
Optimal Control with Unreliable Communication: the
TCP Case.

Bruno Sinopoli, Luca Schenato, Massimo Franceschetti,
Kameshwar Poolla, Shankar S. Sastry

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

{sinopoli,lusche,massimof,sastry}@eecs.berkeley.edu
poolla@me.berkeley.edu

Abstract— The paper considers the Linear Quadratic Gaus-
sian (LQG) optimal control problem in the discrete time
setting and when data loss may occur between the sensors
and the estimation-control unit and between the latter and
the actuation points. We consider the case where the arrival of
the control packet is acknowledged at the receiving actuator,
as it happens with the common Transfer Control Protocol
(TCP). We start by showing that the separation principle
holds. Additionally, we can prove that the optimal LQG control
is a linear function of the state. Finally, building upon our
previous results on estimation with unreliable communication,
the paper shows the existence of critical arrival probabilities
below which the optimal controller fails to stabilize the system.
This is done by providing analytic upper and and lower bounds
on the cost functional.

I. I NTRODUCTION

A growing number of applications demand remote control
of plants over unreliable networks. Examples are wireless
sensor networks used for estimation and control of dynam-
ical systems [1]. In these systems issues of communication
delay, data loss, and time synchronization between compo-
nents play a key role. In short, communication and control
become tightly coupled such that the two issues cannot be
addressed independently.

Consider, for example, the problem of navigating a vehi-
cle based on the estimate from a sensor web of its current
position and velocity. The measurements underlying this
estimate can be lost or delayed due to the unreliability of
the wireless links. What is the amount of data loss that the
control loop can tolerate to reliably perform the navigation
task? Can communication protocols be designed to satisfy
this constraint? The goal of this paper is to examine some
control-theoretic implications of using unreliable networks
for control. These require a generalization of classical
control techniques that explicitly take into account the
stochastic nature of the communication channel.

Communication channels typically use one of two kind
of protocols: Transmission Control (TCP) or User Data-
gram (UDP). In the first case there is acknowledgement of
received packets, while in the second case no-feedback is
provided on the communication link. We study the effect of
data losses due to the unreliability of the network links in
the TCP case. We generalize the Linear Quadratic Gaussian

Fig. 1. Overview of the system.We study the statistical convergence
of the expected state covariance of the discrete time LQG, where both
the observation and the control signal, travelling over an unreliable
communication channel, can be lost at each time step with probability
1− λ and1− ν respectively.

(LQG) optimal control problem —modeling the arrival of
an observation as a random process whose parameters are
related to the characteristics of the communication chan-
nel. Accordingly, we consider two independent Bernoulli
processes, of parametersγ and ν, that govern packet loss
between the sensors and the estimation-control unit, and
between the latter and the actuation points, see Figure 1.

We first show that in the TCP case the separation prin-
ciple holds and the optimal controller is a linear function
of the state. We extend our previous results on estimation
with missing observation packets [2] to the control case,
showing the existence of critical values for the parameters of
the Bernoulli arrival processes, below which a transition to
instability occurs and the optimal controller fails to stabilize
the system. In other words, in order to have stability, the
packet loss rate must be below a given threshold that
depends on the dynamics of the system.

Study of stability of dynamical systems where component
are connected asynchronously via communication channels
has received considerable attention in the past few years



and our contribution can be put in the context of the
previous literature. Hassibi, Zhang and Seiler [3], [4], [5].
Ling and Lemmon [6], in a series of papers, proposed a
compensator approach for some data loss models. They
consider an optimal compensator design when data loss
is i.i.d. A different approach was considered in [7] which
proposed to place an estimator, i.e. a Kalman filter, at the
sensor side of the link and without assuming any statistical
model for the data loss process . The work of [8] is the
closest to the present paper. We consider the more general
case when the matrixC is not the identity and there is
noise in the observation. Moreover we analyze the infinite
horizon case.

