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Abstract. Cutting plane methods are widely used for solving convex
optimization problems and are of fundamental importance, e.g., to pro-
vide tight bounds for Mixed-Integer Programs (MIPs). This is obtained
by embedding a cut-separation module within a search scheme. The
importance of a sound search scheme is well known in the Constraint
Programming (CP) community. Unfortunately, the “standard” search
scheme typically used for MIP problems, known as the Kelley method,
is often quite unsatisfactory because of saturation issues.
In this paper we address the so-called Lift-and-Project closure for 0-1
MIPs associated with all disjunctive cuts generated from a given set
of elementary disjunction. We focus on the search scheme embedding
the generated cuts. In particular, we analyze a general meta-scheme for
cutting plane algorithms, called in-out search, that was recently proposed
by Ben-Ameur and Neto [1]. Computational results on test instances
from the literature are presented, showing that using a more clever meta-
scheme on top of a black-box cut generator may lead to a significant
improvement.
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1 Introduction

Cutting plane methods are widely used for solving convex optimization
problems and are of fundamental importance, e.g., to provide tight bounds
for Mixed-Integer Programs (MIPs). These methods are made by two
equally important components: (i) the separation procedure (oracle) that
produces the cut(s) used to tighten the current relaxation, and (ii) the
overall search framework that actually uses the generated cuts and de-
termines the next point to cut.

In the last 50 years, a considerable research effort has been devoted
to the study of effective families of MIP cutting planes, as well as to the



definition of sound separation procedures and cut selection criteria [2,3].
However, the search component was much less studied, at least in the
MIP context where one typically cuts a vertex of the current LP relax-
ation, and then reoptimizes the new LP to get a new vertex to cut—a
notable exception is the recent paper [4] dealing with Benders’ decompo-
sition. The resulting approach—known as “the Kelley method” [5]—can
however be rather inefficient, the main so if the separation procedure is
not able to produce strong (e.g., facet defining or, at least, supporting)
cuts. As a matter of fact, alternative search schemes are available that
work with non-extreme (internal) points [6,7], including the famous ellip-
soid [8,9] and analytic center [10–12] methods; we refer the reader to [13]
for an introduction. The convergence behavior of these search methods
is less dependant on the quality of the generated cuts, which is a big
advantage when working with general MIPs where separation procedures
tend to saturate and to produce shallow cuts. A drawback is that, at each
iteration, one needs to recompute a certain “core” point, a task that can
be significantly more time consuming than a simple LP reoptimization.
An interesting hybrid search method, called in-out search, was recently
proposed by Ben-Ameur and Neto [1].

In this paper we address disjunctive optimization [14] in the MIP
context. It essentially consists of a cutting plane method where cuts are
separated by exploiting a given set of valid disjunctions. In particular, we
consider 0-1 MIPs and the associated Lift-and-Project closure, defined by
all the disjunctive cuts that can be derived from the “elementary” set of
disjunctions of the type xj ≤ 0 or xj ≥ 1 for each integer-constrained vari-
able xj . This topic is currently the subject of intensive investigation by
the Mathematical Programming community. Our current research topic
is in fact to move the research focus from the widely investigated separa-
tion module to the search scheme where the generated cuts are actually
embedded. A first step in this direction is reported in the present paper,
where we investigate the use of disjunctive cuts within an in-out search
shell. Computational results show that the resulting scheme outperforms
the standard one, in that it produces tighter bounds within shorter com-
puting times and need much fewer cuts—though they use exactly the
same separation module.

2 In-out search

Let us consider a generic MIP of the form

min{cTx : Ax = b, l ≤ x ≤ u, xj ∈ Z ∀j ∈ I}



and let P := {x ∈ Rn : Ax = b, l ≤ x ≤ u} denote the associated
LP relaxation polyhedron. In addition, let us assume the oracle structure
allows one to define a “cut closure”, P1, obtained by intersecting P with
the half-spaces induced by all possible inequalities returned by the oracle.
Cutting plane methods are meant to compute z1 := min{cTx : x ∈ P1},
with P1 described implicitly through the oracle.

