes during the
sampling phase to improve workload balancing) was just 10-20% on average; this
indicates that SS(1) is a good approximation of a state-of-the-art commercial
solver in its default settings.

We then considered the availability of a system with 16 single-thread ma-
chines (each acting as a worker) and compared two ways to exploit this archi-
tecture without communication:

– running algorithm RND(16), i.e., executing SS(1) with 16 different random
seeds and taking the best run for each instance; and

– running algorithm SS(16), i.e., executing SelfSplit with 16 workers.

Note that the first algorithm corresponds to the No Communication configura-
tion for workers considered in [6], and is actually considered one of best options



to parallelize a MILP solver in a distributed environment (i.e., without commu-
nication).

To keep our computational settings as clean as possible, we do not investigate
possible alternative schemes, obtained either with different level of communica-
tions (as proposed, e.g., in [6]) or through mixed strategies in which different
strategies are used for different sets of workers.

Table 6 reports, for each instance, the computing time for algorithms SS(1),
RND(16) and SS(16); for the last two algorithms, the speedup, in terms of com-
puting time, with respect to SS(1) is also given. The last line of the table reports
the average results (in geometric mean) over all instances. According to Table 6,
both RND(16) and SS(16) solved to proven optimality 29 instances within the
given time limit. The geometric means of the speedup with respect to SS(1)

were 2.01 and 5.29, respectively, indicating that algorithm SS(16) is about 2.6
times faster than RND(16) in geometric mean.

6 Conclusions and future work

We have investigated the performance on MILP problems of SelfSplit, the
deterministic and (almost) communication free parallelization paradigm for tree
search methods presented in [12].

Artificial experiments have been reported, aimed at evaluating the behavior
of SelfSplit “in vitro”. Our experiments highlight the role of performance vari-
ability in limiting scalability in a low-communication distributed setting—even
if variability reduction would require a severe performance deterioration in a
sequential framework, it can be instrumental for massively distributed compu-
tation.

Two different implementations of SelfSplit have been considered, that only
require very minor changes of the deterministic algorithm to be parallelized.
Computational results on both ad-hoc and general-purpose MILP solvers have
been reported.

Our experiments with a branch-and-bound ATSP code confirm the find-
ings [24], and show that simple ad-hoc enumerative codes can effectively be
parallelized by no-communication paradigms like SelfSplit. In our view, this
is mainly due to their low performance variability—a property that makes them
rather appealing in a distributed setting.

Reasonable speedups were also obtained for a more sophisticated branch-and-
cut ATSP code, though the effectiveness of its cutting planes tend to produce
smaller trees with heavy nodes, which is not the most appropriate setting for
our method due to sampling-phase overhead.

Finally we have shown that, contrarily to our own expectations, SelfSplit
can achieve a significant speedup even for a very sophisticated general-purpose
MILP solver such as IBM ILOG CPLEX.

Future research can be devoted to verify the effectiveness of SelfSplit for
parallelizing different types of enumerative codes.



Table 6. Parallelization of a state-of-the-art MILP solver.

SS(1) RND(16) SS(16)

instance time time speedup time speedup

beasleyC3 10,000.0 1,601.2 6.25 10,000.0 1.00
csched007 10,000.0 2,166.2 4.62 1,445.5 6.92
csched010 5,471.8 1,183.6 4.62 475.6 11.50
danoint 2,579.5 1,767.1 1.46 234.8 10.99
enlight16 272.4 154.5 1.76 10.3 26.32
iis-bupa-cov 10,000.0 10,000.0 1.00 1,762.8 5.67
k16x240 3,526.5 3,526.5 1.00 365.0 9.66
mcsched 4,744.5 3,735.3 1.27 371.8 12.76
mik-250-1-100-1 1,131.1 1,129.1 1.00 1,543.8 0.73
momentum1 8,730.2 3,476.1 2.51 2,224.6 3.92
neos-1426662 5,591.1 590.3 9.47 2,980.3 1.88
neos-1442657 639.1 180.0 3.55 83.9 7.61
neos-1616732 2,792.7 1,410.8 1.98 549.9 5.08
neos-1620770 10,000.0 1,356.7 7.37 208.0 48.07
neos-942830 1,626.5 258.6 6.29 3,662.1 0.44
neos15 5,096.1 5,094.5 1.00 3,081.1 1.65
neos16 10,000.0 2,041.4 4.90 127.8 78.21
neos858960 2,043.9 794.9 2.57 173.6 11.77
newdano 10,000.0 9,820.6 1.02 1,406.5 7.11
nobel-eu-DBE 10,000.0 5,641.8 1.77 7,577.2 1.32
noswot 147.1 23.9 6.13 17.3 8.46
ns1766074 89.4 85.8 1.04 10.3 8.68
ns2081729 6,588.3 6,588.3 1.00 10,000.0 0.66
nu60-pr9 10,000.0 5,088.1 1.97 3,248.6 3.08
pg5 34 9,416.2 9,407.7 1.00 826.2 11.40
pigeon-10 421.6 395.4 1.07 65.1 6.47
ran14x18 3,163.1 2,438.4 1.30 236.9 13.35
ran14x18-disj-8 1,709.9 1,709.7 1.00 201.2 8.50
reblock166 10,000.0 10,000.0 1.00 10,000.0 1.00
rmine6 10,000.0 4,763.8 2.10 1,716.6 5.83
rococoB10-011000 10,000.0 10,000.0 1.00 5,092.3 1.96
timtab1 1,675.1 868.8 1.93 171.3 9.78

average (geo.mean) 3,284.1 1,630.2 2.01 620.6 5.29



Also of interest is to study how to reduce performance variability in general-
purpose branch-and-cut MILP solvers, given for granted that even a severe slow-
down in the sequential case (of 2 times or more) can be welcome in a massive-
parallel setting if it leads to improved scalability. In this context, it would be
interesting to start a systematic study of the degree of variability injected in a
MILP solver by the various sophistications that have introduced in the recent
years—including preprocessing, pseudo-costs, propagation, branching, cutting
planes, primal heuristics, etc.
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