Nilsson [9] presents the LQG optimal regulator with
bounded delays between sensors and controller, and be-
tween the controller and the actuator, but he does not
address the packet-loss case. This is considered by Hadi-
jcostis and Touri [10], where dropped measurements are
replaced by zeros. Other approaches include using the
last received sample for control, or designing a dropout
compensator [11], [6]. We consider the alternative approach
where the external compensator feeding the controller is the
optimal time varying Kalman gain. Moreover, we analyze
the proposed solution in state space domain rather than
in frequency domain as it was presented in [6], and we
consider the more general Multiple Input Multiple Output
(MIMO) case.

The separation principle states that observer and plant
of a linear system can be designed independently. We first
show that this principle continues to hold in the case of
data loss between the sensor and the estimator. This allows
us to use our result in [2], [12] to show the existence of a
critical loss probability below which the resulting optimal
controller fails to stabilize the system.

In our previous work on Kalman Filtering with inter-
mittent observations [2], [12] we proved the existence of
a critical loss probability under which the expected error
covariance of the filter diverges. The aim of this work is to
extend this result to the optimal control problem showing
the existence of a transition from bounded to unbounded
states in the closed loop system as well, when the rate of
observation loss exceeds a given thresholdλc.

Following the procedure and using the result in [2], [12]
we are able to prove the existence of a critical value for
the arrival rate above which the optimization problem is
bounded, and below which the costJ goes unbounded. This
is accomplished by finding deterministic upper and lower
bounds for the expected optimal cost and their convergence
conditions.

The paper is organized as follows. The next section will
provide a mathematical formulation for the problem. In
section III we provide some preliminary results in the form
of lemmas, which we then use to prove our main results in
section IV. We finally conclude and provide directions for
future work in section V.

II. PROBLEM FORMULATION

Consider the following linear stochastic system with
intermittent observations:

xk+1 = Axk + νkBuk + wk (1)

yk = Cxk + vk, (2)

wherexk ∈ Rn is the state vector,yk ∈ Rm is the output
vector, uk ∈ Rq is the input vector,x0 ∈ Rn, wk ∈ Rn

andvk ∈ Rm are Gaussian, uncorrelated, white, with zero
mean and covariance(P0, Q,Rk) respectively,Rk = γkR+
(1 − γk)σ2I, and and(γk, νk) are i.i.d. Bernoulli random
variable withP (γk = 1) = γ̄ and P (νk = 1) = ν̄. Let us
define the following information set:

Ik
∆= {yk, γk, νk−1}, (3)

whereyk = (yk, yk−1, . . . , y1), γk = (γk, γk−1, . . . , γ1),
andνk = (νk, νk−1, . . . , ν1).

Consider also the following cost function:

JN (uN−1) = E

[
x′NWNxN +

N−1∑

k=0

(x′kWkxk + νku′kUkuk)

∣∣∣∣∣ IN

]

(4)
We now look for control input sequenceu∗N−1 that

minimizes the above functional given that the information
Ik is available at timek, i.e.

J∗N = min
uN−1

JN (uN−1) = JN (u∗N−1) (5)

whereu∗k = u∗k(Ik) andIk is defined in Equation 3.

III. M ATHEMATICAL BACKGROUND

Before proceeding, let us define the following variables:

x̂k|k
∆= E[xk | Ik],

ek|k
∆= xk − x̂k|k,

Pk|k
∆= E[ek|ke′k|k | Ik].

(6)

In the following derivation we will make use of the
following facts

Lemma 1. The following facts are true:

(a) E [(xk − x̂k)x̂′k | Ik] = E
[
ek|kx̂′k | Ik

]
= 0

(b) E [x′kSxk | Ik] = x̂′kSx̂k + trace
(
SPk|k

)
=

x̂′kSx̂k + E [e′kSek| Ik] , ∀S
(c) E [E[ g(xk+1) |Ik+1] | Ik] = E [g(xk+1) | Ik] , ∀g(·)
Proof: (a) It follows directly from the definition.