In-out search works with two points: an “internal” (possibly non opti-
mal) point q ∈ P1, and an optimal vertex x∗ of P (possibly not in P1). By
construction, the final (unknown) value z1 belongs to the uncertainty in-
terval [cTx∗, cT q], i.e., at each iteration both a lower and an upper bound
on z1 are available. If the two points q and x∗ coincide, the cutting plane
method ends. Otherwise, we apply a bisection step over the line segment
[x∗, q], i.e., we invoke the separation procedure in the attempt of cutting
the middle point y := (x∗ + q)/2. (In the original proposal, the separa-
tion point is more generally defined as y := αx∗ + (1 − α)q for a given
α ∈ (0, 1].) If a violated cut is returned, we add it to the current LP that
is reoptimized to update x∗, hopefully reducing the current lower bound
cTx∗. Otherwise, we update q := y, thus improving the upper bound and
actually halving the current uncertainty interval.

The basic scheme above can perform poorly in its final iterations.
Indeed, it may happen that x∗ already belongs to P1, but the search is
not stopped because the internal point q is still far from x∗. We then
propose a simple but quite effective modification of the original scheme
where we just count the number of consecutive updates to q, say k, and
separate directly x∗ in case k > 3. If the separation is unsuccessful, then
we can terminate the search, otherwise we reset counter k and continue
with the usual strategy of cutting the middle point y.

As to the initialization of q ∈ P1, this is a simple task in many practical
settings, including the MIP applications where finding a feasible integer
solution q is not difficult in practice.

3 Disjunctive cuts

Consider the generic MIP of the previous section. To simplify notation,
we concentrate on 0-1 MIPs where lj = 0 and uj = 1 for all j ∈ I.
Our order of business is to optimize over the Lift-and-Project closure,
say P1, obtained from P by adding all linear inequalities valid for P j :=
conv({x ∈ P : xj ≤ 0} ∪ {x ∈ P : xj ≥ 1}) for j ∈ I. To this end,
given a point x∗ ∈ P (not necessarily a vertex), for each j ∈ I with 0 <
x∗j < 1 we construct a certain Cut Generation Linear Program (CGLP)



whose solution allows us to detect a valid inequality for P j violated by
x∗ (if any). Various CGLPs have been proposed in the literature; the one
chosen for our tests has a size comparable with that of the original LP,
whereas other versions require to roughly double this size. Given x∗ and
a disjunction xj ≤ 0 ∨ xj ≥ 1 violated by x∗, our CGLP reads:

maxxj − d∗ (1)

Ax = d∗b (2)

d∗l ≤ x ≤ d∗l + (x∗ − l) (3)

d∗u− (u− x∗) ≤ x ≤ d∗u (4)

where d∗ = x∗j > 0 (the two sets of bound constraints can of course be
merged). Given the optimal dual multipliers (λ,−σ′′, σ′,−τ ′, τ ′′) associ-
ated with the constraints of the CGLP, it is possible to derive a most-
violated disjunctive cut γx ≥ γ0, where γ = σ′− τ ′−u0ej , γ0 = σ′l− τ ′u,
and u0 = 1− λb− (σ′ − σ′′) + (τ ′ − τ ′′)u.

4 Computational results (sketch)

We implemented both the standard (kelley) and in-out (in-out) sep-
aration schemes and we compared them on a collection of 50 0-1 MIP
instances from MIPLIB 3.0 [15] and 2003 [16], and on 15 set covering
instances from ORLIB [17]. We used IBM ILOG Cplex 11.2 as black-box
LP solver, and to compute a first heuristic solution to initialize the in-
out internal point q. Both schemes are given a time limit of 1 hour, and
generate only one cut at each iteration–taken from the disjunction asso-
ciated to the most fractional variable. Cumulative results are reported in
Table 1, where time denotes the geometric mean of the computing times
(CPU seconds on an Intel Q6600 PC running at 2.4 GHz), itr denotes
the geometric mean of the number of iterations (i.e., cuts), cl.gap de-
notes the average gap closed w.r.t the best known integer solution, and
L&P cl.gap denotes the average gap closed w.r.t. the best known upper
bound on z1 (this upper bound is obtained as the minimum between the
best-known integer solution value and the last upper bound on z1 com-
puted by the in-out algorithm). The results clearly show the effectiveness
of in-out search, in particular for set covering instances.
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