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Abstract— Motivated by control applications over lossy
packet networks, this paper considers the Linear Quadratic
Gaussian (LQG) optimal control problem in the discrete time
setting and when packet losses may occur between the sensors
and the estimation-control unit and between the latter and the
actuation points. Previous work [1] shows that, for protocols
where packets are acknowledged at the receiver (e.g. TCP-
like protocols), the separation principle holds. Moreover, in
this case the optimal LQG control is a linear function of the
estimated state and there exist critical probabilities for the
successful delivery of both observation and control packets,
below which the optimal controller fails to stabilize the system.
The existence of such critical values is determined by providing
analytic upper and lower bounds on the cost functional, and
stochastically characterizing their convergence properties in the
infinite horizon. Finally, it turns out that when there is no
feedback on whether a control packet has been delivered or
not (e.g. UDP-like protocols), the LQG optimal controller is in
general nonlinear, as shown in [2]. There exists a special case,
i.e. the observation matrix C' is invertible and there is no output ~ Fig. 1.  Overview of the system.We study the statistical convergence
noise. In this case this paper shows that the optimal control is Properties of the expected state covariance of the distireeeLQG control
linear and critical values for arrival probabilities exist and can ~ SYStem. where both the observation and the control sigralglting over
be computed analytically. a?olgglr)ﬁ!Itatile—CPr;r?&ulnfa;I?gscgig\T;I, can be lost at each tieme wsith

Index Terms— distributed control, networked control, LQG P yioa P Y
control, optimal stochastic control, sensor networks.
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|. INTRODUCTION and control packets as random processes whose parame-
ters are related to the characteristics of the communitatio
Today, an increasingly growing number of applicationghannel. Accordingly, two independent Bernoulli processe
demands remote control of plants over unreliable networkare considered, of parameteysand 7, that govern packet
The recent development of sensor web technology [3] alosses between the sensors and the estimation-control unit
lows development of wireless sensor networks that can kgd between the latter and the actuation points, see Figure 1
immediately used for estimation and control of dynamical |n our analysis, the distinction between the two classes
systems. of protocols will reside exclusively in the availability of
Packet networks communication channels typically usgacket acknowledgement. Adopting the framework proposed
one of two kinds of protocols: Transmission Control (TCPhy |mer et al. [4], we will refer therefore to TCP-like pro-
or User Datagram (UDP). In the first case there is acknowlpcols if packet acknowledgement is available and to UDP-
edgement of received packets, while in the second cafRe protocols otherwise. We summarize our contributioss a
no-feedback is provided on the communication link. Oufollows. In the TCP-like case the classic separation princi
research focuses on studying the effect of data losses dye holds, hence controller and estimator can be designed
to the unreliability of the network links in these two CaseS'mdependenﬂy_ Moreover, the 0ptima| controller is a linea
We generalize the Linear Quadratic Gaussian (LQG) optim@inction of the state. On the contrary, in the UDP-like case,
control problem —modeling the arrival of both observationg counter-example shows that the optimal controller is in
general non-linear, as shown in [2]. It turns out that in
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special case was previously analyzed in [4], where bottlifferent controller and receiver compensation schemég [1
observation and process noise are assumed to be zero &owever, it does not include process and observation noise
the input coefficient matrix is invertible. and the controller is imposed to be time-invariant, hende su

A final set of results are on convergence in the infinité’pt'mal' . .
horizon. In this case, previous results on estimation with 'S Paper considers the alternative approach where the

missing observation packets in [5] are extended to the (:bntref)(ternal qompensator fe_edlng the contrpller is the optlmal
e varying Kalman gain. Moreover, this paper considers

case, showing the existence of a critical region of value%’n I Multiole 1 Multiole O MIMO
for the parameters of the Bernoulli arrival processesnd the genera ultiple Input ut|pe_ ) utput ( - ) case,
5, outside which a transition to instability occurs and th nd gives some necessary and sufficient conditions foralose

optimal controller fails to stabilize the system. In pautéar, oop stability. The work of [4] is the closest to the present

we showed in [1] that under TCP-like protocols the criticaPhaper' D!ffegently, wehco!ch5|dgr the C'inor:e ge.neral' case V\;]hen
arrival probabilities for the control and observation ahain the matr!x |sdnpt the dentity an td%r_e. IS n0|se||n t <
are independent of each other, which is another conseque ervation and in the process. In addition, we aiso give
of the fact that the separation principle holds. Differgnt| stronger necessary and sufficient conditions for existerfice

under UDP-like protocols the critical arrival probabifor selution for the infinite horizon LQG.