In fact: E [(xk − x̂k)x̂′k | Ik] = E [xkx̂′k − x̂kx̂′k | Ik] =
E [xk | Ik] x̂′k − x̂kx̂′k = 0

(b) Using standard algebraic operations and the previous
fact we have:

E
[
x′kSxk |Ik

]
= E

[
(xk − x̂k + x̂k)′S(xk − x̂k + x̂k) |Ik

]

= x̂′kSx̂k + E
[
(xk − x̂k)′S(xk − x̂k)

]
+

+ 2E
[
x̂′kS(xk − x̂k) | Ik

]

= x̂′kSx̂k + 2trace{SE[(xk − x̂k)x̂′k |Ik]}+

+ trace{SE[(xk − x̂k)(xk − x̂k)′ |Ik]}
= x̂′kSx̂k + trace{SPk|k}



(c) Let (X,Y, Z) be any random vectors,g(·) any func-
tion, andp the probability distribution, then

EY,Z [g(X, Y, Z) | X] =

=
∫

Z

∫

Y

g(X,Y, Z)p(Y, Z|X)dY dZ

=
∫

Z

∫

Y

g(X,Y, Z)p(Y |Z,X)p(Z|X)dY dZ

=
∫

Z

[∫

Y

g(X, Y, Z)p(Y |Z, X)dY

]
p(Z|X)dZ

= EZ [ EY [g(X,Y, Z) | Z, X] | X] .

where we used the Bayes’ Rule. Since by hypothesisIk ⊆
Ik+1, then fact (c) follows from the above equality by
substitutingIk = X andIk+1 = (X,Z).
We now compute some quantities that will prove to be
useful when deriving the equation for the optimal LQG
controller. Let us compute the following expectation:

E[x′k+1Sxk+1 | Ik] =

= E[(Axk + νkBuk + wk)′S(Axk + νkBuk + wk) | Ik] =

= E[x′kA′SAxk + ν2
ku′kB′SBuk + w′kSwk +

+2νku′kB′SAxk + 2(Axk + νkBuk)wk | Ik] =

= E[x′kA′SAxk | Ik] + ν̄u′kB′SBuk +

+2ν̄u′kB′SAE[xk | Ik] + trace(SE[wkw′k | Ik]) =

= E[x′kA′SAxk | Ik] + ν̄u′kB′SBuk +

+2ν̄u′kB′SA x̂k|k + trace(SQ) (7)

where we used independence ofνk, wk, xk, and zero-mean
property ofwk. The previous expectation hold true for both
the information setsIk = {Ik,Gk}. Also

E[e′k|kTek|k | Ik] = trace(TE[ek|ke′k|k | Ik]) = trace(TPk|k).
(8)

IV. F INITE AND INFINITE HORIZON LQG

We first start finding the optimal estimator, which will
be needed to solve the LQG controller design, as it will be
shown later.

A. Estimator Design,σ → +∞
We derive the equations for optimal estimator using

similar arguments used for the standard Kalman filtering
equations. The innovation step is given by:

x̂k+1|k
∆
= E[xk+1|νk, Ik] = E[Axk + νkBuk + wk|νk, Ik]

= AE[xk|Ik] + νkBuk

= Ax̂k|k + νkBuk (9)

ek+1|k
∆
= xk+1 − x̂k+1|k
= Axk + νkBuk + wk − (Ax̂ + νkBuk) (10)

= Aek|k + wk (11)

Pk+1|k
∆
= E[ek+1|ke′k+1|k |νk, Ik] =

= E
[(

Aek|k + wk

) (
Aek|k + wk

)′ |νkIk

]

= AE[ek|ke′k|k|Ik]A′ + E[wkw′k]