the control and observation channels are coupled and thel "€ Paper is organized as follows. Section 2 provides a

stability region and performance of the optimal controlleffathématical formulation for the problem and preliminary
results. Section 3 summarizes previous results. The dpecia

degrades considerably as compared to TCP-like protocols. e X )
) ] case, where LQG control is linear for UDP-like case, is
Finally, we want to mention some related work. Studistydied in section 4. Here some of the proofs are omitted
of stability of dynamical systems where components arg meet space constraint, but can be found in [17]. Finally,

connected asynchronously via communication channels hggnclusions and directions for future work are presented in
received considerable attention in the past few years ar@ction 5.

our contribution can be put in the context of the previous

literature [6]. In [7] and [8], the authors proposed to place Il. PROBLEM FORMULATION

an estimator, i.e. a Kalman filter, at the sensor side of the Consider the following linear stochastic system with inter
link without assuming any statistical model for the dataslosmittent observation and control packets:

process. In [9], Smithet al. considered a suboptimal but

computationally efficient estimator that can be applied nvhe Tpe1 = Az + Bup +wy (1)
the arrival process is modeled as a Markov chain, which is ug = v 2
more general than a Bernoulli process. Other work includes
Nilsson [10] that presents the LQG optimal regulator with
bounded delays between sensors and controller, and betwedrere u{ is the control input to the actuator, is the

the controller and the actuator. In this work bounds fodesired control input computed by the controller, wy, vi)

the critical probability values are not provided. Additadly, are Gaussian, uncorrelated, white, with meéiy,0,0)
there is no analytic solution for the optimal controller.eTh and covariance(Py, @, R) respectively, and(v,vy) are
case where dropped measurements are replaced by zerbd. Bernoulli random variables wittP(v;, = 1) = 4 and

is considered by Hadijcostis and Touri [11], but only inP(v, = 1) = 0. The stochastic variablg, models the loss
the scalar case. Other approaches include using the lastpackets between the controller and the actuator: if the
received sample for control [10], or designing a dropoupacket is correctly delivered thea} = ugf, otherwise if
compensator [12], which combines in a single process estt-is lost then the actuator does nothing, i = 0. This
mation and control. However, the former approach does nobmpensation scheme is summarized by Equation (2). This
consider optimal control and the latter is limited to scalamodeling choice is not unique: for example if the control
systems. Yuet al. [13] studied the design of an optimal packetu{ is lost, then the actuator could use the previous
controller with a single control channel and deterministicontrol value, i.euf = uf_,. However, the latter control
dropout rates. Seilegt al. [14] considered Bernoulli packet compensation is slightly more involved to analyze and it is
losses only between the plant and the controller and poged tleft as future work. The stochastic variable models the
controller design as aifl,, optimization problem. Finally, packet loss between the sensor and the controller: if the
Elia [15] proposed to model the plant and the controllepacket is delivered thew, = Cxi + v, otherwise if it

as deterministic time invariant discrete-time systems-cons lost then the controller reads pure noise, yg.= v.
nected to zero-mean stochastic structured uncertaintg. Tihis observation model is summarized by Equation (3). A
variance of the stochastic perturbation is a function of thdifferent observation formalism was proposed in [5], where
Bernoulli parameters, and the controller design is posed &ne missing observation was modeled as an observation for
an optimization problem to maximize mean-square stabilitwhich the measurement noise had infinite covariance. It is
of the closed loop system. This approach allows analysis pbssible to show that both models are equivalent, but the
Multiple Input Multiple Output (MIMO) systems with many one considered in this paper has the advantage to give rise

ye = YCxp + g, 3



to simpler analysis. This arises from the fact that when no

IIl. SUMMARY OF PREVIOUS RESULTS

packet is delivered, then the optimal estimator does not usegefore introducing new results, it is necessary to review

the observationy;, at all, therefore its value is irrelevant.
Let us define the followmg information sets:

Fr 2 {y*.4"vF'}, TCP-like
Ir = A kE ok : Q)
G, = {y", 7"}, UDP-like
wherey® = (yx,yk-1,---,91), ¥* = (v, 7-1,---,m), and
I/k_(ylm k—1s-+-> 2
Consider also the following cost function:
JN(U B ,.i’(),Po) =
=FE [xQVWN:cN—I—ZkN;é(x;Cka;@ —&—Vku;gUkuk)‘uNfl, i’o,Po}
(5)

where uV ™' = (un-_1,uv—2,...,u1). Note that we are
weighting the input only if it is successfully received aeth
plant. In fact, if it is not received, the plant applies zamput
and therefore there is no energy expenditure.

We now look for a control input sequenca*V—!
as a function of the admissible information sg&t, i.e
ur, = gx(Zy), that minimizes the functional defined in Equa-
tion (5), i.e.

. A 1
IN(Zo, Po) = In (N1 70, By),

min
ux =g (Zx)

(6)

recently published results [1], [2], [17], for both the TGl
and the UDP-like case.

A. TCP-like case: estimator and controller design

The LQG control problem for the TCP-like case has been

solved in full generality in [1].

Finite Horizon LQG . The main results are summarized

below:

« Separation Principle holds under TCP-like communica-
tion, since the optimal estimator is independent of the
control inputuy.

« The optimal estimator gairnk; is time-varying and
stochastic since it depends on the past observation
arrival sequencéy; }i_,.

« The Optimal LQG controller is a linear function of
estimated statey,, i.e. up = L2y

« The final cost cannot be computed explicitly, since it
depends on the realization of and v,, but can be
analytically bounded.

Infinite Horizon LQG. Consider the system (1)-(3) with

the following additional hypothesigyy = W, = W and
Uy, = U. Moreover, let(A, B) and (4, Q?) be controllable,

whereZ;, = {7, Gy} is one of the sets defined in Equa-, o (A,C) and (A,Wz) be observable. There exist

tion (4). The setF corresponds to the information provided
under an acknowledgement-based communication protoc

(TCP-like) in which successful or unsuccessful packet de-
livery at the receiver is acknowledged to the sender within

the same sampling time period. The getorresponds to the
information available at the controller under communimati

protocols in which the sender receives no feedback about
the delivery of the transmitted packet to the receiver (UDP-
like). The UDP-like schemes are simpler to implement than
the TCP-like schemes from a communication standpoint.

However the price to pay is a less rich set of information.
Before proceeding, let us define the following variables:

. A

Tk = ]E[xk | Ik]:

€k|k = Tk — fl:"k\k, (7
A

P = Elerey, | Zl-

Derivations below will make use of the following facts:
Lemma 1: The following facts are true [1]:
@) E[(zr — &)2), | k] = E [eppy, | k] =0
(b) E[mkSack | Zi) = 2}, 8%, + trace (SPk‘k) VS >0
(c) EE -Tk+1?1‘zk+1 | Z] = E [g(z541) | i, Vgﬁ)
We now make the following computations that will be

useful when deriving the equation for the optimal LQG
controller.

Elz, A'SAxy, | Ti] + puj, B'SBuy, +

(8
where both the independence of, wy, z;, and the zero-
mean property ofv,, are exploited. The previous expectation

holds true for both the information sets, i, = F; or
I = Gk.

E[zk1Szisr | Tu] =
+ QDu;B/SA:EMk, + trace(SQ),

ritical arrival probabilities/. and~.. , such that, fow > v,
ﬁd"y > e

(@) The infinite horizon optimal controller gain is con-
stant:

klim Ly =Ly = 9)

(b) The infinite horizon optimal estimator gaiR is
stochastic and time-varying since it depends on the past
observation arrival sequenc{e/j};?:1

(c) The expected minimum cost can be bounded by two
deterministic sequences:

—(B'SooB+U)'B'S, A

szn < _J < _Jmaz 10
V< (10)

N N
where J3, J@e* converge to the following values:

J;)Law é 11mN~>+oc NJ"’LauL
= trace((A'Sec A + W — S0 ) (Poo—
+’7PooC'(CP C'+R)'CPyx))+trace(SeeQ)
min A : min
']OC = 11mN~>+oc J
(1 —¥)trace ((A SecA+W — Soo)ﬁoo) +
+trace(S- @),

and the matrice$., P, P are the positive definite
solutions of the following equations:

Soo = A'Se AW -0 A’S . B(B'Soo B+U) ' B'S,, A
Po = AP A4+Q—5 AP C'(CPC'+R) M CP A’



The critical probabilityv, can be numerically computed where we used Lemma 1(b), therefore the statement is
via the solution of a quasi-convex LMIs optimization prob-satisfied bySy = Wx,Tny = Wy, Dy = 0. Note that
lem, as shown in [1]. Also the following analytical boundsEquation (16) can be rewritten as follows:
are provided:

P Vk(fL‘k) = E[x;Skxk|Qk]+trace((Tk—Sk)Pk‘k)+trace(D;€Q)

min < Ve, Ve < , .
Pmin = VesYe = Pmaz where we used once again Lemma 1(b). Let us suppose that

Prmin 81 Equation (16) is true fok + 1. We can show by induction
N max; ‘fi'(A)‘ that it holds true fork:
mar — 1—- TT N4 (A2 . ’ ’
p IL; 2 (A2 Vi(zr) = minE[x,Wizr + veupUkuk + Vier1 (@et1) | Gl

Uk

where \¥(A) are the unstable eigenvalues 4f Moreover,
Ve = Pmin When B is square and invertible [18] , and
Ve = Pmae When B is rank one [15]. Duallyyy. = pmin
whenC' is square and invertible, ang. = p,,.. whenC' is
rank one.

= i;cm(WkJrA/SkﬂA)‘%k\k +

+  trace( Dy +(1—7) Tia + ¥S11)Q) +

+ trace((Wk+'_yA'Sk+1A + (1—’7)AT1€+1A/)P;€“€) +

+ v min(u; (U + B (1—=@) Sk + 0T ) B)uk +
Up

B. UDP-like case: estimator and controller design + QU;CB'SkJrIAQ;Mk)’

As stated above, the LQG optimal control problem for .
QG op P where we definedv = (1-7)(1—%), we used Lemma 1(c),

the UDP-like presents analytigal complications. The Iac'ﬁquations (8) and (15) to ‘get the last equality. Since the
of acknowledgement of the arrival of a control packet hagyantity inside the last parentheses is a convex quadratic
dramatic effects on controller design. Complete derivetio fynction, the minimizer is the solution cgﬁ = 0, which is

for this case are presented in [2]. Here is a summary of themgiven by: .

« The innovation step in the design of the estimator now

—1
explicitly depends on the inputy, ; up, :*<Uk+3 ((1*@)Sk+1+5‘Tk+1)B) BSeud iy, (17)
« the separation principle is not valid anymore in this = Ly &pk- (18)
setting.

This is a linear function of the estimated statg;. Substi-

« the LQG optimal control feedback. = gi:(Gk) With  ying hack into the value function we get:

horizon N > 2 that minimizes the functional (5) under , o . )

UDP-like communication is, in general, monlinear Vie(wr) = & (W +74 Send - inclkASkJrlBLk)xk\k_"
function of information seg;,. +trace(( Dios1 +(1=7) Tiora + FSki1) Q)+

+trace Wk+A/Sk 114 + (1—’_}/ ATk 114/ P, .

IV. UDP-LIKE SPECIAL CASE: R=0AND C INVERTIBLE <( - ) +14) Pk

the linear transformation = Cz would give an equivalent 1ast equation we see that the value function can be written

system where the matriC is the identity. Let us now &S in _quation (16) if and only if the following equations are
consider the case when there is no measurement noise, fatisfied:

R = 0. These assumptions mean that it is possible to measure, — _  4/g, 4+ W, —
the statex; when a packet is delivered. In this case the e / _ _ L/
estimator equations simplify as follows: —DA'SpuB Ukt B' (1— &) Skpr + 0Tk ) B B'SenA
A ) ) = ®%(Sps1,T) 19
Th41lk+1 = A-’L'k\k + vBug + (11) T o (1 ( f;_j;/Tk+lj)4 + _AIS A+ W, ( )
+ W1 Kepr(@rr — (A + 7Bur))  (12) " T ] o L. '
Kin =1 (13) = 2 (Ske1, Thn) (20)
Prijrn L= Yt1) Prsjn Di = (1 =3)Tkt1 +7Sk+1 + D (1)

(
= (I—ven ) (A'PypA+ Q+v(1—v)BuruiB') (14) ) o . .
= (1) (A'Pydt Q+7(1—0)Busul, B'), (15) The optimal minimal cost for the finite horizon,

ElPit1ipn |G4] J% = Vo(z) is then given by:

where in the last equation we used the independenegg af N
and G, and we used the fact thdt,, is a deterministic s :EGSOEO—Hrace(SOPO)—I—Z trace(((l—f’y)Tk—F"ySk)Q) (22)
function of Gy.. k=1

Similarly to what was done in the analysis of TCP-like
optimal control, we claim that the value functidrj (=) For the infinite horizon optimal controller, the neces-
can be written as follows: sary and sufficient condition for the average minimal cost

Vi) = @hjp Sudip + trace(Th Pyyy) + trace DrQ),  (16) Joo 2 limpy oo %J}{, to be finite is that the coupled iter-
ative Equations (19) and (20) converge to finite val$es
andT,, as N — +oo. In the work of Imeret al. [4] similar
equations were derived for the optimal LQG control under
Vn(zn)=E[xNyWnan|Gn]=&nnWnin v + trac§ Wy Pyy)  UDP-like communication for the same framework with the

for k= N,...,0. This is clearly true fork = N, in fact we
have:



additional conditions) = 0 and B square and invertible. Indeed, as shown in [17], controllers with similar struetur
They find numerical necessary and sufficient conditions fdsut smaller gains, i.eu, = —nv, B~ * Ay, = —ny B~ Axy,
those equations to converge. Unfortunately, these camditi wheren < 1, have a larger region of stability.

do not hold for the general case whBris not square. This is

a very frequent situation in control systems, where in ganer 1
we simply have(A, B) controllable.

The convergence of Equations (19) and (20) depends ¢
the control and observation arrival probabilitiesy. General 0.8
analytical conditions for convergence are not availabig, b
some necessary and sufficient conditions can be found,
summarized in the following theorem: 0.6/

Theorem 1. Consider the system (1)-(3) and consider the _ |
problem of minimizing the cost function (5) within the
class of admissible policies, = f(Gr), where Gy is 0.4
the information available under UDP-like schemes, given ii 3l
Equation (4). Assume also th& = 0 and C' is square and

UDP dead-beat contr.

TCP-stable

invertible. Then: o.2pm | .
(a) The optimal estimator gain is constant and in partic 0.1t ! .
ular K =1if C=1. o | P ‘ ‘ ‘
(b) The infinite horizon optimal control exists if and only 0 0.2 0.4 0.6 0.8 1
if there exists positive definite matrices,,, 7., > 0 Y

Y _ T
such tha}f* o (I)S (Seo, TOO.) and.TOC - (I). (Soo, Too), Fig. 2. Region of convergence for UDP-like and TCP-like oyati control
where > and ®~ are defined in Equations (19) andi, the scalar case. These bounds are tight in the scalar Tasethin solid

20). line corresponds to the boundary of the stability region dodead-beat
(c) The infinite horizon optimal controller gain is con- controller under UDP-like protocols as given by [4], whichrhuch more
stant: restrictive than what can be achieved with optimal UDP-likatcollers.
lim Ly = Leo = —(B' (@Too+(1—-&)Soo) B+U) ' B'Soc A
Feo (23) In the scenario considered in this section whn= 0
(d) A necessary condition for the existence ofind C is invertible, it is possible to directly compare the
S0, Tso > 0 is that: performance of the optimal control under TCP-like and UDP-
o like protocols in terms of the infinite horizon co#t, . Let us
AP+ —290) <7+ v —7P, (24)  consider for example the scalar system with the following pa