= APk|kA′ + Q (12)

where we used the independence ofwk and Ik. Since
yk+1, γk+1, wk and Ik are all independent of each other
and following the same approach described in [2], then
correction step is given by:

x̂k+1|k+1 = x̂k+1|k + γk+1Kk+1(yk+1 − Cx̂k+1|k) (13)

ek+1|k+1 = xk+1 − x̂k+1|k+1

= xk+1 − (x̂k+1|k + γk+1Kt+1(yk+1 − Cx̂k+1|k)

= ek+1|k − γk+1Kt+1(Cxt+1 + vk+1 − Cx̂k+1|k)

= (I − γk + 1Kk+1C)ek+1|k − γk+1Kk+1vk+1(14)

Pk+1|k+1 = Pk+1|k − γk+1Kk+1CPk+1|k, (15)

Kk+1
∆
= Pk+1|kC′(CPk+1|kC′ + R)−1, (16)

where we took the limitσ → +∞.
The initial conditions for the estimator iterative equations

are:

x̂0|−1 = 0 (17)

P0|−1 = P0 (18)

B. Controller design

To derive the optimal feedback control law and the
corresponding value for the objective function we will
follow the dynamic programming approach based on the
cost-to-go iterative procedure.

Define the optimal value functionVk(xk) as follows:

VN (xN ) ∆= E[x′NWNxN | IN ]

Vk(xk) ∆= min
uk

E[x′kWkxk +νku′kUkuk +Vk+1(xk+1) | Ik]

Using dynamic programming theory [13] [14], one can
show thatJ∗N = V0(x0).

We claim that the value functionVk(xk) can be written
as:

Vk(xk) = E[ x′kSkxk | Fk]+ck, k = 0, . . . , N (19)

where the matrixSk and the scalarck are to be determined
and are independent of the information setI. We will prove
it by induction. The claim is certainly true fork = N with
the following choice of parameters:

SN = WN (20)

cN = 0 (21)

Suppose now that the claim is true fork + 1, i.e.
Vk+1(xk+1) = E[ x′k+1Sk+1xk+1 | Fk+1] + ck+1, and
we use it to compute the value function at time stepk as
follows:



Vk(xk) =

= min
uk

E[x′kWkxk + νku′kUkuk + Vk+1(xk+1) | Ik]

= min
uk

E[x′kWkxk + νku′kUkuk +

+ E[x′k+1Sk+1xk+1 + ck+1 | Fk+1] |Ik]

= min
uk

E[x′kWkxk + νku′kUkuk + x′k+1Sk+1xk+1 +

+ ck+1 |Ik]

= E[x′kWkxk + x′kA′Sk+1Axk | Ik] +

+ trace(Sk+1Q) + E[ck+1 | Ik] +

+ ν̄ min
uk

(
u′k(Uk + B′Sk+1B)uk + 2u′kB′Sk+1A x̂k|k

)
(22)

where we used Lemma 1(c) in the third line, and Equation
(7) in the last two lines. The value function is a quadratic
function of the input, therefore the minimizer can be simply
obtained by solving∂Vk

∂uk
= 0, which gives:

uk = −(B′Sk+1B + Uk)−1B′Sk+1A x̂k|k = Lk x̂k|k.
(23)

The optimal feedback is thus a simple linear feedback of
the estimated state. If we substitute the minimizer back into
Equation (22), and we use the Equation (19) we get:

Vk(xk) =

= E[x′kWkxk + x′kA′Sk+1Axk | Ik] + trace(Sk+1Q) +

+ E[ck+1 | Ik]− ν̄x̂′k|kA′Sk+1B(Uk + B′Sk+1B)−1B′Sk+1Ax̂k|k
(24)

E[x′kSkxk | Ik] + ck =

= E[x′kWkxk + x′kA′Sk+1Axk −
+ ν̄x′kA′Sk+1B(Uk + B′Sk+1B)−1B′Sk+1Axk | Ik] +

+ trace(Sk+1Q) + E[ck+1 | Ik] +

+ ν̄ trace(A′Sk+1B(Uk + B′Sk+1B)−1B′Sk+1 Pk|k)(25)

where we used Lemma 1(b) in the last line. For the previous
equation to hold for allxk, we need to have:

Sk = A′Sk+1A + Wk −
+ ν̄A′Sk+1B(B′Sk+1B + Uk)−1B′Sk+1A (26)

ck = ν̄ trace(A′Sk+1B(Uk + B′Sk+1B)−1B′Sk+1 Pk|k) +

+ trace(Sk+1Q) + E[ck+1 | Ik]

= trace
(
(A′Sk+1A + Wk − Sk)Pk|k

)
+

+ trace(Sk+1Q) + E[ck+1 | Ik] (27)

Therefore, the cost function for the optimal LQG using

TCP is given by:

J∗N = V0(x0) = E[x′0S0x0] +

+
N−1∑

k=0

(trace
(
(A′Sk+1A + Wk − Sk)Eγ [Pk|k]

)
+

+ trace(Sk+1Q))
= x̄′0S0x̄0 + trace(S0P0) +

+
N−1∑

k=0

(trace
(
(A′Sk+1A + Wk − Sk)Eγ [Pk|k]

)
+

+ trace(Sk+1Q)) (28)

The matrices{Pk|k}N
k=0 are stochastic since they are

function of the sequence{γk}. The exact expected value
of these matrices cannot be computed analytically, since
they are nonlinear function of the arrival sequenceγk, as
shown in [2]. However, they can bounded by computable
determiniatic quantities. In fact let us consider the following
equation:

P̂k+1|k = AP̂k|k−1A
′ + Q−

+ γ̄AP̂k|k−1C
′(CP̂k|k−1C

′ + R)−1CP̂k|k−1A
′ (29)

P̂k|k = P̂k|k−1 − γ̄P̂k|k−1C
′(CP̂k|k−1C

′ + R)−1CP̂k|k−1(30)

P̃k+1|k = (1− γ̄)AP̃k|k−1A
′ + Q (31)

P̃k|k = (1− γ̄)P̃k|k−1 (32)

initialized to P̂0|−1 = P̃0|−1 = P0. Using similar ar-
guments as those in [2], it is possible to show that the
matricesPk|k ’s are concave and monotonic functions of
Pk|k−1, respectively. Therefore, the following bounds are
true:

P̃k|k ≤ Eγ [Pk|k] ≤ P̂k|k (33)

(34)

Therefore we have:

Jmin
N ≤ J∗N ≤ Jmax

N (35)

Jmax
N = x̄′0S0x̄0 + trace(S0P0) +

+

N−1∑

k=0

(trace
(
(A′Sk+1A + Wk − Sk)P̂k|k

)
+

+ trace(Sk+1Q)) (36)

Jmin
N = x̄′0S0x̄0 + trace(S0P0) +

+

N−1∑

k=0

(trace
(
(A′Sk+1A + Wk − Sk)P̃k|k

)

+ trace(Sk+1Q)) (37)

C. Finite and Infinite Horizon LQG control

The previous equations were derived for the finite horizon
LQG. The infinite horizon LQG can be obtained by taking
the limit for N → +∞ of the previous equations. However,
the matrices{Mk+1} and {Pk|k} depend on the specific
realization of the observation sequence{γk}, therefore the
minimal costJN is a stochastic function and does not have
a limit. Differently from standard LQG controller design



where the controller always stabilizes the original system,
in the case control packet loss, the stability can be lost if
the arrival probabilityν̄, γ̄ is below a certain threshold. In
particular the Equation for the cost matrixSk is the solution
of a modified Riccati Algebraic Equation (MARE) which
was already introduced and studied in our previous work
[2]. In particular, Equation (26) is the dual of the estimator
equation presented in [2]. Therefore, the same conclusions
can be drown and we are now ready summarize the previous
result in the following theorem:

Theorem 1 (Finite Horizon LQG under TCP). Consider
the system (1)-(2) and consider the problem of minimizing
the cost function (4) with policyuk = f(Ik), whereIk

is the information available under TCP communication,
given in Equation (3). Then, the optimal control is alinear
function of the estimated system state given by Equation
(23), where the matrixSk can be computed iteratively
using Equation (26). Theseparation principlestill hold
under TCP communication, since the optimal estimator
is independent of the control inputuk. The optimal state
estimator is given by Equations (9)-(13) and (12)-(16), and
the minimal achievable cost is given given by Equation (28).

Theorem 2 (Infinite Horizon LQG under TCP). Consider
the same systems as defined in the previous theorem with
the following additional hypothesis:WN = Wk = W and
Uk = U . Moreover, let(A, B) and(A,Q

1
2 ) be controllable,

and let(A,C) and(A,W
1
2 ) be observable. Let us consider

the limiting caseN → +∞, then, there exist arrival
probabilities νmin and γmin which satisfy the following
property:

min
(

1, 1− 1
|λmax(A)|2

)
≤ νmin ≤ 1, (38)

min
(

1, 1− 1
|λmax(A)|2

)
≤ γmin ≤ 1, (39)

where|λmax(A)| is the eigenvalue of matrixA with largest
absolute value, such that for all̄γ > γmin we have:

Lk = L∞ = −(B′S∞B + U)−1B′S∞A (40)
1
N

Jmin
N ≤ 1

N
J∗N ≤ 1

N
Jmax

N (41)

where the mean cost boundsJmin
N , Jmax

N are given by:

Jmax
∞ = lim

N→+∞
1

N
Jmax

N

= trace((A′S∞A + Wk − S∞)(P̂∞ −
+ γ̄P̂∞C′(CP̂∞C′ + R)−1CP̂∞)) + trace(S∞Q)

Jmin
∞ = lim

N→+∞
1

N
Jmin

N

= (1− γ̄)trace
(
(A′S∞A + Wk − S∞)P̃∞

)
+

+ trace(S∞Q)

and the matricesS∞, P∞, P∞

S∞ = A′S∞A + W − ν̄ A′S∞B(B′S∞B + U)−1B′S∞A

P∞ = AP∞A′ + Q− γ̄ AP∞C′(CP∞C′ + R)−1CP∞A′

P∞ = (1− γ̄)AP∞A′ + Q

Moreover, the assumptions above arenecessary and suf-
ficient conditions for boundedness of cost function under
LQG feedback. The critical probabilitiesγmin andνmincan
be computed via the solution of the following LMIs opti-
mization problems:

γmin = argminγ̄Ψγ(Y,Z) > 0, 0 ≤ Y ≤ I.

Ψγ(Y, Z) =

=




Y
√

γ(Y A + ZC)
√

1− γY A√
γ(A′Y + C′Z′) Y 0√

1− γA′Y 0 Y




νmin = argminν̄Ψν(Y, Z) > 0, 0 ≤ Y ≤ I.

Ψν(Y, Z) =

=




Y
√

ν(Y A′ + ZB′)
√

1− νY A′√
ν(AY + BZ′) Y 0√

1− νAY 0 Y




V. CONCLUSION

Motivated by applications where control is performed
over a communication network, in this paper we extend
our previous results on optimal control with intermittent
observations to the case where control packets may be lost
due to the presence of an unreliable communication channel
between the controller and the actuator. We assume that
an acknowledgement of the arrival of the control packet is
always available to the controller (TCP). First, we showed
that the separation principle holds also in this case. Then
we proved that the optimal LQG control is a linear function
of the state. Finally, by providing analytic upper and and
lower bounds on the cost functional we could show the
existence of critical arrival probabilities below which the
optimal controller fails to stabilize the system. Future work
will involve the analysis for the case when the controller
does not receive any acknowledgement to whether its packet
has been received by the actuator or not.
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