rametersA=1.1,B=C=Q=W =U=1,R=0. For
simplicity also consider symmetric communication chasnel
for sensor reading and control inputs, ite= 4. From the
previous analysis we can compute the infinite horizon cost
using optimal controllers under UDP-like communication
— lim lJ;] _ trace((l — )T + WSOO)Q). Qnd an upper bound on the cost gndgr TCP-like communica-
k— o0 25) tion protocols, which are shown in Fig. 3. As expected, the
A araphical representation of the stability bound i( h Woptima_ll control performance under TCP-like is better than
__ A grapnical representation ol the Stability bounds IS show DP-like, but the two curves are comparable for moderate
in Figure 21’4 erre Weh_ccr)]ns!deredh a s_c_alalr sy?)tekr)r_}_ WiBacket loss. Although the TCP-like curve is only an upper
param_ete;s{_ |1 /TA|12.L—W1 '1C73 %:\s/egetﬁneegrglggvepr?rhae 'C'% bound of the true expected cost, it has been observed to
pm’i” - | b b'I"_ 'f TCP-lik - al ) | be rather close to the empirical cost [19]. The observation
ical arrival probabilities for -like optimal control &I . 1cp_jike and UDP-like optimal control performances
Ve = Ve = pmin. The boundary for the stability region of goo, v emarkably close is extremely valuable since UDP-like
optimal control under UDP-like protocol§(A92|Y%n in Theo-, »tocols are much simpler to implement than TCP-like.
rem 1(d) can be written also as > WNI—A? for
7 > pmin. It is important to remark that the stability region V. CONCLUSIONS
of optimal control under UDP-like protocols is larger than This paper analyzes the LQG control problem in the case
the stability region obtained using the dead-beat comroll where both observation and control packets may be lost
proposed in [4], i.ex, = —yB 1Ay, = —yB 1Az, when travelling through a communication channel. Thisés th
which is given byy > 1—1/|AJ? and graphically shown in case of many distributed systems, where sensors, comgrolle
Figure 2 . This is not surprising since the dead-beat cdetrol and actuators physically reside in different locations and
is rather aggressive and requires a large ghinwhich they have to rely on network communication to exchange
increases the estimator error covariance in Equation (15hformation. In this context the paper presents analystbef

where |A] 2 max; |A:(A)] is the largest eigenvalue of
the matrix A. This condition is also sufficient iB is
square and invertible.

(e) The expected minimum cost converges:

Joo
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Fig. 3. Exact infinite horizon cosf’, using optimal LQG control under
UDP-like and upper bound cost}** under TCP-like communication
protocols in the scalar case.

[2

[3

4

5

6
[7

[8

—_—

—_—

|

—_

[ .

—_

LQG control problem for two types of protocols, i.e. TCP and [9]

UDP. In the first case, acknowledgement of arrival of control
packets is available to the controller, while in the secon
case it is not available in general. For TCP-like protocol
a solution for a general LTI stochastic system is provided

o

for both the finite and infinite horizon case, showing thaf11]

the optimal control is still a linear function of the state.

Moreover, the infinite horizon cost functioh,, is bounded if

arrival probabilitiesy, 7 are higher than a specified threshold
UDP-like protocols present a much more complex scenari

as the lack of acknowledgement of the control packet at the

controller makes the separation principle invalid. Estiora

and control are now coupled. The paper shows that in

general the optimal control is non linear. The control law
cannot be determined in closed form, making this solution
(14]

impractical. A special case, when the mat€ixis invertible

and there is no observation noise, is presented. In this case

the LQG control is again linear and cost function can b
evaluated analytically. In the infinite horizon the optimal

12]

(13]

fi5)

control exists and it is linear if algebraic conditions o th 16

arrival probabilitiesy, 5 are satisfied. Finally comparison
between TCP-like and UDP-like controller shows slightly

better performance for the first method, with the secontd’]

offering similar performance as arrival probabilities eqggrch

one. The fact that TCP-like and UDP-like performances argg]
comparable is remarkable since UDP is much simpler to
implement. This observation suggests the need of tools for
designing suboptimal controllers for the general UDP-liké!®]

scenarios. This is currently under investigation.
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